
Accelerating Browsing by Automatically Inferring a User’s Search Goal

Chris Drummond Robert Holte Dan Ionescu
Computer Science Dept. Computer Science Dept. Electrical Engineering Dept.

cdrummon@csi.uottawa.ca holte@csi.uottawa.ca ionescu@trix.genie.uottawa.ca
University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5

Abstract

This paper discusses a novel method called active
browsing which increases the speed and accuracy with
which a user may browse libraries for reusable software.
Information inferred solely from the user’s normal actions
is employed by the system to locate software items relevant
to the user’s search goal. This paper describes our active
browsing system and illustrates its operation with an ex-
ample using typical browsing steps. An experiment, using
an automated browsing agent, is described demonstrating
that active browsing accelerates search.

1 Introduction

The general aim of our research is to reduce the cost
of locating reusable software artifacts in large libraries.
The approach we adopt is to increase the effectiveness of
human-computer interactive search, often termed brows-
ing. Browsing has a very broad range of applications, in-
cluding knowledge bases [9], information retrieval [5,12],
hypertext [2,11] and even relational databases [10]. In
browsing software libraries, the "state" of the search is
a particular item in the library, and one is permitted to
"move" to items that are related to the current item in
particular ways. A computer system that aids in browsing
is referred to as a browsing SYSTEM and the human that
does the browsing is a browsing AGENT.

Research dealing with searching software libraries has
principally focused on improving indexing [15,16,17]. We
focus on browsing because we feel that indexing, although
effective, has certain limitations which browsing can over-
come. For instance, indexing methods are appropriate
only if the user has a good goal definition. Without a
good goal definition the user must browse. Fischer et al.
state [13], when describing natural language interfaces for
information retrieval, " they do not assist users who
are unable to describe precisely what they want at the be-
ginning of an information seeking process". Even a good
indexing scheme is not effective if the user is unfamil-

iar with the indexing language. A frequent cause of such
unfamiliarity is that different users are not consistent in
the way they name or classify items [14]. The two meth-
ods, browsing and indexing, are by no means mutually
exclusive. If the user can accurately describe the whole
or even a significant part of the target, indexing is the
more powerful approach. Ideally indexing and browsing
facilities would be incorporated in the same system.

The implementation and experimental results discussed
in the rest of the paper are for searching libraries of
code. Actual code reuse is felt by some to give limited
returns [18,19]. They propose the reuse of much higher
level software design information. An important idea
within the knowledge base community is the "Knowledge-
Based Software Assistant" [20]. This approach aims
to formalize the whole process of software development
and use correctness preserving transforms to aid the user
in producing executable code from specifications. As
new software is synthesized, not composed from already
existing code, this would seem to obviate the need for
libraries. In practice, however, there are likely to be
libraries of software artifacts even if they are of a radically
different form from code. As W. L. Johnson [21] points
out "Reuse is essential at the requirements level, just as
it is at the program level". The principles of the system
outlined in this paper should be readily transferable to
libraries of any software artifacts.

Even with a well structured library normal browsing
can be a time consuming process. It is also knowledge
intensive as the user must have some idea of not only what
is in the library but also of its structure. We have devel-
oped a method, called active browsing, for increasing the
speed and success rate of interactive search [3,4]. As
the name suggests, the essence of the method is to have
the browsing system play a more active role. Previous
methods for enhancing the computer’s role [2,6,7,12] all
require input from the agent in addition to the agent’s nor-
mal search actions. The unique feature of active brows-
ing is that the search goal is inferred automatically from
the sequence of moves made by the agent in the normal
course of browsing. The browsing system then suggests

to the browsing agent specific items in the library that it
judges to be of interest, specifically those that best match
the inferred search goal.

In the following, section 2 describes our active brows-
ing system, illustrating its operation with typical browsing
behaviour in a hierarchically organized library. This ex-
ample demonstrates the main benefit of active browsing,
namely, that in a given amount of time a much larger por-
tion of the library is searched than by ordinary browsing.
Section 3 describes an automated browsing agent used in
the experiments in place of human subjects. Section 4
details these experiments and the results obtained which
measure how often, in practice, active browsing decreases
the time required to find a particular item in a library.

