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Abstract. We introduce a framework for class noise, in which most of
the known class noise models for the PAC setting can be formulated.
Within this framework, we study properties of noise models that enable
learning of concept classes of finite VC-dimension with the Empirical
Risk Minimization (ERM) strategy. We introduce simple noise models
for which classical ERM is not successful. Aiming at a more general-
purpose algorithm for learning under noise, we generalize ERM to a
more powerful strategy. Finally, we study general characteristics of noise
models that enable learning of concept classes of finite VC-dimension
with this new strategy.

1 Introduction

Modeling noise in learning is a problem that has been widely addressed in the
literature. Specific noise models have been formalized and studied with respect
to their effect on learnability. Unfortunately, often noise models with strong
positive learnability results are rather unrealistic models, whereas more realistic
noise models leave little room for positive results. This trade-off has not been
studied systematically—almost every previous study focuses on a specific noise
model and produces results only for that model. To address this shortcoming,
this paper provides a formal framework in which we can reason about a broad
class of noise models, and presents quite general conditions on noise models in
this class under which learnability in the PAC model [16] can be guaranteed.
The focus of this paper is on class noise (e.g., [1]), which allows the labels of
the examples given to the learner to be altered by noise, but not the instances
themselves to be altered (in contrast to other types of noise, e.g., [7]). In the
class noise setting, for an instance x from input space X, a distribution D over
X, and a target concept ¢, the noise rate of x given D and c is the probability
that the wrong label for x is observed, given that x is sampled with respect to D.
Classical noise models, such as random classification noise [1], malicious clas-
sification noise [14], and constant partition classification noise (CPCN) [6], are
rather restrictive. Random classification noise assumes that every instance x has
the same noise rate, the latter being independent of D and c. Malicious classifi-
cation noise allows different instances to have different noise rates but assumes
a common upper bound on all the noise rates, which is independent of D and
c. CPCN loosens these constraints by allowing the noise rate to depend on c as



well as x, but not on D. This allows one to model the type of noise that arises
in many natural settings when instances closer to the decision boundary have a
larger noise rate than instances far away from the decision boundary. However,
in CPCN the transition between these noise rates is not smooth, since noise rates
are determined by a finite partitioning of the set of all possible labeled examples.

The literature studies these noise models separately. Though the statistical
query model [9] gave a unified account of the learnability results of various noise
models, it does not permit the definition of new noise models that overcome the
limitations of the classical ones or to study general properties of noise that enable
PAC-learning of certain concept classes under specific classes of distributions.

We introduce a formal definition of “class noise model” in which many clas-
sical models can be formulated. Our flexible framework allows noise rates to
depend arbitrarily on x, D, and c¢. We then focus on the question of what makes
learning under some noise models harder than learning under others, and try
to gain insight into why all known noise models that produce general positive
learnability results are rather unrealistic. We address this question by proposing
formal properties on noise models under which PAC-learning is possible. Em-
pirical Risk Minimization (ERM) strategies [17], which were previously used to
prove that every PAC-learnable class is PAC-learnable under random classifica-
tion noise, simply return a concept ¢’ that minimizes the number of observed
examples whose labels disagree with those of ¢. In a noisy setting, this kind of
strategy might not be generally successful, since the noise model might obfus-
cate the differences between concepts, i.e., two dissimilar concepts might look
very similar after applying noise, and vice versa. Therefore we generalize ERM
to a strategy that picks a concept whose expected behavior after applying noise
minimizes the number of disagreements with the sample. Under some additional
assumptions on the noise model, we show that similar properties as in the clas-
sical ERM case are sufficient for PAC-learning with this generalized strategy.

