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Abstract
We present a novel admissible pattern database
heuristic (D) and tie-breaking rule (L) for Sokoban,
allowing us to increase the number of optimally
solved standard Sokoban instances from 20 to 28
and the number of proved optimal solutions from
25 to 32 compared to previous methods. The previ-
ously best heuristic for Sokoban (I) used the idea
of an intermediate goal state to enable the effec-
tive use of pattern database heuristics in transporta-
tion domains, where the mapping of movable ob-
jects to goal locations is not fixed beforehand. We
extend this idea to allow the use of multiple in-
termediate goal states and show that heuristic I
is no longer effective. We solve this problem and
show that our heuristic D is effective in this situa-
tion. Sokoban is a well-known single-agent search
domain characterized by a large branching factor,
long solution lengths, and the presence of unsolv-
able states. Given the exponential growth in the
complexity of standard Sokoban instances, the in-
crease in the number of optimally solved instances
represents a major advance in our understanding of
how to search in extremely large search spaces.

1 Introduction
A single-agent search problem is given by the initial state, the
set of goal states (or goal condition) and the set of actions.
Each action defines how to transform a state into a succes-
sor state with given cost. A solution is a path from the initial
state to a goal state – an optimal solution has minimum cost.
Single-agent heuristic search algorithms such as A∗ [Hart et
al., 1968] and Iterative Deepening A∗ [Korf, 1985] use the
function f(u) = g(u) + h(u) to guide the search, where
g(u) is the cost to reach the state u from the initial state
and h(u) is an estimate of the cost to reach a goal state
from u. If the heuristic function h is admissible these algo-
rithms are guaranteed to find an optimal solution. Culberson
and Schaeffer [1996] proposed pattern databases (PDB) as a
way to generate high-quality admissible heuristics for many
single-agent search domains [Korf, 1997; Edelkamp, 2001;
Korf and Felner, 2002; Felner et al., 2004; Holte et al., 2006;
Felner et al., 2007].

Sokoban is a PSPACE-complete [Culberson, 1999] single-
agent search domain that is harder to solve than other com-
mon search domains considering the branching factor, so-
lution length, domain-dependent characteristics and search
space size – estimated at 1098 [Junghanns and Schaeffer,
2001]. In addition, no domain-independent PDB heuristic
can optimally solve the easiest instance in the standard test
set. Major progress has been made in solving Sokoban non-
optimally [Junghanns and Schaeffer, 2001]. Currently, the
best non-optimal method solves 86 [Takahashi, 2016] of the
90 standard test set instances [Myers, 2016].

PDB heuristics are ineffective in transportation domains
where the mapping of movable objects to goal locations is
not fixed beforehand (this is the case in Sokoban). Pereira
et al. [2015] introduced an admissible PDB heuristic (I) that
addresses this issue by using an intermediate goal state. The
heuristic I with the proposed tie-breaking rule (F) increases
from 10 to 20 the number of optimality solved instances.
However, the gap in solving abilities between optimal and
non-optimal solvers is still wide.

We extend this idea to allow the use of multiple intermedi-
ate goal states. However, the heuristic I is the sum of two es-
timates which are computed independently. As we will show,
the fact they are solved independently makes the heuristic in-
effective when using multiple intermediate goal states. In ad-
dition, the tie-breaking rule F is prone to error and can guide
the search to parts of the search space that will not lead to an
(optimal) solution.

In this paper, we propose a novel PDB heuristic (D) that
is effective when using multiple intermediate goal states. We
also propose a tie-breaking rule (L) that solves the main lim-
itations of F. Our method increases the number of optimally
solved instances from 20 to 28 and the number of proved op-
timal solutions from 25 to 32. Our heuristic is general and
addresses an important limitation of PDB heuristics in a large
class of single-agent search domains (i.e., transportation).

2 Background
An instance of Sokoban has k movable blocks (stones) and
k goal squares placed on a grid-square maze defined by im-
movable blocks (walls) and free squares. There is an addi-
tional block called the man which is the only block that can
be moved directly. The man can traverse free squares and
push (never pull) a stone to an adjacent free square. Figure 1a



(a) Instance. (b) One cut square. (c) Two cut squares. (d) Three cut squares. (e) Fill Order (F).

