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Elaboration on Two Points Raised in
“Classifier Technology and the
Illusion of Progress”
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1. INTRODUCTION

This short note elaborates two points raised in David
Hand’s target article. First, I provide additional evi-
dence that simple classification rules should be given
serious consideration in any application and that there
are often diminishing returns in considering increas-
ingly complex classifiers. Second, I refine Hand’s ba-
sic argument that small improvements in performance
are irrelevant because of the uncertainty about many
aspects of the situation in which the classifier will be
deployed. In particular, I briefly describe a recently de-
veloped method for analyzing and comparing classifier
performance when the class ratios and misclassifica-
tion costs are unknown. This does not refute his general
argument, but it does provide an important exception
to it.

2. SIMPLICITY-FIRST METHODOLOGY AND
DIMINISHING RETURNS

Hand (Section 2.3) cites my 1993 study [4] in which
the accuracy of one-level decision trees, which clas-
sify examples based on the value of a single feature,
was compared to the accuracy of the decision trees
learned by C4.5 [8], a state-of-the-art decision tree
learning algorithm. The article caused quite a stir, be-
cause nobody at the time suspected that most of C4.5’s
classification accuracy could be achieved, on many of
the standard test data sets, by building just the first
level of the decision tree. The overall conclusion of
my 1993 article is the same as Hand’s—not that the
more complex decision rules should be cast aside, but
that the simple decision rules should not be dismissed
out of hand. One can never tell, a priori, how much
of the structure in a domain can be captured by a
very simple decision rule, and since simplicity is ad-
vantageous for both theoretical and practical reasons,
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it is incumbent on a responsible experimentalist or
practitioner to begin with the simplest decision rules.
Only if they prove unacceptable should more com-
plex decision rules be considered. I coined the term
“simplicity-first methodology” to describe this system-
atic approach of proceeding from simple to more com-
plex decision rules.

In a follow-up paper [1], Maass and Auer developed
an efficient algorithm for constructing a decision tree
of fixed depth d , with the minimal error rate on the
training data, and we proved theoretical bounds on the
generalization error rate of this decision tree. This em-
pirical study showed that the performance advantage
of C4.5 over one-level trees in my original study [4]
greatly diminishes when depth is increased to two, with
the two-level trees actually being superior to C4.5’s
trees on 4 of the 15 data sets in the study.

Table 1 herein compares the accuracies achieved
when d = 0, d = 1 and d = 2. These accuracies are
averages of nine repetitions of 25-fold cross-validation
on each data set. The �(1–0) column gives the accu-
racy improvement achieved by moving from a zero-
level tree, which classifies all examples according to
the majority class, to a one-level tree, and the �(2–1)
column gives the accuracy improvement achieved by
moving from a one-level tree to a two-level tree. Com-
paring these two columns, we see clear confirmation
of Hand’s observation that increasing complexity pro-
duces diminishing returns on accuracy improvement in
many domains.

There have been other studies that showed that
simple classifiers perform well on standard test data
sets. Domingos and Pazzani [2] showed that a naive
Bayesian classification algorithm significantly out-
performed state-of-the-art systems for decision tree
learning, decision rule learning and instance-based
learning in a substantial number of the 28 data sets in
their study. Kohavi [5] showed that wrapper-based fea-
ture selection, combined with a majority classifier, can
produce simple classifiers that are as accurate as C4.5’s
trees in many cases. Linear discriminants (perceptrons)
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TABLE 1
Diminishing returns with additional complexity∗

Data set Zero-level One-level Two-level �(1–0) �(2–1)

BC 70.3 67.2 66.3 −3.1 −0.9
HE 79.4 79.2 78.6 −0.2 −0.6
AP 80.2 80.0 88.6 −0.2 8.6
SE 90.7 95.0 97.3 4.3 2.3
LA 64.9 71.6 86.6 6.7 15.0
PI 65.1 73.6 74.8 8.5 1.2
SP (3) 51.9 63.2 79.4 11.3 16.2
CH 52.2 66.1 86.9 13.9 20.8
IO 64.1 78.3 86.1 14.2 7.8
PR 50.0 66.3 69.3 16.3 3.0
HD 54.5 70.9 67.1 16.4 −3.8
G2 53.4 76.2 79.7 22.8 3.5
CR 55.5 85.5 84.2 30.0 −1.3
SO (4) 36.2 85.3 91.1 49.1 5.8
IR (3) 33.3 91.9 95.7 58.6 3.8