To sum up: As opposed to the research on agnostic learning, we study the
problem of finding a concept that approximates the underlying noise-free target
concept ¢, instead of approximating the observed (noisy) data. Our results sug-
gest that no realistic noise model will lead to a general solution to this problem in
the distribution-free setting. Our goal is not to show that approximating ¢ under
severe noise is possible in general, but to study conditions on the noise models
under which this is possible. The main contributions of this work are: (i) a for-
mal basis for the design and study of new noise models as well as for classes of
distributions that ease learning. (i) formal conditions under which ERM still
works; (iii) a generalization of ERM including conditions under which it solves
the learning problem we propose.

2 Preliminaries

We denote by X a set called the input space. For most of this paper, X = R"
for some n € N. A concept c is a subset of X' or, equivalently, a binary-valued
function on X. A concept class, C, is a set of concepts. A probabilistic concept



(or a noisy concept) ¢ : X — [0,1] is a real-valued function that assigns to
each element of X' a value in the closed interval [0, 1]. Hence, a concept can be
considered as a special case of a probabilistic concept. Let D denote a probability
distribution over X and Dy denote the set of all distributions over X. For a
distribution D and probabilistic concept ¢, the oracle, EX(c, D), is a procedure
that on each call returns a pair (z,y) € X x {0,1}, called an example, where
(i) x € X is drawn with respect to D and (i7) y € {0,1} is drawn with respect to
the Bernoulli distribution over {0,1} that assigns the probability ¢(z) to 1 and
the probability 1 — ¢(z) to 0. If ¢ is a concept, then for every (z,y) returned by
EX(c, D), y = ¢(z). In any example (x,y), = is called the instance and y is called
the label. Every multi-set S of examples is called a sample. We study learning in
the framework of PAC-learning [16].

Definition 1. [16] A concept class C is probably approzimately correctly learn-
able (PAC-learnable), if there exists a learning algorithm L and a polynomial
m : R?2 — R such that: for any target concept ¢ € C, for any €,6 € (0,1/2) and
for any distribution D € Dy, if L is given access to EX(c, D) and inputs € and
0, then with probability at least 1 — 4, after seeing a sample S of [m(1/e,1/§)]
exzamples, L outputs a concept ¢ € C satisfying Pryplc (z) # c(x)] < e

One criticism of the PAC model is the unrealistic assumption that the oracle
always provides examples according to the true underlying distribution D and
the true target concept c. Often in practice information sources are susceptible
to noise. Several kinds of noise were proposed to remedy this problem. In our
research we focus on class noise, i.e., we assume in the examples returned by
the noisy oracle, the instances x given to the learner are drawn with respect to
D but with some probability 7 the labels may sometimes be flipped from c(x)
to 1 — ¢(x). n is called the noise rate and can vary with the instance, target
concept and distribution. Previously studied class noise models were proven not
to restrict PAC-learnability. Every PAC-learnable class is also PAC-learnable
under a random classification noise oracle [1], a malicious classification noise
oracle [14], or a CPCN oracle [13], as long as the noise rates are less than 1/2.

3 A general framework for modeling class noise

Random classification noise and malicious classification noise involve noise rates
that do not depend on the sampled instance x or on the target concept. In prac-
tice, this is unrealistic, since one might expect examples closer to the decision
boundary to be more susceptible to noise than examples farther away [4]. For ex-
ample, in optical character recognition, training examples for a certain character
are more likely to be mislabeled the more similar they are to another character.
The CPCN model addresses this issue, but does not allow for a smooth transition
between noise rates when traversing the instance space. Moreover, the CPCN
model does not allow the noise to depend on the distribution.

4 Run-time efficiency issues are out of the scope of this paper. Further, note that
Definition 1 is only sensible under mild measurability conditions.



One approach could be to introduce new noise models and compare them to
existing ones. However, learnability results would then concern only the partic-
ular chosen noise models and might not provide much insight into what makes
learning under noise difficult in general. Therefore, we abstract from specific
noise models and introduce a framework that (i) captures most of the class
noise models studied in the literature (Section 3.1), (ii) allows us to formalize
new class noise models (Section 3.2), and (%) allows us to study general prop-
erties of noise models that are sufficient or necessary for learnability (Section 4).

