A* Search with Inconsistent Heuristics

Zhifu Zhang, Nathan R. Sturtevant, Ariel Felner
Robert Holte, Jonathan Schaeffer Information Systems Engineering
Computing Science Department Ben-Gurion University
University of Alberta Be’er-Sheva, Israel 85104
Edmonton, Alberta, Canada T6G 2E8 felner@bgu.ac.il

{zfzhang, nathanst, holte, jonathjgcs.ualberta.ca

Abstract o Discussion of how BPMX can be integrated into A* and

. . . . the resulting best- and worst-case scenarios.
Early research in heuristic search discovered that using)] . ,
inconsistent heuristics with A* could result in an expo- e An experimental comparison of A*, B, C,’Band

nential increase in the number of node expansions. As a BPMX algorithms using a variety of types of inconsis-
result, the use of inconsistent heuristics has largely dis- tent heuristics. The results illustrate the potential for

appeared from practice. Recently, inconsistent heusistic benefitin A* searches.
have been shown to be effective in IDA*, especially when
applying the bidirectional pathmax (BPMX) enhance- 2 Background

ment. This paper presents new worst-case complexity
analysis of A*'s behavior with inconsistent heuristics,
discusses how BPMX can be used with A*, and gives
experimental results justifying the use of inconsistent
heuristics in A* searches.

Heuristic search algorithms such as A* are guided by the cost

function f(n) = g(n) + h(n), whereg(n) is the best known

distance from the initial state to stateandh(n) is a heuris-

tic function estimating the cost from to a goal state. An

admissible heuristinever overestimates the path cost of any

1 ducti node to the goal. In other wordgn) < h*(n) for any node
ntroduction n [Hartet al, 1964. A consistent heuristits an admissible

A* is a popular heuristic search algorithm that guaranteeseuristic with the property that if there is a path from node

finding an optimal cost solution, assuming that one exists to nodey thenh(z) < d(z,y) + h(y), whered(x,y) is

and that the heuristic used is admissifitart et al, 1968; the distance from: to y [Hartet al, 1964. This is a kind

1977. However, when the heuristic is inconsistent, A* can of triangle inequality: the estimated distance franto goal

perform very poorly as nodes that have already been exeannot be reduced by moving framrto a different nodey and

panded may need to be re-expanded many times. This radding the estimate of the distance to goal frgto the cost

sults in a worst case aD(2"¥) node expansions, whel® of reachingy from z. Pearl [1984] showed that restricting

is the number of distinct nodes expandadartelli, 1977. to be a neighbour of produces an equivalent definition with

This motivated the creation of A* variants[Blartelli, 1977, an intuitive interpretation: in moving from a node to itsgiei

C [Bagchi and Mahanti, 1983and B [Mero, 1984 with bourh must not decrease more thaimcreases. If the edges

a worst-case 0O (N?). Even so, these results discouragedin the state space are undirected, the definition of comsigte

the use of inconsistent heuristics, especially since nmagti= can be written ash(z) — h(y)| < d(z,y). A heuristic is

ral’ heuristics seemed to be consistent (p.1P&arl, 198}). inconsistentf it is not consistent.

However, recent research shows that there are several waysa* is the algorithm of choice for many single-agent search

to create inconsistent heuristics such asdhal andrandom applications. A* maintains a list of nodes to consider to be

heuristics[Zahaviet al, 2007. In addition, any memory- expanded (the open list) and a list of nodes that have been

based heuristic that has some values missing or degraded maypanded (the closed list). The open list is sorted by in-

be inconsistent. Inconsistency is not a problem for IDA* creasingf-value, with ties typically being broken in favor of

because IDA* already re-expands nodes many times and iargerg values. At each step, the best node on the open list

only used in domains where the cost of re-expansions is fullys moved to the closed list, expanded, and its successors are

amortized over the cost of the search. Bidirectional pathmaadded to the open list. This continues until an optimal so-

(BPMX) has been shown to further improve the performanceution is proven. With a consistent heuristic, once a node is

of inconsistent heuristics in IDA*. expanded and placed on the closed list, it never moves back

This paper complements this work by studying the appli-to the open list.
cability of using inconsistent heuristics and BPMX with A*. |t the heuristic is admissible and consistent, A* is “op-
The following contributions are made: timal” in terms of the number of node expansidiearl,
e Better worst-case complexity bounds for A* that are 1984. However, if the heuristic is admissible but not consis-

polynomial for a large class of problems. tent, nodes can be moved back from the closed list to the open

(u) (1)

(V1)

Figure 2: BPMX (bidirectional pathmax).

