
Search-aware Conditions for Probably Approximately Correct Heuristic Search

Roni Stern Ariel Felner
Information Systems Engineering

Ben Gurion University
Beer-Sheva, Israel 85104

roni.stern@gmail.com, felner@bgu.ac.il

Robert Holte
Computing Science Department

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

holte@cs.ualberta.ca

Abstract

The notion of finding a solution that is approximately optimal
with high probability was recently introduced to the field of
heuristic search, formalized as Probably Approximately Cor-
rect Heuristic Search, or PAC search in short. A big challenge
when constructing a PAC search algorithm is to identify when
a given solution achieves the desired sub-optimality with the
required confidence, allowing the search to halt and return
the incumbent solution. In this paper we propose two novel
methods for identifying when a PAC search can halt. Unlike
previous work, the new methods provided in this paper be-
come more knowledgeable as the search progresses. This can
speedup the search, since the search can halt earlier with the
proposed methods and still keeping the desired PAC solution
quality guarantees. Experimental results indeed show a sub-
stantial speedup of the search in comparison to the previous
approach for PAC search.

1 Introduction
Many Artificial Intelligence applications and algorithms em-
ploy search algorithms to solve optimization problems. Op-
timal search algorithms are search algorithms that are guar-
anteed to return optimal solutions. A* (Hart, Nilsson, and
Raphael 1968), IDA* (Korf 1985) and RBFS (Korf 1993)
are examples of optimal search algorithms. In practice and
in theory, finding an optimal solution with an optimal search
algorithm is often intractable, even if one is given an ex-
tremely accurate heuristic to guide the search (Helmert and
Röger 2008).

When finding an optimal solution is not feasible, a range
of search algorithms have been proposed that return subop-
timal solutions. In particular, when an algorithm is guaran-
teed to return a solution that is at most w times the optimal
solution we say that this algorithm is w-admissible. Such
algorithms are also referred to as bounded-suboptimal algo-
rithms. Weighted A* (Pohl 1970),A∗ε (Pearl and Kim 1982),
Optimistic Search (Thayer and Ruml 2008) and Skeptical
Search (Thayer, Dionne, and Ruml 2011) are known exam-
ples of w-admissible algorithms.

Recently (Stern, Felner, and Holte 2011), it has been
shown that it is possible to develop search algorithms that

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

will run much faster than traditional w-admissible algo-
rithms by allowing the search algorithm to return a solu-
tion that is w-admissible in most of the cases instead of
always. Inspired by the Probably Approximately Correct
(PAC) learning framework from Machine Learning (Valiant
1984), the notion of finding a w-admissible solution with
high probability was formalized as Probably Approximately
Correct Heuristic Search, or PAC search in short. A PAC
search algorithm is given two parameters, ε and δ, and is
required to return a solution that is at most 1 + ε times the
optimal solution, with probability higher than 1 − δ. The
parameters 1 + ε and 1 − δ are referred to as the desired
suboptimality and required confidence, respectively.

A big challenge when constructing a PAC search algo-
rithm is to identify when a given solution achieves the de-
sired suboptimality with the required confidence, allow-
ing the search to halt and return the incumbent solution
(=the best solution found so far). This type of condition
is called a PAC condition. Previous work (Stern, Felner,
and Holte 2011) has addressed this challenge by considering
the heuristic of the start state (the value assigned to the start
state by the heuristic function) and a probability distribution
of the ratio between the heuristic and the true cost. While
shown to be effective, the resulting PAC conditions ignore
the knowledge gained throughout the search. In this paper
we propose two novel PAC conditions. These new methods
become more knowledgeable as the search progresses, and
can identify more accurately when to halt. This results in
substantial speedup of the search, and still keeping the de-
sired solution quality.

2 PAC Heuristic Search
Next, we provide a formal description of a PAC search algo-
rithm, and introduce relevant notation.

Let M be the set of all possible start states in a given
domain, and let D be a probability distribution over M.
Correspondingly, we define a random variable S, to be a
state drawn randomly fromM according to distribution D.
For a search algorithm A and a state s ∈ M, we denote by
cost(A, s) the cost of the solution returned by A given s as
a start state. We denote by h∗(s) the cost of the optimal so-
lution for state s. Correspondingly, cost(A,S) is a random
variable that consists of the cost of the solution returned by
A for a state randomly drawn fromM according to distribu-

tion D. Similarly, h∗(S) is a random variable that consists
of the cost of the optimal solution for a random state S.

Definition 1 [PAC search algorithm]
An algorithm A is a PAC search algorithm iff

Pr(cost(A,S) ≤ (1 + ε) · h∗(S)) ≥ 1− δ

Classical search algorithms can be viewed as special cases
of a PAC search algorithm. Algorithms that always return
an optimal solution, such as A* and IDA*, are simply PAC
search algorithms that set both ε and δ to zero. w-admissible
algorithm are PAC search algorithms where w = 1 + ε and
δ = 0. In this paper we aim at the more general case, where
ε and δ may both be non-zero.

3 PAC Search and δ-Risk Admissibility
The concept of PAC Search is reminiscent of the δ-risk-
admissibility concept defined in the seminal work on semi-
admissible heuristic search by Pearl and Kim (1982). To
explain what is δ-risk-admissibility and its relation to PAC
search, we first explain the notion of risk, as defined by Pearl
and Kim.