Figure 1: Decompositions with one (1b), two (1c) and three (1d) cut squares of the instance shown in (1a). Cut squares
are shown in black, maze zone squares in white, goal zone squares in brown with diagonal lines and dead squares in gray.
Tie-breaking rule computed by F (1e).

shows a stone at square 3E, a goal square at 3B, the man at
square 2B and a wall at 1A. A solution is a sequence of ac-
tions that moves the k stones from their initial squares to the k
goal squares and an optimal solution has the minimum num-
ber of pushes. The moves of the man are not counted. Note
that square 9C is considered dead; once a stone is pushed
there it can never reach a goal square.

Let Q be the set of free squares of an instance, G ⊆ Q
the set of goal squares and B the set of stones. A state u
is a pair u = (p(B),m), where p is a map from the stones
to the free squares and m is the position of the man. For a
stone at square p(b) let δ(p(b), g) be the minimum cost to
push the stone at p(b) to square g when the man is at m in
an instance with only one stone. This cost ignores all other
stones. The enhanced minimum matching (EMM) is the stan-
dard heuristic of Sokoban, it is based on a minimum cost per-
fect matching in the complete bipartite graph between stones
and goal squares with edge set {(b, g) | b ∈ B, g ∈ G} and
weights δ(p(b), g). In this bipartite graph let M∗ be a mini-
mum cost perfect matching. The matching cost is enhanced
with linear conflicts that increase the heuristic value by two
when a pair of adjacent stones is in the optimal path of each
other, each stone can be part of only one linear conflict. Let L
be the number of linear conflicts in a state. Then, the value
of EMM for a state u is,

EMM =
∑

(b,g)∈M∗
δ(p(b), g) + 2L.

A series of articles [Pereira et al., 2013; 2014; 2015] in-
troduced admissible PDB heuristics to Sokoban. The heuris-
tic I [Pereira et al., 2015] provides the best previous results.
It uses an instance decomposition to obtain an intermediate
goal state. If all stones on a set of non-dead squares M have
to pass over a fixed cut square c to be pushed to all reach-
able goal squares, the cut square c is used as an intermediate
goal state. The squares in M are the maze zone squares and
all other non-dead and non-goal squares are the goal zone
squares. Figure 1b shows an instance decomposition: the
cut square shown at 6C is part of the maze zone, the two
maze zone squares at 7C and 8C and for example a goal zone
square at 7D.

The heuristic I is the sum of the cost to solve two indepen-
dent subproblems that are a relaxation of the original prob-

lem. The cut square defines the intermediate goal state and it
can store many stones and the man simultaneously (this is the
relaxation). The maze subproblem corresponds to the cost
to push stones that are in the maze zone to the cut square.
The goal subproblem corresponds to the cost to push stones
at the cut square and in the goal zone to the goal squares.
Let hM and hG be respectively the heuristic functions for the
maze and goal subproblems. The value of heuristic I for a
state u is defined as the sum of hM and hG.

A PDB is used to compute hM . The abstraction used main-
tains only k′ of all k stones in the instance, a PDB-k′ uses an
abstraction of k′ stones. For this PDB, there is a unique ab-
stract goal state that has k′ stones placed at the cut square.
To build the PDB the algorithm performs a reverse search
from the abstract goal state to enumerate all reachable ab-
stract states with stones k′ in the maze zone. Let δ(p(P )) be
the cost stored in the PDB for an abstract state u′ with stones
P ⊆ B. To compute hM the algorithm creates a partition B
of all stones in the maze zone into parts P of size k′. Among
all possible partitions B the heuristic tries to find one that
maximizes the heuristic value as described in [Pereira et al.,
2015]. The value of hM for a state u is,

hM =
∑
P∈B

δ(p(P )).

A modified state is used to compute hG. Stones in the maze
zone are placed at the cut square and the position of the man
is changed accordingly, all stones in the goal zone remain the
same. A complete description of the procedure can be found
in [Pereira et al., 2015]. Let d be this new map from the
stones to free squares and position of the man. Let L be the
number of linear conflicts in a state considering only stones
in the goal zone and at the cut square. Finally, the value of hG
for a state u is defined as,

hG =
∑

(b,g)∈M∗
δ(d(b), g) + 2L.

