
Improved Query Suggestion by Query Search

Xiaomin Zhang1, Sandra Zilles2, and Robert C. Holte3

1 Amazon.com, xiaominz@amazon.com
2 University of Regina, zilles@cs.uregina.ca
3 University of Alberta, holte@cs.ualberta.ca

Abstract. At the Web Intelligence conference in 2009, Jiang, Zilles, and Holte
introduced a novel approach to query suggestion based on query search (QSQS),
as well as a system-centered evaluation method. For each potentially relevant doc-
ument, QSQS creates a complex query—called a lexical alias for the document—
that ranks the document in its top 20. A technique called Query Search then builds
query suggestions by simplifying the lexical alias.
The present paper improves the state of the art by proposing two new query
suggestion systems, IQSQS and GQSQS. Both replace the generation of lexical
aliases by a simpler and more effective term selection process. They differ in their
control structure: IQSQS builds query suggestions separately for each potentially
relevant document, GQSQS builds them for a set of documents at once.
Both our new systems substantially outperform QSQS in the measures introduced
by Jiang et al. to evaluate QSQS; we achieve improvements of up to 30 percent in
these measures for short user queries and up to 100 percent for long user queries.
We show empirically that query expansion, which forces the user’s query to be
included in each suggested query, is significantly superior to allowing the system
the freedom to include or exclude terms from the user’s query at its discretion.

1 Introduction

It is well known that users of search engines such as Google are unlikely to view docu-
ments beyond the top 20 returned by a query [15, 6, 5]. A query is therefore only effec-
tive in satisfying a user’s information needs if relevant documents are returned in its top
20. If a user’s initial query is not effective, it is necessary to issue subsequent queries
until an effective one is found. Query suggestion systems assist the user in this process
by suggesting a small number of alternative queries that are likely to be effective.

In this paper we follow the approach to query suggestion pioneered by Jiang et
al. [9, 7] and present two query suggestion systems, called IQSQS and GQSQS, that
are substantially superior to Jiang et al.’s system according to their own evaluation mea-
sures (called MCC and MEC) and methodology. These systems are our paper’s main
contributions. An additional contribution is strong experimental evidence that query
suggestion systems aiming to score well according to MCC and MEC should do query
“expansion”, i.e., they should add terms to the user’s query rather than creating queries
that do not contain the user’s query.



2 Query Suggestion by Query Search (QSQS)

Following Jiang et al., we say that a query “covers” a document if the document is
among the top 20 documents returned by the search engine when the query is issued.
Jiang et al.’s approach to query suggestion is based on their observation [8] that the
probability of a document being relevant to the user’s initial query is inversely propor-
tional to the rank of the document in the initial query’s results list. A query suggestion
that covers documents that the initial query ranks high (but not in its top 20, since the
user has already seen and rejected those) is therefore more likely to be effective than
a query suggestion that covers documents that the initial query ranks low. They called
the documents returned in positions 21–120 by the initial query “reference documents”
and designed their query suggestion system to find queries that cover these documents.

2.1 Objective and Evaluation

Jiang et al. [9] evaluated a set of query suggestions by the number of reference docu-
ments the set covers, either collectively (“MCC”) or on average individually (“MEC”).4

For example, if the set of query suggestions contains 10 queries that collectively
cover a total of 75 reference documents, MCC for this set of suggestions would be 75.
If each of the suggested queries, considered individually, covered 8 reference docu-
ments, MEC would be 8.0. In general, MCC can be no larger than 100, the number of
reference documents. The maximum possible value for MEC is 20, the largest number
of reference documents a single query can potentially cover. For a given MEC value,
the maximum possible value for MCC when 10 queries are suggested is 10*MEC. This
happens only if no reference document is covered by two different suggested queries.
The difference between MCC and this maximum value is an indication of the overlap
in the set of reference documents covered by different suggested queries. In the ex-
treme case, when exactly the same set of reference documents is covered by each of the
suggested queries, MCC will equal MEC.