3.1 Class noise models

Class noise can be considered as a procedure that converts a concept to a prob-
abilistic concept, because the correct label of an instance may be flipped.

Definition 2. A (class) noise model is a mapping @ : 2% x Dy x X — [0,1].

Thus, noise can depend on the sampled instance z, the target concept ¢, and
the distribution D. For every ¢ and D, each instance x has a defined noise rate
Ne,p (), 4.e., a probability with which its label is flipped, namely 7. p(z) =
|c(z) — P(c, D, x)|. For example, random classification noise [1] can be defined by
&(c,D,x) =1—n, if ¢(z) =1, and D(c, D,z) =, if ¢(x) = 0 where n € [0,1/2)
is the noise rate. As another example, CPCN [6] can be defined as follows. If
n=,...,n) €[0,1/2)% and 7 = (m1,...,m) C (X x {0,1})* is a k-tuple of
pairwise disjoint sets such that 71 U---Um, = X x {0, 1}, then, for (z, c(z)) € m,
D(c,D,z) =1—mn;, if c(x) =1, and &(c, D, z) = n;, if ¢(x) = 0.5

Sampling according to ¢ and D (via EX(¢, D)), followed by applying the noise
model @, is defined as sampling from the noisy concept ®(c, D,-). We then say
that a class C is learnable w.r.t. @ if C is PAC-learnable as in Definition 1, where
the oracle EX(c, D) is replaced by sampling from the noisy concept &(c, D, -).

PAC-learning is distribution-free, i.e., it requires the learner to be successful
for any combination of target concept and underlying distribution. In the pres-
ence of noise, distribution-free learning may be difficult, and even impossible
for many simple classes (see Proposition 1). Therefore, we sometimes restrict
the class of distributions when dealing with noise. For any D C Dy, we say C
is learnable w.r.t. @ and D, if we require the learner to be successful only for
distributions in D, not for any distribution in Dy.

In our model, the learner is required to produce a concept that is similar to
the target concept before it is corrupted by noise. This is a different task than
agnostic learning [11], which requires the learner to find a concept that best

® Malicious classification noise [14] cannot be modeled by Definition 2. This can be
easily fixed by using a mapping @ : 2% x Dx x X — 2001 t6 a set of values between
0 and 1. This generalization allows defining malicious noise in which the adversary
has the option of picking the value of @ from a subset of [0, 1] that depends on the
instance, the target concept and the distribution. Due to space constraints, we do
not discuss such models any further. However, even this generalization cannot model
noise that depends on the sequence of examples itself, e.g., [5,9].



approximates the probabilistic (noisy) concept observed. An extra difficulty of
our task arises from the fact that the noise process may generate two similar
probabilistic concepts from two dissimilar concepts. In fact, unlike in the agnostic
case, a necessary condition for PAC-learnability with any arbitrary error is that
the noise model @ does not “make two distinct concepts equal.”

Lemma 1. Let @ be a noise model. Let C be a concept class, ¢, ¢’ € C with ¢ # ¢
and D C Dy. If there is some D € D such that (¢, D,x) = (', D,x) for all
x € supp(D), then the learner cannot distinguish between ¢ and ¢’ regardless of
the number of examples it receives.

An immediate consequence of Lemma 1 is that it implies a lower error bound of
Pryple(z) # ¢/ (x)]/2 for learning C w.r.t. & and D.

3.2 Defining new noise models

To illustrate the flexibility of our definition of noise, we introduce examples of
noise models in which the noise rate depends on the target concept, the instance,
and sometimes on the distribution. The first noise model was suggested by Shai
Ben-David (personal communication) and is based on the idea that noise is often
more likely when an instance lies close to the decision boundary.

In this model, the noise rate for an example (x, ¢(x)) is given by the proba-
bility of an instance in the vicinity of  being labeled by 1 — ¢(x), where ¢ is the
target concept. In other words, the probability of x being labeled 1 by the oracle
equals the probability mass of the set of positively labeled instances in a ball
around z, relative to the mass of the whole ball around x. There are different
ways of defining the ball around an instance, e.g., the distance ball around x is
defined as DB,(z) = {2’ € &' | dist(z, ') < p} for some metric dist.