Mero [1984] modified B to create’By introducing two
“pathmax” rules that propagate heuristic values between a
parent node: and its successon during search as follows:

_ _)] (a) Foreach successorof the selected node, if h(m) <
Figure 1:G5 in Martelli’s family. h(n) — d(n,m), then set(m) — h(n) — d(n,m).

(b) Let m be the successor node affor which h(m) +

d(n,m)is minimal. Ifh(n) < h d(n,m), then set
list (“reopened”) and A* can do as many @§2V) node ex- h((z)@ Ih(ml) I+ d(n m()T_Ll) (m)+d(n,m)

pansions, wheré&/ is the number of distinct expanded nodes. o

This was proven by Martel[1977, who defined a family of ~Rule (a) updates the successors’ heuristic values, angbb) u
graphs{G,}3°, such thatG; containsi + 1 nodes and re- dates the parent's heuristic value. Like B s a worst-case
quires A* to doO(27) node expansions to find the solution. time complexity ofO(N?).

GraphGs in Martelli's family is shown in Figure 1; the num- Bidirectional pathmax (BPMX) [Felneret al, 2004 is

ber inside a node is its heuristic value. There are many in@ method that works with inconsistent heuristics and prop-
consistencies in this graph. For examplé;4, n3) = 1 but ~ agates large values to neighboring nodes. It can be seen as
h(n4) — h(ns3) = 6. The unique optimal path from start) applying Mero’s pathmax rule (a) in both directions when the
to goal (o) visits the nodes in decreasing order of their in- edge connecting the two nodes is undirected. This is illus-
dex (15, n4, ..., no), butn, has a large enough heuristic value trated in Figure 2, where is the node being expanded, nodes
(f(n4) = 14) that it will not be expanded by A* until all vi andv are its two neighbors, and the number in a node is its
possible paths to the goal (with < 14) involving all the & value.h(v;) can propagate ta, updating its value to 4 (5 -
other nodes have been fully explored. Thus, wheris ex- d(u,v1) =4). In turn,k(u) can propagate to,, updating its
panded, nodess, n, andn; are reopened and then expandedvalue to 3 (4 d(u, v2) = 3). All previous research on BPMX
again. Moreover, once, is expanded, the same property has been in the context of IDA*, not A*. In IDA* BPMX
holds again ofns, the next node on the optimal path, so it propagation is essentially “free” computationally, beszit

is not expanded until all paths fromy to the goal involv- can be done as part of the backtracking that is intrinsiceo th
ing all the other nodes have been fully explored. This patholDA* search. If the IDA* search threshold is, for example,
logical pattern of behavior repeats each time one additiona3 andu is at the root of the search tree then having searched
node on the optimal path is expanded for the last time. Ag1, the backed up value afbecomes 4 causing a cut-off and
we will show below this worst-case behavior hinges on thechild v; is not explored. Section 4 below points out that only
search graph having the properties, clearly seen in theidefinvery limited versions of BPMX can be added to A* for “free”,
tion of Martelli's family, that the edge weights and heudst and pliscusses the.costs and benefits of using more complete
values grow exponentially with the graph size. versions of BPMXin A*.

Martelli [1977 devised a variant of A*, called B, that im- _ _
proves upon A*'s worst-case time complexity while main- 3 Wor st-Case Complexity Analysis

taining admissibility. Algorithm B maintains a global vari Althou ;
. gh Martelli proved that the number of node expan-
able F' that keeps track of the maximuyfivalue of the nodes Sf'ons A* performs may be exponential in the number of dis-

expanded_ SO far. When c_hoosmg the_next n_oqe to expand, fiqct nodes expanded, this behavior has never been reported
fm, the minimumf-value in the open list, satisfig, > F, " in real-world applications of A*. His family of worst-case
the'? the node with r_nmmupﬁ-value is chosen as in A, O'Fh' graphs have edge weights and heuristic values that grow ex-
erwise Fhe node with minimurg-value among those with ponentially with the graph size. We show here that these are
f < F'is chosen. Because the valuefofcan only change ,ocessary conditions for A*'s worst-case behavior to accur
(increase) when a node is expanded for the first time, and 0| . 1/ e the set of nodes expanded by A* aNd= |V].