MCC and MEC relate to the standard Recall measure in the following way. Recall is
the ratio of the number of retrieved relevant documents over the number of all relevant
documents. In our context, all and only the reference documents are considered relevant.
Since their number is always 100, it can be ignored. Retrieving a document by a query
in our context means covering it, i.e., returning it among the top 20 results. Hence MCC
measures the collective Recall of the set of query suggestions a system returns, whereas
MEC measures the expected Recall of a single query suggestion, averaged over all
query suggestions returned for one initial query.

In a similar way, it would be possible to compute Precision values for Jiang et al.’s
system and our new systems. High Precision values are not what we strive for though,
for the following reason. Achieving high Precision means that the query suggestions
made by the system cover as few non-reference documents as possible. As opposed to
that, one of our declared goals is to have a substantial number of non-reference docu-
ments among the results covered by a query suggestion, in order to allow for a more

4 This is the simpler pair of measures Jiang et al. proposed. The other measures take into account
the exact ranks of the reference documents covered. “MCC” is an abbreviation for “Measure
of Cumulative Coverage”, “MEC” means “Measure of Expected Coverage”.



diverse set of documents to be displayed to the user and to take into account the fact
that the assumption that only the reference documents are relevant is not realistic. We
hence restrict the evaluation of our systems to the MCC and MEC measures.

The aim of the system developed by Jiang et al. [9], which we call Query Suggestion
by Query Search (QSQS), is to find a set of 10 suggested queries that maximizes MCC
and, as a secondary criterion, also maximizes MEC.

2.2 The QSQS System Architecture

The design of the QSQS system closely follows the design of Martin and Holte’s system
for finding content-based addresses for web documents [12] and makes heavy use of
their “Query Search” method. Query Search is a generic method for finding a query
that covers a document by forming queries from various subsets of a given set of search
terms and testing if the document is covered by issuing those queries to the search
engine and examining their top 20 results.

Pseudocode describing the key steps in the QSQS system is given in Algorithm 1.
The first processing stage (lines 1 to 4), called “Lexical Alias Search”, constructs, for
each reference document, a query, called the document’s lexical alias, that covers the
document. The second processing stage (lines 5 to 10), called “Query Suggestion Can-
didate Search”, uses the lexical aliases to construct a set of queries from which the final
query suggestions will be drawn. The third processing stage (lines 11 to 16) uses a
greedy method to select the final set of K queries to suggest to the user.

Algorithm 1 Query Suggestion by Query Search (QSQS)
Input: a set RefDocs of reference documents and a number K
Output: a set QS containing K query suggestions
1: // Lexical Alias Search
2: for all d ∈ RefDocs do
3: use Query Search to find a lexical alias for d, LAd, based on d’s title terms and most

frequent terms
4: end for
5: // Query Suggestion Candidate Search
6: initialize QSC, the set of query suggestion candidates, to be empty.
7: for all d ∈ RefDocs do
8: use Query Search to find the set, QSCd, of minimal subqueries of LAd that cover d
9: QSC = QSC ∪QSCd

10: end for
11: // Greedy Selection of final Query Suggestions
12: initialize QS to be empty.
13: for i = 1 to K do
14: add to QS the query qs ∈ QSC that most increases MCC (break ties to maximally

increase MEC)
15: remove qs from QSC
16: end for
17: return QS



3 Improvements to QSQS

In this section we describe a system, IQSQS, that follows the same general pattern of
processing as QSQS. The key difference is that lexical aliases are not used in IQSQS.
The primary role of lexical aliases in QSQS is to supply a sequence of search terms
that will be combined in various ways to create candidate query suggestions. Instead of
finding a lexical alias for each document d, ISQS constructs an ordered set of search
terms drawn from document d. These are chosen and ordered based on their ability to
cover any of the reference documents, not just the document from which they are drawn.
By focusing, from the outset, on overall coverage rather than the coverage of a single
document, it is hoped that the set of candidate queries constructed from these terms will
be much better than the candidate queries constructed from the lexical aliases.