Definition 3. Let p > 0. The p-distance random classification noise model,
@) s defined by

&) (¢, D,x) = Pryple(z’) =1| 2’ € DB,(z)],
for z € supp(D). 3P (¢, D, x2) = 0 for = ¢ supp(D).

To gain some intuition about this new noise model, we show that the class
of linear separators in R is learnable with respect to #3(?)| where the metric in
the definition of the distance ball is the Euclidean distance.

Theorem 1. Let X = R and p > 0. Let C be the class of linear separators in
R. C is learnable w.r.t. ),

Theorem 1 is proven by showing that the noisy concepts ¢4 are all non-
decreasing functions, i.e., the probability of the label for x being 1 never de-
creases as r increases. Such probabilistic concepts can be approximated, with
high probability, in a sample-efficient way [10], which helps to reconstruct the
target concept approximately.



The second noise model follows a similar idea about the origin of noise but
uses a different definition for the ball around an instance. The weight ball,
WB, (z), around an instance x is the largest distance ball that has the mass
of at most w with respect to the distribution i.e., WB,(x) = DB, where
p=sup {p' | Pry~plz’ € DB, (z)] < w}.

Definition 4. Let w € [0,1]. The w-weight random classification noise model,
V(@) s defined by

") (¢, D, ) = Pryple(z’) = 1|2’ € WB,(x)],
for @ € supp(D). V@) (¢, D,z) = 0 for x ¢ supp(D).

The idea behind the weight ball is that the expertise of the expert labeling the
examples is built based on the same distribution with respect to which learning
takes place. If z is close to the decision boundary, but in a dense area, the expert
has more experience in the area around x and is thus less likely to make mistakes
than in the case where the area around x is sparse.

In general, the new noise models introduced in this section are restrictive.
The proof is based on Lemma 1 and is omitted due to space constraints.

Proposition 1. For any of the noise models @ introduced in Section 3.2, there
exists a concept class C of finite VC-dimension that is not learnable w.r.t. ®.

The criteria for distribution-free learning seem too restrictive though for real-
istic settings; for example, often the distribution depends on the target concept.
Thus, in cases where distribution-free learning is not possible, we have to ask
ourselves whether the unrealistic requirements concerning unrestricted distribu-
tions are the actual reason for the negative learnability result.

One idea for limiting the distributions was recently proposed [2]. Recall that
f: X — Ris Lipschitz if | f(z) — f(2')] < ~.dist(z,2’) for all z,2" € X, given a
fixed v > 0 and some metric dist. If f is a concept, the Lipschitz condition would
make f constant. Relaxing the definition by requiring the Lipschitz condition to
hold with some high probability, we can model situations in which no clear
margin between instances with different labels around the boundary exists.

Definition 5. [2] Let ¢ : R — [0,1]. A function f: X — R is 1p-Lipschitz with
respect to a distribution D if for all v > 0

Prop[3 o' |f(z) = f(&)] > . dist(z, 2)] < (7).

This gives us positive learnability results for classes that are not learnable
if we do not limit the distributions, if we don’t require that an arbitrarily low
error can be achieved.

Theorem 2. Let X = R" for somen € N and p > 0 (w € [0,1]). Let C be the
class of linear separators in R™. Let D C Dy such that for allc € C and D € D,
¢ is -Lipschitz with respect to D. Then for ally > 0, C is learnable w.r.t. $I*(P)
(@) ) and D, with a lower bound of ¥(v) on the error bound.



3.3 Noise rates different from 1/2

The positive results on learning in the classical noise models discussed above
(random classification noise, CPCN, malicious classification noise) assume that
the noise rate for any instance is always less than 1/2 unless the noise rates for
all the instances are always greater than 1/2. (The latter case can be reduced
to the former by flipping all the labels.)

