
Action Selection for Hammer Shots in Curling

Zaheen Farraz Ahmad, Robert C. Holte, Michael Bowling
Department of Computing Science

University of Alberta
{zfahmad, rholte, mbowling}@ualberta.ca

Abstract
Curling is an adversarial two-player game with a
continuous state and action space, and stochastic
transitions. This paper focuses on one aspect of
the full game, namely, finding the optimal “ham-
mer shot”, which is the last action taken before a
score is tallied. We survey existing methods for
finding an optimal action in a continuous, low-
dimensional space with stochastic outcomes, and
adapt a method based on Delaunay triangulation
to our application. Experiments using our curl-
ing physics simulator show that the adapted De-
launay triangulation’s shot selection outperforms
other algorithms, and with some caveats, exceeds
Olympic-level human performance.

1 Introduction
Curling is an Olympic sport played between two teams. The
game is played in a number of rounds (usually 8 or 10) called
“ends”. In each end, teams alternate sliding granite rocks
down a sheet of ice towards a target. When each team has
thrown 8 rocks, the score for that end is determined and added
to the teams’ scores from the previous ends. The rocks are
then removed from the playing surface and the next end be-
gins. The team with the highest score after the final end is the
winner.

The last shot of an end, called the “hammer shot”, is of the
utmost importance as it heavily influences the score for the
end. In this paper, we focus exclusively on the problem of
selecting the hammer shot. This focus removes the need to
reason about the opponent, while still leaving the substantial
challenge of efficiently identifying a near-optimal action in a
continuous state and action space with stochastic action out-
comes and a highly non-convex scoring function. This work
is part of a larger research project that uses search methods to
select all the shots in an end [Yee et al., 2016] and, ultimately,
to plan an entire game.

To illustrate the difficult nature of even this restricted op-
timization problem, Figure 1 shows a heatmap for a typical
hammer shot. The shading represents the score — a darker
shade is a higher score for the team throwing the hammer shot
— as a function of the two main continuous action parame-
ters, angle (θ, the x-axis) and velocity (v, the y-axis). This is

Figure 1: Heatmap showing the highly non-convex scoring
function for a counterclockwise turn in the state in Figure 2.

a deterministic heatmap: it shows the exact score if shot (θ, v)
is executed without error. Finding an optimal shot means
finding the darkest parts of this heatmap. As can be seen they
constitute a very small portion of the action space and are
often surrounded by less desirable outcomes (light regions).
Because action execution is stochastic, the expected value of
shot (θ, v) is the average noise-free values of shots, (θ′, v′),
weighted by p((θ′, v′)|(θ, v)), the probability that (θ′, v′) is
executed given that (θ, v) is the intended shot. This essen-
tially blurs the deterministic heat map, making the darkest
regions even smaller (only the central region of the rectangle
where θ ≈ −0.04 and v ≈ 2000 is optimal in expected value
in the situation shown in Figure 1).

This paper makes two main contributions. The first is to
adapt Surovik and Scheeres [2015]’s non-convex optimiza-
tion method to our problem. They use Delaunay triangulation
on a set of sampled points to discretize the continuous action
space and focus subsequent sampling in regions that appear
promising. Our contribution is to add a final step, in which
a shot is selected by treating the most promising regions as
“arms” in a multi-armed bandit problem. We call our method
Delaunay Sampling (DS). The second contribution is to eval-

Figure 2: Curling state with 4 rocks in play.

uate the effectiveness, for hammer shot selection, of DS and a
representative set of existing algorithms for non-convex func-
tion optimization. For this we use a curling simulator we have
developed and actual hammer shot situations from the 2010
Olympic Winter Games. DS is shown to be computationally
cheaper while achieving superior results to these established
algorithms. We also compare DS’s average expected value
on the Olympic hammer shot situations with the average out-
come achieved by Olympic-level curling teams themselves,
showing a statistically significant improvement over these hu-
man experts, with some caveats.

2 The Hammer Shot in Curling
In this section we do not give a complete description of the
sport of curling, we just elaborate on the aspects pertinent to
understanding the final shot of the end. The state for this shot
is determined by the score differential, the number of ends left
to play, and the (x, y) positions of the rocks in play. Figure 2
is a typical state. Although 15 rocks have been thrown, only
4 remain in play (3 for the dark team, 1 for the light team).