Algorithm 2 Improved Query Selection by Query Search (IQSQS)
Input: the user’s query, Q0, the set RefDocs of reference documents for Q0, a number N ≤ 20,

and a number K
Output: a set QS containing K query suggestions
1: // Term Selection
2: for all d ∈ RefDocs do
3: quickly find a set, Fd, of up to 20 terms in d that are likely to be useful in constructing

queries with high coverage
4: score each term in Fd according to its coverage when combined with Q0 to form a query
5: sort Fd (highest scoring term first) and delete all but the first N terms
6: end for
7: // Query Suggestion Candidate Generation
8: initialize QSC, the set of query suggestion candidates, to be empty.
9: for all d ∈ RefDocs do

10: generate a set, QSCd, of queries built from terms in Fd

11: QSC = QSC ∪QSCd

12: end for
13: // Greedy Selection of final Query Suggestions
14: initialize QS to be empty.
15: for i = 1 to K do
16: add to QS the query qs ∈ QSC that most increases MCC (break ties to maximally

increase MEC)
17: remove qs from QSC
18: end for
19: return QS

Pseudocode for IQSQS is shown in Algorithm 2. The first processing stage (lines 1
to 6), “Term Selection”, replaces the “Lexical Alias Search” stage in QSQS. The second
processing stage (lines 7 to 12) serves exactly the same purpose as the “Query Sugges-
tion Candidate Search” and is similar in many of its details. The third processing stage
(lines 13 to 18) is identical to QSQS’s. We will now describe the first two stages of
IQSQS in detail.



3.1 Term Selection

For each reference document d, the Term Selection stage has two steps: pre-selection
(line 3 in Algorithm 2) and final selection (lines 4 and 5).

The input to the pre-selection step is the entire set of terms in the reference docu-
ment, which may number in the thousands. Pre-selection reduces this number to around
20, a manageable number for the somewhat expensive scoring function used in the fi-
nal selection step. Most term selection methods can be applied here, we examined two.
The “Frequency” method selects the 20 terms that occur most frequently in the docu-
ment; the “Snippet” method uses the terms in the fragment of text extracted from the
document that Google returns to indicate the connection between the document and the
user’s initial query. An experimental comparison (not reported here, see [22] for details)
showed that IQSQS’s MCC and MEC scores with either of these methods were virtually
the same. In the remainder of our experiments we used snippets for term pre-selection.

The final selection of terms involves scoring each term t individually by appending
it to the user’s initial query Q0 and issuing the resulting query, which we will refer to as
“Q0 + t”, to the Google API so that its coverage can be assessed. Our coverage score
takes into account two factors, OC (Overall Coverage score) and LA (Lexical Alias
score). For term t in the set Fd of terms for document d, the OC score is the number of
reference documents that Q0 + t covers, and the LA score is 1 if Q0 + t covers d and 0
otherwise. These two scores are multiplied by weights and summed up to get the term’s
final score. In our experiments the weight for LA was three times the weight for OC.

3.2 Query Suggestion Candidate Generation

For each reference document, a small set of terms have now been selected and ordered
according to the OC and LA scores. The next processing stage creates queries from
these terms that will be the candidates for suggesting to the user. A set of candidates is
created for each reference document using the selected terms for that document.

Although there are only a small number of terms to consider at a time, the number
of possible queries that can be created from even as small a number of terms as 10 is
astronomical. Every different subset is a different query, as is every different ordering
of the terms. As we will see below, repeating a term in a query changes the results
returned in the top 20 and therefore provides yet another way of defining queries from
terms. Terms could also be combined into phrases (a sequence of terms surrounded
by double quotes), or adorned with special directives (such as “+”), and so on. It is
certainly possible to generate queries using the full range of options available, but in
IQSQS, like QSQS, we have taken a very simple approach, only generating queries
by taking subsets of the terms that have been selected for each reference document. In
addition, we severely restrict the size of these subsets. The order of the terms in a query
is always the order in which they occur in Fd.

We considered two ways of generating candidate queries from a given set Fd of
terms. The first, AC, sets N , the number of selected terms, to 10, and generates all sub-
sets (with no repetitions) of sizes 1 to 3, thus generating 820 (10+10*9+10*9*8) query
suggestion candidates per reference document. The second method, BS, uses beam
search to enable N to be larger; all pre-selected terms are considered instead of just 10.



MCC MEC
AC 56.66 7.26
BS 53.90 6.69

Q0AC 70.88 8.99
Q0BS 70.82 9.15

Table 1. Comparison of Query Suggestion Candidate Generation methods on short user queries.