2 The active browsing system

The development of our active browsing system began
with a commercial browsing system for libraries of object-
oriented software written in Objective-C. An item in this
library is a "class", in the object-oriented sense. A class
consists of a set of “methods” which define its functional-
ity and a set of “instance variables” which define its state.
Both methods and instance variables can be implemented
in the class itself or inherited from an ancestor class.

The browsing system supported a small set of actions,
the most important of which was to move through the class
inheritance hierarchy. Active browsing cannot succeed if
the normal browsing actions are highly "ambiguous", i.e.,
give very little indication about WHY an agent chooses
a particular action. Moving down the inheritance hierar-
chy is a reasonably unambiguous action: from it, one can
plausibly infer that the browsing agent has some interest
in the methods implemented in the parent class. Many of
the other actions in the original system were highly am-
biguous, and were replaced with less ambiguous actions
that maintained or enhanced the system’s functionality.

Two browsing actions, which were modified to reduce
ambiguity, are of particular note. These are used by the
heuristic browsing agent in the experiments detailed in the
later sections and are as follows:

1. view the methods implemented in a specific class by:
a. expanding a class to show a list of the method

names that form its interface.
b. expanding a method to show its argument types.
c. further expanding the method to show the meth-

ods and instance variables used in its processing.
d. further expanding the method to show its code.

2. request a list of classes that implement a specified
collection of methods. This action computes, for
every class in the library, the degree to which the
class implements the methods and returns a list of
all classes ordered from highest to lowest degree.

The active component of the browsing system moni-
tors the browsing agent’s actions. From the sequence of
actions, the system constructs an "analogue" of features
plus associated certainties, that represents what it believes
to be the agent’s search goal. From the analogue the sys-
tem constructs a template, called a "relevancy measure",
which consists of a set of weighted terms that can be
directly compared to individual information fields within
a library item. With this template the active browsing
system scans the library, and computes the (numerical)
strength of the match with each library item. The items
are ordered according to match strength and presented to
the browsing agent in a special window, called the sug-
gestion box.

The inference of the analogue from the action se-
quence, and the construction of the relevancy measure,
are done using production rules and a forward-chaining
inference engine supporting MYCIN-like certainty fac-
tors [1]. A rule’s antecedent involves browsing actions
and/or existing features of the analogue and its conse-
quent causes new features to be generated or old ones up-
dated. In this way the analogue is updated to reflect the
browsing agent’s current goal. The analogue’s features
are properties of the items in which the user has demon-
strated specific interest. The certainties reflect the degree
and currentness of that interest. The former is inferred
from the action type, the latter is realised by decaying
the certainties with time (for further details see [4]). The
principle difference between the terms of the relevancy
measure template and those of the analogue is that the
former has an importance factor as well as a confidence
factor. This reflects the significance of the term in locat-
ing code in the library. It is multiplied by the confidence
factor to assign the term a weight, used when matching
the relevancy measure to library items.

2.1 An example of goal extraction

The following example demonstrates that active brows-
ing can help the agent by locating relevant classes, remote
in the class hierarchy. Figure 1 shows all classes in one
part of the hierarchy. “OTHERS” represents the children
of “Object” that are not shown and their descendants.

The main points of interest in this example are four
groups of classes, all kinds of collection. They are not
all children of a general collection class as the hierarchy
in this library is based on code, not specification, inher-
itance. The central cluster, “Cltn” and its children, are
collections whose elements are added and extracted se-
quentially or by indexing using the list position. There
are also two special types: those with methods specific to
integers “IntCltn” and “IntOrdCltn” and those with meth-
ods specific to pointers “PtrCltn” and “PtrOrdCltn”. The
fourth type “SortCltn” has elements that are added and au-

Object

Cltn OTHERSBalNode

StackOrdCltn

IntCltn

SortCltnPtrOrdCltn

PtrCltn

IntOrdCltn

Dictionary

Set

Figure 1 Class hierarchy

Figure 2 Exploring sibling classes

tomatically positioned alphabetically. This type is based
on a balanced tree for rapid update and retrieval.