node will be expanded more than once for a given \Z/alul@,of We assume all edge weights are positive integers. The key
the worst-case time complexity of algorithm BG¥.N*). quantity in our analysis i&\, defined to be the greatest com-

Bagchi and Mahanti [1983] proposed C, a variant of B, bymon divisor of all the edge weights. The cost of every path

changing the condition for the special case frém < F't10 from the start node to nodeis a multiple ofA, and so too
fm < F and altering the tie-breaking rule to prefer smaller

g values. C’s worst-case time complexity is the same as B's, !This is our version of the second pathmax rule. The version in
O(N?). [Mero, 1984 is clearly not correct.

.,

Figure 3: First and last explored path.

From Theorem 1 it follows that for A* to exparzl¥ nodes,
there must be a node with heuristic value of at leesf (2" —
N)/NT, and for A* to expandV? nodes, there must be a node
with heuristic value of at leagh « (N — 1).

Corallary 1 Let g*(goal) denote the optimal solution cost.
If A* performs ¢(N') > N node expansions theri(goal) >
LB.

Proof. Since A* expanded nodB before the goalg*(goal)

is the difference in the costs of any two paths from the starfnust be at least(3), which is at least. 5. [J

node ton. Therefore, if during search we reoperbecause

a new path to it is found with a smaller cost than our currenp%o”iy 2 If g*(goal) < A(N), theng(N) < N + N «

g(n) value, we know thag(n) will be reduced by at leagk.

Theorem 1 If A* performs¢(N) > N node expansionsthen
there must be a node with heuristic value of at |dast =
A x f(sb(N?]— N)/Nl- .

Proof. If there are¢(V) total expansions by A*, then the
number of re-expansions i8(N) — N. By the pigeon-
hole principle there must be a node, sAy with at least

Proof. Using Corollary 1,
Ax[(¢(N)—N)/N|=LB < g*(goal) < A(N)
which implies
d(N) < N+ NxAN)/A

Corollary 3 Letm be a fixed constant an@ a graph of ar-
bitrary size (not depending om) whose edge weights are

O

[(¢(N) — N)/NT re-expansions. Each re-expansion musta|| less than or equal ton. If N is the number of nodes

decrease(K) by at leastA, so after this process thevalue

of K is reduced by atleadtB = A x [(¢(N) — N)/N].
In Figure 3,5 is the start nodek is any node that'is re-

expanded at leag{¢(N) — N)/N| times (as we have just
seen, at least one such node must exist), the lower pdth to
L, is the path that resulted in the first expansionikafand
the upper path td< (via nodeB) is the path that resulted in
the last expansion df. We denote th¢g- andg-values along
pathL asf;, andg, and thef- andg-values along the upper
path asf;,s; andg;.s:, respectively.

Node B is any node on the upper path, excludisigwith
the maximumy;,; value. Nodes distinct from§ and KX’ must
exist along this path because if it were a direct edge ffom
to K, K would be open as soon &was expanded with a
g-value smaller thap, (K') so K would not be expanded via
L, a contradiction. Nodé# must be one of these intermedi-
ate nodes — it cannot b& by definition and it cannot b&
because iff;,s¢ (K) was the largesf;,s; value, the entire up-
per path would be expanded befdtewould be expanded via
L, again a contradiction. Hencé, is an intermediate node
betweenS and K.

h(B) must be large enough to malfg,.:(B) > fL(K)
(becausek is first expanded vid.). We will now use the

following facts to show thak(B) must be at least B:
Juast(B) = giast(B) + h(B) 1)
frast(B) > fL(K) (2)
fu(K) = gu(K)+ h(K) ®3)
Giast(B) < Gast(K) (4)
LB < gr(K) — giast(K) (5)

Jrast(B) — giast(B), by Fact 1
fL(K) = giast(B), by Fact 2

91(K) + h(K) — giast(B), by Fact 3
9r(K) — giast(K) + h(K), by Fact 4
9r(K) = giast(K), sincer(K) > 0
LB, by Fact 51

v

VIV Vv

expanded by A* when searching @# then the total num-
ber of node expansions by A* during this search is at most
N+ Nsxmx(N—-1)/A.