BS first ranks all the pre-selected terms by their OC scores, using each individually as
a length 1 query. Then, all length 2 queries that can be created by expanding one of the
B top-scoring length 1 queries are ranked with respect to their OC score. B is called
the “beam width”; it was 15 in our experiments. Finally, BS generates all the length 3
queries that can be created by expanding one of the B top-scoring length 2 queries. All
queries of lengths 1–3 thus generated are considered as query suggestion candidates.

We are interested in whether there is any benefit for query suggestions to include
the user’s initial query Q0 as part of the query suggestion; we therefore considered
variations of AC and BS called Q0AC and Q0BS. The query suggestion candidates
for Q0AC are computed by taking each query suggestion candidate created by AC and
appending it to Q0. For Q0BS the beam search generates potential query suggestions
exactly as described above but it evaluates a query q via the OC score of Q0 + q.

3.3 Experiment Comparing AC, BS, Q0AC and Q0BS

We compare the MCC and MEC scores of the query suggestions produced by AC, BS,
Q0AC and Q0BS on 50 short user queries (length 2 or less) drawn at random from the
250 short queries used in Jiang et al.’s experiments [9, 7]. The average MCC and MEC
scores over the 50 queries are shown in Table 1.

The most obvious conclusion from Table 1 is that including Q0 in a query sugges-
tion is of enormous benefit, increasing both MCC and MEC by approximately 25%
regardless of whether AC or BS is used to generate query suggestion candidates. In
all our results, the statistical significance of the difference in the scores (MCC or MEC)
of two systems was determined using a sign test. Each of the 50 queries used in an ex-
periment was considered an independent Bernoulli trial, with the null hypothesis being
that it was equally likely, in any given trial, for either system to outperform the other. A
difference was considered significant if the p-value computed in this way was less than
0.01 (p = the probability of the observed difference occurring by chance). The scores
(MCC or MEC) of the system (AC or BS) with Q0 used in the query are significantly
better than the scores of the same system without Q0 used in the query.

The difference in scores (MCC or MEC) between the system using AC and the sys-
tem using BS are fairly small but statistically significant; AC outperforms BS on both
measures. The MCC and MEC differences between Q0AC and Q0BS are not statisti-
cally significant. As a final comparison we ran these two systems on 50 long user queries
(length 3 or more) drawn at random from the 250 long queries used in Jiang et al.’s ex-
periments [9, 7]; the average MCC and MEC scores are shown in Table 2. The MCC and
MEC differences between the two methods are statistically significant (p < 0.001). We



MCC MEC
Q0AC 73.83 9.70
Q0BS 78.05 10.66

Table 2. Comparison of Q0AC and Q0BS on long queries.

conclude that Q0BS is the best of the Query Suggestion Candidate Generation methods
we explored and use it in subsequent experiments involving IQSQS.

4 Greedy Query Suggestion by Query Search (GQSQS)

QSQS and IQSQS process each reference document individually to accumulate a set of
query suggestion candidates and, at the very end, select K of them as query suggestions.
In a second variant on Jiang et al.’s system, we change the control structure. Instead
of generating query suggestion candidates for each reference document separately, we
generate one query suggestion at a time from terms extracted from all reference docu-
ments, each time aiming for the largest possible MCC increase. The pseudocode of this
system, Greedy Query Suggestion by Query Search (GQSQS), is shown in Algorithm 3.

GQSQS first identifies a set F of promising search terms in the same way IQSQS
generates terms (line 3). The system then proceeds in K rounds, where K is the number
of query suggestions to be produced. In each round, one query suggestion is generated
in the following way. The first processing stage (lines 8 to 11), “Term Selection”, selects
terms from F in a way that is similar to IQSQS, except for a change in the coverage
score measure, which takes into account the whole set of remaining (not yet covered)
reference documents. Query suggestion candidates are generated (line 13) on the se-
lected terms as in IQSQS, with Q0BS. In each round the query that most increases
MCC is chosen (breaking ties by selecting a query that also most increases MEC) and
added to the set of final query suggestions (line 14). At the end of each round, we up-
date the set of not yet covered reference documents (line 16) and, for each search term,
update the set of covered documents accordingly (line 18).