For the purposes of browsing, the inheritance struc-
ture is just one of many types of relationship between
classes. In object oriented programming this is the princi-
pal structure for any library and a likely one for the user

to explore. We suppose in this example the user starts by
studying some methods in one class and then reviews its
siblings as alternatives that have the same general prop-
erties. The active browser suggests other classes with
similar properties not included in the list of siblings.

Figure 2 shows the state of the user interface of the

First
Sibling

Second
Sibling

Figure 3 Action and template predicates

browser after the complete sequence of actions described
below. The example begins with the user selecting the
class “OrdCltn” , from the pane labelled “Classes”, and
expanding it to show the method names that define its
interface. The methods "-add:" and "-find:" are selected
from the list to show their argument types. The latter is
expanded to show the other methods and instance vari-
ables used in its processing. These actions, in predicate
form, and the inferred template predicates are shown in
the first four lines of figure 3.

The operator “Superclasses” is then applied to “Ord-
Cltn”, which is highlighted, and the ancestor list contain-
ing “Cltn” returned in the pane labelled “Superclasses”.
The operator “Subclasses” is then applied to “Cltn”, which
is highlighted, and a list of its children displayed in the
pane labelled “Subclasses”. The result is a list of sib-
ling classes including “OrdCltn”. The class “Set” is se-
lected, its methods displayed in the pane labelled “Defined
Methods” and a method, with the same name, "-find:" is
viewed in the pane labelled “SEARCH: Source Abstrac-
tion/Code”. On this occasion the user expands it one more
level to show the actual code of this variant of the method.
The bottom five lines in figure 3 shows these actions and
the inferred template predicates.

The template includes the names of the three classes
visited and the methods inspected. The method "-find:"
has a higher confidence factor than "-add:" as it was
selected in both classes and examined more closely. There
are template terms to exclude three classes. Those for
classes “OrdCltn” and “Set” have higher confidences than
that for “Cltn” because the user explored them in detail.
The last template term shown in figure 3 is added because
the user has explored a number of sibling classes. This
term directs the template matcher to compare classes with
all methods implemented in, or inherited by, the parent
class “Cltn”. Each template predicate has two numbers;
a certainty value associated with the user’s interest in
a particular feature and a scale factor determining the
importance of the term in the matching process. These
values are multiplied together to give the weight for the

specific template term.
To match maximally with this template a class should

have certain properties. It should have an interface sim-
ilar to class "Cltn" and have a name that matches with
"OrdCltn", "Cltn" and "Set". It should implement meth-
ods "add" and more importantly "find" and be a class the
user has not shown a lot of interest in previously.

Figure 4 Suggested classes

Each class in the library is compared term by term, and
the product of the degree of match and the term weight
is formed into a normalised sum for all terms. The re-
sult of this template being matched is shown in figure
5, the numbers on the right being the normalised sums.
The third sibling, “Stack” , as yet unexplored by the user,
is not the best match. There is a higher scoring class,
“SortCltn” (Sorted Collection). In addition the classes
“IntOrdCltn” and “PtrOrdCltn” score above “Dictionary”,
a child of “Set”, and several others tie. These and the
remaining classes in the list are situated in unrelated parts
of the library. The only common ancestor is “Object” the
root of the inheritance tree. The high score is due to the
extensive polymorphism deliberately designed into the li-
brary. These classes are intended to fulfill similar roles to
the children of “Cltn” but because of their implementation
differences are remote in the hierarchy.

This example demonstrates a plausible situation where
active browsing can aid the user in search. The particular
actions discussed are unlikely, in reality, to occur in
isolation. Rather they would form a subsequence of a
much longer series of actions in an actual search. The
following section presents experiments to demonstrate the
system’s effectiveness in longer searches.

3 The heuristic browsing agent

In general, to test the effectiveness of an improvement
in an interactive tool, the natural experimental method
is to require human subjects to perform tasks using the
tool with and without the improvement. There are several
practical difficulties in performing an experiment of this
kind. The first is that a large number of experimental
subjects are required to produce significant results. This
difficulty is exacerbated by the fact that human subjects
learn during an experiment and cannot be reused in closely
related experiments. The use of human subjects also has
the disadvantage that it is impossible to run carefully
controlled or repeatable experiments. To overcome these
difficulties we have used an automated heuristic browsing
agent, a notion analogous to using "artificial data" [8].

