
The Tradeoff Between Speed and Optimality in
Hierarchical Search

R.C. Holte, M.B. Perez, R.M. Zimmer, A.J. MacDonald

Abstract

Abstraction works by replacing a state space, SS, by another, "abstract" space that is easier to
search, SS′. There are two well-known strategies for employing the "abstract" solutions found in
SS′ to guide search in the original space. The first uses the lengths of the abstract solutions as a
heuristic for an A* search of SS. This always produces optimal solutions. The second strategy
uses the steps in the abstract solutions as subgoals for the search in SS. This strategy does not
guarantee optimality, but it does tend to find a solution quickly. In this paper, we study the trade-
offs between the loss of optimality and the gain of speed in moving from the one strategy to the
other. To perform the study, we introduce two continuous parameters whose extreme values
represent these two strategies. Because the parameters are continuous we end up with a whole
family of strategies that lie between these two. Using these parameters, we give extensive
empirical results of the effects of perturbing the parameters on searches in eight different
benchmarks. This allows us to track a continuous trade-off between optimality and speed
throughout the space of hierarchic searches.

The Tradeoff Between Speed and Optimality in
Hierarchical Search

R.C. Holte1, M.B. Perez1, R.M. Zimmer2, A.J. MacDonald3

1. Introduction

This paper draws together two separate strands of research. The common idea is that of
"hierarchical search", i.e. speeding up search in one search space, SS, by using an automatically
created "abstract" search space, SS′. A problem in SS is solved by first solving the
corresponding problem in SS′ and then using the results of this search to guide the search in SS.
The differences arise in how exactly the results of the search in SS′ are used to guide the search
in SS.

One method of hierarchical search uses the length of the solution in SS′ as a heuristic for A*
[Hart et al.,1968]. See, for example, [Holte et al., 1995; Gaschnig, 1979; Pearl, 1984; Guida and
Somalvico, 1979]. The attraction of this method is that most commonly-used techniques for
creating SS′ automatically from SS produce admissible heuristics [Prieditis, 1993]. Therefore,
this method of hierarchical search is guaranteed to produce optimal solutions.

The other widely-studied method of hierarchical search uses the individual steps in the solution
in SS′ as a sequence of subgoals to be solved in SS. The solutions of these subgoals in SS are
then linked together to form the final solution [Holte et al.,1996; Minsky,1963; Sacerdoti,1974;
Yang and Tenenberg,1990; Knoblock,1994]. In this case, the solution in SS′ serves as a skeleton
for the final solution; the process of "fleshing it out" is called "refinement". This method has the
attraction of being very fast; it has the disadvantage that the solutions it produces are not
guaranteed to be optimal.

Table 1 compares the two methods of hierarchical search in the 8 search spaces that will be used
as testbeds in this paper (see Appendix A for a description of these spaces). "Speedup" is the
ratio A*:refinement of the number of nodes expanded during search. "Suboptimality" is the
ratio of refinement’s solution length to A*’s (the optimal length). As can be seen, refinement is
at least 10 times faster than A*. The penalty paid for this speed is longer solutions: refinement’s
av erage solution length is between 16% and 60% longer than A*’s.

1 Computer Science Dept., University of Ottawa, Ottawa, Ontario, Canada K1N 6N5. holte@csi.uottawa.ca
2 Computer Science Dept., Brunel University, Uxbridge, England UB8 3PH. Robert.Zimmer@brunel.ac.uk
3 Electrical Engg. Dept., Brunel University, Uxbridge, England UB8 3PH. Alan.MacDonald@brunel.ac.uk

Holte, Perez, Zimmer, MacDonald 1 TR-95-19

Table 1. A* versus Refinement

Search Space Speedup Suboptimality
Blocks-5 10.3 1.20
5-puzzle 12.4 1.16

Fool’s Disk 36.5 1.51
Hanoi-7 19.1 1.22
KL-2000 12.4 1.38

MC 60-40-7 10.5 1.28
Permute-6 11.5 1.60

Words 22.7 1.45

In [Holte et al.,1994] we observed that A* and refinement are actually intimately related to one
another, differing only in two respects. Section 2 briefly describes the two methods of
hierarchical search and the two differences between them. The new contribution of the present
paper is to characterize these differences in terms of numerical parameters, P and W, that can be
varied continuously. P=1.0 and W=0.5 corresponds to A*, P=0.0 and W=0.0 corresponds to
refinement, and any combination of values in between corresponds to a valid search strategy
intermediate between the two. These parameters are explained in section 3.

The remaining sections explore the tradeoff between solution length and speed by varying P and
W and observing the effect on performance (speed and solution length). The first goal of this
exploration of parameter space is to see if there exists a combination that searches as quickly
(almost) as refinement and yet finds solutions as good (almost) as A*. The second goal is simply
to gain further insight into the tradeoff between speed and solution length, in the spirit of
[Gaschnig,1977].