The modified coverage score of a term t, used by GQSQS in the term selection
stage, results from adding together the two following scores:

– the OC (Overall Coverage) score of t, as used in the term selection stage by IQSQS,
– the EOC (Extra Overall Coverage) score, for the current round index i, which

equals the number of reference documents covered by Q0 + t but not yet covered
by the query suggestions added to the set QS in rounds prior to round i.

Terms achieving the highest modified coverage score are ranked highest.

5 Comparison of QSQS, IQSQS, and GQSQS

To compare QSQS to our two new systems, we ran experiments using the same sets of
50 short queries and 50 long queries as used for the experiments reported in Section 3.



Algorithm 3 Greedy Query Suggestion by Query Search (GQSQS)
Input: the user’s query, Q0, the set RefDocs of reference documents for Q0, a number N ≤ 20,

and a number K
Output: a set QS containing K query suggestions
1: initialize QS, the set of query suggestions, to be empty
2: initialize DocsToCover, the set of not yet covered reference documents, to equal RefDocs
3: quickly find a set, F , of terms occurring in documents in RefDocs that are likely to be useful

in constructing queries with high coverage score wrt RefDocs
4: for each t ∈ F do
5: Covered(t) = set of documents in RefDocs that are covered by the query Q0 + t
6: end for
7: for i = 1 to K do
8: // Term Selection
9: using the size of Covered(t), score each term in F according to its modified coverage

score wrt DocsToCover when combined with Q0 to form a query
10: sort F (highest scoring term first)
11: Fi = the set of the first N terms in F
12: // Query Suggestion Generation
13: generate a set, QSCi, of queries built from terms in Fi

14: add to QS the query qsi ∈ QSCi that most increases MCC (break ties to maximally
increase MEC)

15: // Update Set of Documents to be Covered
16: remove the reference documents covered by qsi from DocsToCover
17: for each t ∈ F do do
18: Covered(t) = Covered(t) ∩ DocsToCover
19: end for
20: end for
21: return QS

In these experiments, we used the Q0BS method for generating query suggestion can-
didates in IQSQS and GQSQS.

The resulting average MCC and MEC scores for QSQS, IQSQS, and GQSQS are
reported in Table 3. Our results show IQSQS and GQSQS superior to QSQS on both
short queries and long queries. Sign tests (see Section 3) show the performance dif-
ferences between IQSQS and QSQS (and between GQSQS and QSQS) to be highly
significant (p < 10−5 in every case). Hence we consider our new systems a substantial
improvement over the state of the art. The MCC and MEC values achieved are note-
worthy in their own right, not just in comparison with QSQS’s. An MCC value over 67
means that over two-thirds of the reference documents are covered by one or more of
the queries our systems suggest. An MEC value over 9 means that, on average, more
than 9 of the top 20 documents retrieved by the each of the queries our systems suggest
are reference documents, i.e., highly likely to be relevant to the user’s needs.

Most of the documents that our suggested queries retrieve that are not reference
documents are novel documents, i.e., not documents covered by the user’s initial query.
For IQSQS on the short queries, for example, of the 20 documents covered by one of our
query suggestion, approximately 9 are reference documents (MEC=9.15, see Table 3),



Short Query Long Query
System MCC MEC MCC MEC
QSQS 54.80 6.89 42.86 5.34
IQSQS 70.82 9.15 78.05 10.66
GQSQS 63.88 9.73 68.82 11.08

Table 3. Comparison of QSQA, IQSQS, and GQSQS, on short and long queries.

2 are documents covered by the user’s original query, and the remaining 9 were ranked
beyond position 120 by the initial query. Our suggested queries are therefore achieving
a good balance between retrieving reference documents (very likely to be relevant given
that the initial query’s top 20 are not relevant), reminding the user of documents covered
by the initial query, and injecting novelty into the set of results.

The observations that IQSQS outperforms GQSQS in terms of MCC, and that the
opposite is true for MEC, are both highly significant statistically (p < 0.005 in both
cases). In conclusion, both systems offer excellent performance in terms of both MCC
and MEC. Applications that place greater emphasis on MCC should use IQSQS, and
those that place greater emphasis on MEC should use GQSQS.

6 Query Suggestion Examples

Table 4 shows the queries suggested by Google, by QSQS, and by our methods IQSQS
and GQSQS, for the queries “volcanos in italy”, “herbs” and “ibm thinkpad 760c”.