The heuristic browsing agent has not been designed to
accurately simulate the complex behavioural characteris-
tics of a human searcher. Rather it encompasses the gen-
eral heuristics that a human might be expected to follow.
It consists of two parts: a "fuzzy oracle" that represents
the agents’s current knowledge of the search goal, and a
heuristic search strategy that consults the oracle and se-
lects browsing actions. The fuzzy oracle contains a target
class selected by the experimenter from the classes in the
library. This represents the actual goal of the agent’s
search. The oracle gives YES/NO answers to questions
about if a given library item matches the target class in
certain ways. The oracle is "fuzzy" because its answers
are not always correct; for each type of question, the prob-
ability can be set that the oracle will give an incorrect
response. This noisiness represents the browsing agent’s
uncertainty in recognizing the search goal.

The heuristic search strategy is a combination of depth-
first search and hill-climbing. The agent scans the lists of
class names from top to bottom and selects the first one on
that list that seems of sufficient interest. The selected class
is expanded to allow an assessment of its functionality
by a closer inspection of its methods. If a group of its
methods is of sufficient interest the agent requests a new
list of classes that implement these methods. This list is
itself searched and the process repeated if a class is found
whose functionality is more interesting than all previously
inspected classes. If no such class can be found the agent
returns to the previous list and carries on the search with

the remainder of this list. The search terminates when the
agent find the target class.

Two factors combine to cause the top classes in each
new list to be more similar to the target, on average,
than those of previous lists. The first factor is the hill-
climbing. The second is the fact that the noise in the fuzzy
oracle is reduced each time a new class is expanded. Thus
as search proceeds the heuristic agent gets progressively
more accurate answers to its questions. This represents
a user’s growing certainty in being able to recognize the
search goal i.e. the target class.

4 Experimental results

The experiments are in two parts. The first part mea-
sures how successful the active browsing system is in
inferring the target class from the agent’s actions. Two
measures are used; the frequency that the active browsing
system identifies the target class prior to its being found by
the browsing agent and a comparison of the “closeness”
to the target class of the agent and the system, across the
whole search. The second part measures the effect on the
agent’s search of using the suggestion box. The number
of steps required to find the target class is compared to
that required without the use of the suggestions.

To obtain the “closeness” measure, each time the
browsing agent creates a new class list or backtracks to a
previous list, we record the rank of the target class in the
agent’s current list (henceforth called the agent’s ranking)
and the rank, at that moment, of the target class in the
suggestion box produced by the active browsing system
(henceforth called the system’s ranking). For example,
the information shown in figure 5, is recorded for the tar-
get class "ProbableMethodsList".

Step System’s Agent’s
Number Ranking Ranking Difference

1 16 20 4
2 13 20 7
3 9 33 24
4 6 20 14
5 6 28 22
6 3 28 25
7 3 28 25
8 4 39 35

Figure 5 Record of ranking during search

The first row gives the rankings after the browsing
agent has made its first step, i.e., created its first new class
list. The target class is 20th in this list. The target class
is ranked slightly higher (16th) by the active browsing
system. As the agent proceeded in its search, either by

aaaaaaaaaa

a a Low Noise a Moderate Noise a High Noise aaaaaaaaaa

a

Definition
Set

a Wins a Losses a Draws a Wins a Losses a Draws a Wins a Losses a Draws a
aaaaaaaaaa

a #1 a 84 a 55 a 50 a 78 a 66 a 45 a 61 a 76 a 52 a
aaaaaaaaaa

a #2 a 44 a 79 a 66 a 40 a 90 a 59 a 29 a 99 a 61 a
aaaaaaaaaa

Table 1 Inferring the target class: Wins-Losses-Draws

creating new class lists or backtracking to previous ones,
its ranking of the target class actually got worse, dropping
at step 8 to 39th place. This is not a surprising effect. The
agent may well evaluate a number of different variants on
a theme. For instance, different collections of methods
might be investigated or methods with similar but not
identical names. Thus the search will, at least temporarily,
move in the “wrong” direction. Despite this fact, the
history of the actions carries enough information for the
active browsing system to filter out the characteristic
features of the target class. This is demonstrated by the
fact that from the third step onwards, the target class is
in the system’s top ten.