The models introduced in Section 3.2 typically do not have this property.
Noise rates can be greater than 1/2 for some instance x and less than 1/2 for
another instance z’, given the same distribution and target concept, or they can
be greater than 1/2 for some instance x given a particular distribution D, and
less than 1/2 for z under some other distribution D’ # D. However, for finite
instance spaces, learning under such noise models is still possible, namely if only
the instance determines whether the noise rate is above or below 1/2.

Theorem 3. Let X be finite. Let C be a concept class over X and ® a noise
model such that ne,p(x) #1/2 for allc € C, D € Dy, and x € X. If [n.,p(x) >
1/2 <= ne.p(x) >1/2] forallc,d € C, D,D’ € Dy, and x € X, then C is
learnable w.r.t. ®.

The idea behind the proof is that the probabilistic concepts generated by the
noise model can be learned by repeatedly sampling a set of instances that contain
an arbitrarily large portion of the distribution mass. The assumption that the
noise rates are not equal to 1/2 can be relaxed (at the cost of error values no
longer approaching zero) if we assume the weight of the area with noise rate
close to 1/2 is bounded (e.g., by applying Tsybakov’s noise condition [15]).

4 Minimum disagreement strategies

ERM [17] refers to learning algorithms that pick a concept ¢’ € C that minimizes
the number of examples in the given sample S = {(z1,41),. ., (Tm, ym)} that are
labeled differently than ¢’ would label them. In the absence of noise, y; = ¢(x;)
where c is the target concept. This means ERM picks a ¢ € C that minimizes
the empirical error, 1/m> " |y; — ¢/ (;)|. When the sample size grows, this
corresponds to minimizing errp(c’,¢) = Pryplc'(x) # c(z)], i.e., the expected
error of ¢/, which is supposed to be kept small in PAC-learning. We call a learning
algorithm that uses the ERM principle a minimum disagreement strategy. When
cand D are clear from the context, we use err(¢’) instead of errp (¢, ¢) for brevity.

If C is infinite, it is in general impossible to compute a minimum disagreement
strategy. Then an approximation strategy typically reduces C to a finite set
C’ C C such that, for any target concept ¢ € C, at least one concept ¢’ € C’ differs
from ¢ by at most €, and then applies the minimum disagreement strategy over
C’'. If the target concept is the unique minimizer of the empirical error, every
such approximation strategy is called a minimum disagreement strategy as well.
This is used implicitly in the proofs of Theorems 4 and 6.

Given noise, a minimum disagreement strategy (with growing sample size)
minimizes the difference between the concept ¢’ and the noisy (probabilistic)



concept @(c, D, x) resulting from the target ¢ when applying the underlying
noise model @, i.e., errp(c,P(c, D,.)) = E[|/(x) — &(¢, D, x)|]. When ¢ and D
are clear from the context, we use err(c’, @) instead of errp(c’, ®(c, D, .)).

Minimum disagreement strategies, in the noise-free PAC case, are always suc-
cessful for classes of finite VC-dimension [3]. This result carries over to learning
from random classification noise [1]. The latter means that finding a concept
with low error is accomplished by finding a concept that looks most similar to
the noisy version of the target concept i.e., the minimizer of err(c, @). Obviously,
this is not possible in general (see Proposition 2). But if the noise model fulfills
some advantageous properties, minimum disagreement strategies still work.

In the following subsection, we analyze properties of class noise models un-
der which minimum disagreement strategies are successful. Since a minimum
disagreement strategy in the presence of noise returns the same concept as an
agnostic learner, these are properties under which the concept returned by an
agnostic learner satisfies the learning criteria in our framework.

4.1 Disagreement between concepts and noisy samples

One desirable property of a noise model is that it won’t let two concepts ¢, ¢’ € C
appear almost “equally similar” to the noisy version of the target concept, if ¢
is “much more similar” to the target concept than ¢’ is.