Assume that a search algorithm finds a solution of cost
C. If the search algorithm cannot guarantee that the cost of
the optimal (i.e., lowest cost) solution is C, then returning C
holds a risk, that a better solution of cost lower thanC exists.
Pearl and Kim (1982) defined that this risk is quantified by a
risk function, denoted byR(C). Given a risk functionR(C),
they defined a δ-risk-admissible algorithm as follows.

Definition 2 [δ-risk-admissibility]
An algorithm is said to be δ-risk-admissible if it always ter-
minates at a solution cost C such that R(C) ≤ δ for each
node left in OPEN.

It is important to note that the risk function, as defined by
Pearl and Kim, is a function of C for a given node in OPEN.
They denoted the risk function by R(C), assuming the node
is understood from the context. One of the risk functions
that was proposed by Pearl and Kim is the probability that a
node n has f∗(n) < C.

Consider the difference between a PAC search algorithm
with desired suboptimality zero (ε = 0) and a δ-risk-
admissible algorithm with such a risk function R(C), which
is the probability of a node n having f∗(n) < C. A δ-risk-
admissible algorithm must verify that:

∀n ∈ OPEN Pr(f∗(n) < C) < δ

By contrast, a PAC search algorithm must verify that:

Pr(
∨

n∈OPEN
f∗(n) < C) < δ

In other words, a PAC search algorithm must verify that δ is
larger than the joint probability of having a node in OPEN
being part of a solution of cost smaller than C.

Hence, there is a crucial difference between PAC search
and δ-risk-admissibility, demonstrated by the following ex-
ample. Assume that a solution of cost C has been found,

S

n1 n2

G

Pr(f*(n1) < C)=0.1 Pr(f*(n2) < C)=0.1

Pr(f*(n2) < C or f*(n2) < C) = 0.01

C

Figure 1: Example of δ-risk-admissible vs. PAC search

δ = 0.1, and there are two nodes in OPEN, n1 and n2. Also,
assume that the probability that f∗(n1) < C is 0.1, and sim-
ilarly the probability that f∗(n2) < C is also 0.1. Figure 1
illustrates this example. Clearly, a δ-risk-admissible algo-
rithm can return the found solution (of cost C). However, a
PAC search algorithm can return C only if the joint proba-
bility of f∗(n1) < C or f∗(n2) < C is smaller than or equal
to 0.1. For example, if the joint probability Pr(f∗(n1) < C
or f∗(n2) < C) = 0.15, then a PAC search algorithm will
not be satisfied with the solution C, and will need to search
for a better solution.

Our definition of PAC search is motivated by consider-
ing the client of the search algorithm. A client of a search
algorithm is interested in the quality of the solution that is
returned, and less with bounds on particular nodes in the
search tree. As shown in the example above (Figure 1), there
are many cases where a δ-risk-admissible algorithm will re-
turn a solution that is not optimal with probability higher
than δ.

Note that Pearl and Kim also proposed a δ-risk-admissible
algorithm, calledR∗. TheR∗ algorithm is a best-first search
that expands nodes according to their risk function (R(C)).
In order to calculate the risk function R(C), the state space
is sampled (as a preprocessing stage), and a probability dis-
tribution function of h∗(n) is obtained. R∗ returns a solution
when a goal node is expanded. While Pearl and Kim have
shown that R∗ is indeed δ-risk-admissible, it is easy to see
that it is not a PAC search algorithm. Note that in the rest
of this paper we follow Pearl and Kim by assuming that the
state space can be sampled in a representative manner.

4 PAC Conditions
One can view a PAC search algorithm as having two compo-
nents. The first component is an anytime search algorithm,
i.e., a search algorithm “whose quality of results improves
gradually as computation time increases” (Zilberstein 1996).
Note that the quality of results in a search algorithm usually
corresponds to the cost of the solution that was found. The
second component identifies when to halt the first compo-
nent and return the incumbent solution. It is the responsibil-
ity of the second component to ensure that the desired sub-
optimality (1+ ε) has been achieved by the incumbent solu-
tion with the required confidence (1− δ). This second com-
ponent is called a sufficient PAC condition or simply PAC

condition, defined as follows.

Definition 3 [Sufficient PAC Condition]
A sufficient PAC condition is a termination condition for a
search algorithm ensuring that for a randomly drawn state,
this search algorithm will return a solution that is (1 + ε)-
admissible with probability of at least 1− δ.

Given an anytime search algorithm and a PAC condition,
one can construct a PAC search algorithm by running the
anytime search algorithm, and halting when the PAC condi-
tion has been met. While many anytime search algorithms
exist (Hansen and Zhou 2007; Aine, Chakrabarti, and Ku-
mar 2007; Likhachev et al. 2008), only two simple PAC con-
ditions have been proposed (Stern, Felner, and Holte 2011).
Next, we describe the existing PAC conditions and point out
their shortcomings. Then, we provide new, more accurate
PAC conditions, to address these shortcomings.

4.1 Blind PAC Condition
For a given start state s, a solution of cost U is (1 + ε)-
admissible if the following equation holds.

U ≤ h∗(s) · (1 + ε) (1)

Clearly, Equation 1 cannot be used in practice as a PAC
condition, because h∗(s) is known only when an optimal
solution has been found. Previous work proposed the two
following PAC conditions.