∗The first column gives the acronym for the data set as in [1],
with the number of classes shown in parentheses if it is different
from two. The next three columns give the accuracy of the ma-
jority classifier (zero-level decision tree), one-level decision tree
and two-level decision tree, respectively. The �(1–0) column gives
the difference in accuracy between the one-level and zero-level
trees, and the final column gives the difference in accuracy between
the two-level and one-level trees. The rows are sorted according
to �(1–0).

have also been seen to perform surprisingly well [6, 9].

3. EMPIRICAL COMPARISONS OF CLASSIFIERS
IN UNKNOWN CIRCUMSTANCES

The fundamental argument put forward by David
Hand has two parts: (1) that often only small per-
formance gains arise from using complex classifiers
and (2) that the small gains seen in the idealized lab-
oratory setting will be swamped, in practical applica-
tions, by unpredictable and changing conditions that
have a substantial effect on performance. I agree with
both of these statements, in general, but I would like
to point out, with regard to the latter, that we do pos-
sess methods for coping perfectly well with certain
important kinds of unpredictable and changing circum-
stances.

Among the most important examples Hand gives of
unpredictable and changing factors that affect a classi-
fier’s usefulness in practice are the costs of the different
types of misclassification and the distribution of data
to which the classifier will be applied. I agree entirely
that in many practical settings these factors cannot be
determined at the time classifiers are being evaluated
and compared, and that these factors often change with
time.

Drummond and I have developed a method, called
cost curves, for analyzing and comparing two-class
classifier performance when the misclassification costs
and the relative frequency of the two classes are un-
known [3]. The key idea is to plot performance (ex-
pected cost, normalized to be between 0 and 1) as
a function of these unknowns. It turns out that, for the
case of expected cost, these unknowns can be com-
bined into a single aggregate unknown that also varies
between 0 and 1. Cost curves therefore are a two-
dimensional plot, with performance (normalized ex-
pected cost) as the y-axis and the aggregate unknown,
which we call PC(+), as the x-axis.

The cost curve for a given classifier is a straight line
that depicts its performance across all possible com-
binations of misclassification costs and class ratios.
Empirical confidence intervals can be computed for
cost curves and for differences between cost curves,
allowing one to answer the all-important question,
“Under what circumstances does classifier A signifi-
cantly outperform classifier B?” A software tool that
fully supports cost curve analysis is available upon re-
quest.

Figure 1 herein shows the cost curves for two clas-
sifiers on the Japanese credit screening data from the
UCI repository [7]. The solid line is the cost curve
for C4.5’s decision tree on this data set and the dashed
line is the cost curve for the one-level decision tree pro-
duced by my 1R system [4]. We can see that these two

FIG. 1. Cost curves for C4.5 (solid line) and 1R (dashed line) on
the Japanese credit screening data set.
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classifiers have identical performance when PC(+) has
a value of roughly 0.45, that the one-level tree has
a lower expected cost than C4.5’s decision tree for
larger values of PC(+) and that C4.5’s tree outper-
forms the one-level tree for smaller values.

My aim here is not to give a tutorial on cost curves,
but to point out that there are sound, practical ways to
cope with some of the factors that Hand correctly iden-
tifies as often being unknown, or subject to change,
at the time of classifier evaluation. Cost curves pro-
vide a concrete example of how we can do classifier
evaluation and comparison perfectly well without any
knowledge about misclassification costs or the class
ratios. By considering all possible combinations of
the unknown factors, exact analysis and comparison
is possible, and small performance differences can be
significant. However, this does not refute Hand’s gen-
eral point. There are other factors and kinds of changes,
such as shifting distributions within a class [10], that
we do not yet know how to cope with—a challenge for
future research.
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