In addition to the heuristic I, Pereira et al. [2015] intro-
duced the tie-breaking rule called fill order F. It uses the prop-
erty that there is an order to fill the goal squares respecting the
restrictions of the instance. F attempts to approximate this or-
der by placing all stones on goal squares and removing them



in an arbitrary order with reverse moves. If a reverse move
is possible the stone is removed from the instance and the
corresponding goal square receives a priority value equal to
the number of stones removed so far. This process contin-
ues until all stones have been removed. During the search,
nodes with stones on goal squares with higher numbers are
preferred. Figure 1e shows the order computed by F.

3 Proposed Pattern Database Heuristic based
on Multiple Intermediate Goal States

In this section, we describe a simple method to extend the
heuristic I to use multiple intermediate goal states and we
show why it is ineffective. We present a more complex ap-
proach our novel admissible PDB heuristic D and describe
how to compute the it efficiently in Section 3.2.

3.1 Instance Decomposition and Independent
Subproblems

We want to find a set of cut squares C that maximizes the
size of the maze zone M . To find such a set we analyze all
possible sets of cut squares of fixed size. Given a set C we
perform k reverse searches one for each goal square in which
we place a single stone at the goal square. In all searches the
squares in C are blocked for the stone, it cannot be placed at
them. Then, all reachable non-dead and non-goal squares in
these searches are part of the goal zone, and all other non-
dead squares are part of the maze zone. By construction, all
stones in the set of non-dead squares M can only be pushed
to the goal zone passing over the squares in C.

We place a number in front of the letter I (and later D)
to define the number of cut squares used. 1I uses one cut
square and 2I uses two cut squares. The PDB construc-
tion for heuristic I using more cut squares is the same as
the original approach the only difference is that there are
more abstract goal states. Each combinations of k′ stones
on the cut squares generates an abstract goal state. With
two cut squares, x stones on one cut square and y on the
other, and k′ = 4 stones, we have five abstract goal states
(x, y) = (0, 4), (1, 3), (2, 2), (3, 1) and (4, 0). Each pair
(x, y) is a unique abstract goal state. When computing hG for
each stone in the maze zone, it is unknown which cut square
will be used in pushing that stone into the goal zone. Then,
when placing stones in the maze zone at the cut squares, the
stone will be placed at the closest cut square for each goal
square. The remainder of the heuristic computation is the
same.

An instance decomposition of Figure 1a using one cut
square, Figure 1b, finds a maze zone with three squares (6C,
7C and 8C). Because of that 1I and plain EMM have the
same heuristic value of 27 for that instance. In an instance
decomposition using two cut squares (Figure 1c), the maze
zone comprises almost the whole instance, a three cut squares
decomposition increases the maze zone by one square (Fig-
ure 1d). 2I with a PDB-k′ = 4 provides the optimal solu-
tion cost of 23 for the maze subproblem, where all stones are
pushed to the cut square on 3C. When computing hG, two
stones are placed at each cut square and the cost of this sub-
problem is two. 2I provides the heuristic value of 25 which

is lower than plain EMM; because of that small difference, 2I
expands 100 times more nodes to solve the instance.

The solution to improve the heuristic value is to solve the
subproblems recognizing that they are dependent – the num-
ber of stones in each cut square in both subproblems has to
be the same. We call this heuristic D. Using it in the instance
shown in Figure 1a it provides the heuristic value of 31 – the
optimum solution cost.

3.2 PDB Construction and Heuristic Computation
In heuristic D, we have a unique PDB for each abstract goal
state generated by the combinations of k′ stones on the cut
squares. One PDB for each pair (x, y) of the previous exam-
ple. Let a be an assignment that maps stones in the maze zone
to cut squares, stones in the goal zone remain the same. LetA
be the set of all possible such assignments. Let δa(P )(p(P ))
be the cost in one of the PDBs for an abstract state with sub-
set of stones P , the number of stones in each cut squares de-
fined by a(P ) selects the PDB. To guarantee admissibility of
heuristic D we have to find an assignment a that minimizes
the sum of hM and hG. Thus, the value of heuristic D for a
state u is defined as,

D = min
∀a∈A

∑
P∈B

δa(P )(p(P )) +
∑

(b,g)∈M∗
δ(a(b), g)

+ 2L.

In the following, we describe how to compute the parti-
tion B and an optimal assignment efficiently.