2. Hierarchical Search: A* and Refinement

Abstractions are created in the current system using the "max-degree" STAR abstraction
technique described in [Holte et al.,1996]. This technique is very simple: the state with the
largest degree is grouped together with its neighbours within a certain distance (the "abstraction
radius") to form a single abstract state. This is repeated until all states have been assigned to
some abstract state. Having thus created one level of abstraction the process is repeated
recursively until a level is created containing just one state. This forms an abstraction hierarchy
whose top-level is the trivial search space. The bottom, or "base", level of the hierarchy is the
original search space.

Hierarchical search using A* is straightforward. As usual, at each step of the A* search a state is
removed from the OPEN list and "expanded", i.e. each of its successors is added to the OPEN list
(if it has not previously been opened). In order to add a state S to the OPEN list, h(S) must be

Holte, Perez, Zimmer, MacDonald 2 TR-95-19

known. This is is computed by searching at the next higher level of abstraction, using the
abstract state corresponding to S (call this state φ(S)) as the abstract start state and the abstract
state corresponding to the goal, φ(goal), as the abstract goal. When an abstract solution path is
found, the exact abstract distance from φ(S) to φ(goal) − which is used as h(S) − is known.

It is important to note that when the abstract path from φ(S) to φ(goal) is found, exact abstract
distance-to-goal information is known for all abstract states on this path. And each of these
abstracts states corresponds, in general, to many states in the level "below" (the state space
containing S). Therefore, a single abstract search produces heuristic estimates for many states.
All this information is cached. If an h(-) value is needed for any of these states, the value is
simply looked up without any search being done at the abstract level. On the other hand
whenever during search a node, S, is reached for which h(S) is not already known a search is
initiated at the abstract level with φ(S) as the start state.

Despite this caching technique, it is generally true that in order to solve a single base level
problem, hierarchical A* will need to solve many problems at the first level of abstraction. And
each one of these abstract problems will require solving many problems at the next level of
abstraction, etc. The number of abstract searches associated with a single base level search is
usually so great that A* must be specially customized for hierarchical search in order to be cost-
effective [Holte et al.,1995].

Hierarchical search using refinement is also straightforward (see [Holte et al.,1996] for a full
description). Given a start state, Start, and a goal state, Goal, a search is initiated at the next
higher level with start state φ(Start) and goal φ(Goal). For reasons that will explained
momentarily, we number the states in the abstract solution path in reverse order: An,An-1,...,A1,

A0. By construction φ(Start) = An (the first state in the abstract solution) and φ(Goal) = A0 (the

last state in the abstract solution). Refinement starts by setting Sn=Start and searching, in a

breadth-first manner, for a path from Sn to any state, Sj, such that φ(Sj) = Aj for any j < n. In

general, having reached Si, a state such that φ(Si) = Ai, refinement proceeds by searching for a

path from Si to any state, Sj, such that φ(Sj) =Aj for some j < i. The state S0 found in this way

will have the property that φ(S0) = A0 = φ(Goal) but it may not be equal to Goal. If it is not,

refinement does one final search, for a path from S0 to the goal. An important restriction is that

in searching forward from Si refinement will ignore state, S, unless φ(S) = Aj for some j ≤ i. This

restriction is a tremendous boost to efficiency, focusing search on the set of nodes defined by the
abstract solution path and pruning away all others.

The reason the states in the abstract solution path are numbered in reverse order (finishing with
0) is because by doing so the index of the abstract state is precisely the distance, in the abstract
solution path, from that state to the abstract goal. Abstract state A0 is the abstract goal, its

distance to the abstract goal is 0. Abstract state A1 is 1 step away from the abstract goal, and so

on. This highlights the key connection between refinement and A*: both are guided by h(S), the

Holte, Perez, Zimmer, MacDonald 3 TR-95-19

abstract distance (on the solution path found) from φ(S) to φ(Goal). The first difference between
refinement and A* is how h(S) is used in computing a state’s "priority". In A* h(S) is added to
g(S), the distance from the start state to S, to compute priority, whereas in refinement h(S) is used

by itself4.

The second difference between refinement and A* is in what they do when they encounter a state
S for which h(S) is not known. Refinement does just one search at the abstract level. This
generates h(-) values for a certain set of states and refinement’s search is confined to this set.
Refinement ignores all states outside this set (i.e. all states whose h(-) value is not determined by
the first abstract search). A* is the exact opposite. Every time it encounters a state S for which
h(S) is not known it initiates a search at the abstract level in order to determine h(S).

These are the only two differences between A* and refinement. Although they might at first
seem to be qualitative differences, each can be formulated quantitatively, i.e. in terms of a
numerical parameter whose value can be varied continuously between a value corresponding to
A* and a value corresponding to refinement. The parameter associated with the first difference
will be called W, the parameter associated with second difference P.

3. Search Parameters W and P

Search parameter W is a familiar one in A* research. In A*, the "priority" of a state, f(S),
combines two distance measures: g(S), the distance to S from the start state, and h(S), the
estimated distance from S to the goal. In normal A*, these two factors are given equal weight:
f(N) = g(N) + h(N). Various researchers [Pohl,1970; Gaschnig,1977] have explored the effects of
weighting these two factors differently. In general, then, f(N) = W*g(N) + (1-W)*h(N), where W
is a parameter the user can set. Normal A*, which weighs g and h equally, corresponds to
W=0.5.