Proof. Because the non-goal nodes on the solution path must
each have been expanded, there are at i\iest edges in the
solution path ang*(goal) is therefore at most « (N — 1).
Using Corollary 2,

d(N) X N+ N*xAN)/ AN+ Nsxmx*(N—-1)/AO

This shows that, when a graph’s edge weights do not de-
pend on its size, A* does not have an asymptotic disadvan-
tage compared to B, C, and;Ball have a worst-case time
complexity of O(N?). Using A* with inconsistent heuris-
tics under these common conditions has a much better time
complexity upper bound than previously thought. For ex-
ample, if the graph is a square x L grid with unit edge
weights, thenV < L2, the optimal solution path cost is at
most2v/N, and the worst-case time complexity of A* using
inconsistent heuristics '(Q(N%). For many problems the op-
timal solution cost grows asymptotically slower th&nsuch
asln(V). Here A* has a worst-case complexity that is better
thanO(N?/A)

4 BPMXinA*

BPMX is easy to implement in IDA* as part of the normal
search procedure. As IDA* does not usually keep all succes-
sors of a state in memory simultaneously; heuristic values a
only propagated by BPMX to unexpanded children and never
back to previously expanded children as they have already
been fully explored. But, in A* all successors are generated
and processed before other expansions occur, which means
that in A* BPMX should be implemented differently.

We parameterize BPMX with the amount of propagation.
BPMX(x0) is at one extreme, propagatihgupdates as far
as possible. BPMX(1) is at the other extreme, propagating
h updates only between a node and its immediate neighbors.
In general, there are four possible overheads associathd wi
BPMX within the context of A*:

(a) performing lookups in the open and/or closed lists,

(: >_1_< :).1_(: >_1‘< :)_6‘. andh(B) = 99, so node expansions will continue at node D,
(A) (B) © (D) (G) where an arbitrary large number of nodes can be expanded.
With BPMX(c0), updates will continue untft(D) = 97 and

""""""""""""""""""""""""""""""" f(D) = 100. At this point the optimal path to the goal will
be expanded before any children of D. By adding extra nodes

@ () Soal between B and C (with lower edge costs), an arbitrary large
(% @kﬁ 0 1° parameter for BPMX can be required to see these savings.
1

100
@ (o) @ 5 Experiments
(B8) © We now have four algorithms (A*, B, B and C) that all
Figure 4: Good and bad examples for BPMX. have similar asymptotic worst-case complexity if applied

with inconsistent heuristics to the grid-like search sgahat

are found in computer video game applications as well as
other domains. In addition, we have A* augmented with
BPMX(r), for any propagation distance In this section
we compare these algorithms experimentally with a variety

BPMX(1) with A* works as follows. Assume that a node . . 2 . .
p is expanded and that itschildrenvy, vs, . . . , vy, are gener- ?;r(lrn)eC(ETS;St;notoquI’IStICS. We experimented with BPMX(

ated, which requires a lookup in the open and/or closed lists All experiments are performed on Intel P4 computers

All these nodes are then at hand and are easily manipulateds 41y \yith 1GB of memory and use search spaces that
Let vq. be the node with the maximum heuristic among all S . .
the children and leb. —). Assuming that each are square grids in which each non-border cell has eight
. maz = MN\Umag)- 9 neighbours—4 cardinal (distance = 1) and 4 diagonal (dis-
edge has a unit cost, we can now propagajg, 1o the par- tance =/2). Octile distance is an easy-to-compute consis
ent node by decreasing,,,, by one a Vel ; . neand i
y Mnaz DY nd then to the other fent heuristic in this domain. If the distances alangndy

children by decreasing it by one again. A second update i . . o
required to further propagate any updated values and then ﬁ§)ord|nates between two points dréx, dy), then the octile

write them to the open or closed list. distance between them {82 x min(dz, dy) + |dz — dy|.