The shot is played from the far end of the ice sheet (to the
left of the figure). The rock is thrown with an initial linear and
angular velocity at some angle relative to the center line. The
angular velocity causes the rock to travel in an arc (“curl”),
deviating from the straight line path that the rock was ini-
tially on. The direction of the curl (toward the bottom or top
of the figure) is determined by the sign of the angular veloc-
ity (clockwise or counterclockwise, respectively), but is little
affected by the magnitude of the angular velocity.

Two of the team’s players accompany the rock as it travels
down the ice, and one or both may choose to sweep the rock
at any time. Sweeping affects the deceleration of the rock (it
travels further if swept) and the amount it curls.

When the rock, and any rocks it hits, have come to rest,
points are scored and added to the teams’ running totals. The
team with the rock in the scoring area (the rings in Figure 2;
called the “house”) that is closest to the center scores. The
number of points is equal to the number of rocks in the scor-
ing area that are closer to the center than any rock of the op-
posing team.

The intended outcome of a shot, though, is not always re-
alized. There are two main reasons.

• Human error. The player throwing the stone might not
perfectly deliver it at the required angle or velocity. Ad-

ditionally, the skip may incorrectly judge the rock’s path
or the sweepers its speed, resulting in sweeping being
misapplied to achieve the desired outcome.

• Variability in the ice and rocks. Although care is taken
to make the ice conditions identical along all paths, there
are differences, and the ice conditions can change as a
game goes on. Similarly, every rock is slightly different
in how it interacts with the surface of the ice.

2.1 Modelling the Hammer Shot
We model the hammer shot using the continuous (x, y) coor-
dinates for each of the previously thrown 15 rocks still in play,
as well as the score differential and number of ends remain-
ing. Our action space is based on two simplifying assump-
tions. First, we treat the angular velocity of the hammer shot
as a binary variable (clockwise or counterclockwise). Sec-
ond, we do not have any parameters related to sweeping in
our action space. Instead we integrate the effects of sweeping
into the execution model of our curling simulator (see next).
Our action space therefore has two continuous dimensions
and one binary dimension (“turn”).

The result of an intended shot is determined by two main
components: a physics based simulation and an execution
model. Surprisingly, the physics of a curling stone is not
fully understood and is an active area of research [Nyberg
et al., 2013; 2012; Jensen and Shegelski, 2004; Denny, 1998;
Lozowski et al., 2015]. So, a simulation based on first princi-
ples is not possible. The curling simulator used in this paper
is implemented using the Chipmunk 2D rigid body physics
library with an artificial lateral force that visually recreates
empirically observed stone trajectories and modified collision
resolution to visually match empirically observed elasticity
and energy conservation when rocks collide. A rock’s trajec-
tory is modeled by a deterministic simulation given an initial
linear velocity, angle, and turn.

The execution model in our curling simulator represents
the variability in outcomes in the execution of an intended
shot. The execution model treats this variability as a stochas-
tic transformation. If (θ, v) is the intended shot, the outcome
is the deterministic simulation of a perturbed shot (θ′, v′)
sampled from a predetermined conditional probability distri-
bution whose mode is the intended shot. The primary pur-
pose of sweeping is to correct for human error and variability
in the ice conditions.1 This is implicitly incorporated into
the execution model as a reduction in the execution noise,
i.e., an increase in the likelihood the rock’s actual trajectory
is close to the planned trajectory. At present, we do not
model ice or rock variability: we assume all shots are sub-
ject to the same execution error. The execution model used
in the experiments in this paper come from perturbing the
intended shot parameters with independent samples from a

1Sweeping does have effects beyond reducing execution error.
Sweeping the rock near the the end of its trajectory can allow it to
reach a location on the ice not possible without sweeping. Further-
more, a shot far from an intended shot can be swept to achieve an
entirely different purpose, such as rolling under a different guard if
the executed angle is off. The primary effect of sweeping, though, is
to compensate for execution error.

heavy-tailed, zero-mean, Student-t distribution whose param-
eters have been tuned to match Olympic-level human ability.