The search for a given target class is terminated when
either (a) the browsing agent finds the target class, or
(b) the target class is ranked in the top ten by the active
browsing system for six consecutive steps. Criterion (b)
applies in the example above.

The experiment consists of successively using each
class in the library as the target class. The library is
the combination of two commercially available libraries
plus classes developed as part of this implementation. It
contains 189 classes in total. By varying the noisiness of
the oracle’s answers to questions posed by the heuristic
agent the effect of a human searcher’s uncertainty can be
investigated. The experiment results presented below are
for several different noise levels.

4.1 How often is the target class inferred ?

Intuitively, a target class is a "win" (for the active
browsing system) if the active browsing system correctly
infers it before it is found by the browsing agent. Like-
wise, a target class is a "loss" if the browsing agent
finds the class before the active browsing system infers
it. There are a variety of different ways of defining a
“win” and a “loss”; we will consider two possibilities.

Definition Set #1: A target class is a win for the active
browsing system if it is ranked in the top ten by the
active browsing system for five consecutive steps OR if
the system’s ranking is higher (better) than the agent’s
ranking when the agent finds the target class. A target
class is a loss if the agent finds the target class and, in

that final step, the target class is not in the system’s top
ten. All other target classes are draws.

Definition Set #2: A target class is a win only if it is
ranked in the top ten by active browsing system for five
consecutive steps. A target class is a loss if the agent
finds the target class and, in that final step, the agent’s
ranking is higher than the system’s ranking. All other
target classes are draws.

The definitions in set #2 are less generous towards the
active browsing system, awarding it fewer wins and more
losses. There are other realistic definitions of "win" that
are more generous than definition #1: for example, one
could award a win if the active browsing system inferred
a class that was extremely similar to the target class.

Table 1 shows wins-losses-draw for the two sets of
definitions and three representative values of the one noise
parameter that was varied. The number of wins, according
to definition #2, is much smaller, but in assessing the
success rate it is important to bear in mind that a win,
defined in this way, is impossible for target classes that
are found by the browsing agent in fewer than five steps.
There are 75 such target classes; if these are disregarded,
active browsing succeeds on almost exactly the same
percentage of classes with either definition.

4.2 Step-by-step comparison of the rankings

The measurement of wins-losses-draws directly indi-
cates how often the target class is highly ranked by the
active browsing system at the termination of the search,
but it gives no indication of how the ranking evolved as
the search progressed. If a browsing agent is to bene-
fit from an active browsing system in practice, it must
be true that throughout the search the system’s ranking
of the target class is consistently significantly higher than
the agent’s own ranking of the target.

The difference between the agent’s ranking and the
system’s ranking is plotted in Figure 6 for two different
values of the noise parameter. The results for low noise
are plotted with the solid line and the results for moderate
noise are plotted with the dotted line. Each step in
the agent’s search for the target class corresponds to a
different point on the X-axis. The Y-axis indicates the
difference between the agent’s and the system’s ranking

AVG
DIFF
IN

RANK

0

+20

+40

-20
0 10 20 30

STEP NUMBER INTO SEARCH

40

LOW
NOISE

MODERATE
NOISE

Figure 6 Step by step comparison of rankings

on a given step, averaged over all the target classes. A
positive Y-value indicates that the target class is ranked
higher by the active browsing system than by the agent.

Note that the search for some target classes involves
fewer steps than the search for others. For example, 75
target classes have a search involving 4 or fewer steps.
Thus, as one moves right along the X-axis, the number of
classes contributing to the Y-value decreases rapidly; the
data for large values of X are based on the small number
of target classes that require many steps to find.

The graph for low noise shows that the target class is
consistently ranked much higher by the active browsing
system than by the browsing agent on all steps except the
first few. A similar pattern occurs for other noise values,
but as the noise value increases the difference diminishes
and becomes more erratic. As the noise level is further
increased the rank difference gradually returns to being
consistent and significant, but with the browsing agent
having a better ranking than the active browsing system.

