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Abstract
This paper investigates how the splitting cri�
teria and pruning methods of decision tree
learning algorithms are in�uenced by misclas�
si�cation costs or changes to the class distri�
bution	 Splitting criteria that are relatively
insensitive to costs 
class distributions� are
found to perform as well as or better than�
in terms of expected misclassi�cation cost�
splitting criteria that are cost sensitive	 Con�
sequently there are two opposite ways of deal�
ing with imbalance	 One is to combine a cost�
insensitive splitting criterion with a cost in�
sensitive pruning method to produce a deci�
sion tree algorithm little a�ected by cost or
prior class distribution	 The other is to grow
a cost�independent tree which is then pruned
in a cost�sensitive manner	

�� Introduction

When applying machine learning to real world classi��
cation problems two complications that often arise are
imbalanced classes 
one class occurs much more often
than the other 
Kubat et al	� ��� Ezawa et al	� ���
Fawcett � Provost� ���� and asymmetric misclassi�
�cation costs 
the cost of misclassifying an example
from one class is much larger than the cost of misclas�
sifying an example from the other class 
Domingos�
�� Pazzani et al	� ����	 Traditional learning al�
gorithms� which aim to maximize accuracy� treat pos�
itive and negative examples as equally important and
therefore do not always produce a satisfactory clas�
si�er under these conditions	 Furthermore� in these
circumstances accuracy is not an appropriate measure
of classi�er performance 
Provost et al	� ���	 Class
imbalance and asymmetric misclassi�cation costs are
related to one another	 One way to counteract imbal�
ance is to raise the cost of misclassifying the minority
class	 Conversely one way to make an algorithm cost
sensitive is to intentionally imbalance the training set	

In this paper we investigate how the splitting crite�
ria of decision tree learning algorithms are in�uenced
by changes to misclassi�cation costs or class distribu�
tion	 We show that splitting criteria in common use

are relatively insensitive to costs and class distribution�
costs and class distribution primarily a�ect pruning

Breiman et al	� ���� p	��	 One criterion� which we
refer to as DKM 
Kearns � Mansour� ��� Dietterich
et al	� ��� is completely insensitive to costs and class
distributions but in our experiments its performance
equals or exceeds that of other splitting criteria	

This suggests two di�erent ways of dealing with im�
balance and costs	 First� instead of arti�cially ad�
justing balance by duplicating or discarding exam�
ples� a cost�insensitive splitting criterion can be com�
bined with a cost insensitive pruning method to pro�
duce a decision tree algorithm little a�ected by cost
or prior class distribution	 All the data available can
be used to produce the tree� thus throwing away no
information� and learning speed is not degraded due
to duplicate instances	 Alternatively one can grow a
cost�independent tree which is then pruned in a cost�
sensitive manner	 Thus the tree need only be grown
once� an advantage as growing trees is computationally
more expensive than pruning	

�� Measuring Cost Sensitivity

We restrict ourselves to two class problems in which
the cost of a misclassi�cation depends only on the class
not on the individual example	 Following Provost and
Fawcett 
��� we use ROC methods to analyze and
compare the performance of classi�ers	

One point in an ROC diagram dominates another if it
is above and to the left� i	e	 has a higher true positive
rate 
TP� and a lower false positive rate 
FP�	 If point
A dominates point B� A will outperform B for all pos�
sible misclassi�cation costs and class distributions	 By
�outperforms� we typically mean �has lower expected
cost�� but Provost and Fawcett 
��� have shown that
dominance in ROC space implies superior performance
for a variety of commonly�used performance measures	

The slope of the line connecting two ROC points

FP�� TP�� and 
FP�� TP�� is given by equation �

Provost et al	� ��� Provost � Fawcett� ���

TP� � TP�

FP�� FP�

�
p
��C
�j��
p
��C
�j�� 
��



where p
x� is the probability of a given example being
in class x� and C
xjy� is the cost incurred if an example
in class y is misclassi�ed as being in class x	 Equation �
shows that� for the purpose of evaluating performance
in ��class problems� class probabilities 
�priors�� and
misclassi�cation costs are interchangeable	 Doubling
p
�� has the same e�ect on performance as doubling
the cost C
�j�� or halving the cost C
�j��	 In the
rest of the paper we will freely interchange the two�
speaking of costs sometimes and priors other times	