When W=0, f(S) is based entirely on h(S). This will correspond to refinement providing that
states whose h(-) values are equal are searched in a breadth first manner. This is normally
implemented by an explicit tie-breaking rule or implicitly by adding states of equal priority to the
OPEN list in a first-in-first-out manner. Howev er, neither of these is done in our system; the tie-
breaking rule and OPEN list management were chosen to optimize A*’s performance. If W is
set to 0, our system does a search among states of equal priority more akin to depth-first than
breadth-first search, which results in absurdly long solutions. Thus, W=0 does not properly
represent refinement in our particular implementation. We therefore use W=0.01 to represent
refinement. This weight is so small that it does not influence the priority order of states with
different h(-) values. It does however influence the priority of states with the same h(-) values

4 because refinement searches in a breadth-first manner, g(-) is used implicitly to break ties among states whose h(-) values are equal. This
point will be important later.

Holte, Perez, Zimmer, MacDonald 4 TR-95-19

and different g(-) values. Instead of being subject to the hard-coded tie-breaking rule, these
states are now ordered by the small weight assigned to g(-): states with smaller g(-) will be
favoured, as is required by refinement.

The second parameter characterizing the continuum of search techniques is a probability, P. To
understand what P means, consider what happens when search at some level reaches a state S for
h(S) is not known. In this circumstance A* always initiates a new search in the abstract space in
order to compute h(S). By contrast refinement never does so: if h(S) is not determined by the
very first search at the abstract level, then S is ignored. In between these two extremes are search
techniques that sometimes initiate a new search and sometimes do not. The parameter P
specifies the probability that a new search will be initiated at the abstract level when a state with

an unknown h(-) value is encountered5. Thus, for A* P = 1.0 and for refinement P = 0.0.

The definition of the P parameter as the probability of opening or rejecting a state during search,
is intended simply as a first "rough cut". In practice, the choice of nodes to open would likely be
better made on a reasoned basis than by chance. The significance of the P parameter lies not in
the specific definition we have giv en but in introducing the concept that a search system may
choose (somehow) to add to the OPEN list only some of the states that A* would add.

These two parameters have been added to the hierarchical A* system called "V3" in [Holte et
al.,1995]. This system itself is an ordinary A* with a few special caching techniques added to
reduce duplicate effort during hierarchical search. The W parameter is obviously introduced into
the computation of f(-). The P parameter is introduced into the step in A* where states are added
to the OPEN list, since it is at this step that the h(-) value is required. States whose h(-) value is
known are added as usual. For each state S at this step for which h(S) is not known a
probabilistic decision is made: S is ignored with probability 1-P and, with probability P, h(S) is
computed by searching at the abstract level and then S is added to OPEN. The only exception to
this rule is the start state: h(Start) is always computed so that Start can be added to OPEN to
initiate a search. The computation of h(Start) is what causes the first search to be done at the
abstract level; for refinement, or any other technique for which P=0, this is the only search at the
abstract level.

4. The Principal Variations

Certain combinations of W and P correspond to familiar systems. P = 1.0 and W = 0.5 is ordinary
A*, of course. P = 1.0 and W = 1.0 is blind search (A* with h(S) = 0 for all S). But it is a
particularly inefficient implementation since it actually computes h(S) for every S encountered
during search and then multiplies the h(S) value by 0 when computing f(S). The Graph Traverser
[Doran, 1966; Doran and Michie, 1968] corresponds to P = 1.0 and W = 0.01 (as with refinement,

5 If the same state is encountered several times this probabilistic decision will be made independently each time.

Holte, Perez, Zimmer, MacDonald 5 TR-95-19

Graph Traverser would correspond to W = 0 if ties were broken appropriately).

When P = 0.0 one search is made at each abstract level from start to goal. All subsequent search
is at the base level and is confined to the portion of the state space that corresponds to the
abstract solution path. Different values for W correspond to different strategies for searching
within this portion of state space. W=0.01 is ordinary refinement. W = 1.0 conducts this search
in a breadth first manner without regard for a state’s h(-) value. This method is called "optimal
refinement" (OptR) in [Holte et al., 1996] because it finds the shortest possible refinement of the
given abstract path. Another method that finds an optimal refinement corresponds to W = 0.5.
This method will be called "refinement by A*" (Ref-A*) because it conducts the search like A*,
giving equal weight to g(-) and h(-). It differs from A* in that its search is confined the portion of
state space corresponding to the first (and only) abstract solution path.

Note that if the shortest refinement is not unique, OptR and Ref-A* might produce different
refinements, say Ref1 and Ref2. At the next level down in the abstraction hierarchy, Ref1 will be
used by OptR to constrain search, but Ref2 will be used by Ref-A*. At this level, the shortest
refinement of Ref1 might be a different length than the shortest refinement of Ref2. Thus, in an
abstraction hierarchy with severals OptR and Ref-A* do not necessarily produce optimal
solutions, or even equal length solutions. In preliminary experiments, we found that the two
techniques do produce solutions of very similar lengths and that Ref-A* usually does less work.