All the PAC conditions consider the distribution of a ran-
domly drawn state S. The first PAC condition that was in-
troduced is called the blind PAC condition, as it assumes
we know nothing about the given start state s except that
it was drawn from the same distribution as S (i.e., drawn
fromM according to distributionD). With this assumption,
the random variable h∗(S) can be used in place of h∗(s) in
Equation 1, resulting in the blind PAC condition depicted in
Equation 2.

Pr(U ≤ h∗(S) · (1 + ε)) ≥ 1− δ (2)

To use the blind PAC condition, the distribution of h∗(S)
is required. Pr(h∗(S) ≥ X) can be estimated in a prepro-
cessing stage by randomly sampling states from S. Each of
the sampled states is solved optimally, resulting in a set of h∗
values. The cumulative distribution function Pr(h∗(S) ≥
X) can then be estimated by simply counting the number of
instances with h∗ ≥ X , or using any statistically valid curve
fitting technique. A reminiscent approach was used in the
KRE (Korf, Reid, and Edelkamp 2001) and CDP (Zahavi et
al. 2010) and ε-truncation (Lelis, Zilles, and Holte 2011)
formulas for predicting the number of nodes generated by
IDA*, where the state space was sampled to estimate the
probability that a random state has a heuristic value h ≤ X .
Similar sampling is also proposed by Pearl and Kim (1982)
in the δ-risk admissibility work mentioned above.

The procedure used to sample the state space should be
designed so that the distribution of the sampled states will be
as similar as possible to the real distribution of start states.
In some domains this may be difficult, while in other do-
mains sampling states from the same distribution is easy.

For example, sampling 15-puzzles instances from a uniform
distribution over the state space can be done by generating
a random permutation of the 15 tiles and verifying mathe-
matically that the resulting permutation represents a solvable
15-puzzle instance (Johnson 1879). Sampling random states
can also be done in some domains by performing a sequence
of random walks from a set of known start states (Haslum et
al. 2007; Domshlak, Karpas, and Markovitch 2010).

A major drawback of the blind PAC condition is that it
ignores all the state attributes of the initial state s. One such
attribute is the heuristic function. For example, if for a given
start state s we have h(s) = 40 and h is admissible then
h∗(s) cannot be below 40. However, if one of the randomly
sampled states has h∗ = 35 then we will have Pr(h∗(S) <
40) > 0. The rest of the PAC conditions described in this
paper indeed consider the values of the heuristic function.

4.2 Ratio-based PAC Condition (RPAC)
The ratio-based PAC condition (Stern, Felner, and Holte
2011), denoted as RPAC, that is described next, considers
the heuristic value of the start state s. Instead of consid-
ering the distribution of h∗(S), the distribution of the ratio
between h∗ and h for a random start state S is considered.
We denote this as h∗

h (S). Similarly, the cumulative distri-
bution function Pr(h

∗

h (S) > X) is the probability that a
random start state S (i.e., drawn from fromM according to
distribution D) has h∗

h larger than a value X . This allows
the following PAC condition.

Pr(
h∗

h
(S) ≥ U

h(s) · (1 + ε)
) ≥ 1− δ (3)

Using Equation 3 requires estimating Pr(h
∗

h (S) ≥ Y).
This can be done as follows. First, random problem in-
stances are sampled. Then, collect h∗

h values, and gen-
erate the corresponding cumulative distribution function
Pr(h

∗

h (S) ≥ X). Note that if h is admissible then
Pr(h

∗

h (S) ≥ 1) = 1.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

5%

10%

15%

20%

25%

30%

35%

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

C
D

F
P

ro
b

ab
ili

ti
e

s

P
D

F
P

ro
b

ab
ili

ti
e

s

h*/h Ratio

PDF

CDF

Figure 2: h
∗

h distribution for the additive 7-8 PDB heuristic.

As an example of the sampling process described above,
we estimated the distribution of h

∗

h for the additive 7-8 PDB
heuristic (Felner, Korf, and Hanan 2004) for the standard
search benchmark of the 15-puzzle, as follows. The standard

1,000 random 15-puzzle instances (Felner, Korf, and Hanan
2004) were solved optimally using A*. Then, the ratio h∗

h
was calculated for the start state of every instance. Figure 2
presents the resulting cumulative and probability distribu-
tion functions. The x-axis displays values of h∗

h . The blue
bars which correspond to the left y-axis show the probability
of a problem instance having a specific h∗

h value. In other
words the blue bars show the probability distribution func-
tion (PDF) of h∗

h which is Pr(h
∗

h = X). The red curve,
which corresponds to the right y-axis, shows the cumulative
distribution function (CDF) of h∗

h , i.e., given X the curve
shows Pr(h

∗

h ≤ X).
As an example, assume that we are given as input the start

state s, ε = 0.1 and δ = 0.1. Also assume that h(s) = 50
and that a solution of cost 60 has been found (i.e., U = 60).
According to sufficient PAC condition depicted in Equa-
tion 3, the search can halt when:

Pr(
h∗

h
(S) ≥ U

h(s) · (1 + ε)
) ≥ 1− δ

Setting U=60, h(s)=50, ε=0.1 and δ=0.1, we have that the
search can halt if:

Pr(
h∗

h
(S) ≥ 1.09) ≥ 0.9

The probability that h∗

h (S) ≥ 1.09 can be estimated with
the CDF displayed in Figure 2. As indicated by the red dot
above the 1.1 point of the x-axis (according to the right y-
axis), Pr(h

∗

h (S) < 1.09) is slightly smaller than 0.1 and
consequently Pr(h

∗

h (S) ≥ 1.09) is slightly larger than 0.9.
Therefore, the sufficient PAC condition from Equation 3 is
satisfied and the search can safely return the incumbent so-
lution (60) and halt. By contrast, if the incumbent solution
were 70, then U

h(s)·(1+ε) = 1.27, and according to the CDF

in Figure 2 h∗

h is smaller than 1.27 with probability that is
higher than 90%. Therefore, in this case the PAC condition
is not met, and the search will continue, seeking a better so-
lution than 70.

It is important to note that the process of obtaining the
distribution of Pr(h

∗

h (S) ≥ X) is done in a preprocess-
ing stage, as it requires solving a set of instances opti-
mally. Expensive preprocessing is very common in super-
vised learning, where a training set is obtained and learn-
ing algorithms are applied to construct a classifier from
the training set (Mitchell 1997). In addition, preprocess-
ing is also very common in the heuristic search commu-
nity. For example, it is used in the construction of pat-
tern databases heuristics (Culberson and Schaeffer 1998;
Korf 1997; Felner, Korf, and Hanan 2004; Holte et al.
2006; Haslum et al. 2007), heuristics for 2D-pathfinding
problems (Sturtevant et al. 2009; Pochter et al. 2010;
Goldenberg et al. 2011), learning-based heuristics (Ernan-
des and Gori 2004; Samadi, Felner, and Schaeffer 2008;
Jabbari Arfaee, Zilles, and Holte 2011), search effort pre-
diction formulas (Korf, Reid, and Edelkamp 2001; Zahavi
et al. 2010; Lelis, Zilles, and Holte 2011) and search cost
prediction formulas (Lelis, Stern, and Jabbari Arfaee 2011;
Lelis et al. 2012).

In some cases it is not possible to solve problems opti-
mally even in a preprocessing stage. In this paper we restrict
the discussion to domains where such preprocessing is pos-
sible. However, In such cases one may use the recently de-
veloped solution cost prediction algorithm (Lelis, Stern, and
Jabbari Arfaee 2011; Lelis et al. 2012) instead of solving
instances optimally, to obtain an accurate approximation of
the optimal solution for the sampled problems.

5 Search-Aware PAC Conditions
The two PAC conditions described in the previous section
(and in our previous work), can be used regardless of the
search algorithm that is used in the actual search. Such a
search algorithm finds a solution, and the blind PAC condi-
tion or RPAC are used to identify if the found solution can
be returned and the search may halt.

While very general, this decoupling of the PAC condition
from the search algorithm means that these PAC conditions
will only consider halting the search when a new incumbent
solution is found. Finding a better incumbent solution can
be very time consuming when searching in combinatorially
large state spaces, and it seems wasteful to ignore all the
knowledge gathered during the search.

Next, we present two novel PAC conditions that are aware
of the underlying search, and consider the knowledge it gath-
ers about the searched state space. Specifically, we focus on
the case where the search algorithm used is anytime best-
first search algorithm, e.g., AWA* (Hansen and Zhou 2007),
ARA* (Likhachev et al. 2008) and APTS (Stern, Puzis,
and Felner 2011). 1 Anytime best-first search algorithms are
anytime algorithms that run a best-first search.

5.1 Lower-Bounded Ratio-Based PAC Condition
Best-first search algorithms maintain an open-list (denoted
hereinafter as OPEN), that contain all the nodes that have
been generated but not expanded. These nodes are the fron-
tier of the search, and therefore any optimal solution con-
tains at least of one of these nodes. Several previous pa-
pers (Likhachev et al. 2008; Hansen and Zhou 2007) have
exploited this fact to obtain a lower bound on the optimal
cost, as follows. Let g(n) be the sum of the edge costs from
the start to node n and let h(n) be an admissible heuris-
tic estimation of the cost from node n to a goal. Then
fmin = minn∈OPEN (g(n) + h(n)) is a lower bound on
the optimal solution. Note that fmin may change after every
node expansion, and it is always a lower bound on the op-
timal solution. As such, the maximal fmin seen during the
search, denoted by maxfmin, is also a lower bound on the
optimal solution. Clearly, maxfmin

h(s) ≤ h∗(s)
h(s) . Therefore, the

PAC condition in Equation 3 can be refined, allowing a PAC
search to return a solution faster. This refined PAC condition
is as follows:
Corollary 1 [Lower bounded ratio-based PAC Condition]

The following equation is a sufficient PAC condition:

Pr(
maxfmin
h(s)

≤ h∗

h
(S) <

U

h(s) · (1 + ε)
) < δ

1APTS is also known as ANA* (van den Berg et al. 2011).