A classi�er is a single point in ROC space	 Point 
����
represents classifying all examples as negative� 
����
represents classifying all examples as positive	 We call
these the trivial classi�ers	 The slopes of the lines
connecting a non�trivial classi�er to 
���� and to 
����
de�ne the range of cost ratios for which the classi�er is
potentially useful	 For cost ratios outside this range�
the classi�er will be outperformed by a trivial classi�
�er	 It is important in comparing two classi�ers not
to use a cost ratio outside the operating range of one
of them	 A classi�er�s operating range may be much
narrower than one intuitively expects	 Consider the
solid lines in Figure �	 These connect 
���� and 
����
to a classi�er which is approximately ��� correct on
each class	 The slopes� shown below the lines� are �	��
and �	�	 If the cost ratio is outside this range this clas�
si�er is outperformed by a trivial classi�er	 Operating
range increases as one moves towards the ideal classi�
�er� 
����	 Therefore if classi�er A dominates classi�er
B� A�s operating range will be larger than B�s	
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Figure �� ROC hulls showing line segment slopes

Some classi�ers have parameters for which di�erent
settings produce di�erent ROC points	 For example�
a classi�er that produces probabilities of an example
being in each class� such as a Naive Bayes classi�er�
can have a threshold parameter biasing the �nal class
selection 
Domingos� �� Pazzani et al	� ���	 The
upper convex hull 
Provost � Fawcett� ��� of all the

ROC points produced by varying these parameters is
the ROC hull for the classi�er	 The ROC hull is a
discrete set of points� including 
���� and 
����� con�
nected by line segments	 The dashed line in Figure � is
a typical ROC hull	 The operating range of any point
on an ROC hull is de�ned by the slopes of the two
line segments connected to it	 The �gure shows the
slope below each dashed line segment	 The operating
range of a parameterized classi�er is the range de�ned
by the two extreme line segments� the ones involving

���� and 
����	 The operating range of the dashed
ROC hull in the �gure is about ���� to ����	

The cost�sensitivity of a classi�er can be de�ned in
terms of its ROC hull� for example� as the length of
the ROC hull not counting the lines to 
���� and 
����	
This measures the amount of variation in performance
that can be achieved by varying the classi�er�s pa�
rameters	 An unparameterized classi�er is not cost�
sensitive at all according to this de�nition	 Alterna�
tively cost�sensitivity could be de�ned as the size of
the classi�er�s operating range	 This de�nition mea�
sures the range of cost ratios for which the classi�er
is useful	 Both de�nitions give important information
about a classi�er when costs or priors are not known in
advance� but they can give opposite conclusions about
which of two classi�ers is more cost�sensitive because it
is possible for classi�er A to have a much shorter ROC
hull than B but to have a larger operating range	 This
happens� for example� if A dominates B	 The most
striking example is when A is an unparameterized clas�
si�er whose performance is su�ciently good that its
ROC hull completely dominates B�s ROC hull	 For
example� the ROC hull of an unparameterized classi�
�er that was �� correct on each class would dominate
the dashed ROC hull in Figure �	

A learning algorithm may produce di�erent classi�ers
when its parameters� values are changed or when the
class distribution in the training set is changed while
keeping all the conditional probabilities within each
class the same	 For example� the ROC hull in Figure �
was generated by applying the same learning algorithm
to training sets in which the class ratio was arti�cially
varied	 The stipulation that the within�class condi�
tional probabilities must not change is important	 It
can be achieved exactly by duplicating all the examples
in one of the classes the same number of times 
�over�
sampling��� and it can be approximately achieved by
choosing a random subset of the examples in one class