Instead of measuring the numerical difference in rank-
ings, one could simply measure the sign of the difference
in rankings at each step [4]. This indicates, for each step,
how frequently the target class is ranked higher by the
active browsing system than by the browsing system. A
similar pattern emerges. For low to moderate noise lev-
els, after the first few steps of search, roughly 70% of the
target classes are ranked higher by the active browsing
system. Unlike the numerical rank difference, this mea-
sure declines quite slowly as the noise level increases; for

the high noise level, the system’s ranking is higher than
the agent’s on 45% of the target classes.

4.3 Selecting from the suggestion box

One extension to the experiment, more akin to how the
tool would be used in practice, is to have the agent make
selections from the suggestion box. Here, the agent makes
a selection from either the suggestion box or the previous
class list with equal probability, every time it backtracks.
This follows the intuitive notion that the suggestions are
most likely to be used when a human user is unsure of
how to proceed. At this juncture the user may well look
at the suggestion box or unexplored classes in earlier lists.

The results in table 2 are for the low and moderate
noise values. For each value the experiment is run twice,
with and without the use of the suggestion box respec-
tively. The search is terminated when the agent finds the
target class. The number of steps required to find each
class in the library is compared. In this case only a single
criterion is used. A win is assigned to the active browser
if it takes fewer steps when turned on, a loss if it takes
more and a draw if they are equal. The results show a sig-
nificant benefit at the lower noise values, some of which
is lost at the higher values. The ratio of wins to losses
is comparable to that given by the upper bound of the
simple comparison experiments.

aaaaaa

a Low Noise a Moderate Noise aaaaaaa

a Wins a Losses a Draws a Wins a Losses a Draws aaaaaaa

a 52 a 32 a 105 a 51 a 44 a 94 aaaaaaa

Table 2 Using the suggestion box

5 Discussion of results

The results show that the active browsing system fre-
quently infers the target class before it is found by the
browsing agent, and that during search the active brows-
ing system consistently ranks the target class significantly
higher than the browsing agent. Further, when the agent
makes use of the suggestion box the speed of search is
improved, on average. There are two conditions under
which active browsing does not outperform the brows-
ing agent: during the early steps of search, and when the
browsing agent is highly uncertain about the search goal
(simulated in the experiments by a high noise level).

That active browsing does not outperform the agent in
the early steps of search can be explained by it having
insufficient information upon which to base its rankings.

There are numerous factors that might cause the per-
formance of active browsing system to be degraded by

increased noise levels more than the agent’s performance.
The most likely explanation is that the agent’s behaviour
consisted of a large number of uninformative actions fol-
lowed by a relatively small number of highly informative
actions that led the agent to the target. If the agent be-
haves in this way, the active browsing system will lag be-
hind the agent in moving towards the target because the
final few informative actions will not immediately out-
weigh the mass of previous uninformative actions. This
kind of "misleading" initial behaviour by the agent is pro-
moted by the fact the oracle’s noise level decreases as the
agent’s search progresses, and is further promoted by the
fact that in the test library, as in most software libraries,
there are some fairly large groups of highly similar items.
This latter situation can be readily detected. Both the ana-
logue and the relevancy measure template terms could be
adjusted to reduce the effect, although this idea has not
been experimentally validated at the present time.

6 Conclusion

This paper has described a system for active browsing
and experimentally demonstrated that a browsing agent’s
search goal can be inferred from normal browsing actions.
The inferred goal provides a reliable way of estimating
the "relevance" of a library item to the agent’s actual
search goal. Active browsing increases the effectiveness
of browsing without imposing any restrictions or "cost"
on the user. The agent is able to make full use of the
facilities of the standard browser, and is not required to
take special actions or learn any new tools.

Future experiments should use a rich variety of real-
istic browsing agents. Further work on agents using the
system’s suggestions would permit measurement of the
relative effectiveness of different ways of presenting the
inferred goals to the browsing agent.

7 Acknowledgments

The work was supported in part by a Strategic grant
and operating grants from NSERC of Canada. Colleagues
on the "Machine Learning Applied to Software Reuse"
project were helpful at all stages of this research.