The interesting range of variation for W is thus between 0.01 and 0.5. The entire range of P (0.0
to 1.0) is of interest. The four combinations of extreme values are the search methods of primary
interest: Graph Traverser (P = 1.0, W = 0.01), A* (P = 1.0, W = 0.5), refinement (P = 0.0,
W = 0.01), and Ref-A* (P = 0.0, W = 0.5). These search methods were evaluated empirically on 8
search spaces (see appendix A). An abstraction radius of 2 was used to create the abstraction
hierarchies. Test problems for each state space were generated by choosing 100 pairs of states at
random. Each pair of states, <S1,S2>, defined two problems to be solved: <start=S1,goal=S2>
and <start=S2,goal=S1>. To permit detailed comparison the same 200 problems were used in
ev ery experiment. All the results shown are averages over these 200 problems.

Table 2 shows the results for the Blocks-5 search space. Results for all spaces are in Appendix
B; table 2 is copied here so that its format may be explained. The table is in two parts; the left
side contains the number of nodes expanded (our measure of "speed"), the right side solution
length. "Nodes expanded" counts all the nodes expanded to solve a single base level problem in
all searches at all levels of abstraction. Each part has two columns, one for W = 0.01 the other
for W = 0.5, and one row for each P value. Every table’s top row is P = 1.0 and its bottom row is
P = 0.0. Those are the two rows of interest in this section (Graph Traverser and A* are the top
row, refinement and A*-ref are the bottom row). In section 6 we will discuss the intermediate
values of P in the tables.

Holte, Perez, Zimmer, MacDonald 6 TR-95-19

Table 2. Blocks-5

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 157 402 10.7 9.9
0.5 128 274 10.95 10.27
0.4 116 226 10.92 10.47
0.3 102 185 11.10 10.61
0.2 85 138 11.15 10.81
0.1 61 88 11.34 11.10
0.0 39 47 11.9 11.6

Perhaps the most striking feature of the experimental results is the very great difference between
the number of nodes expanded by A* and by refinement. This was summarized in Table 1: A*
expands more than 10 times as many nodes as refinement in every state space. However, this
remarkable speedup is accompanied by an increase in the length of the solutions found.
Refinement’s solutions are considerably longer than A*’s for several of the search spaces.

Graph Traverser and Ref-A* lie between A* and refinement in the 2-dimensional W-P parameter
space, and their performance will therefore be between these two extremes. Ref-A* turns out not
to be a useful alternative. Its solutions are only slightly (2%) shorter than refinement’s but it is
much slower, expanding approximately 35% more nodes than refinement.

Graph Traverser provides an extremely interesting compromise between speed and optimality.
The left half of Table 3 compares Graph Traverser to A*, in the same format as Table 1 (the title
"Length Ratio" has been substituted for "Suboptimality"). Graph Traverser’s speedup is
moderate, but by no means negligible, and its solutions are nearly optimal (in the worst search
space they are 17% longer than optimal). The right half of Table 3 compares Graph Traverser to
refinement in an analogous manner. "Speedup" here is the ratio Graph Traverser:refinement of
number of nodes expanded; "Length ratio" is the ratio of refinement’s solution lengths to Graph
Trav erser’s. By comparing the left and right halves of this table we can see that Graph Traverser
is almost a perfect "midpoint" between A* and refinement. The length ratios in the two halves
are often very similar. When there is a difference, the ratio between Graph Traverser and A* is
always smaller (= better), sometimes much smaller, than the ratio between refinement and Graph
Trav erser. The speedup columns present a less consistent picture. In some cases Graph
Trav erser’s speedup over A* is greater than refinement’s speedup over Graph Traverser; in
slightly more cases the opposite is true.

Holte, Perez, Zimmer, MacDonald 7 TR-95-19

Table 3. Graph Traverser compared to A* and Refinement

A* Refinement
Speedup Length Ratio Speedup Length Ratio

Search Space

Blocks-5 2.6 1.08 4.02 1.11
5-puzzle 3.7 1.05 3.33 1.1

Fool’s Disk 4.33 1.07 8.60 1.41
Hanoi-7 7.3 1.04 2.6 1.17
KL-2000 3.5 1.14 3.5 1.20

MC 60-40-7 4.2 1.14 2.49 1.12
Permute-6 2.5 1.17 4.66 1.37

Words 3.53 1.12 6.44 1.30

5. Varying the W parameter, with P=1.0

In this section we examine more closely the parameter space between A* and Graph Traverser.
This is done by fixing P=1.0 and varying W between 0.5 (A*) and 0.01 (Graph Traverser). In
four of the spaces (5-puzzle, Blocks-5, Hanoi-7, and Fool’s Disk) Graph Traverser solution’s are
within 8% of A*’s (see Table 3). Thus, in these spaces solution length is virtually unaffected by
W (when P = 1.0). We therefore restrict our attention in this section to the other four spaces.