�undersampling��	 The cost�sensitivity of a learning
algorithm can be measured in several ways	 It could
be de�ned in terms of the responsiveness of the learn�
ing algorithm to changes in the class distribution as
measured� for example� by the length of the ROC hull
produced when the class ratio in the training set is
varied between two extremes 
e	g	 ���� to �����	 Al�
ternatively� it could be de�ned �structurally�� as the
degree to which the classi�ers produced di�er from one
another when costs or priors are varied	



None of these de�nitions of cost�sensitivity is directly
related to performance	 System A can be more cost�
sensitive than system B according to any of the de��
nitions and yet be outperformed by B on almost their
entire operating range	 Performance is our ultimate
criterion for preferring one system over another	 Cost�
sensitivity is only desirable if it produces improved per�
formance� it is not a goal in itself	

To directly compare performance we transform an
ROC hull into a cost curve 
see Drummond and Holte

����� for a detailed discussion of cost curves�	 Fig�
ure � shows three cost curves	 The x�axis is p
���
the prior probability of the positive class	 The y�axis
is expected cost normalized with respect to the cost
incurred when every example is incorrectly classi�ed	
The classi�er that classi�es everything as belonging to
the majority class has an expected normalized cost of
�	� when p
�� � ��� and its expected cost decreases
linearly towards � as the probability of the majority
class increases	 Its cost curve is the dotted line in Fig�
ure �	 The dashed and solid cost curves in Figure �
correspond to the dashed and solid ROC hulls in Fig�
ure �	 The horizontal line atop the solid cost curve
corresponds to the unparameterized classi�er	 The lo�
cation of the line indicates the classi�er�s operating
range 
��� � p
�� � ����	 It is horizontal because
FP � ��TP for this classi�er	 At the limit of its op�
erating range this classi�er�s cost curve joins the cost
curve for the majority classi�er	 Each line segment in
the dashed cost curve corresponds to one of the ver�
tices de�ning the dashed ROC hull	 The di�erence in
performance of two classi�ers is precisely the di�er�
ence between their cost curves	 The dashed classi�er
outperforms the solid one � has a lower or equal ex�
pected cost � for all values of p
��	 The maximum
di�erence is about ��� 
�	�� compared to �	��� which
occurs when p
�� is about ��� 
or ����	

�� Cost Sensitivity of the Split Criteria

This section investigates how di�erent class distribu�
tions a�ect the four di�erent splitting criteria shown
in Figure �	 The triangular function represents accu�
racy	 Immediately above that is the Gini criterion used
in CART 
Breiman et al	� ����� followed by informa�
tion gain or entropy as used in C�	� 
Quinlan� ���	
At the top is the criterion we call DKM 
Kearns �
Mansour� ��� Dietterich et al	� ���	 The splitting
criteria all have the same general form	 The selected
split is the minimum of I
s� the total impurity after
applying the split� as shown in equation �	

I
s� � P 
L�f
P 
�jLs�� P 
�jLs��

�P 
R�f
P 
�jRs�� P 
�jRs�� 
��

This is the weighted sum of an impurity function
f
a� b� applied to the posterior probabilities of each
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Figure �� Cost curves for the ROC hulls in Figure �
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Figure �� Decision Tree Splitting Criteria

class for each side of the split	 The weights are the
probability of an example going to the left P 
L� or
right P 
R� of the split	 The exact shape of each curve
in Figure � is determined by the impurity function	

To investigate the cost sensitivity of the splitting cri�
teria� we synthesize a simple single attribute problem
and assume perfect knowledge of the conditional prob�
abilities and the priors	 The conditional probabilities
for the two classes are Gaussians with the same stan�
dard deviation but with means one standard deviation
apart	 By changing the priors on one of the Gaussians�
as indicated by the dashed lines in Figure �� di�erent
Bayes optimal splits are achieved	

Figure �� A Simple Decision Problem



The accuracy criterion� which uses the impurity func�
tion f
a� b� � min
a� b�� produces Bayes optimal splits
in this synthetic problem	 The top diagram in Figure
� shows the splits selected for cost ratio from about
���� to ���� moving from the bottom to the top	 Ex�
amples are classi�ed as positive in the shaded regions�
and as negative in the unshaded regions	