Proof: Recall the PAC condition in Equation 3:

Pr(
h∗

h
(S) ≥ U

h(s) · (1 + ε)
) ≥ 1− δ

Pr(
h∗

h
(S) <

U

h(s) · (1 + ε)
) < δ

Clearly maxfmin

h(s) ≤ h∗(s)
h(s) , since maxfmin is a lower

bound on the optimal cost. Thus, we can consider only
the probability that Pr(maxfmin

h(s) ≤ h∗

h (S) < U
h(s)·(1+ε))

as the probability that the desired suboptimality was not
achieved.�

Consider the difference between RPAC and the lower-
bounded ratio-based PAC condition, denoted as RPAC+LB.
For RPAC, if the PAC condition has not been met yet, it
could only be met after a new incumbent solution was found.
By contrast, the RPAC+LB can be met even if no new in-
cumbent solution has been found. As the search progresses,
maxfmin increases, and the condition in Corollary 1 can
be satisfied even if a new incumbent solution has not been
found yet, unlike the previously presented PAC conditions.
Therefore, a PAC solution might be identified faster using
RPAC+LB than when using RPAC.

Note that the heuristic h(n) used in both RPAC and
RPAC+LB can be inadmissible. RPAC+LB only needs an
admissible heuristic, ha(n), to maintain maxfmin. Thus,
it is possible to calculate two heuristic functions for each
state: an admissible ha(n), for maintaining maxfn and an
inadmissible h(n) to be used in Corollary 1 (and of course to
order the search). This approach of having two heuristics for
a state was previously proposed in w-admissible search al-
gorithms such as Optimistic search (Thayer and Ruml 2008)
and Explicit Estimation Search (Thayer and Ruml 2011).

RPAC+LB requires thatmaxfmin be calculated. To do so
efficiently, one is required to calculate fmin fast. In fact by
either using a consistent heuristic or correcting the heuristic
of generated nodes with Pathmax (Mero 1984), it is guar-
anteed that fmin is monotonic non-decreasing, and thus the
current fmin will always be maxfmin as well. While main-
taining fmin incurs some overhead (e.g., by maintaining an
additional priority queue where OPEN is ordered accord-
ing to f -values), it has been used in previous search algo-
rithms (Hansen and Zhou 2007; Thayer and Ruml 2008;
2011).

5.2 Open-based PAC Condition
The PAC condition in Corollary 1 can be satisfied either
when a better incumbent solution is found (decreasingU), or
when the lower bound on the optimal cost increases (increas-
ing maxfmin). However, maxfmin will only increase after
all the nodes with g+h ≤ maxfmin are expanded. In large
combinatorial state spaces with a heuristic that is not perfect,
there may be an exponential number of such nodes. Thus, an
exponential number of nodes may be expanded without even
considering any of the previously described PAC conditions.

To overcome this shortcoming, another PAC condition is
presented next, named the Open-based PAC condition, or

RPAC+OPEN in short. RPAC+OPEN is based on the knowl-
edge gained from all the nodes in OPEN and can be satisfied
after every single node is expanded, even before maxfmin
increases orU decreases. To describe RPAC+OPEN, several
definitions are needed.

Definition 4 [Reject]
In a PAC search, a node n is said to reject a cost U with
respect to ε if

g(n) + h∗(n) · (1 + ε) < U

Intuitively, a node n rejects a costU if the cost of the shortest
path from the initial state to a goal state that passes through
node n is small enough to reject the hypothesis that U has
the desired suboptimality of 1 + ε.

Lemma 2 In a best-first search, if the optimal solution has
not been found and every node n in OPEN does not reject a
solution cost U , then U achieves the desired suboptimality
(i.e., U is larger than 1+ε times the optimal solution).

Proof: Proof by contradiction. Assume that U does not
achieve the desired suboptimality. In other words, U is not
(1 + ε)-admissible. This means that the optimal solution
h∗(s) times (1 + ε) is smaller than U . Let g∗(n) denote
the optimal path from the initial state s to a node n. It is
well-known that in a best-first search, as long as the optimal
solution has not been found there exists a node m in OPEN
that is part of the optimal solution, and whose g-value is the
cost of the optimal path from the initial state s to that node.2
In other words, h∗(s) = g(m) + h∗(m). Since every node
in OPEN does not reject the cost U , it holds that for node
m:

h∗(s) = g(m) + h∗(m) · (1 + ε) ≥ U
This contradicts the assumption that U does not achieve the
desired suboptimality, i.e.,

h∗(s) · (1 + ε) ≤ U �

When a node n is in OPEN, the value of h∗(n) is not
known. Thus, determining if a node n rejects a cost U is
not possible in practice. However, it is possible to obtain the
probability that a randomly drawn node with a given g and
h values will reject U , by applying the same arguments used
for RPAC (Equation 3).

Corollary 3 The probability that a randomly drawn node
with h value hv and g value gv will reject a cost U is:

Pr(
h∗

h
(S) <

1

hv
· (U

1 + ε
− gv))

Proof: According to Definition 4, a randomly drawn node
S with g(S) = gv and h(S) = hv will reject a cost U if:

(gv + h∗(S)) · (1 + ε) < U

h∗(S) <
U

1 + ε
− gv

2This is proved for A* in Lemma 1 of (Hart, Nilsson, and
Raphael 1968), but the same proof holds for any best-first search.