3 Related Work
We describe the four existing approaches to non-convex opti-
mization we explored in this work, as well as work on curling
and the similar game of billiards.

3.1 Continuous Bandits
In the general bandit problem, an agent is presented with a set
of arms. Each round, the agent selects an arm and receives a
reward. The reward received from an arm is an i.i.d. sample
from the unknown distribution associated with that arm. The
objective of the agent is to select arms to maximize its cu-
mulative reward. Upper Confidence Bounds (UCB) [Auer et
al., 2002] is an arm selection policy that associate with each
arm an upper bound on the estimated expected value given
the entire history of interaction using the following equation:

vi = r̄i + C

√
logN

ni
, (1)

where r̄i is the average reward observed by the arm i, N is
the total number of samples, ni is the number of times arm
i was selected, and C is a tunable constant. On each round,
the agent chooses an arm i that maximizes vi. The two terms
in the upper bound balance between exploiting an action with
high estimated value and exploring an action with high un-
certainty in its estimate.

The continuous bandit problem generalizes this framework
to continuously parameterized action spaces [Bubeck et al.,
2009; Kleinberg, 2004]. The agent is presented with a set of
arms X , which form a topological space (or simply thought
of as a compact subset of Rn where n is the size of the action
parameterization). On each round, the agent selects a point
x ∈ X and receives a reward determined by a randomly sam-
pled function from an unknown distribution, which is then
evaluated at x. With some continuity assumptions on the
mean function of the unknown distribution, one can devise
algorithms that can achieve a similar exploration-exploitation
tradeoff as in the finite arm setting.

One such algorithm is Hierarchical Optimistic Optimiza-
tion (HOO) [Bubeck et al., 2009]. HOO creates a cover
tree spanning the action space which successively divides
the space into smaller sets at each depth. The nodes of the
cover tree are treated as arms of a sequential bandit problem.
Exploitation is done by traversing down previously-explored,
promising nodes to create a finer granularity of estimates. Ex-
ploration is performed by sampling nodes higher up in the
tree covering regions that have not been sampled adequately.
Under certain smoothness assumptions, the average reward of
HOO’s sampled actions converges to the optimal action.

3.2 Gaussian Process Optimization
Gaussian Process Optimization (GPO) [Rasmussen, 2006;
Snelson and Ghahramani, 2005; Snoek et al., 2012; Lizotte
et al., 2007] is based on Gaussian processes, which are priors
over functions, parameterized by a mean function, m(x), and
a covariance kernel function, k(x,x′). Suppose there is an

unknown function f and one is given N observed data points,
{xn, yn}Nn=1, where yn ∼ N (f(xn), ν) with ν being a noise
term. The posterior distribution on the unknown function f
is also a Gaussian process with a mean and covariance ker-
nel function computable in closed form from the data. GPO
seeks to find a maximum of an unknown function f through
carefully choosing new points xn+1 to sample a value based
on the posterior belief from previous samples. The optimal
selection mechanism for a non-trivial sampling horizon and
prior is intractable. However, good performance can often be
had by instead choosing a point that maximizes some acqui-
sition function as a proxy objective, e.g., choosing the point
with the maximum probability of improving on the largest
previously attained value.

GPO has several drawbacks. As is common with Bayesian
methods, the choice of prior can have a significant impact on
its performance. While a parameterized prior can be used and
fit to the data, this shifts the problem to selecting hyperparam-
eters. The second drawback is computation. Even with work
on efficiently approximating the kernel matrix inverse at the
heart of Gaussian processes [Snelson and Ghahramani, 2005;
Snoek et al., 2012], computation to identify a new sample
point is still growing with the number of previous samples,
which can become intractable when allowing a large number
of samples.

3.3 Particle Swarm Optimization
Particle Swarm Optimization (PSO) [Eberhart and Shi, 2011;
Shi and Eberhart, 1998] is a population-based, stochastic ap-
proach to optimization. Each particle in the population keeps
track of its own best score and the global best score evalu-
ated at each time step. The particles (samples) are initially
evaluated at uniform random points in the action space. At
each iteration of the algorithm, the particles take a step toward
the current global best. The step size depends on weight and
velocity parameters, which are decided by the practitioner,
and on the particle’s own best score. Unlike HOO and GPO,
which make a global convergence guarantee under smooth-
ness assumptions, PSO is only expected to converge to a lo-
cal optimum, and so results depend on the quality of the initial
sampling of points.