Definition 6. Let C be a concept class, D C Dx a class of distributions and ©
a noise model. @ is distinctive with respect to C and D if there exist polynomial
functions f:(0,1/2) — (0,1/2) and g : (0,1/2) — (0,1) such that for any target
concept ¢ € C, for any ,e€ C, D €D and e € (0,1/2)

err() < f(e) Aerr(¢) > € = err(¢, ) — err(c', @) > g(e).

An example of a distinctive noise model is random classification noise for any
noise rate n < 1/2: Note that, in this model, err(¢/,®) = n + (1 — 2n) err(c)
for all ¢ € C [1]. Then f(e) = ¢/2 and g(e) = €(1 — 2n)/2 yield, as soon as
err(¢) < f(e) and err(¢) > e, that err(¢,®) — err(¢/,®) = (1 — 2n)(err(c) —
err(¢')) > e(1 - 20)/2 = g(e).

Distinctiveness guarantees learnability of classes of finite VC-dimension (of
course, sample bounds are higher in the noisy setting).

Theorem 4. Let C be a concept class of finite VC-dimension d and @ a noise
model. If & is distinctive with respect to C and Dy then C is learnable w.r.t. @
using a minimum disagreement strateqy.

Proof. A minimum disagreement strategy, £, can learn any concept class of
finite VC-dimension in the agnostic setting when the examples are drawn from
any joint distribution over X' x {0,1} [8]. Fix the target concept ¢, D, and
d,e € (0,1/2). Let m(g(e)/2,,d) and ¢ be the sample complexity and concept
returned by L resp., when the examples are drawn from &. By the definition of
agnostic learning, err(¢’, @) < mingec err(¢, @)+ g(e)/2 with probability > 1—4.



By distinctiveness, {c¢} = arg min,c, err(¢,®). Thus, err(c/,?) < err(c,?) +
g(€)/2. Hence, err(¢’) < e because otherwise err(¢’,®) > err(c,®) + g(e), due
to distinctiveness. Therefore, learning in the presence of noise is equivalent to
agnostic learning under the assumptions of Theorem 4. a

If both the concept class and the collection of distributions are finite, a weaker
property can be proven to be sufficient for learning. It simply requires the target
concept to always be the unique minimizer of err(¢’, @), among all ¢/ € C. This
property is necessary for learning with minimum disagreement strategies, since
otherwise, for small enough €, picking the minimizer of the disagreement could
result in choosing a concept whose error is larger than e, with high probability.

Definition 7. Let C be a concept class, D C Dy, and ¢ a noise model. @ is
monotonic with respect to C and D if for any target concept c € C, for any D € D
and for any ¢ € C: err(d') > 0 = err(d,P) > err(c, D).

Monotonicity is implied by distinctiveness, since g(e) > 0 for all € in the
definition of distinctiveness. The sufficiency result mentioned above can be for-
mulated as follows. The proof is omitted due to space constraints.

Theorem 5. Let C be a finite concept class, D C Dy finite, and ¢ a noise
model. C is learnable w.r.t. @ and D using a minimum disagreement strategy iff
@ is monotonic w.r.t. C and D.

For random classification noise, minimum disagreement strategies are uni-
versal, i.e., they are successful for every concept class that is PAC-learnable by
any other learning algorithm [1]. This is not true for all noise models as stated
in Proposition 2. (This result is due to [1], but we give our own proof).

Proposition 2. There exists a concept class C, a distribution D, and a noise
model @ such that C is learnable w.r.t. @ and {D}, but no minimum disagreement
strategy can learn C w.r.t. & and {D}.

