
Using Infeasibility to Improve

Abstraction-Based Heuristics

Fan Yang, Joseph Culberson, and Robert Holte

Computing Science Department, University of Alberta
Edmonton, Alberta T6G 2E8 Canada
{fyang,joe,holte}@cs.ualberta.ca

The contribution of our research is to show that the accuracy of the heuristics
generated by abstraction can be improved by checking for infeasibility. What do
we mean by infeasible heuristics? For a state t, the heuristic value h is infeasible
if it is proved that the cost of a solution for t cannot be h. Take the sliding
puzzle for example, assuming that the manhattan heuristic for state t is md(t),
if md(t) is even, any odd number is infeasible. To substantiate our approach,
we begin with formal definitions and lemmas. Then empirical results show the
effectiveness of the approach. For more details please refer to our longer work[5].

A state space is a weighted directed graph with a set of states, a set of
directed edges (ordered pairs of states) and the edge cost function. For example,
a set of states may be defined by the set of all possible assignments to a set
of state variables and the edges, and the edge cost function will depend on the
operations on the variable sets. An abstraction system includes a state space,
a set of abstract state spaces and a set of mappings Ψ = {ψ1, . . . , ψk} from
the initial state space to abstract spaces. Our definition is similar to the work of
Prieditis[4]. The key difference is that here we split each edge cost into two costs:
the primary cost Ci and a residual cost Ri. Given a path p from t to g in the
initial state space, for each abstract space Ai, pi is the corresponding abstract
path from ti to gi, where ti = ψi(t) and gi = ψi(g). To guarantee admissibility,
we require that for any path p from t to g, C(p) ≥ Ci(pi) +Ri(pi). We say that
abstractions are additive if the cost of each edge in the original space is larger
than or equal to the sum of Ci of corresponding edges in all abstract state spaces.
This definition generalizes those in [1–4]. C∗

i (ti, gi) is the minimum primary cost
of an abstract path from ti to gi. Define R∗

i (ti, gi) to be the minimum residual
cost among the paths whose primary cost is minimal. Given a goal state g, the
heuristic of state t defined by k additive abstractions is h(t) =

∑k

i=1
C∗

i (ti, gi).
Lemma 1 gives a test for infeasibility of additive abstraction-based heuristics.

Lemma 1. Given k additive abstractions, if for some j, 1 ≤ j ≤ k, we have

h(t) < C∗

j (tj , gj) +R∗

j (tj , gj), then h(t) is infeasible.

Figure 1 is an example test for infeasibility. Table 1 indicates that additive
heuristics may be improved by checking for infeasibility. The performance of
IDA* using additive heuristics with/without checking for infeasibility can be
compared in the first two rows and the last two rows. The average running time
of IDA* using the heuristics enhanced by checking for infeasible additive values
is over 2 times faster than the running time required on average without checking
for infeasibility on the same machine.



II

Fig. 1. The primary cost C∗ is defined by the total moves of numbered tiles in the
abstract state (i.e. distinguished moves) and the residual cost R∗ is the number of
moves of other tiles. (C∗

1 , R∗

1) = (9, 9), (C∗

2 , R∗

2) = (5, 7). h =
∑

2

i=1
C∗

i < (C∗

1 + R∗

1).
So h=14 is an infeasible heuristic value. h can be improved to be 16.

Tile Partition Check Infeasibility Average H Average Nodes Average Sec

Yes 42.10 1,453,358 0.312
5-5-5 No 41.56 3,186,654 0.642

Yes 42.78 784,145 0.171
6-6-3 No 42.13 1,858,899 0.379

Table 1. 15 sliding tile puzzle results

References

1. Edelkamp, S.: Planning with pattern databases. In: Proceedings of the 6th European
Conference on Planning. (2001) 13–34

2. Felner, A., Korf, E., Hanan S.: Additive pattern database heuristics. Journal of
Artificial Intelligence Research. 22 (2004) 279–318

3. Korf, E., Felner, A.: Disjoint pattern database heuristics. Artificial Intelligence. 134
(2002) 9–22

4. Prieditis, A.E.: Machine discovery of effective admissible heuristics. Machine Learn-
ing 12 (1993) 117–141

5. Yang, F., Culberson, J., Holte, R.: A general additive search abstraction. Technical
Report TR07-06. Department of Computing Science, University of Alberta (2007)