3.4 Covariance Matrix Adaptation - Evolution
Strategy

The final optimization method we explore is Covariance Ma-
trix Adaption Evolution Strategy (CMA-ES) Evolution strate-
gies [Bäck et al., 1991] are iterative algorithms that attempt
to optimize a function by introducing stochastic variations
at each iteration. CMA-ES [Hansen and Ostermeier, 1996;
Hansen, 2016] proceeds by drawing a set of samples from
an (initially uninformed) multivariate Gaussian. A new mul-
tivariate Gaussian is then constructed. The mean is the
weighted mean of the sampled points, where higher weights
are given to samples with larger reward values. The covari-
ance matrix is modified from the previous covariance so as
to encourage high variance in the direction that the mean is
observed to be changing. This procedure is then repeated us-
ing the new multivariate Gaussian to sample points. As with

PSO, successive generations produced will lead to conver-
gence to a local optimum of the function, with no guarantee
with respect to the global optimum.

3.5 Curling and Billiards
Previous work has been done on developing strategies for
curling in [Yamamoto et al., 2015]. Work in billiards, a
game which is similar to curling with continuous actions and
states along with stochastic outcomes, has received some at-
tention in the literature [Archibald et al., 2009; Smith, 2007;
2006]. However, in all of this work, the authors use do-
main knowledge to create a finite set of discrete actions. This
makes it possible for search to be employed without address-
ing the challenges of optimization in continuous settings. Our
work seeks to forego domain knowledge as much as possible,
in favor of a more domain-independent approach.

4 Delaunay Sampling
Our Delaunay Sampling (DS) algorithm consists of a
sampling stage, based on the work of Surovik and
Scheeres [2015], and a selection stage.

4.1 Sampling with Delaunay Triangulation
DS’s first stage proceeds as follows:

1. Sample the (stochastic) objective function at points dis-
tributed uniformly over the range of values of the action
parameters.

2. Apply Delaunay triangulation [Lee and Schachter, 1980]
to the sampled points to partition the continuous action
space into a set of disjoint regions.

3. Assign each region a weight, which we discuss below.
4. Sample the set of regions with replacement, with the

probability of a region proportional to its weight.
5. Each time a region is selected in the previous step, uni-

form randomly sample a point within it and add it to the
set of sampled points, with its value sampled from the
(stochastic) objective function at that point.

6. Repeat from step 2 for a fixed number (T) of iterations.

What remains is to specify the weight wi used for region i
in step 3 above. Let t ≤ T be the current iteration of the
algorithm, ai refer to the area of region i, and vij refer to the
observed reward of vertex j of region i. We define the weight
for region i as,

wi = a
1−t/T
i × sσt/Ti (2)

where
si = emaxj(vij), (3)

and σ is a tunable parameter that controls the rate of explo-
ration. We call si the score of the region since it will be large
if one of the vertices has been observed to result in high re-
ward. Note that if ai is large then wi can be large, encourag-
ing the algorithm to refine large regions; if si is large then wi
can be large, encouraging the algorithm to focus on regions
with higher observed rewards. As t increases, more weight is
put on refining the high-valued regions, since ultimately only

the high-value regions are used in the selection stage of the
algorithm.

In Step 1 triangulations are done separately for each value
of any discrete action parameters (specifically, the binary
”turn” parameter in curling). The other steps use the union
of regions from all triangulations. This allows the algorithm
to allocate more samples to the most promising discrete pa-
rameter values.

4.2 Selection of the Final Action
This stage chooses the action that will actually be executed
using the following procedure.

1. Assign new weights to the regions,

ŵi =
1

|vij |
∑
j

vij . (4)

2. Select the k regions with the highest weights.

3. Run T̂ iterations of UCB using the chosen regions as
the arms of a bandit. When UCB samples a region, the
sample is taken at the region’s incenter, and its value
is a (stochastic) sample of the objective function at that
point.