Proof. Let X = {x1,22}, C = {c1,¢2,c3} where ¢; = {z1,22}, ca = {z2},
and ¢3 = {z1}. Let D € Dy be defined by Pry.plz = z1] = 0.25 and
Pry.plx = x2] = 0.75. Let ¢ be a noise model with &(c, D, x1) = |e(x1) — 0.75|
and @(c, D, x2) = |c(x2)—0.25] for any ¢ € C and suppose ¢z is the target concept.
Then @(co, D, 1) = P(co, D, 22) = 0.75, err(cy) = 0.25, err(c3) = 1, err(cy, @) =
0.25, err(ce, @) = 0.375, and err(cs, P) = 0.625. Since cp ¢ arg min,cc err(c, P)
(err(cy, @) = 0.25 while err(ce, ) = 0.375), ¢ is not monotonic with respect to C
and {D} (& is not distinctive with respect to C and {D} either.) By Theorem 5,
no minimum disagreement strategy can PAC-learn C w.r.t. & and {D}. a

This proof relies on the noise rates exceeding 1/2, which might well happen
in realistic noise models. The noise models defined in Section 3.2 can also yield
noise rates greater than 1/2 on parts of the instance space. So far, for noise
rates exceeding 1/2, we only dealt with strategies for special cases on finite X
(Theorem 3). The following subsection deals with general strategies for learning
under noise in cases where minimum disagreement strategies might fail.



4.2 Disagreement between noisy concepts and noisy samples

Minimum disagreement strategies return a concept ¢’ that minimizes the dis-
agreement with the sample. Thus they ideally minimize err(c¢/, ), i.e., the dif-
ference between ¢’ and the noisy target concept. However, our goal is to return a
concept that minimizes E[|P(c/, D, x) — ®(c, D, x)|], i.e., whose noisy version is
similar to the noisy target concept. When the target concept and the distribution
are clear from the context, with a slight abuse of notation, we use err(®(c’), ®)
to denote E[|®(c', D,z) — ®(c, D, z)]].6

Note that the target concept, ¢, always minimizes err(®(c’),®) among all
¢ € C, since err(P(c),P) = E[|®(¢c, D, z) — P(¢, D, x)|] = 0. This is not the case
for err(c’, @) (see the proof of Proposition 2).

A natural strategy for minimizing err(®(c’), ) is to pick a concept whose
noisy version agrees best with the sample drawn from the noisy target concept.

Definition 8. Let C be a concept class, c € C the target concept, D € Dy, and
@ a noise model. Let S = {(x1,y1),--, (Tm,ym)} be a sample of size m drawn
from the noisy concept ®(c, D,-). For any ¢’ € C, err(d',P,8S) is defined by

#1(x;,S)

@(6/7 D,l’l) — m

err(®(c),®,5) = %Z
i=1

where for all x € X, #%(x,S) = {j € {1,....,m} | o = z; ANy; = 1}| and
#(x,S)={je{l,.... m}|z=x;}.

The term #7(z;,8)/#(x;,S) approximates @(c, D, ;) for the target concept c.
As sample size grows, #1 (z;,S)/#(x;,S) = ®(c, D, x;) and err(P(¢), P, S) —
err(P(c'), P). Unfortunately, to compute err(P(c'), &, S) for some ¢’, the learning
algorithm would have to know &(¢’, D, x)—a probabilistic concept that depends
on the unknown distribution D. The best we could hope for is that &(¢/, D, x)
can be approximated using knowledge about D obtained from sampling.

Definition 9. For any sample S={(x1,y1),. -, (Tm,ym)} of size m a distribu-
tion D(S) is defined by Pry.ps)lz’ = 2] = #(x,8) - = for all x € X, where
#(x,S)={je{l,....m} |z =z}

Replacing D by D(S) in Definition 8 allows us to approximate err(®(c’), @, S).

Definition 10. Let C be a concept class, ¢ € C the target concept, D € Dy,
and ¢ a noise model. Let S = {(z1,y1)s-- -, (Tm,ym)} be a sample of size m
drawn from the noisy concept ®(c,D,-). For any ¢’ € C, err(®(),P,S) can be
estimated as follows (with #%(x;,8) and #(z;,S) as in Definition 8).