Partitioning Computation
When computingB it is unknown at the time which cut square
will be assigned to each stone. We assume that each sub-
set P will be assigned to the set of cut squares that minimizes
its cost and thus selecting the PDB with minimum cost. If
k′ = 2, the optimal B can be found in polynomial time by
a maximum weighted matching. If k′ > 2, we use a greedy
randomized constructive method based on the one proposed
by [Pereira et al., 2015]. The method starts by querying the
cost of every subset, all

(
k
k′

)
subsets. Then, it ranks the sub-

set according to the number of conflict pushes: the difference
between the cost of the subset and the cost to push each stone
in the subset individually to its closest cut square. Then, a
greedy randomized method selects a disjoint partition trying
to maximize the sum of the conflict pushes. Only subsets with
all stones in the maze zone are included in B.

Assignment Computation
The assignment computation, in general, is the costly part of
the heuristic. If the sum of conflict pushes in B is zero, we re-
turn the value of EMM. We only assign cut squares for stones
in parts P with conflict pushes greater than zero, all other
parts are removed from B. The intuition is that we just have
to select cut squares for stones that are likely to increase the
heuristic value. The simplest approach is to compute the cost
of all possible assignments. When checking all possible as-
signments we call the heuristic the exhaustive heuristic DE .
The difficulty is that the number of stones in B could be k
and thus, we have to check the cost of |C|k assignments for a



single state. To find an optimal assignment more efficiently
we propose the use of a branch and bound computation.

We use a best-first branch and bound computation (BB). At
each step in the BB a stone is assigned to a cut square. At
the beginning, no stones have cut squares assigned and thus
the lower bound is equal to EMM. If all stones in a part have
cut squares then we compute the lower bound, otherwise, we
just use the lower bound of the parent in the BB tree. The
lower bound is defined as the cost of the two subproblems,
but only parts where all stones have assigned cut squares use
the cost of the PDB. The upper bound is defined as the cost
of EMM plus the number of conflict pushes. The heuristic D
using the BB is called DB .

3.3 Admissibility
In this subsection, we show that the heuristic D is admis-
sible. Let h∗ be the perfect heuristic. It is witnessed by
some optimal sequence of actions S. For each stone in
any part of B, consider the corresponding subsequence of
S that brings it for the first time to some cut square. Such
a subsequence must exist, by definition of the cut squares.
The final position of each stone in these subsequences de-
fines an assignment a of the stones in B to the cut squares.
For all the stones in B, there must be a subsequence dis-
joint from the subsequence above, that brings it from the
cut square to some goal square. Similarly, for all remain-
ing stones there must be such a sequence. These subse-
quences define a matching M of stones to goal squares.
Therefore, we have a pair (a,M) and the value of h∗ can
be defined as h∗(a,M) = δ(p(B), a(B)) + δ(a(B),M(B)).
Let hD(a∗,M∗) = hM (p(B), a∗(B)) + hG(a∗(B),M∗(B))
be the heuristic D with an optimal assignment a∗ that mini-
mizes the total cost given an optimal matching M∗.

Theorem 3.1. hD(a∗,M∗) is admissible.

Proof. For any state, we want to show that hD(a∗,M∗) ≤
h∗(a,M).

By definition, the pair (a∗,M∗) minimizes the value
of hD, any other pair (a,M) cannot provide a lower value.
Thus, we have that hD(a∗,M∗) ≤ hD(a,M).

Now, we want to show that hD(a,M) ≤ h∗(a,M) where
(a,M) is the pair extracted from the optimal sequence S.
First, consider hM and δ(p(B), a(B)) both heuristics com-
pute the cost to push the same set of stones from their orig-
inal squares p(B) to the same set of cut squares a(B). The
value of δ(p(B), a(B)) accounts for conflicts between all
stones in B, but the value of hM accounts only for conflicts
that occur within each part P and thus it must be a lower
bound on δ(p(B), a(B)). A similar argument also applies for
δ(a(B),M(B)) and hG. All stones B have the same orig-
inal a(B) and destination M(B) squares. The value of hG
accounts only for linear conflicts while δ(a(B),M(B)) ac-
counts for all conflicts which include linear conflicts. Thus,
hG must be a lower bound on δ(a(B),M(B)). Therefore,

hD(a∗,M∗) ≤ hD(a,M) ≤ h∗(a,M).

(a) Fill Order F. (b) Level Order L.

Figure 2: Two different tie-breaking rules.