The second diagram in Figure �� shows the splits made
using the Gini criterion where f
a� b� is �ab	 The di�er�
ence in the position of the split as the ratio is changed
is much smaller than for accuracy and therefore the
Bayes optimal	 For the more extreme ratios� although
a split has occurred� the classi�cation on both the left
and right sides is the same	 The third diagram in Fig�
ure � shows the splits made using the entropy criterion
where f
a� b� is a log

�

a� � b log

�

b�	 The splits for all

the ratios are very similar� showing that entropy has
little sensitivity to priors	 Finally� the bottom diagram
in Figure � shows that the splits made using the DKM
criterion� where f
a� b� is �

p
ab� are identical for all ra�

tios	 Appendix A presents a simple proof that DKM
is completely insensitive to cost�priors	
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Figure �� Decision Boundaries

The sensitivity to cost of the various splitting crite�
ria thus follows the order� from accuracy to DKM� in
which they appear in Figure �� with accuracy being
extremely cost sensitive and DKM being totally in�
sensitive	 Accuracy and DKM represent the two lim�
its of useful splitting criteria	 Going below accuracy
would produce functions that are no longer concave
and therefore not useful as splitting criteria	 Going
above DKM would produce functions that have an in�
verse sensitivity to cost	

The preceding discussion concerns �structural� sensi�
tivity� i	e	� how much the split changes when priors
change	 The other notions of sensitivity introduced
in section � follow the same pattern	 The curves in
Figures �� and � are the results of this experiment for

accuracy 
dashed curves� and DKM 
solid curves�	 On
this problem the more cost�sensitive the splitting cri�
terion the better the performance and the wider the
operating range	 As discussed in section � accuracy�s
expected cost is up to ��� smaller than DKM�s	

�� The Split Criteria on Real Data

On ��dimensional Gaussian data accuracy produces
the Bayes optimal split	 But with multiple attributes
the optimal decision boundary is much more compli�
cated and accuracy is often not the best criterion for
growing a tree 
Breiman et al	� ���� p��	 This sec�
tion investigates the cost�sensitivity and performance
of the splitting criteria on real data	 Two of the data
sets used� oil and sleepbr�� are from our earlier work

Kubat et al	� ��� and one� appendicitis� was sup�
plied by S	 Weiss of Rutgers University	 Three addi�
tional sets were taken from the UCI collection 
Blake
� Merz� ���� Pima diabetes� sonar were used un�
changed� glass was converted to a two class problem
by combining the classes in the ��oat� and �non��oat�
groups	

Decision trees were built using C	�� release � 
Quin�
lan� ��� in which we disabled the additional penalty
factor for continuous variables based on minimum de�
scription length and we set the minimum size of a split
equal to � independent of the number of instances	 The
four splitting criteria from section � were used in place
of the normal one	 These changes were made so that
the cost�sensitivity and performance of the four cri�
teria could be measured without confounding factors	
If the unmodi�ed C�	� release � is run on the same
data its ROC hull is virtually indistinguishable from
the hull reported here for the entropy criterion	

Twelve di�erent cost ratios were used� ranging from
���� to ����	 The cost ratios are introduced by reduc�
ing the individual weights of instances of the less costly
class in proportion to its ratio to the more costly one	
This is done in the C�	� code that builds and that
prunes the tree	 For each ratio we repeated ���fold
strati�ed cross validation ten times and averaged the
resulting false positive rates and true positive rates to
get a single 
FP� TP � point	 The twelve ratios thus
produce twelve ROC points for a given splitting crite�
rion	