Values of W between 0.5 and 0.35 reduced the number of nodes expanded by between 16%
(Permute-6 and MC 60-40-7) and 30% (Words), but had virtually no effect on solution length.
This was expected. The abstractions in this study are created by grouping together a state with
its immediate neighbours to form a single abstract state. Consequently, distances at one level are
roughly half the distances in the level below. Giving h(-) twice the weight given to g(-), which is
what W = 0.35 does, corrects for this difference in scale. Solution length is slightly suboptimal
because doubling h(-) occasionally overestimates a distance.

Values of W between 0.01 (Graph Traverser) and 0.20 all gav e virtually identical results.
W = 0.20 gives h(-) 4 times the weight it gives g(-). It was not expected that W = 0.20 would give
the same performance as W = 0.01. The latter is so small (relative to the diameters of these
search spaces) that it causes g(-) to be entirely ignored, whereas the former is only twice the
correct scaling factor.

The results for values of W between 0.20 and 0.35 have been converted into suboptimality and
speedup ratios and plotted in Figure 1 (one curve for each of the four search spaces being
examined). Suboptimality, plotted on the X-axis, is computed by dividing the solution length
obtained using a particular value of W by the optimal solution length. Speedup, plotted on the
Y-axis, is computed by dividing the number of nodes expanded by A* by the number expanded
using a particular value of W. Having thus normalized the values relative to A*, A*’s results

Holte, Perez, Zimmer, MacDonald 8 TR-95-19

Figure 1.

1

1.5

2

2.5

3

3.5

4

4.5

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18

Sp
ee

du
p

Suboptimality

"KL-2000"
"MC-60-40-7"

"Permute-6"
"Words"

correspond to the point (1,1) on the plot. Graph Traverser’s speedup and suboptimality values
are included in this plot: as they hav e the greatest speedup and the greatest suboptimality they are
the upper right endpoint of each curve.

The key feature of these curves is their slope. A steep slope means a favourable tradeoff between
speed and solution length: a large increase in speedup can be obtained with only by a small
accompanying increase in solution length. The fact the curves all steeply rise from (1,1) to the
next data point (corresponding to W = 0.35) reflects the observation made above that speedup
could be obtained with virtually no loss of solution length for weights between 0.5 and 0.35. The
slope decreases after this point and is very similar for three of the curves at all the values of W
examined (0.3, 0.25, 0.2). In the curve for Permute-6 the slope decreases as W increases,
indicating that increasing speedup becomes more costly, in terms of increased solution length, as
W increases. In other words, in Permute-6 the tradeoff between speedup and solution length gets
less favourable as W increases, whereas in the other spaces the tradeoff is constant.

In examining the effects of W on search performance [Gaschnig,1977] plots the number of nodes
expanded in solving a problem using a given value of W as a function of the length of the
problem’s optimal solution. It was observed there, as here, that, in general, decreasing W

Holte, Perez, Zimmer, MacDonald 9 TR-95-19

reduces the number of nodes expanded6. Howev er, in [Gaschnig,1977] this was true only for
problems whose optimal solutions were short or long. For problems with optimal solutions of
intermediate length the opposite effect was observed: decreasing W actually increased the
number of nodes expanded. We did not observe this anomalous behaviour in our study: in the
four search spaces in which we varied W a smaller value of W reduced the number of nodes
expanded for problems of all solution lengths.

6. Varying the P parameter, with W=0.5 and 0.01

The most dramatic changes in performance are the result of changing the P parameter when
W = 0.5. This transforms A* into Ref-A* and produces a speedup of between 5 and 30 and an
increase in solution lengths of between 15% and 60%. To inv estigate this transition,
performance was measured for several intermediate P values, the exact values depending on the
search space (see Appendix B). In Figure 2 these results have been converted to suboptimality
and speedup figures and plotted in the same manner as for Figure 1 (but note that the axis scales
in the two figures are different). The bottom left point of each curve is again A* (1,1); the top
right point is Ref-A*. As in Figure 1 it is the slopes of these curves that are of interest.

The curves all have the same general shape. Initially the slope is very shallow, almost horizontal.
This indicates that as P is reduced from 1.0 solution lengths increase without any significant
speedup. Beyond the initial shallow segment, the slope increases, usually fairly rapidly until it
reaches its final value. The final slopes are all quite steep except for Permute-6’s. The extent (in
terms of the X-axis, increased solution length) of the initial shallow segment is different for every
search space. It is shortest (non-existent actually) for Hanoi-7 and greatest for Permute-6. This
means that for Hanoi-7, the increase in solution lengths caused by reducing P from 1.0 are
immediately compensated for by a significant speedup but for Permute-6 solution lengths must
increase a great deal before a significant speedup occurs. There are four spaces for which the
initial segment is sufficiently short that the P parameter offers a useful way of controlling the
tradeoff between speed and solution length (Blocks-5, 5-Puzzle, Fool’s Disk, and Hanoi-7). For
three spaces (KL-2000, MC 60-40-7, and Permute-6) the initial segment is too long and the final
slope too shallow for the intermediate P values to be useful: performance in these spaces
essentially "flips" from that of A* to that of Ref-A*. One space (Words) appears to have a
"3-phase" behaviour: although it has a long initial segment, its final segment is just long and
steep enough to provide one level of intermediate performance (a suboptimality of about 1.3 and
a speedup of about 6) between A* and Ref-A*.