In A* the immediate application of pathmax is ‘free’, as Each algorithm is run on the same set of start/goal in-
has additional overhead. BPMX(1) can be implemented effition lengths (from 5 to 512). Each bucket contains the same
ciently if the expansion of successors is broken into generahUmber of randomly generated start/goal instances.
tion and processing stages, with the BPMX computation hap- The experiments differ in how the inconsistent heuristics
pening after all successors have been generated and eetriewvere created. The first experiment uses a realistic method to
from the open or closed list, but before changes have beeff€ate inconsistency. The final two experiments use asifici
written back out to the relevant data structures. BPN)X(Methods to create inconsistency in a controlled manner.
with d > 1 requires performing a small search, propagatin
heuristic values to nodes that are not initially in memory. %.1 Random Selection From Consistent Heuristics

No fixed BPMX propagation policy is optimal for all In this experiment our search spaces are a set of 116 maps
graphs. While a particular propagation policy can lead, infrom commercial games, all scaled to be 512 by X18&ize.
the best case, to large savings, on a different graph it @ah le There are blank spots and obstacles on the maps. There are
to aO(N?) increase in the number of nodes expanded. 128 test instance buckets, each containing 1160 randomly-

Figure 4 (top) gives an example of the worst-case behaviogenerated problem instances. In this section BPMX refers to
of BPMX(oo) propagation. The heuristic values gradually BPMX(1) which performed best in this domain.
increase from nodes A to G. When node B is reached, the We generate an inconsistent heuristic similafZzahaviet
heuristic can be propagated back to node A, increasing thal., 2007 by maintaining a certain numbéei,, of differential
heuristic value to 1. When node C is reached, the heuristibeuristicd Sturtevanet al,, 2009, each formed by computing
update can again be propagated back to nodes B and A. Bhortest paths to all points in the map from a random point
general, when thé” node in the chain is generated a BPMX Then, for any two points andb, h(a, b) = |d(a,t) — d(b,)]
update can be propagated to all previously expanded nodes. a consistent heuristic. To compute a heuristic for nede
Overall this will resultinl +2+3+---+ N —1 = O(N?) we systematically choose just one of tHeheuristics to con-
propagation steps with no savings in node expansions. Thisult. Inconsistency is almost certain to arise becauserdiff
provides a general worst-case bound. At most, the entire sent heuristics will be consulted for a node and its children.
of previously expanded nodes can be re-visited during BPMXVe take the maximum of the result with the default octile
propagations, which is what happens here. But, in this exanheuristic, and call the result the enhanced octile hearisti
ple BPMX(1) has no asymptotic overhead. By design, the enhanced octile heuristic dominates the oc-

By contrast, Figure 4 (bottom) gives an example of howtile heuristic. The enhanced octile heuristic is highenttiee
full BPMX propagation can be very effective. The start nodeoctile heuristic in roughly 25% of the nodes.
is A. The search proceeds to node C which has a child with The number of node expansions by algorithms A*, B, C,
heuristic value of 100. After a BPMX(1) updatg,C) =101 B’, and A* with BPMX when using the inconsistent heuris-

(b) ordering open list nodes based on their rfewalue,
(c) moving closed nodes to open (reopening), and
(d) computational overhead.

x10* [Alg. [First] Re-Exp] BPMX | Sum] Time |

14

B ‘ ‘ ‘ | A* (Max) 9341 0 0] 9341 0.066
bl 2 | A* 17210| 57183 0 | 74392 0.503
x C B 17188 | 50963 0 68151 | 0.560
ol Z/‘if’(mx) | B’ 16660 | 112010 0 | 129680 | 0.717
C 21510 | 24778 0| 46288| 0.411
g BPMX | 10195| 4065| 3108| 17368 0.089
2 8 1 BPMX(2) 9979 3462 5545 | 18986 | 0.093
z BPMX(3) 9997 3467 5854 | 19317 | 0.094
g 61] BPMX(c0) | 10025 3483 6207 | 19714 | 0.094
=z
) Table 1: Last bucket in differential heuristic experiment.
2l
+ B
0 w : ‘ o A*
0 100 200 300 400 500 600 * B
Solution Length 10°t o C
v BP

Figure 5: Node expansions with random selection of differ-
ential heuristics.

[N
o
S
T

Node Expansions

tic are plotted in Figure 5. A* using the maximum of all the

heuristics (“A*(Max)") is plotted for reference. The-axis

is the solution length, thg-axis is the number of node ex-

pansions. The legend is in the same descending order as the 10°;

lines for the algorithms. When counting node expansions, a

BPMX propagation from a child to its parent is counted as an

additional expansion (“reverse expansion”). 0 100 200 300 400 500
As can be seen,’Bdoes the most node expansions, and, Solution Length

as expected, A*(Max) does the fewest. Among the lines us- . -

ing the inconsistent heuristic, A* with BPMX is best and is Figure 6: Perfect heuristicg (& 0.5).