#Jr (xiv S)

@(cl,D(S),Zl)* #(.ﬁz 8)

TP, .8) = Y
i=1

5 This quantity was first introduced as variational distance [10].



We call any algorithm that returns a concept minimizing érr(®(c’), @, S) a noisy
minimum disagreement strategy. In essence, it is a form of maximum likelihood
process. Since érr(P(c’), P, S) approximates err(P(c¢’), @, S) (which itself approx-
imates err(@(¢’), ?)), a noisy minimum disagreement strategy is expected to be
successful only if the err(®(c'),®, S) provides a good estimate of err(®(c), D).

Definition 11. & is smooth with respect to concept class C and a class of distri-
butions D iff there is a function M : (0,1/2) x (0,1/2) — N such that (1) M (e, J)
is polynomial in 1/e and 1/§, for €,6 € (0,1/2); and (2) For all €,6 € (0,1/2),
for all target concepts ¢ € C and for all D € D: if S is a sample of at least
M(e,d) examples drawn from the noisy oracle then, with probability of at least

1—4, for all ¢ € C we obtain |err(P(c),P) — ert(P(c), P, S)| < e.

Distinctiveness and monotonicity can be generalized to the new setting by
replacing err(c, @) with err(®(c), ®), resulting in noise-distinctiveness and noise-
monotonicity, resp. It is not hard to show that random classification noise is both
noise-distinctive (with f(e) = ¢/2 and g(e) = €(1 — 21)/2) and noise-monotonic.

Sufficiency of noise-distinctiveness for learning of classes of finite VC-dimen-
sion is guaranteed if the smoothness property is fulfilled.

Theorem 6. Let C be a concept class of finite VC-dimension d and @ a noise
model. If @ is both noise-distinctive and smooth with respect to C and Dy then
C is learnable w.r.t. @ using a noisy minimum disagreement strateqgy.

Proof. Let f and g witness the noise-distinctiveness of @ w.r.t. C and D, and let
€,0 € (0,1/2). We show that the noisy minimum disagreement strategy, with a
sample S of at least m = max(m1, ma, ms) examples, learns C w.r.t. ¢, where

"“‘[ (f(e)l(é)’f(e)l(f(e))ﬂ’ 2 [M(z’zxﬂ’ s {

IU(M)-‘ )

8
g9(e)? s
m, examples suffice to find a set Cy of N < m;?+1 concepts in C among which
at least one has an error < f(€) with probability > 1 — % [12]. We show that the
noisy minimum disagreement strategy will return one of these N concepts.
Since @ is smooth for C and Dy, ms examples are sufficient to satisfy Defini-
tion 11 with € and § replaced by g(€)/2 and 1 — 6/4, resp. Finally, ms examples
are sufficient for a noisy minimum disagreement strategy to select a concept in
Cn that has an error < e with probability > 1—§/2 (cf. proof of Theorem 4). O

In parallel to Theorem 5, it is not hard to show that noise-monotonicity is
necessary for learning a finite concept class using a noisy minimum disagreement
strategy when the class of distributions is finite.

Finally, we show that noisy minimum disagreement strategies are a proper
generalization of minimum disagreement strategies.

Proposition 3. There is a concept class C over a finite input space X and a
noise model @ such that C is learnable w.r.t. @ using a noisy minimum disagree-
ment strategy, but no minimum disagreement strategy learns C w.r.t. ®.

Proof. Let C and @ be as in the proof of Proposition 2. Since |X| = 2, each
D € Dy is uniquely identified by the probability p with which z; is sampled. It



is then easy to prove that @ is smooth and that f(¢) = € and g(e) = €/2 witness
noise-distinctiveness of @ w.r.t. C and Dy. Theorem 6 then proves the claim. O

5 Conclusions

A high-level study of noise models, as our definition allows, gives insights into
conditions under which learning under noise in general can be guaranteed. We
hope that our formal framework and the insights gained from it will inspire the
definition of new, potentially more realistic noise models and classes of distribu-
tions under which sample-efficient learning is possible.
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