6 W in [Gashnig,1977] means the opposite of W in this paper. To avoid confusion [Gashnig,1977]’s observations have been recast using
our sense of W.

Holte, Perez, Zimmer, MacDonald 10 TR-95-19

Figure 2.

0

5

10

15

20

25

30

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

S
pe

ed
up

Suboptimality

"Blocks-5"
"5-Puzzle"

"Fools_Disk"
"Hanoi-7"

"KL-2000"
"MC-60-40-7"

"Permute-6"
"Words"

The transition between Graph Traverser and refinement can be examined in the same way, by
varying P between 1.0 and 0.0 while holding W = 0.01. The results are presented in Figure 3. In
this figure speedup and solution length ratio are normalized with respect to Graph Traverser, so it
is the point (1,1) at the bottom left of each curve. The top right endpoint is refinement. The
most striking difference between Figures 2 and 3 is how tightly clustered the curves are in Figure
3. With the exception of the Blocks-5 and 5-Puzzle spaces, the tradeoff between speed and
solution length is very similar in all the spaces. The scale in Figure 3 is quite different from that
in Figure 2; if drawn according to Figure 2’s scale the curves are very tightly clustered and have
a much shallower slope. To get a sense of this scaling effect, the 6 curves that are clustered
together in Figure 3 are virtually identical to the Words curve in Figure 2 (but ending at a
suboptimality of about 1.3). As with that Words curve, with the longer of the curves in Figure 3
(Fool’s Disk, KL-2000, Words and perhaps Permute-6) a suitable choice of P provides useful
intermediate performance (a suboptimality of about 1.2 and a speedup of about 2.5) between
Graph Traverser and refinement.

Holte, Perez, Zimmer, MacDonald 11 TR-95-19

Figure 3.

1

2

3

4

5

6

7

8

9

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

S
pe

ed
up

Length Ratio

"Blocks-5"
"5-Puzzle"

"Fools_Disk"
"Hanoi-7"

"KL-2000"
"MC-60-40-7"

"Permute-6"
"Words"

7. Summary

This paper began with the observation that the two main techniques for searching with
abstraction hierarchies, A* and refinement, differ in only two respects. We introduced two
numerical parameters, W and P, and generic search algorithm (an adaptation of A*) which
behaved like A* when P = 1.0 and W = 0.5 and like refinement when P = 1.0 and W = 0.01. Every
intermediate combination of values corresponds to a legitimate search technique whose
performance, in terms of speed and solution length, will be between the performance of A* and
that of refinement. The performance of these intermediate systems was investigated
experimentally.

The Graph Traverser system, which corresponds to P = 1.0 and W = 0.01, proved to be an
excellent midpoint between A* and refinement. It is between 2.5 and 7 times faster than A* and
its solutions are between 4% and 17% longer than optimal. By steadily decreasing W from 0.5

Holte, Perez, Zimmer, MacDonald 12 TR-95-19

down to 0.01 with P fixed at 1.0 we were able to study in detail the transition from A*’s
performance to Graph Traverser’s. This consisted of three stages. As W decreased towards 0.35
search "speed" increased (i.e. the number of nodes expanded decreased) but solutions remained
optimal. Between 0.35 and 0.20 speed continued to increase but now solution length also
increased steadily; the tradeoff between speed and solution length was fairly constant over this
interval. All values below 0.20 gav e the same performance as Graph Traverser.

Heuristic search algorithms, such as A* and Graph Traverser can be transformed into refinement-
like searches by reducing P from 1.0 to 0.0. A detailed study revealed that reducing P will at first
cause solution lengths to rise without any significant speedup. In some spaces this unfavourable
tradeoff continues until performance suddenly "flips" to refinement’s performance. In other
spaces the initial unfavourable stage is followed by a stage in which the tradeoff is quite
favourable (i.e. further decreasing P causes solutions lengths to continue to increase but now
causes speed to increase significiantly). Overall, it is clear that the parameter space continuum
offers a wide variety of alternative compromises between speed and solution length.

The experiments reported in this paper were intended to illustrate the usefulness of the parameter
space continuum and to investigate in detail the relationship between well-known points in that
space. All these experiments were on the boundary of the parameter space; future experiments
should investigate interior points, such as W = 0.3 and P = 0.1. Also, the effect of the abstraction
radius on our results deserves further investigation. A radius of 2 was used in this paper because
it maximizes the performance difference between A* and refinement, and therefore magnifies the
effects we wished to observe.

Another promising direction of research is based on the observation7 that after a search has been
completed with one value of P it is possible to increase P (and therefore find a shorter solution)
without having to redo any of the search already completed. To do this, states that are "rejected"
(i.e. not opened) by the probabilistic decision are put on a special reserve list. When P is
increased, a random sample of the states in this list can be opened and search continued. This
gives rise to a kind of anytime algorithm. A solution is first found using a small P value: this
solution will be found quickly. If it is unacceptably long, P can be increased and the search
restarted, as just described. The results reported in this paper suggest that it will usually require
considerably more search to improve a solution. Nevertheless, the virtue of an anytime
algorithm is that it very quickly produces a solution which can be used if time runs out before a
better solution can be found.