The most striking feature of Google’s query suggestions are how “understandable”
they are. It is very easy to imagine the subtopics they are intended to retrieve. How-
ever as the MCC and MEC scores show, these query suggestions are extremely poor
at retrieving reference documents. Exactly the opposite is true of the queries suggested
by our systems. They have relatively high MCC and MEC values, but in many cases it
is not at all clear what subtopics they represent. We believe this is not a failing of our
systems, or something that could be easily fixed by adding to our scoring criteria some
measure of “understandability”. We believe that the ranking functions used by Google,
and undoubtedly other modern search engines too, have become sufficiently sophisti-
cated and unintuitive that understandable query suggestions will often not be effective
in satisfying a user’s information needs.

A particular example of this phenomenon is the effect of repeating a term more than
once; see Table 4. The effect on the documents returned in the top 20, like the effect of
ordering the terms (which we observed in our work but did not systematically study), is
substantial and largely unintuitive. Consider, for example, the query suggestion “herbs
herbs” generated by IQSQS for the initial query “herbs”. Here the reference document
term “herbs” was appended to the initial query. IQSQS selects “herbs herbs” because
this query covers more reference documents than other query suggestion candidates. In
particular, the top 20 results for “herbs” are substantially different from those for “herbs
herbs”. Many documents covered by “herbs herbs” contain the term “herbs” twice in
key positions such as the title. For instance, the titles of some top results for “herbs
herbs” from Google (Nov. 24th, 2010) are “Herbs To Herbs”, “Herbs Herbals herb and