Since h(S) = hv , the probability that the above inequality
will hold is given by Pr(h

∗

h (S) < 1
hv

(U
1+ε − gv))�

The value Pr(h
∗

h (S) < 1
hv

(U
1+ε − gv)) is denoted by

P (U, hv, gv, ε, δ) or simply P (U, hv, gv) when ε and δ are
clear from the context. For a given node m, the value
P (U, h(m), g(m)) will be denoted as P (U,m). P (U,m)
can be viewed as the probability that node m will reject the
cost U . Finally, the Open-based PAC condition can be pre-
sented.

Corollary 4 [Open-based PAC condition]
If for any n1, n2 ∈ OPEN it holds that P (U, n1) and

P (U, n2) are not negatively correlated, then the following is
a sufficient PAC condition:∑

n∈OPEN
log(1− P (U, n)) ≥ log(1− δ)

Proof: The shortest path from s to the goal must pass
through one of the nodes in OPEN. Consequently, if all of
the nodes in OPEN do not reject the cost U then U is a
PAC solution. Given that all the knowledge available about
a node in OPEN is its g value and its h value, the proba-
bility that a node n ∈ OPEN does not reject the cost U
is given by 1-P(U,n) according to Corollary 3. How to cal-
culate the combined probability of all the nodes in OPEN
not rejecting the cost U , depends on the correlation between
these events. If these events are either independent or pos-
itively correlated, i.e., they are not negatively correlated as
required in Corollary 4. In such cases, the probability that
every node in OPEN do not reject U is lower bounded by∏
n∈OPEN (1 − P (U, n)). Thus, once this expression is

above 1-δ, a PAC condition is satisfied. A logarithm is ap-
plied to both sides to avoid precision issues,3 resulting in the
expression displayed in Corollary 4. �

The complexity of checking whether the open-based PAC
condition is satisfied consists of calculating the expression∑
n∈OPEN log(1−P (U, n)), and comparing it to log(1−δ)

(see Corollary 4). Let P̂ (U) denote this expression, i.e.,
P̂ (U) =

∑
n∈OPEN log(1 − P (U, n)). Since log(1 − δ)

is constant, the complexity of checking the open-based PAC
condition is dominated by the complexity of calculating
P̂ (U). Calculating P̂ (U) can be done in an incremental
manner efficiently after every node expansion. When a node
in expanded, it exits OPEN, and its children are inserted
to OPEN. Thus, when a node n is expanded, the value of
P̂ (U) should decrease by log(1− P (U, n)) and increase by
log(1 − P (U, n′)) for every child n′ of n.4 Note that, to
reduce the number of logarithm calculations, one can cache
logarithm values.

3Applying logarithm to use summation of very small negative
numbers in stead of a product of fractions is a is commonly used
technique, e.g., in likelihood calculations.

4If a child n′ of n is already in OPEN, then P̂ (U)) should in-
crease by the difference between log(1 − P (U, n′)) and the value
added for n′ to P̂ (U) when it was previously generated. Note that
this value may differ from the current value of log(1− P (U, n′)),
since g(n′) may have changed.

It is easy to see that updating P̂ (U) as described above
for a non-goal node can be done inO(1) for every node gen-
erated. However, when a goal node is expanded and a better
incumbent solution is found, U decreases. Consequently,
when calculating P̂ (U), the value log(1−P (U, n)) must be
updated for every node n in OPEN. This requires an over-
head of O(|OPEN |) operations. However, this occurs only
when a new incumbent solution is found. If the number of
times the incumbent solution is updated is D, then the over-
head of updating P̂ (U) can be amortized over the cost of
generating each node in OPEN, incurring an additional D
operations per generated node.

6 Refined Heuristic Distribution
The distribution of h∗

h (S) that are used by all the PAC con-
ditions except RPAC+OPEN are used specifically for the
start state. Thus, a representative distribution of h∗

h (S) can
be obtained by sampling random start states. Such a dis-
tribution is called the “overall” distribution of states in the
state space (Holte et al. 2006). However, the open-based
PAC condition requires calculating the distribution of h

∗

h (S)
for every state generated during the search. This includes
states that are very close to the goal an having low h-values.
Holte et. al.(2006) have shown that the distribution of states
seen during the search, called the “runtime” distribution,
can be different than the distribution of states seen in by
the “overall” distribution. Furthermore, in many domains
the heuristic function is more accurate as one gets closer to
the goal. This phenomenon has been observed previously,
where the accuracy of a heuristic is improved as h becomes
smaller (Stern, Puzis, and Felner 2011). Thus, obtaining a
probability distribution of h∗

h (S) by sampling only random
states will not be accurate enough.

To overcome this we store a set of heuristic distributions,
having a different distribution for different ranges of heuris-
tic values. When the value of Pr(h

∗

h (S) > X) was required
for RPAC+OPEN for a generated state n, a single heuris-
tic distribution was chosen according to the value of h(n).
For example, states with h(n) ∈ [1, 5] had one heuristic dis-
tribution, while states with h(n) ∈ [6, 10] used a different
distribution. This set of heuristic distributions was obtained
by performing random walks of different length backwards
from a goal node. This follows the state space sampling
done by Zahavi et. al.(2010). In the following experimental
results we used this composite heuristic for the Open-based
PAC conditions.