Acknowledgements
This research was supported in part by an operating grant from the Natural Sciences and Engineering
Research Council of Canada. The software was in part written by Denys Duchier and C. Drummond.

7 due to Chris Drummond

Holte, Perez, Zimmer, MacDonald 13 TR-95-19

References

Doran, J.E. (1968), "New Dev elopments of the Graph Traverser", in Machine Intelligence 2, E. Dale and D. Michie
(eds.), Oliver and Boyd, Edinburgh.

Doran, J.E. and D. Michie (1966), "Experiments with the Graph Traverser Program", Proceedings of the Royal
Society of London, Series A, vol. 294, pp. 235-259.

Gaschnig, J. (1979), "A Problem Similarity Approach to Devising Heuristics: First Results", Proc. IJCAI’79,
pp. 301-307.

Gaschnig, J. (1977), "Exactly How Good are Heuristics?: Tow ard a Realistic Predictive Theory of Best-first Search",
Proc. IJCAI’77, pp. 434-441.

Guida, G. and M. Somalvico (1979), "A method for computing Heuristics in Problem Solving", Information
Sciences, vol. 19, pp. 251-259.

Hart, P.E., N.J. Nilsson, and B. Raphael (1968), "A Formal Basis for the Heuristic Determination of Minimum Cost
Paths", IEEE Transactions on Systems Science and Cybernetics, vol. 4(2), pp. 100-107.

Holte, R.C., T. Mkadmi, R.M. Zimmer, and A.J. MacDonald (1996), "Speeding Up Problem-Solving by Abstraction:
A Graph-Oriented Approach". to appear in the special issue of Artificial Intelligence on Empirical AI, edited by
Paul Cohen and Bruce Porter.

Holte, R.C., M.B. Perez, R.M. Zimmer, and A.J. MacDonald (1995), "Hierarchical A*: Breaking Valtorta’s Barrier",
technical report TR-95-18, Computer Science Dept., University of Ottawa.

Holte, R.C., C. Drummond, M.B. Perez, R.M. Zimmer, and A.J. MacDonald (1994), "Searching with Abstractions:
A Unifying Framework and New High-Performance Algorithm", Proc. of the 10th Canadian Conference on
Artificial Intelligence (AI’94), Morgan Kaufman Publishers, pp. 263-270.

Kavraki, L. and J.-C. Latombe (1994), "Randomized Preprocessing of Configuration Space for Fast Path Planning",
Proceedings of the IEEE International Conference on Robotics and Automation.

Knoblock, C.A. (1994), "Automatically Generating Abstractions for Planning", Artificial Intelligence, vol. 68(2),
pp.243-302.

Minsky, M. (1963), "Steps Tow ard Artificial Intelligence", in Computers and Thought, E. Feigenbaum and J.
Feldman (eds.), McGraw-Hill, pp. 406-452.

Pearl, J. (1984), Heuristics, Addison-Wesley.

Pohl, I. (1970), "Heuristic Search Viewed as Path Finding in a Graph", Artificial Intelligence, vol. 1(3), pp. 193-204.

Prieditis, A. (1993), "Machine Discovery of Admissible Heuristics", Machine Learning, vol.12, pp. 117-142.

Sacerdoti, E. (1974), "Planning in a hierarchy of abstraction spaces", Artificial Intelligence, vol. 5(2), pp. 115-135.

Valtorta, M. (1984), "A result on the computational complexity of heuristic estimates for the A* algorithm",
Information Sciences, vol. 34, pp. 48-59.

Yang, Q. and J.D. Tenenberg (1990), "Abtweak: Abstracting a nonlinear, least commitment planner", Proc. AAAI’90,
pp. 204-209.

Holte, Perez, Zimmer, MacDonald 14 TR-95-19

Appendix A. State Spaces Used in the Experiments

Blocks-5
There are N distinct blocks each of which is either on the "table" or on top of another block. There is a "robot" that can hold one
block at a time and execute one of four operations: put the block being held onto the table, put it down on top of a specific stack
of blocks, pick up a block from the table, and pick up the block on top of a specific stack. We used the 5 block version of this
puzzle, which has 866 states and 2090 edges. The branching factor varies considerably from one to five, depending on the
number of stacks in the state. The average branching factor is 2.4.

5-puzzle.
This is a 2×3 version of the 8-puzzle. There are 6 positions, arranged in 2 rows and 3 columns, and 5 distinct tiles, each
occupying one position. The unoccupied position is regarded as containing a blank. Tiles adjacent to the unoccupied position
can be moved into it, thereby moving the blank into the position just vacated. The state space comprises two unconnected regions
each containing 360 states which we have connected the space by adding a single edge between one randomly chosen state in
each region. Two-thirds of the states have only 2 successors, which means the branching factor at these states is effectively 1
(because every edge has an inverse, so one of the 2 successors will be the state from which the current one was reached). The
other states have 3 successors.