within a factor of two of A*(Max). As the number of avail-

able heuristics grows, A*(Max) will have increasing rungin s apje to dramatically reduce the number of distinct nodes

time, while the |nc0n5|ste_nt heuristic will not. expanded and re-expansions at the cost of a few reverse ex-
An unexpected result is that Bxpands more nodes than pansions. The number of distinct nodes expanded by BPMX
B. This is contrary to a theoretical claim [Mero, 1984. g close to that of A*(Max). The last four rows show there is
This discrepancy is a result of tie-breaking rules.v@uld jije difference between the BPMX variants in terms of nede
have the same performance as B (or better) if, when facegnq average execution time, although increasing the pespag

with a tie, it could choose the same node to expand as Bjon parameter increases the number of propagations.
But, in practice this isn’t feasible. The pathmax rules in B

cause many more nodes to have the sgroest than when 5.2 Inconsistency by Degrading Perfect Heuristics
searching with B. When breaking ties between these node3p test the generality of the preceding results, we haveetea
B’ is unable to infer how B would break these ties, and thusnconsistent heuristics by degrading exact distancesegter
has different performance. If we had a tie-breaking oracleheuristic values). We do this not for performance, but in or-
we expect Band B would perform similarly. der to compare the algorithms with various types of heuris-
Detailed analysis of the data for the hardest bucket of probtics. The grids in the two experiments in this section were al
lems is shown in Table 1. Column “First” is the number of 1000 x 1000 in size and obstacle free, and the test instances
distinct nodes expanded, “Re-Exp” is the number of node rewere divided into 50 buckets, with each bucket containing
expansions, “BMPX” is the number of BPMX reverse expan-1,000 randomly generated start/goal instances.
sions, and “Sum” is the sum of those three columns, the total In the first experiment, each node has a perfect heuris-
number of node expansions. “Time” is the average CPU timetic value (the exact distance to goal) with probabifityand
in seconds, needed to solve one instance. A*(Max) is thénas a heuristic value of 0 otherwise. We experimented with
best but its time advantage is less because it performs mup = 0.25 andp = 0.5. This experiment is favorable to
tiple heuristic lookups per node. Algorithm B uses slightly BPMX(1) because with very high probability, either a node or
more time than A*, despite fewer node expansions. This i®ne its neighbours will have a perfect heuristic value, Whic
because B occasionally needs to extract the node with mirBPMX(1) will then propagate to the other neighbors.
imum g value from the open list, which is sorted fy B’ Figure 6 shows the number of node expansions as a func-
expands approximately the same number of distinct nodes @®n of solution length (bucket) fop = 0.5; the plot for
A* and B, but B performs many more re-expansions. BPMX p = 0.25 is similar. They-axis is a log scale. For both values

[Alg. | First| Re-Exp] BPMX | Sum]| Time] (O(2V). When A* does have poor performance, BPMX is

A* 175146 501043 0 [676190 2.9634 able to markedly improve the performance of A* search with
B 175146 | 501043 0 | 676190 4.5587 inconsistent heuristics. Although BPMX has the same worst-
C 197378 55161 0 | 252539] 2.7401 case as A*, that worst-case does not seem to occur in practice
BPMX(1) 650 0 340 991 | 0.0048 As pointed out in[Zahaviet al, 2007 there are several
BPMX(2) 650 0 340 991 | 0.0035 easy ways to create inconsistent heuristics. Combined with
BPMX(3) 650 0 340 991 | 0.0034 the case already made for IDA* search, the results in this pa-
BPMX(0) 650 0 340 991 | 0.0033 per encourage researchers and application developers to ex

plore inconsistency as a means to further improve the perfor

Table 2: Perfect heuristicg & 0.5, hardest cases). mance of search with A* and similar algorithms.

. , Acknowledgments
of p the same pattern is seen; Boes many more expan- . .
sions than any other algorithm, A*, B, and C do roughly theWe thank Sandra Zilles for her helpful comments. This re-

same number of node expansions, and A* with BPMX(1), asearch was supported by the Israel Science Foundation (ISF)
expected, does over two orders of magnitude fewer node efnder grant number 728/06 to Ariel Felner and by research

pansions. This is an example of best-case performance fd¥nding from Alberta’s Informatics Circle of Research Ex-

BPMX. B has a larger running time (not shown) due to itscellence (ICORE) and Canada’s Natural Sciences and Engi-
more complicated data structures. neering Research Council (NSERC).