4. Return the incenter of the region that was sampled most
by UCB.

Different weighting functions are used in the two stages be-
cause of the different purposes they serve. The first stage
is exploratory, trying to find promising regions that are rel-
atively small. For this purpose it makes sense to use an op-
timistic score for a region. The aim of the second stage is
to identify the region with the largest expected value. For
this purpose it is appropriate to repeatedly sample the point
within a region that would actually be returned. In prelimi-
nary tests, Delaunay triangulation and UCB performed poorly
when used by themselves for the entire process. But as we
will see, together they seem to address each others’ weak-
nesses.

5 Experimental Setup
As noted in the introduction, we are interested in exploring
all of these methods for the problem of selecting a hammer
shot in curling.

5.1 Objective Function
What objective function do we wish to optimize? The answer
that usually springs to mind is points, i.e. find a shot with the
maximum expected point (EP) differential. To see why this
is not ideal, consider choosing the very last shot of a game in
which the team with the hammer is losing by two points. Sup-
pose shot A is 100% guaranteed to score one point and shot
B has a 20% chance of scoring 3 points and an 80% chance
of giving up one point. Shot A has a much higher EP than
B (1.0 compared to −0.2) but it has no hope of winning the
game, whereas B will win 20% of the time. B is obviously
the better choice in this situation. For this reason, we focus
on optimizing win percentage (WP), not EP.

The only remaining game state variables after the hammer
shot is thrown is n, the number of ends left to play, and δ
the number of points by which the team with the hammer is
leading (δ is negative if the team with the hammer is losing).
We call a pair (n, δ) the resulting game state, or g. For ex-
ample, if g = (1,−2), WP(g) is the probability of the team
with hammer winning if it enters the final end down by two
points. We then fit this WP function to data using 28,000
curling games played between 2011 and 2013.2 For the final
end of a game, g = (1, δ), we estimated WP(g) using simple
frequency statistics for the final ends from the dataset. For
the second last end of a game we used the same data to es-
timate the transition probabilities from g = (2, δ) to a game
state g′ = (1, δ′) for the final end. This tells how frequently
it happened that the hammer team having a lead of δ when
there were two ends to play was followed by the hammer
team in the final end having a lead of δ′. With these transition
probabilities and the already-computed values of WP((1, δ′))
for all δ′, it is easy to compute WP((2, δ)) for all δ. The
same process can then be applied to compute WP((3, δ)),
WP((4, δ)), etc. With WP(n, δ) defined for all values of n
and δ, the “score” we return when a hammer shot with x ends
remaining results in a lead of δ for the team with the hammer
in the next end is WP(x−1, δ). This is the objective function
our methods aim to maximize in expectation in selecting the
hammer shot.

5.2 Experimental Design
The data used for our experiments was drawn from the ham-
mer shot states captured by hand from the 2010 Winter
Olympics men’s and women’s curling competition.3 A set of
397 hammer shot states from these logs were used in the pa-
rameter sweeps mentioned below. The parameter sweep for
Delaunay Sampling (DS) chose a value of 14 for σ. A sep-
arate set of 515 hammer shot states (the “test states”) from
these logs were used to evaluate the systems (including the
humans).

For each of the test states, we gave DS a budget of between
500 and 3000 samples. This budget includes 100 samples for
initializing the triangulation over each turn, 100 samples per
iteration of the first stage, and 100 samples for the final UCB
stage. After DS selected a shot, 10 outcomes were sampled
from the simulator, with the outcome’s sample mean used as
the resulting estimate of WP. This procedure was repeated
250 times for each test state. The values we report in Table 1
are the average over the 2500 evaluations for each test state.

HOO selected a sample by choosing a turn using UCB and
then expanding the cover tree for that turn. We ran HOO for

2Forfeits were treated as transitions to win/loss states. For rare
states, the outcomes used in estimating the transition probabilities
came from states with a similar score differential (when near the end
of the game) or similar number of ends remaining (when far from the
end of the game). The data used came from http://curlingzone.com,
and included both women’s and men’s tournaments, although almost
no difference was observed when restricting to data only from one
gender or when including only championship level events.

3The logs do not contain the actual shot played by the humans
they only contained the states before and after the hammer shots
were taken.