4 Tie-Breaking Rule

Having the f -value equal to the optimal solution length does
not necessarily mean a solution is close at hand; there can
be a prohibitively large number of states remaining to be ex-
panded. This makes tie-breaking rules important. When com-
paring two Sokoban states, the one with more stones on goal
squares, in general, is closer to being solved. Moreover, there
is an optimal order to place stones on goal squares such that
a solution can be found or the solution cost is minimized.
The tie-breaking rule F [Pereira et al., 2015] explores these
ideas to speed up the process of finding solutions. Using F the
search expands fewer nodes and solves more instances, but it
has three main sources of errors: the total order of the goal
squares, the rule used to define the order, and the assignment
of partial priorities.

A total order may be attempting too much. When there
is insufficient information to define an order to fill the goal
squares one should not be preferred to the other. Figure 2a
shows an order defined by F. In this instance according to
the rule F, the goal square with number three has to receive a
stone before the goal square with number two, which is not a
feasible solution and thus the order is wrong. The rule used
to define the order could be strengthened to avoid this type
of error. Also, giving partial priorities may prioritize nodes
with stones on goal squares with lower priorities such that
those with higher priorities cannot be filled anymore. These
problems may cause the search to explore a large portion of
the search space without finding a solution.

To solve these problems we propose the tie-breaking rule
level order (L). We compute L by placing all stones on goal
squares. Then, iteratively we remove a stone with reverse
moves. A stone is considered removed if it can reach a square
that has a stone on it on the initial state of the instance without
moving other stones on goal squares. Goal squares that have
their stones removed in the same iteration receive the same
priority. If after one iteration no stone can be removed, all
the remaining goal squares with stones receive the highest
priority. Figure 2b shows the order defined by L. During the
search, a node receives a priority of the goal square with a
stone only if all the goal squares with higher priority (bigger
numbers) already have stones. For example, (a) a node with
a single stone on a goal square with priority three will not
receive any priority, and (b) a node with two stones on goal
squares with priority four and one stone on goal square with
priority zero will receive a priority of two.



Table 1: Heuristic values for the initial states of the standard set of 90 instances. Highlighted cells in columns 1I, 2I and
2D have values equal to the best-known solution. Improved values over 1I are shown in bold. Highlighted cells in column
column UB show proved optimal solution lengths: when the time limit is reached, the lowest f -value on the open list is equal
to the best-known solution. 1I proves the optimal solution length of 25 instances and 2DB of 32 instances.

# 1I 2I 2D UB

1 97 93 97 97
2 131 123 131 131
3 134 126 134 134
4 355 343 355 355
5 141 133 141 143
6 106 100 106 110
7 80 86 86 88
8 220 220 220 230
9 231 222 231 237

10 510 510 510 512
11 213 209 213 241
12 206 198 208 212
13 224 224 224 238
14 231 231 231 239
15 100 106 108 122
16 170 162 170 186
17 203 199 203 213
18 106 103 106 124
19 286 278 286 302
20 450 374 450 462
21 137 126 137 147
22 308 307 310 324
23 432 428 432 448

# 1I 2I 2D UB

24 518 517 534 544
25 378 361 378 386
26 175 162 175 195
27 359 350 359 363
28 290 287 290 308
29 132 130 132 164
30 407 400 407 465
31 236 233 236 250
32 115 122 129 139
33 152 140 170 174
34 164 164 164 168
35 368 352 368 378
36 511 502 511 521
37 242 225 246 284
38 79 79 79 81
39 658 598 658 672
40 314 306 314 324
41 227 227 227 237
42 208 204 208 218
43 138 130 138 146
44 169 165 169 179
45 290 282 290 300
46 227 217 227 247

# 1I 2I 2D UB

47 201 183 201 209
48 200 186 200 200
49 106 88 114 124
50 102 100 100 370
51 118 100 118 118
52 379 359 379 421
53 186 182 186 186
54 181 178 181 187
55 120 115 120 120
56 193 193 201 203
57 217 219 219 225
58 197 189 197 199
59 218 222 222 230
60 148 147 150 152
61 253 255 255 263
62 241 236 241 245
63 429 424 429 431
64 381 373 381 385
65 207 203 207 211
66 193 193 193 325
67 395 392 395 401
68 333 329 333 341
69 223 217 223 433

# 1I 2I 2D UB

70 329 327 329 333
71 298 300 302 308
72 294 262 294 296
73 441 437 441 441
74 182 176 190 212
75 263 267 273 295
76 194 196 198 204
77 360 238 364 368
78 136 136 136 136
79 170 149 170 174
80 231 201 231 231
81 167 141 173 173
82 137 131 137 143
83 194 184 194 194
84 153 149 155 155
85 307 307 307 329
86 124 112 124 134
87 223 217 223 233
88 342 336 342 390
89 361 351 361 379
90 446 447 448 460