8 References

[1] J.A. Alty & M.J. Coombs. Expert Systems: Concepts And
Examples National Computing Centre Pubs. (1984)

[2] G. A. Boy. Indexing Hypertext Documents In Context.
Proc. 3rd ACM Conference on Hypertext (1991).

[3] C. Drummond, D. Ionescu & R. Holte, Automatic Goal
Extraction from User Actions when Browsing Software
Libraries. Proc. Canadian Conference on Electrical and
Computer Engineering, pp WA6.31.1-WA6.31.4 (1992)

[4] C. Drummond, Automatic Goal Extraction from User Ac-
tions to Accelerate the Browsing of Software Libraries,
M.A.Sc. Thesis, University of Ottawa, December 1992.

[5] R. Godin, J. Gecsei & C. Pichet. Design Of A Browsing
Interface For Information Retrieval. SIGIR 89 Proc. 12th
Int. Conf. on Research and Development in Information
Retrieval (1989)

[6] D. Harman. Relevance Feedback Revisited. SIGIR 92
Proc. 15th International Conference on Research and De-
velopment in Information Retrieval (1982)

[7] S. Henninger. CodeFinder: A Tool For Locating Software
Objects For Reuse. Automating Software Design: Interac-
tive Design Workshop Notes AAAI–91 pp 40–47 (1991)

[8] D. Kibler & P. Langley. Machine Learning As An Exper-
imental Science. Proc. 3rd Working Session On Learning
(1989)

[9] T. P. Martin, HK. Hung & C. Walmsley. Supporting
Browsing Of Large Knowledge Bases. Dept of Computing
and Information Science, Queen’s Uni. Kingston Canada.
Unpublished (1991)

[10] A. Motro. BAROQUE: A Browser For Relational
Databases. ACM Trans. on Office Information Systems
Vol 4 No. 2 April 1986 pp 164–181. (1986)

[11] R. H.C. Seabrook & B. Shneiderman. The User Interface
In A Hypertext Multiwindow Browser. Interacting with
Computers Vol 1 No. 3 1989 pp 301–337 (1989)

[12] R. H. Thompson & W. B. Croft. Support for Browsing In
An Intelligent Text Retrieval System. Int. J. Man-Machine
Studies Vol. 30 pp 639–668 (1989)

[13] G. Fischer & H. Nieper-Lemke. HELGON: Extending
The Retrieval By Reformulation Paradigm. Proc. CHI-89
Human Factors In Computing Systems pp 357–362 (1989)

[14] G.W. Furnas, T.K. Landauer, L.M. Gomez & S.T. Dumais.
The Vocabulary Problem In Human-System Communica-
tion. CACM. Nov 1987 Vol 30 No 11 pp 964–971 (1987)

[15] S. D. Fraser, J. M. Duran & R. Aubin. Software Indexing
For Reuse. Proc. 1989 IEEE International Conference On
Systems, Man and Cybernetics pp 853–858 (1989)

[16] R. Prieto-Diaz. Implementing Faceted Classification For
Software Reuse. CACM Vol 34 1991 pp 89–97 (1991)

[17] Y. S. Maarek, D. M. Berry & G. E. Kaiser. An Informa-
tion Retrieval Approach For Automatically Constructing
Software Libraries. IEEE Transactions On Software Engi-
neering Vol. 17 No. 8 Aug. 1991 pp 800–813 (1991)

[18] T. J. Biggerstaff, C. Richter. Reusability Framework,
Assessment And Directions. Software Reusability Vol 1
Ed T.J. Biggerstaff A.J. Perlis, ACM Press pp 1–17(1987)

[19] E. Horowitz & J.B. Munson. An Expansive View Of
Reusable Software. Software Reusability Vol 1 Ed T.J.
Biggerstaff A.J. Perlis ACM Press pp 19–41 (1984)

[20] D. A. White. The Knowledge-Based Software Assistant: A
Program Summary. Tutorial Overview. Proc. 6th Knowl-
edge Based Software Engineering Conference (1991)

[21] W. L. Johnson. Interactive Acquisition Of Requirements
For Large Systems. Automating Software Design: Inter-
active Design Workshop Notes AAAI–91 pp 61–70 (1991)