Figure � shows the consistency in the choice of the
root attribute�value for each splitting criterion	 Con�
sistency was measured as follows	 For each fold of
each repetition of cross�validation on each dataset� we
count how many times the same root attribute�value
is chosen when using di�erent cost ratios	 For exam�
ple� if one attribute�value was chosen for � of the ra�
tios� another attribute�value was chosen for another
� of the ratios� and a third attribute�value was cho�
sen for the other � ratios� we would record this as the
bag f�� �� �g	 The same attribute�value being chosen
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Figure 	� Diabetes Unpruned
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Figure 
� Diabetes Pruned

for all the ratios is the bag f��g and a di�erent at�
tribute�value being chosen for each ratio is the bag
containing twelve ones	 The bag is reduced to a sin�
gle number� the consistency score for that particular
training set� by summing the squares of its values and
dividing by ��	 For example� f�� �� �g produces a con�
sistency score of ����� � ���	 This method for com�
puting consistency is somewhat arbitrary in its details
but it has the important properties that the maximum
score 
��� occurs only if the same root attribute�value
is chosen for all the ratios� the minimum score 
�� oc�
curs only if each ratio results in a di�erent root at�
tribute�value being selected� and it generally agrees
with the intuitive judgements of relative consistency
in clearcut cases 
for example the score for f�� �g is
considerably higher than the score for f�� �� �g�	
For each splitting criterion� our complete set of experi�
ments produces ��� scores 
����� folds for � datasets�	
The histogram for a splitting criterion in Figure � uses
integer bins to summarize these scores	 DKM is almost
perfectly consistent choosing the same attribute�value
nearly every time	 With entropy� the consistency de�
pends on the data set� ranging from mostly choosing
the same attribute�value to choosing di�erent ones for
di�erent ratios	 Gini and particularly accuracy choose
di�erent attribute�values for many of the ratios	 Thus
the root of the tree is consistent for DKM but is very
dependent on the ratio for accuracy	 Figure � shows
the range of points generated by the middle eight of the
twelve ratios using an unpruned decision tree on the di�
abetes data set	 The limits of this range are indicated
by the numbers	 The dashed line is accuracy� points
are well spread out across ROC space	 For DKM the
spread is much narrower� consistent with a low struc�
tural cost sensitivity	 However when the tree is pruned

Figure �� the size of spread is increased considerably�
until there is relatively little di�erence between the
end points of the range	 Roughly the same behavior is
exhibited on all the data sets� but the e�ect of prun�
ing is often much reduced	 C�	� grows a large tree on
the diabetes data which gives it many opportunities
for pruning to adjust for costs	 In the other data sets
there is less chance for pruning to have this e�ect	

This section has shown that DKM is cost�insensitive
in terms of the decision trees it constructs and its re�
sponsiveness to variation in cost ratio	 Although cost�
insensitive in these other senses� it is possible that
DKM might be more cost�sensitive than the other cri�
teria in terms of the size of its operating range and it
might outperform them in terms of expected cost	

Figures  to �� show the ROC hulls for the splitting
criteria on the � data sets	 The ROC hulls are gener�
ated by taking the convex hull of the twelve points� one
for each of the twelve ratios� and the two points repre�
senting the trivial classi�ers	 Points not on the hull are
discarded	 The solid back diagonal line� FP � ��TP �
will be discussed in section �	 Only in Figure  does
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Figure �� ROC Hulls for Appendicitis
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Figure ��� ROC Hulls for Sleepbr�
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Figure ��� ROC Hulls for Diabetes
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Figure ��� ROC Hulls for Oil
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Figure ��� ROC Hulls for Glass�
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Figure ��� ROC Hulls for Sonar



DKM�s insensitivity to cost result in inferior perfor�
mance	 It dominates when the cost ratio is extremely
high in favor of the negative class 
the bottom left por�
tion of the ROC hull� but fails to adapt as the ratio
decreases	 Accuracy� the most cost�sensitive of the cri�
teria� produces the best performance once DKM stops
adapting	 In Figures �� and �� the criteria all perform
about equally well� with the more cost�sensitive crite�
ria slightly outperforming DKM in Figure ��	 In the
remaining three data sets� DKM is clearly the criterion
of choice	 In Figure �� the criteria perform about the
same when the cost ratio is extremely high in favor of
the negative class� but DKM emerges to dominate the
others once the ratio has swung to favor the positive
class	 Figures �� and �� are the most striking because
there cost�sensitivity is clearly a disadvantage� with
performance being inversely related to cost sensitivity	