5 Experimental Results
In this section, we compare our proposed heuristic D and tie-
breaking rule L with the state-of-the-art heuristic I and tie-
breaking rule F. As well, we include extending heuristic I to
multiple intermediate goal states. All experiments were run
on a PC with an AMD FX-8150 CPU running at 3.6 GHz
with 32 GB of RAM. We use the standard limits for Sokoban
of 20 million expanded nodes or one hour of CPU time. In
our experiments a search ended either because a solution was
found or the time limit was reached, the node limit was never
reached. The standard test set xSokoban of 90 instances is
used.

5.1 Instance Decomposition and PDB
Construction

Our first experiment is regarding instance decomposition. We
compare the percentage of maze zone squares obtained by
one, two, and three cut squares. These results are shown in
Figure 3. Over the 90 instances, decompositions with one,
two, and three cut squares on average include respectively
66%, 92% and 97% of the squares in the instance are maze
zone squares. Using two cut squares has 100% of the maze
zone squares in 33 instances, while using one cut has only
three instances.

A two cut squares decomposition provides a considerable
improvement in the percentage of maze zone squares over
one cut square. Because of that we perform experiments to at
most two cut squares. PDBs built with k′ = 4 are the largest
that can be built for all instances in one hour, and previously
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(a) One vs. two cut squares.
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(b) Two vs. three cut squares.

Figure 3: Comparison of the percentage of maze zone squares
considering different numbers of cut squares: (3a) two cut
squares compared to one cut square has a > 10% increase in
the size of the maze zone in 48 instances, and (3b) three cut
squares compared to two cut squares has it in 14 instances.

provided the best results. Thus, we fix the size of k′ = 4 in
all our experiments. On average, PDB-4 for 2I has 323, 572
entries and takes 15 seconds to build, while 2D has 695, 606
entries and takes 108 seconds.

5.2 Heuristics on Initial States and Proved
Optimal Solutions

Table 1 shows the heuristic values for the initial states of the
90 instances. Column UB shows the best-known upper bound.
The first information to be noted is that heuristic I when ex-



tended from one cut square 1I to two cut squares 2I has
worse results in general, but it is still able to increase the
heuristic value on some instances (e.g. #7). 2D improves
the heuristic value on average by 1.71 compared to 1I over
instances where 1I doesn’t provide the best-known solution.
For some instances it may be hard to improve the heuristic
value. For example, consider #10: the heuristic has not im-
proved, but 1I has 32% maze zone squares while 2D has
100%. Thus during the search 2Dwill detect more deadlocks.
2D improves the heuristic value in 25% of the instances com-
pared to 1I, including an enormous improvement of 18 for
instance #33.

Highlighted entries in Table 1 are the instances for which
the optimal solution cost is now known. If the heuristic value
of the initial state or the lowest f -value on the open list when
the time limit is reached is equal to the best-known solution,
then the optimal solution length is known. Considering only
the heuristic value for the initial states 14 instances have the
optimal solution proved. 1I, 2I and 2D prove respectively
12, 1 and 14. The ones proved by 1I and 2I are a subset of
2D. Considering the f -value when the time limit is reached,
32 instances have their optimal solution cost proven. 2DB

proves 32, and 1I proves 25, a subset of 2DB . For some
instances, we may not prove the optimality of the solution
cost because the upper bound is loose (best human solution).
However, we can compare which heuristic is closer to solve
the instance: over all algorithms, 1I has the highest or equal
highest f -value on the open list at the end of the search for 64
instances while 2DB has it for 87 instances.

5.3 Solved Instances
All methods use the same basic code infrastructure and an A∗
search. We applied an additional improvement to heuristic I
to make the comparison fairer: only use the cost in the PDB
if the whole subset of stones is in the maze zone. Doing this
1I can solve one more instance.