Fool’s Disk
There are 4 concentric rings with 8 integers evenly spaced around each ring. A move consists of rotating one of the rings 45
degrees clockwise or anticlockwise. Thus 8 moves are available in every state. We used the standard arrangement of integers on
the disks − see [Prieditis,1993]. This gives rise to a graph containing 4096 states.

Hanoi-7
In the Towers of Hanoi puzzle there are three pegs and N different sized disks sitting on the pegs with the smaller disks above the
larger disks on the same peg. The top disk on a peg may be moved onto an empty peg or onto the top of any peg whose top disk
is smaller than the one being moved. We used the 7-disk version of this puzzle, which has 2187 states. Each state (except for the
3 states in which all disks are on the same peg) has 3 successors, but the effective branching factor is considerably less than 3
because of the structure of the space.

KL-2000
This is the graph "connect2000_1000.res" provided to us by Lydia Kavraki and J-C. Latombe, of Stanford University. It is
produced by their algorithm for discretizing the continuous space of states/motions of robots with many degrees of freedom
[Kavraki and Latombe, 1994]. This graph has 2736 nodes and an average branching factor of 10.5.

MC 60-40-7
There are M "missionaries" and C "cannibals" and a river on which there is a boat capable of holding up to B people. In any
given state the boat is available on one of the river banks and a particular number of the missionaries and cannibals are on each
bank. To change state, some of the people get into the boat and cross to the other side. The boat cannot change sides unless at
least one person is in it. At no time, and in no place (not even the boat), may the cannibals outnumber the missionaries. We used
M=60, C=40, and B=7. The resulting graph has 1878 states and 37936 edges (for an average branching factor of 20.2).

Permute-6.
A state is a permutation of the integers 1−N. There are N-1 operators numbered 2 to N. Operator K reverses the order of the first
K integers in the current state. For example, applied to the state [3,2,5,6,1,7,4,...] operator 4 produces [6,5,2,3,1,7,4...]. Operator
N rev erses the whole permutation. We used N=6, which gives rise to 6! = 720 states. All operators are applicable in every state,
so each state has 5 successors.

Words
This graph was obtained from the Stanford GraphBase which was compiled by Donald Knuth and is available in directory
pub/sgb at the ftp site labrea.stanford.edu. The nodes in the graph are the 5-letter words in English. Tw o words are connected by
an edge if they differ in exactly one letter. We use the largest connected component of this graph, which has 4493 nodes and an
av erage branching factor of 6.

Holte, Perez, Zimmer, MacDonald 15 TR-95-19

Appendix B. Tables of Results
Blocks-5

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 157 402 10.7 9.9
0.5 128 274 10.95 10.27
0.4 116 226 10.92 10.47
0.3 102 185 11.10 10.61
0.2 85 138 11.15 10.81
0.1 61 88 11.34 11.10
0.0 39 47 11.9 11.6

5-Puzzle

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 150 560 20 19
0.5 112 323 20.8 20.0
0.4 99 249 20.9 20.2
0.3 91 188 21.2 20.1
0.2 72 126 21.7 21.0
0.1 54 84 21.9 21.7
0.0 45 56 22 22

Fool’s Disk

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 352 1525 8.16 7.62
0.1 171 778 9.22 8.25
0.05 117 437 9.67 8.70
0.025 76 182 10.31 9.41
0.01 57 113 10.64 10.26
0.005 42 53 11.5 11.18
0.0 42 53 11.5 11.2

Hanoi-7

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 432 3174 70 67
0.3 278 634 75.2 71.3
0.2 237 410 76.2 73.3
0.1 188 279 79.8 75.9
0.05 175 234 80.9 77.8
0.025 169 215 81.8 78.8
0.0 166 205 82 80

KL-2000

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 291 1027 11.3 9.87
0.1 225 804 12.33 10.88
0.05 187 679 12.63 11.27
0.025 143 458 13.04 11.95
0.01 112 336 13.15 12.49
0.005 83 132 13.62 13.26
0.0 83 132 13.6 13.3

MC 60-40-7

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 204 863 14.4 12.59
0.2 186 846 15.00 12.82
0.1 175 838 15.25 13.07
0.05 159 822 15.59 13.30
0.01 126 693 16.01 13.96
0.005 80 144 16.58 15.53
0.0 82 148 16.1 15.4

Permute-6

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 98 242 5.52 4.71
0.5 67 183 5.95 5.20
0.4 61 167 6.03 5.48
0.3 52 151 6.17 5.69
0.2 45 107 6.57 6.01
0.1 36 71 6.66 6.60
0.0 21 23 7.55 7.55

Words

Nodes Expanded Solution Length
P W = 0.01 W = 0.5 W = 0.01 W = 0.5

1.0 399 1410 9.17 8.22
0.1 204 714 10.37 9.50
0.05 154 485 10.86 9.92
0.025 107 250 11.36 10.58
0.01 92 168 11.40 10.84
0.005 62 88 11.87 11.78
0.0 62 88 11.9 11.8

Holte, Perez, Zimmer, MacDonald 16 TR-95-19