250 trials over the test states using the same sampling bud-
gets as DS. The parameters for HOO described by Bubeck
et al. [2009] were set by a parameter sweep to ρ = 1√

2
,

ν = 2
√

2 and UCB constant C = 0.01.
PSO was tested slightly differently. Since the particles

move in a continuous space, having a discrete parameter
(“turn”) required us to run PSO on each turn separately. For
each test state, PSO was run using one turn value and then the
other with each run being provided the full sampling budget.
The best shots found with each turn were compared and the
one with the higher averageWP was evaluated one final time
to compute its expected WP . This was performed 250 times
for each test state. PSO’s parameters were set to c1 = 1.5,
c2 = 1.5, w = 0.7 and 50 particles.

We used the BIPOP-CMA-ES [Auger and Hansen, 2009]
version of CMA-ES for our tests. The experimental setup
was the same as for PSO. The parameters for the number of
offspring and parents were, respectively, λ = 4 + 3 log 2 and
µ = λ/2 with 4 restarts. We set the initial standard deviation
to σ0 = 0.25 and normalized the action parameters θ and v to
range between 0 and 1. The parameters for step-size control
and the covariance matrix adaptation were set in accordance
to the values recommended by Hansen [2016].

GPO was tested in a manner similar to PSO. However,
since GPO is considerably slower we implemented it with
only a budget size of 250, 500 and 1000 samples per turn
with 50 restarts. We chose the squared-exponential function
as our GP kernel and set the noise variance, σn = 0.01.

To determine if DS’s average WP on the test states was
statistically significantly different than the average WP of the
humans or other systems tested, we ran a Wilcoxon signed-
rank test (WSRT) with one pair of values for each of the 515
test states (one of the values was DS’s WP on the state, the
other was the WP of the system DS was being compared
to). Unless otherwise noted, WSRT produced p-values suf-
ficiently small to conclude with greater than 99% confidence
that DS’s superior average WP (for any specific sample bud-
get) is not due to chance.

6 Results and Evaluation
Table 1 shows the performance (WP) on the test states of the
optimization methods in our study. For any given sample bud-
get, DS’s WP was significantly better than that of any other
systems tested. HOO performed worse than DS for smaller
sample budgets because it was slower to build its cover tree
deep enough in the more promising parts of the action space
to accurately locate the best shots. Its peformance grows
closer to DS’s as the sample budget increases. PSO’s WP
changed very little as its sample budget increased. We con-
jecture this is because good shots are quite rare, so PSO’s
initial, random sample of a noisy fucntion may not contain
a strong signal to draw the particles towards a global opti-
mum. PSO also tends to converge to suboptimal local optima.
CMA-ES also suffers from convergence to suboptimal local
optima. GPO tended to take many samples in the large re-
gions where the function has a minimum value (the lightest
regions in Figure 1). We believe that given a more generous
sampling budget, it would eventually find better shots, but its

DS Budget DS HOO PSO CMA GPO
500 0.4956 0.4273 0.4853 0.4932 0.4857
1000 0.5203 0.4787 0.4856 0.4958 0.4868
1500 0.5277 0.4968 0.4858 0.4954 -
2000 0.5310 0.5115 0.4849 0.4933 0.4867
2500 0.5331 0.5176 0.4858 0.4954 -
3000 0.5343 0.5212 0.4854 0.4948 -

Table 1: Average WP for different sample budgets.

Figure 3: Two shots that score one point for the dark team.

running time would be prohibitive.

6.1 Comparison to Human Olympic Teams
The hammer shots actually taken by the Olympic teams on
the test states had an average WP of 0.4893. With a sample
budget of 500, DS is not significantly better than the curlers
(WSRT p-value = 0.1509) but for all larger sample budgets
DS is significantly better (p < 0.01). Nevertheless, on ap-
proximately 20% of the test states the Olympic teams chose
a shot that was superior to the shot chosen by DS.

Figure 3 is an example in which DS chose a more robust
shot than the Olympic curlers. In this state the team with the
dark rocks has the hammer. There are three light rocks in
the scoring area (the bulls-eye, called the “house”). To avoid
giving up three points, the hammer shot must end with a dark
rock closer to the button (the centre of the house) than those
light rocks. Two shots that accomplish this are shown in the
figure. The “Draw” shot has the thrown rock pass in between
rocks A and B and come to rest near the button. The gap
betweenA andB is fairly narrow, so considerable precision is
required for this shot to succeed. The worst possible outcome
is for the thrown rock to collide with B and knock it into the
house, giving a score of 4 to the light team. This is, in fact,
what happened when the Olympic curlers threw the shot.