G
oogle

Q
SQ

S
IQ

SQ
S

G
Q

SQ
S

m
ajorvolcanoes

in
italy

italy
volcanoes

volcanos
in

italy
studies

volcano
volcanoes

volcanos
in

italy
volcanos

fam
ous

volcanoes
in

italy
volcanos

w
orldw

ide
volcanos

in
italy

italy
volcanos

in
italy

italy
org

m
any

volcanoes
italy

volcano
etna

italy
volcanos

in
italy

volcano
erupted

volcanoes
volcanos

in
italy

pacific
volcanos

grow
ing

three
volcanoes

italy
volcanoes

italy
active

volcanos
in

italy
cam

s
active

east
volcanos

in
italy

japan
volcano

diagram
photo

volcanos
in

italy
volcano

feb
7

volcanos
in

italy
lands

italian
volcanos

volcanos
in

italy
tv

etna
volcanos

in
italy

3350
volcanoes

forces
nature

m
ount

volcanos
in

italy
m

oderate
eruptions

volcanos
in

italy
briefpacific

w
orld

volcano
inform

ation
encyclopedia

com
volcanos

in
italy

explore
eruption

volcanos
in

italy
uploaded

online
volcano

inform
ation

volcanoes
volcanos

in
italy

volcanos
specifically

volcanos
in

italy
deal

am
azon

com
volcano

adventure
guide

volcanos
in

italy
pacific

volcanos
in

italy
diagram

M
C

C
=5

M
E

C
=1.5

M
C

C
=35

M
E

C
=3.7

M
C

C
=60

M
E

C
=7.2

M
C

C
=49

M
E

C
=6.3

listofherbs
herbs

herbal
herbs

com
herbs

herbs
herbs

learn
herb

types
ofherbs

herbs
w

ebsite
herbs

com
pany

herbs
site

herbs
herbs

co
cooking

herbs
herbs

com
herbs

herbalprovides
herbs

herbs
com

w
ebsite

grow
ing

herbs
herbs

herb
gardens

gardening
herbs

herbs
gardens

herbs
inform

ation
culinary

herbs
inform

ation
herbs

herbs
inform

ation
herbs

m
edicalherb

site
pictures

ofherbs
herbs

organic
herbs

com
vitam

ins
herbs

herbs
m

edicinalherbs
herb

store
herbs

herbal
herbs

drying
seeds

m
ethod

herbs
gardens

herbalm
edicine

m
edicinalherbs

herbs
herbs

chinese
herbal

herbs
herbs

inform
ation

database
herbs

hom
e

herbs
herbology

1
herbs

rem
edies

site
herb

grow
ing

herb
herbal

herbs
herbs

education
program

s
herbs

seeds
M

C
C

=15
M

E
C

=1.9
M

C
C

=47
M

E
C

=6.1
M

C
C

=54
M

E
C

=5.7
M

C
C

=52
M

E
C

=6.8
thinkpad

760c
replacem

ent
ibm

thinkpad
760c

755
760

ibm
ibm

thinkpad
760c

w
holesale

760
thinkpad

760c
ibm

thinkpad
760c

365
760

ibm
ibm

thinkpad
760c

560
365

760c
9547

ibm
thinkpad

760c
760

dontm
ailing

ibm
thinkpad

760c
car

ibm
centre

thinkpad
755cv

ibm
thinkpad

760c
lcd

24
ibm

thinkpad
760c

355
m

em
ory

ibm
thinkpad

760c
ibm

thinkpad
760c

9546
page

laptop
ibm

thinkpad
760c

repair
760c

760cd
ibm

thinkpad
760c

fix
ibm

thinkpad
760c

29
760c

9546
product

ibm
thinkpad

760c
1995

ibm
thinkpad

760c
370

shopping
ibm

thinkpad
760

review
s

ibm
thinkpad

760c
replacem

ent760ld
ibm

thinkpad
760c

shop
thinkpad

760c
w

in
ibm

thinkpad
760c

vista
760

ibm
ibm

thinkpad
760c

w
holesale

755cd
ibm

760c
battery

ibm
thinkpad

760c
760

im
age

com
ibm

thinkpad
760c

560e
755

380
M

C
C

=0
M

E
C

=0.0
M

C
C

=60
M

E
C

=8.2
M

C
C

=80
M

E
C

=11.0
M

C
C

=63
M

E
C

=11.4

Table
4.T

he
query

suggestions
forthe

queries
“volcanos

in
italy”,“herbs”

and
“ibm

thinkpad
760c”

by
G

oogle,Q
SQ

S,and
ourm

ethods,as
ofN

ov.24,
2010.



herbal remedies – HerbsHerbals.com”, “Herb’s Herbs & Such”, “Medicinal herbs –
Affordable herbs”, etc. These are not among the top results for the query “herbs”.

If nowadays effective query suggestions necessarily border on being incomprehen-
sible in terms of which subtopics they represent, research on query suggestion must
pursue two goals. The first, represented by this paper, is to find ever better ways to cre-
ate effective query suggestions without requiring that the queries be comprehensible.
The second aim is to find comprehensible summaries of document sets, e.g., by cluster
labelling methods [11, 16, 3, 2, 4, 17] or multi-document text summarization [10, 14].

7 Related Work

The approach to query suggestion introduced by Jiang et al. [9] of using Query Search
to create query suggestions, is fundamentally different than other approaches because it
evaluates the queries it creates by issuing them to the search engine and observing the
documents returned in the top 20, rather than using a surrogate evaluation measure such
as the similarity of the terms in the suggested query to those in the user’s query [11, 1,
18, 19, 21]. Most similar to our approach is the pseudo-relevance feedback approach
(also called blind-relevance feedback) [13, 20]. This assumes that the top T documents
in the results of the user’s query are relevant (including the top 20, unlike our approach)
and extracts terms from these documents that best discriminate them from the docu-
ments not in the top T . These terms are used to construct query suggestions, but, unlike
our approach, these suggestions are not evaluated by observing the results they return.

8 Conclusion

We proposed two new query suggestion systems using query search, based on Jiang et
al.’s QSQS system [9]. The changes to QSQS consist mainly of replacing the construc-
tion of lexical aliases by a more elegant and more effective process of term selection.
Query suggestion candidates are no longer generated by simplifying a complex query (a
lexical alias) top-down, but by forming queries from promising search terms bottom-up.
The two systems we present both use this method but vary in their control structure.

Both new systems substantially outperform QSQS in the measures that were pro-
posed by Jiang et al. and that were explicitly used as objective functions in the design of
QSQS. IQSQS improves QSQS by about 30% (both MCC and MEC) on short queries,
and on long queries by about 80% (MCC) and 100% (MEC); GQSQS is even more ef-
fective in terms of MEC on long queries. Part of this improvement is due to forcing our
systems to return queries that expand the initial query, as we verified empirically. This
suggests that including the initial query in a query suggestion is generally advisable.