7 Experimental Results
Next, we demonstrate empirically the benefits of the new
PAC conditions on the 15-puzzle, which is a standard search
benchmark. For simplicity, we used the Anytime Weighted
A* (Hansen and Zhou 2007) algorithm as our search algo-
rithm. Anytime Weighted A* (AWA*) is an anytime variant
of Weighted A* (Pohl 1970). While WA* halts when a goal
is expanded, AWA* continues to search, returning better and
better solutions. Eventually, AWA* will converge to the op-
timal solution and halt. The experiments in this section were

1− δ 0.8 0.9 0.95 0.99 1
1 + ε=1.00, AWA* w=1.2

RPAC 21,876 (0.99) 21,911 (1.00) 21,924 (1.00) 21,930 (1.00) 21,930 (1.00)
RPAC+LB 18,745 (0.97) 21,453 (0.98) 21,745 (0.98) 21,930 (1.00) 21,930 (1.00)
RPAC+OPEN 18,402 (0.96) 21,385 (0.98) 21,744 (0.99) 21,927 (1.00) 21,929 (1.00)

1 + ε=1.00, AWA* w=1.3
RPAC 28,163 (0.98) 28,185 (1.00) 28,204 (1.00) 28,210 (1.00) 28,210 (1.00)
RPAC+LB 27,310 (0.96) 27,892 (0.99) 28,176 (0.99) 28,210 (1.00) 28,210 (1.00)
RPAC+OPEN 26,730 (0.97) 27,519 (0.99) 27,730 (1.00) 27,962 (1.00) 28,109 (1.00)

1 + ε=1.10, AWA* w=1.2
RPAC 8,019 (1.00) 9,257 (1.00) 9,697 (1.00) 10,125 (1.00) 10,125 (1.00)
RPAC+LB 3,617 (1.00) 5,581 (1.00) 6,165 (1.00) 6,306 (1.00) 6,327 (1.00)
RPAC+OPEN 3,340 (1.00) 3,377 (1.00) 3,857 (1.00) 4,269 (1.00) 4,344 (1.00)

1 + ε=1.10, AWA* w=1.3
RPAC 17,692 (0.96) 22,115 (0.98) 23,834 (1.00) 25,917 (1.00) 25,917 (1.00)
RPAC+LB 10,826 (0.96) 15,458 (0.98) 18,377 (1.00) 19,271 (1.00) 19,759 (1.00)
RPAC+OPEN 6,946 (0.96) 8,670 (1.00) 10,076 (1.00) 12,042 (1.00) 12,819 (1.00)

1 + ε=1.20, AWA* w=1.3
RPAC 1,921 (0.97) 2,672 (0.98) 3,594 (1.00) 5,669 (1.00) 5,669 (1.00)
RPAC+LB 1,882 (0.97) 2,318 (0.98) 2,970 (1.00) 3,307 (1.00) 3,899 (1.00)
RPAC+OPEN 1,545 (0.97) 2,080 (1.00) 2,216 (1.00) 2,449 (1.00) 2,907 (1.00)

Table 1: Performance of different PAC conditions. Nodes expanded (success rate)

run on random 15-puzzle instance with the additive 7-8 PDB
heuristic function, and using Anytime Weighted A* to pro-
duce solutions.

In the following experiments the following parameters
were varied: (1) weight of AWA* (1.2 and 1.3), (2) the de-
sired suboptimality 1 + ε (1, 1.1 and 1.2) and (3) required
confidence 1− δ (0.8, 0.9, 0.95, 0.99 and 1).

Table 1 presents a comparison between the three sufficient
PAC conditions that are based on the h∗

h cumulative distribu-
tion: (1) RPAC, (2) RPAC+LB, and (3) RPAC+OPEN. Ev-
ery data cell presents the average number of nodes expanded
until the search was halted and the incumbent solution was
returned. The values in brackets are the success rate, i.e.,
the percentage of instances where the returned solution in-
deed achieved the desired suboptimality. This was measured
offline by comparing the returned solution with the known
optimal solution.

As can be seen by the values in the brackets, the required
confidence was always achieved for all of the sufficient PAC
conditions. That is, the success rate of being within the de-
sired suboptimality (1 + ε) was always larger than the re-
quired confidence 1− δ (shown in the top of the columns).

In terms of expanded nodes, it is clear that RPAC+LB out-
performs RPAC (i.e., the ratio-based PAC condition in Equa-
tion 3), and that RPAC+OPEN outperforms all of the other
PAC condition. When the desired suboptimality is 1 (1+ε =
1), the advantage of RPAC+OPEN over the other PAC con-
ditions is minor. However, for higher values of ε the advan-
tage of RPAC+OPEN over the other sufficient PAC condi-
tions is substantial. For example, consider the number of
nodes expanded with RPAC, RPAC+LB and RPAC+OPEN,
for 1 + ε=1.10 and 1 − δ=0.99 using AWA* with w=1.2.
Using RPAC, a solution (within the ε and δ requirements)
was found after expanding 10,125 nodes on average, while
RPAC+LB required only 6,306 nodes and RPAC+OPEN re-
quired 4,269. In the same setting, by decreasing 1−δ to 0.9,

RPAC expanded 9,257 nodes, RPAC+LB expanded 5,581
nodes and RPAC+OPEN expanded only 3,377 nodes.