The alternative shot is DS’s choice, the “Raise”. Here the
thrown rock intentionally collides with rock C. Depending
on the angle of contact, either C or the thrown rock itself will
deflect into the house. In this particular state, the Raise is
a more robust shot than the Draw because less precision is
required for the Raise to score a point for the dark team and
there is no risk of knocking a fourth light rock into the house.

There were a substantial number of test states in which
the curlers and DS chose the same shot but the curlers mis-
executed the shot and DS, on average, did not. This high-

lights one of the limitations of this comparison–we were not
able to repeatedly sample human execution of a shot to obtain
its expected value. This works both ways, of course: just as
the curlers may have been unlucky and mis-executed a shot
they would make 80% of the time, there may have been shots
where they got lucky and perfectly executed a shot they would
make only 20% of the time.

A related limitation is that our execution model may have
been miscalibrated, making DS more (or less) accurate at shot
execution than the Olympic teams. The model was calibrated
to Olympic-level curlers to the best of our ability. Likewise,
our physics simulation is not a perfect replica of the true
physics of curling. So even if our execution model was per-
fect and exactly the same shot was executed by DS and by
the curlers, the distribution of outcomes might be different
because of the difference in the physics.

A final limitation of this comparison to Olympic perfor-
mance is that the data from the Olympics was logged by hand,
so the positions of the rocks, as recorded in the logs and used
by DS in our study, might not be exactly the positions faced
by the curlers during the Olympic games. Small differences
in rock positions can substantially affect the distribution of
a shot’s outcomes. As with all the limitations we have dis-
cussed, this could work in favour of DS but it could equally
well work against it.

7 Conclusion
Selecting a hammer shot in curling is a challenging low-
dimensional non-convex optimization problem. We have em-
pirically tested several existing methods for non-convex opti-
mization on hammer shot states from the 2010 Olympics and
all of them were significantly inferior, in terms of average
win percentage (WP), to the Delaunay Sampling (DS) method
we introduced in this paper. DS also achieved, with some
caveats, a significantly higher WP than the Olympic curlers
themselves, although there were still a substantial number of
states in which the curlers made a superior shot selection.

Acknowledgements
This research was funded by NSERC and Alberta Innovates
Technology Futures (AITF) through Amii, the Alberta Ma-
chine Intelligence Institute. Computing resources were pro-
vided by Compute Canada and Calcul Québec. We would
also like to thank Timothy Yee and Viliam Lisy for their sup-
port on this research.

References
[Archibald et al., 2009] Christopher Archibald, Alon Alt-

man, and Yoav Shoham. Analysis of a winning compu-
tational billiards player. In IJCAI, volume 9, pages 1377–
1382. Citeseer, 2009.

[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, and
Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

[Auger and Hansen, 2009] Anne Auger and Nikolaus
Hansen. Benchmarking the (1+1)-CMA-ES on the

BBOB-2009 function testbed. In Genetic and Evo-
lutionary Computation Conference, GECCO 2009,
Proceedings, Montreal, Québec, Canada, July 8-12, 2009,
Companion Material, pages 2459–2466, 2009.

[Bäck et al., 1991] Thomas Bäck, Frank Hoffmeister, and
Hans-Paul Schwefel. A survey of evolution strategies. In
Proceedings of the 4th International Conference on Ge-
netic Algorithms, San Diego, CA, USA, July 1991, pages
2–9, 1991.

[Bubeck et al., 2009] Sébastien Bubeck, Gilles Stoltz, Csaba
Szepesvári, and Rémi Munos. Online optimization in x-
armed bandits. In D. Koller, D. Schuurmans, Y. Ben-
gio, and L. Bottou, editors, Advances in Neural Informa-
tion Processing Systems 21, pages 201–208. Curran Asso-
ciates, Inc., 2009.

[Denny, 1998] Mark Denny. Curling rock dynamics. Cana-
dian journal of physics, 76(4):295–304, 1998.