Acknowledgements. We thank Google’s University Research Program for providing
access to the Google API5 and Shen Jiang for his help in early stages of this work. We
gratefully acknowledge financial support by Google, the Alberta Innovates Centre for
Machine Learning (AICML), and Canada’s Natural Sciences and Engineering Research
Council (NSERC).

5 See http://research.google.com/university/search/docs.html for documentation.



References

1. C. Carpineto, R. Mori, G. Romano, and B. Bigi. An information-theoretic approach to auto-
matic query expansion. ACM Transactions on Information Systems (TOIS), 19:1–27, 2001.

2. J. Chen, O. R. Zaı̈ane, and R. Goebel. An unsupervised approach to cluster web search
results based on word sense communities. In WI’08, pages 725–729, 2008.

3. D. Cutting, D. Karger, J. Pederson, and J. Tukey. Scatter/gather: a cluster-based approach to
browsing large document collections. In ACM SIGIR 1992, pages 318–329, 1992.

4. F. Geraci, M. Pellegrini, M. Maggini, and F. Sebastiani. Cluster generation and labeling for
web snippets: A fast, accurate hierarchical solution. Internet Mathematics, 3:413–443, 2006.

5. B. Jansen and A. Spink. How are we searching the world wide web?: a comparison of nine
search engine transaction logs. Inf. Process. Manage., 42(1):248–263, 2006.

6. B. Jansen, A. Spink, and T. Saracevic. Real life, real users, and real needs: a study and
analysis of user queries on the web. Inf. Process. Manage., 36(2):207–227, 2000.

7. S. Jiang. Searching for queries to improve document retrieval in web search. Master’s thesis,
University of Alberta, 2009.

8. S. Jiang, S. Zilles, and R. Holte. Empirical analysis of the rank distribution of relevant
documents in web search. In WI’08, pages 208–213, 2008.

9. S. Jiang, S. Zilles, and R. Holte. Query suggestion by query search: a new approach to user
support in web search. In WI’09, pages 679–684, 2009.

10. C.-Y. Lin and E. Hovy. From single to multi-document summarization. In ACL, pages 457–
464, 2002.

11. C. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval. Cambridge
University Press, 2008.

12. J. Martin and R. Holte. Searching for content-based addresses on the world-wide web. In
Proceedings of the 3rd ACM Conference on Digital Libraries, pages 299–300, 1998.

13. M. Mitra, A. Singhal, and C. Buckley. Improving automatic query expansion. In ACM SIGIR
1998, pages 206–214, 1998.

14. D. Radev, H. Jing, M. Sty, and D. Tam. Centroid-based summarization of multiple docu-
ments. Inf. Process. Manage., 40(6):919–938, 2004.

15. C. Silverstein, M. Rauch Henzinger, H. Marais, and M. Moricz. Analysis of a very large web
search engine query log. SIGIR Forum, 33(1):6–12, 1999.

16. B. Stein and S. M. Zu Eissen. Topic identification: framework and application. In Proceed-
ings of the International Conference on Knowledge Management, pages 522–531, 2004.

17. P. Treeratpituk and J. Callan. Automatically labeling hierarchical clusters. In Proceedings of
the 2006 International Conference on Digital Government Research, pages 167–176, 2006.

18. E. M. Voorhees. Query expansion using lexical-semantic relations. In ACM SIGIR 1994,
pages 61–69, 1994.

19. X. Wang and C. Zhai. Mining term association patterns from search logs for effective query
reformulation. In Proceedings of the 17th ACM Conference on Information and Knowledge
Management, pages 479–488, 2008.

20. R. White, C. Clarke, and S. Cucerzan. Comparing query logs and pseudo-relevance feedback
for web-search query refinement. In ACM SIGIR 2007, pages 831–832, 2007.

21. J. Xu and W. Croft. Query expansion using local and global document analysis. In ACM
SIGIR 1996, pages 4–11, 1996.

22. X. Zhang. Search term selection and document clustering for query suggestion. Master’s
thesis, University of Alberta, 2010.