Table 2 shows all instances solved by at least one of the
methods. We use two combinations of tie-breaking rules: IF
corresponds to the previous best tie-breaking rule using in-
ertia [Junghanns and Schaeffer, 2001] as first order rule, and
fill order as second order rule, and LI corresponds to our pro-
posed tie-breaking rule L as first level rule, and inertia as sec-
ond order rule. For each heuristic (1I, 2I, 2DE , 2DB) there
are two columns, one for each tie-breaking rule (IF, LI). A
dot in a specific column indicates that the instance defining
the row was solved by that combination of heuristic and tie-
breaking rule. With the exception of 2I all heuristics solve
more instances using LI. The improvement is more signifi-
cant in 2DB solving five more instances, but even 1I benefits
from LI. For example in instance #21 it expands 100 times
fewer nodes and reduces the time by more than half an hour.

Comparing the heuristics, 2I can only solve five instances,
showing that the extension to multiple intermediate goal
states is ineffective with heuristic I. Even with a more ac-
curate heuristic, 2DE cannot solve more instances than 1I
due to the cost of expanding nodes. 2DB can solve more in-
stances than 1I with both tie-breaking rules. In computing
Table 2, 2DB on average expands 10 times fewer nodes per
second than 1I, but it solves seven more instances. In large

Table 2: Solved instances for different heuristics and tie-
breaking rules. Only instances solved by at least one of the
methods are shown.

# 1I 2I 2DE 2DB

IF LI IF LI IF LI IF LI

1 • • • • • • • •
2 • • • • • •
3 • • • • • •
4 • • • • • •
5 • • • • • •
6 • • • • • •
7 • • • • • • • •
9 • • • • • •

17 • • • • • • • •
21 • • • •
33 •
38 • • • • • • • •
43 • • • • • •
48 • •
51 • • •
53 • • • • • •
55 • • •
57 •
60 •
65 • • • • • •
73 • • • • • •
78 • • • • • • • •
79 • • • • • •
80 • • • • • •
81 • • • •
82 • • • • • •
83 • • • • • •
84 • •

Tot. 21 22 5 5 20 21 23 28

search spaces the comparison of 1I and 2DB indicates that a
heuristic that is more informed can be beneficial, even if more
computationally expensive. Another point highlighted by the
results of 2DB is the effort to prove the optimality and to find
the solution. 2DB can prove the optimality of 32 instances.
However, it can only find the optimal solution for 28.

Figure 4 shows the detailed results of 1I+IF, the previ-
ous state-of-the-art, compared to 2DB+LI. 2DB uses at most
307 seconds more than 1I to solve any instance (#73). Com-
paring only the solved instances by both methods, 2DB uses
more time in 13 instances while 1I uses more time in 15
instances. Regarding time, there is no clear winner. Regard-
ing expanded nodes 2DB is the clear winner. Comparing only
the solved instances by both methods 2DB expands 200 times
fewer nodes on average.

6 Discussion
We have shown how to effectively apply PDB heuris-
tics in transportation domains where the mapping of mov-
able objects to goal locations is not fixed beforehand and
where multiple intermediate goal states are helpful. We
use our heuristic D and tie-breaking rule L and solve opti-
mally more instances than previous methods. Domains like
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Figure 4: Comparison of the heuristics 1I+IF (previous
state-of-the-art) and 2DB+LI.

ATOMIX [Hüffner et al., 2001] and AIRPORT-IPC-4 [Trug et
al., 2004] require D instead of heuristic I because in these
domains the heuristic 1I in general doesn’t provide maze
zones with effective size. Tie-breaking rules inspired in L
could also improve the results in these domains. Other do-
mains with similar characteristics like STORAGE and TIDY-
BOT (both from IPC) are likely to benefit from our tech-
niques.

The main limitation of our approach is that an increase of
the number of cut squares will make the heuristic computa-
tion more costly. If the number of cut squares is similar to
the number of goal locations the heuristic D is unlikely to im-
prove the results. It is reasonable to increase the number of
cut squares given that we are not using any specific method
to prune the BB and that many selections of cut squares will
not produce an optimal solution. In Sokoban for example, it
is often the case that if more than one stone chooses the same
cut square the solution is already infeasible. We could detect
this infeasibility early without EMM. Pruning methods based
on these cases could increase the efficiency of our method.

7 Conclusion
We extend the effectiveness of PDB heuristics in transporta-
tion domains and use this to increase the number of opti-
mally solved instances of Sokoban. Further improvements in
Sokoban could be produced by better strategies to select the
subsets and by increasing the number of stones in the PDB.
Another improvement could be related to the tie-breaking
rule. We have proven the optimal solution cost for 32 in-
stances, but we were not able to find a solution for four of
them mainly because of tie-breaking.
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