Table 2 examines the algorithms’ performance with=
0.5 on the instances with the longest solutions in more detail REfEr ences
B’ is omitted from the table because it could not solve theBagchi and Mahanti, 1983Amitava Bagchi and Ambuj Mahanti.
largest problems in reasonable amounts of time. The propa- Search Algorithms Under Different Kinds of Heuristics-A1Go
gation parameter for BPMX does not matter in these exper- parative StudyJournal of the ACM30(1):1-21, 1983.
iments, because good heuristic values are always close bielneret al, 2009 Ariel Felner, Uzi Zahavi, Jonathan Schaeffer,
The same pattern is seen for= 0.25. and Robert Holte. Dual Lookups in Pattern Databases]@rl,
Our second experiment investigated the behavior of the al- pages 103-108, 2005.
gorithms when the heuristic is locally consistent but glob-[Hartet al, 1969 Peter Hart, Nils Nilsson, and Bertram Raphael.
ally inconsistent. We overlay a coarse-grained grid on the A Formal Basis for the Heuristic Determination of Minimum-
1000 x 1000 search space and imagine the overlay coloured Cost Paths.IEEE Transactions of Systems Science and Cyber-
in a checkerboard fashion. If a node lies in a white section of netics SSC-4(2):100-107, 1968.
the coarse-grained grid, its heuristic is perfect; othsewis [Hartet al, 1974 Peter Hart, Nils Nilsson, and Bertram Raphael.
heuristic value is 0. Correction to “A Formal Basis for the Heuristic Determiraati
We present the results on grid overlays of width 10 (Table of Minimum Cost Paths”SIGART NewsletteB87:28-29, 1972.
3) and 50 (Table 4). As the grid overlay gets larger, largefMartelli, 1977 Alberto Martelli. On the Complexity of Admissi-
values for BPMX propagation perform better. This is because ble Search AlgorithmsArtificial Intelligence 8(1):1-13, 1977.
BPMX is able to push updates from the borders of the gridmero, 1984 Laszlo Mero. A Heuristic Search Algorithm with
farther back into the OPEN list and therefore avoid addélon Mmodifiable EstimateArtificial Intelligence 23(1):13-27, 1984.
expansions. Thqs, we see that BI.DMX shows good promise IﬁJearI, 198} Judea PearlHeuristics: Intelligent Search Strategies
practically reducing node expansions, and thatthe wasé-C {5 computer Problem Solvingddison-Wesley, 1984.

is unlikely to occur in practice. [Sturtevanet al, 2009 Nathan Sturtevant, Ariel Felner, Max
. Barer, Jonathan Schaeffer, and Neil Burch. Memory-Based
euristics for Explicit State Spaces. , .
6 Conclusions Heuristics for Explicit State S IFCAI, 2009

This research makes the case that inconsistent heuristics gZzahaviet al,, 2009 Uzi Zahavi, Ariel Felner, Jonathan Schaeffer,
not as bad for A* as previously thought. In particular, for and Nathan Sturtevant. Inconsistent HeuristicsAKAl, pages
many problems, the worst-case boundJéN?) instead of 1211-1216, 2007.

[Alg. | First] Re-Exp] BPMX | Sum] Time| [Alg. | First] Re-Exp| BPMX | Sum] Time |
A* 210271] 106289 0 [316561 3.0812 A* 208219] 26665 0 [234884 2.0505
B 210271 106289 0 [316561 5.2529 B 208219| 26665 0 [234884 4.2371
C 220920 | 45482 0 | 266403 | 5.5113 C 220920 | 45482 0 | 266403 | 5.5113
BPMX(1) 625 4 286 915 [0.0061 BPMX(1) 1389 438 810 [2638 0.0613
BPMX(2) 618 3 287 910 | 0.0078 BPMX(2) 1049 122 640 | 1811 0.0157
BPMX(3) 617 3 287 908 | 0.0076 BPMX(3) 1046 119 660 | 1825 0.0165
BPMX(o0) 616 3 285 905 | 0.0079 BPMX(oc0) 1023 114 650 1788 | 0.0151

Table 3: Hardest Problems in Perfect Heuristic CheckerboarTable 4: Hardest Problems in Perfect Heuristic Checkerboar
Experiment. Gridwidth=10 Experiment. Gridwidth=50