[Eberhart and Shi, 2011] Russell C Eberhart and Yuhui Shi.
Computational intelligence: concepts to implementations.
Elsevier, 2011.

[Hansen and Ostermeier, 1996] Nikolaus Hansen and An-
dreas Ostermeier. Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix
adaptation. In Evolutionary Computation, 1996., Proceed-
ings of IEEE International Conference on, pages 312–317.
IEEE, 1996.

[Hansen, 2016] Nikolaus Hansen. The CMA evolution strat-
egy: A tutorial. arXiv:1604.00772, 2016.

[Jensen and Shegelski, 2004] ET Jensen and Mark RA
Shegelski. The motion of curling rocks: experimen-
tal investigation and semi-phenomenological description.
Canadian journal of physics, 82(10):791–809, 2004.

[Kleinberg, 2004] Robert D Kleinberg. Nearly tight bounds
for the continuum-armed bandit problem. In Advances in
Neural Information Processing Systems, pages 697–704,
2004.

[Lee and Schachter, 1980] Der-Tsai Lee and Bruce J
Schachter. Two algorithms for constructing a delaunay
triangulation. International Journal of Computer &
Information Sciences, 9(3):219–242, 1980.

[Lizotte et al., 2007] Daniel J Lizotte, Tao Wang, Michael H
Bowling, and Dale Schuurmans. Automatic gait optimiza-
tion with gaussian process regression. In IJCAI, volume 7,
pages 944–949, 2007.

[Lozowski et al., 2015] Edward P Lozowski, Krzysztof
Szilder, Sean Maw, Alexis Morris, Louis Poirier, Berni
Kleiner, et al. Towards a first principles model of curling
ice friction and curling stone dynamics. In The Twenty-
fifth International Offshore and Polar Engineering Con-
ference. International Society of Offshore and Polar Engi-
neers, 2015.

[Nyberg et al., 2012] Harald Nyberg, Sture Hogmark, and
Staffan Jacobson. Calculated trajectories of curling stones
sliding under asymmetrical friction. In Nordtrib 2012,

15th Nordic Symposium on Tribology, 12-15 June 2012,
Trondheim, Norway, 2012.

[Nyberg et al., 2013] Harald Nyberg, Sara Alfredson, Sture
Hogmark, and Staffan Jacobson. The asymmetrical fric-
tion mechanism that puts the curl in the curling stone.
Wear, 301(1):583–589, 2013.

[Rasmussen, 2006] Carl Edward Rasmussen. Gaussian pro-
cesses for machine learning. 2006.

[Shi and Eberhart, 1998] Yuhui Shi and Russell Eberhart. A
modified particle swarm optimizer. In Evolutionary Com-
putation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International
Conference on, pages 69–73. IEEE, 1998.

[Smith, 2006] Michael Smith. Running the table: An ai
for computer billiards. In PROCEEDINGS OF THE
NATIONAL CONFERENCE ON ARTIFICIAL INTELLI-
GENCE, volume 21, page 994. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

[Smith, 2007] Michael Smith. Pickpocket: A computer bil-
liards shark. Artificial Intelligence, 171(16):1069–1091,
2007.

[Snelson and Ghahramani, 2005] Edward Snelson and
Zoubin Ghahramani. Sparse gaussian processes using
pseudo-inputs. In Advances in neural information
processing systems, pages 1257–1264, 2005.

[Snoek et al., 2012] Jasper Snoek, Hugo Larochelle, and
Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural informa-
tion processing systems, pages 2951–2959, 2012.

[Surovik and Scheeres, 2015] David Allen Surovik and
Daniel J Scheeres. Heuristic search and receding-horizon
planning in complex spacecraft orbit domains. In Eighth
Annual Symposium on Combinatorial Search, 2015.

[Yamamoto et al., 2015] Masahito Yamamoto, Shu Kato,
and Hiroyuki Iizuka. Digital curling strategy based on
game tree search. In Computational Intelligence and
Games (CIG), 2015 IEEE Conference on, pages 474–480.
IEEE, 2015.

[Yee et al., 2016] Timothy Yee, Viliam Lisy, and Michael
Bowling. Monte carlo tree search in continuous action
spaces with execution uncertainty. In IJCAI, 2016.