Exact timing results are not provided because the CPU
time of the different algorithms was very similar. The rea-
son is that our implementation of the 15-puzzle is based on
Korf’s well-known, highly optimized 15-puzzle solver (Korf
1985). Thus, at each node, the vast majority of the CPU time
was spent on accessing the large data structures such as the
PDBs. Our algorithms differ only in simple variable book-
keeping and these did not influence the overall time.

8 Conclusions and Future Work
Previous work has adapted the probably approximately cor-
rect concept from machine learning to heuristic search, and
proposed two simple conditions to identify when a search
algorithm finds a probably approximately correct solution.
These conditions only consider the heuristic of the start state
and the value of the incumbent solution, but ignore all other
knowledge that is gained by the search.

In this paper we presented two novel PAC conditions that
take advantage of the states expanded during the search.
Specifically, the first method considers the lower bound on
the optimal solution that is obtained by the lowest f -value
found during the search. The second method considers all
the nodes that are in OPEN. We show the correctness of
these conditions theoretically, and demonstrate empirically
that using these conditions can yield substantial speedup.

There are several directions for future work and many
open research questions. One research direction is to de-
velop more effective sufficient PAC conditions. Another re-
search direction is to obtain a more accurate h∗

h distribu-
tion by using an abstraction of the state space, similar to
the type system concept used to predict the number of states
generated by IDA* in the CDP formula (Zahavi et al. 2010;
Lelis, Stern, and Jabbari Arfaee 2011). States in the state
space will be grouped into types, and each type will have a

corresponding h∗

h distribution. A third research direction is
how to adapt the choice of which node to expand next to in-
corporate the value of information gained by expanding each
node. One possible way is to use a best-first search accord-
ing to the reject probability, expanding in every iteration the
node with the highest probability to reject the incumbent so-
lution. This is similar to the R∗ algorithm (Pearl and Kim
1982) described in Section 3, but instead of halting when a
solution is found (like R∗), the search will continue until a
PAC condition is met.

References
Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA*-a
window constrained anytime heuristic search algorithm. In
IJCAI, 2250–2255.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Domshlak, C.; Karpas, E.; and Markovitch, S. 2010. To
max or not to max: Online learning for speeding up optimal
planning. In AAAI.
Ernandes, M., and Gori, M. 2004. Likely-admissible and
sub-symbolic heuristics. In European Conference on Artifi-
cial Intelligence (ECAI), 613–617.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research (JAIR) 22:279–318.
Goldenberg, M.; Sturtevant, N. R.; Felner, A.; and Schaeffer,
J. 2011. The compressed differential heuristic. In AAAI.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
J. Artif. Intell. Res. (JAIR) 28:267–297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI,
1007–1012.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In AAAI, 944–949.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. Artif. Intell. 170(16-17):1123–
1136.
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artif. Intell.
175(16-17):2075–2098.
Johnson, W. W. 1879. Notes on the ”15” Puzzle. American
Journal of Mathematics 2(4):397–404.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artif. Intell. 129(1-
2):199–218.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible treesearch. Artif. Intell. 27(1):97–109.

Korf, R. E. 1993. Linear-space best-first search. Artif. Intell.
62(1):41–78.
Korf, R. E. 1997. Finding optimal solutions to rubik’s cube
using pattern databases. In AAAI/IAAI, 700–705.
Lelis, L.; Stern, R.; Zilles, S.; Holte, R.; and Felner, A. 2012.
Predicting optimal solution cost with bidirectional stratified
sampling. In ICAPS.
Lelis, L.; Stern, R.; and Jabbari Arfaee, S. 2011. Predicting
solution cost with conditional probabilities. In SOCS.
Lelis, L.; Zilles, S.; and Holte, R. C. 2011. Improved pre-
diction of IDA* performance via ε-truncation. In SoCS.
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2008. Anytime search in dynamic graphs. Artif.
Intell. 172:1613–1643.
Mero, L. 1984. A heuristic search algorithm with modifiable
estimate. Artif. Intell. 23(1):13 – 27.
Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. Pattern Analysis and Machine Intelligence, IEEE
Transactions on PAMI-4(4):392 –399.
Pochter, N.; Zohar, A.; Rosenschein, J. S.; and Felner, A.
2010. Search space reduction using swamp hierarchies. In
AAAI.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1(3-4):193 – 204.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In AAAI, 357–362.
Stern, R.; Felner, A.; and Holte, R. 2011. Probably approx-
imately correct heuristic search. In SoCS.
Stern, R.; Puzis, R.; and Felner, A. 2011. Potential search:
A bounded-cost search algorithm. In ICAPS.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI, 609–614.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted A*:
An optimistic approach to bounded suboptimal search. In
ICAPS, 355–362.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
IJCAI, 674–679.
Thayer, J.; Dionne, A.; and Ruml, W. 2011. Learning inad-
missible heuristics during search. In ICAPS.
Valiant, L. G. 1984. A theory of the learnable. Communica-
tions of the ACM 27:1134–1142.
van den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K. Y.
2011. Anytime nonparametric A*. In AAAI.
Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2010.
Predicting the performance of IDA* using conditional dis-
tributions. Journal of Artificial Intelligence Research (JAIR)
37:41–83.
Zilberstein, S. 1996. Using anytime algorithms in intelligent
systems. AI Magazine 17(3):73–83.