�� Discussion

In these �gures DKM is the combination of a
cost�insensitive splitting criterion 
DKM� and cost�
sensitive pruning and leaf�labeling methods	 We have
seen that this combination generally performs as well
as or better than using a cost�sensitive splitting crite�
rion with the same pruning and leaf�labeling methods	
The fact that the splitting can be done independently
of cost�priors has several interesting consequences	 In
applications where a classi�er is to be deployed at sev�
eral sites with di�erent costs�priors� the same tree can
be grown using DKM and distributed to all sites	 Each
site can then prune the tree to suit its local condi�
tions	 Moreover� if attributes are measured only when
needed� and the true classi�cations of the examples
classi�ed by the tree eventually become known� these
examples can be used for pruning even though they
could not be used to learn a new tree from scratch
because they have so few measured attributes	 The
structural stability of the cost�insensitive tree is im�
portant for comprehensibility	 Experts analyzing the
tree can be assured that the attribute and value de�n�
ing the split at the root node is a stable feature of the
tree� not something that is highly sensitive to the train�
ing data	 More generally� the fact that good decision
trees can be grown in a cost�insensitive way suggests
that research should focus on ways of making classi�
�ers cost�sensitive� rather than learners	 Techniques
such as under� and oversampling 
Kubat � Matwin�
��� should be reconsidered in terms of how they af�
fect pruning and leaf labeling� which can be regarded
as ways of adapting a classi�er 
fully grown decision
tree� to varying costs and priors	

One can even question if cost�sensitive pruning is bene�
�cial	 In section � a single classi�er� combined with the
trivial classi�ers� was close to Bayes optimal perfor�
mance over much of its operating range	 The intersec�
tion of an ROC curve with the line FP � ��TP 
the
solid back diagonal line in Figures  to ��� represents
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Figure ��� Cost Curves for Sonar

a classi�er with a normalized expected cost that is to�
tally independent of misclassi�cation costs and priors	
Figure �� shows cost curves for the di�erent splitting
criteria on the sonar data set	 For a given splitting cri�
terion the classi�er corresponding to the intersection
would be a horizontal line through the highest point on
the cost curve	 In all cases this cost�insensitive classi�
�er has a normalized misclassi�cation cost within ���
of the basic cost curve and is typically much closer	

A cost�insensitive learning system could also be cre�
ated by using DKM in conjunction with a cost�
insensitive pruning method	 We made C�	��s prun�
ing method cost�insensitive by adjusting the instance
weights prior to pruning so that total weight for each
class was the same	 The cost curve for this algorithm
is the solid almost�horizontal line just above DKM�s
cost curve in Figure ��	 This cost�insensitive learning
algorithm outperforms algorithms using the accuracy
and Gini splitting criterion and its performance is sim�
ilar to the entropy�based learning algorithm for much
of its operating range	 It is� however� outperformed by
DKM with cost�sensitive pruning by a little over ���
in some regions of its operating range but in other re�
gions it is much less	

�� Conclusions

We have shown that commonly used decision tree split�
ting criteria are relatively insensitive to cost	 That in
fact� a newly introduced criterion is completely cost
insensitive	 But as we have stressed it is performance
of the classi�er with respect to costs that is the criti�
cal measure	 This can only be truly judged by using
ROC hulls or our own direct representation of misclas�
si�cation costs	 On this basis using a cost insensitive
splitting criterion� requiring pruning to introduce any
cost sensitivity� is surprisingly e�ective	 Using a classi�
�er with a cost insensitive pruning algorithm was also
shown to increase the overall misclassi�cation costs by
a relatively small amount	
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A� DKM	s Independence of Priors

Equation � is the general splitting criterion using the
DKM impurity function We replace the posterior prob�
abilities using Bayes rule producing equation �	 The
probability of going left� P 
L�� that weights the �rst
term cancels with the denominators inside the square
root� as does P 
R�� producing equation �	 Now the
prior probabilities P 
�� and P 
�� can be brought out�
side the brackets and being common to both terms be�
comes a scaling factor� as shown in equation �	 In this
form it can be seen that the position of the best split�
the minimum of this function� is independent of the
prior probabilities	
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