
PSVN� A Vector Representation for Production Systems TR������ �

PSVN� A Vector Representation for Production Systems

Istv�an T� Hern�adv�olgyi and Robert C� Holte
University of Ottawa

School of Information Technology � Engineering
Ottawa� Ontario� K�N �N�� Canada
Email� fistvan�holteg�site�uottawa�ca

Abstract

In this paper we present a production system
which acts on �xed length vectors of labels� Our
goal is to automatically generate heuristics to
search the state space for shortest paths between
states e�ciently� The heuristic values which guide
search in the state space are obtained by searching
for the shortest path in an abstract space derived
from the de�nition of the original space� In PSVN� a
state is a �xed length vector of labels and abstrac�
tions are generated by simply mapping the set
of labels to another smaller set of labels �domain
abstraction�� A domain abstraction on labels in�
duces a state space abstraction and this abstract
space preserves important properties of the origi�
nal space while usually being signi�cantly smaller
in size� It is guaranteed that the shortest path
between two states in the original space is at least
as long as the shortest path between their images
in the abstract space� Hence� such abstractions
provide admissible heuristics for search algorithms
such as A	 and IDA	� The mapping of states and
operators can be e�ciently obtained by applying
the domain map on the labels� We explore im�
portant properties of state spaces de�ned in PSVN

and abstractions generated by domain maps� De�
spite its simplicity� PSVN is capable to de�ne all
�nitely generated permutation groups and such
benchmark problems as Rubik
s Cube� the sliding�
tile puzzles and the Blocks World�

Introduction

It is quite common in Arti	cial Intelligence to represent
a problem in a formalism which can be easily imple

mented and has properties that make problem solving
computationally feasible� It is often a natural approach
to model the problem with an implicitly generated
graph where the vertices are the reachable states and
the directed labeled edges correspond to the applica

tion of operators� Games like Chess� Checkers and Go

Moku and puzzles like the Blocks World� Rubik�s Cube
and the sliding tile puzzles are usually represented this
way� These problems are often solved by searching the
state space for a goal state� For large problems� like the

ones mentioned above� it is computationally infeasible
to enumerate the entire state space and search it as an
explicit graph� Instead states are generated as they are
encountered by applying operators� Often these prob

lems are de	ned in production system notations� which
provide state and operator descriptions �like STRIPS
�Fikes � Nilsson �
����� Blind search will eventually
expand most of the state space� To reduce the num

ber of states expanded by the algorithm� heuristic esti

mates are calculated to rank the states with respect to
how close they are to the goal� It is not an easy prob

lem in general to invent accurate heuristics �Pearl �
���
Prieditis �

��� Some search algorithms� like A� and
IDA� �Korf �
��� are guaranteed to 	nd a shortest path
if the heuristic values are underestimates of the true
distance from the state to the goal� Such heuristics are
also called admissible�

In PSVN� states are represented by 	xed length vectors
of labels� A domain abstraction � is a map from the
set of labels to another smaller set of labels� � is ap

plied to the operators O and to the seed state s�� The
transitive closure of ��O� and ��s�� � the set of reach�
able states from s� by applying operators from ��O� �
is another state space which preserves many important
properties of the original space� but it is usually magni

tudes smaller� It is also the case� which we will prove�
that the shortest path connecting two states in the orig

inal space is at least as long as the shortest path con

necting their images in the abstract space� Hence the
length of the shortest path connecting the image of a
state s to the image of the goal state in the abstract
space is an admissible heuristic� The heuristic function
can be stored as a table of states and the length of their
shortest path to the image of the goal state� The heuris

tic value h�s� is obtained by applying the domain map
to s and retrieving the value from the table� Precom

puted heuristic values stored in tables are also called
pattern databases �Culberson � Schae�er �

��� and
have been successfully used to 	nd shortest paths in
very large state spaces �Rubik�s Cube �Korf �

��� ��

Puzzle �Culberson � Schae�er �

���� Encouraged by
these results� we designed PSVN to be able to represent
these problems and at the same time provide a conve

PSVN� A Vector Representation for Production Systems TR������ �

nient and e�cient way to generate pattern databases�

State Space Representation �

Generation

Formally� a state space is de	ned by a triple S ��
s�� O� L �� where s� is a state� O is a set of operators�
and L is a 	nite set of labels� The state space is the
transitive closure of s� and the operators� i�e�� it con

sists of all reachable states from s� by any sequence of
operators� s� is the seed state� For a problem to be
solvable� both goal state g and start state s must be in
S and g must be reachable from s� For example� the
state space of Rubik�s Cube� is the set of all scrambled
cubes reachable by applying the quarter turns� If one
decides to arbitrarily rearrange the colored stickers� it
is not guaranteed anymore that it can be obtained from
the seed state� as not all permutations of the �� stickers
can be obtained by legal moves�

A state in PSVN is a 	xed length vector of labels from L�
Operators are de	ned by a left
hand
side �LHS� and a
right
hand
side �RHS� each having the same length as
a state vector� LHS represents a precondition and may
introduce variables which are bound to labels� RHS de

	nes the resulting state� A constant in LHS represents
an exact match for the state at that position� An vari

able in LHS represents a binding of the label in the state
to which LHS is being applied and an underscore � � ig

nores the label� In RHS� a constant label or an identi	er
bound in LHS designates the assignment of the new la

bel at the position and the underscore leaves the label
untouched� Without loss of generality� we assume that
labels are non
negative integers� For example� consider
the following operator de	nition�

� A�A� �� � B� C � � � �� � � � C�B �

The operator above applies to states whose 	rst two
labels are identical and the third label is �� The 	fth
and sixth labels are bound to B and C respectively�
The resulting state has the 	rst element relabeled to
� and the last two elements swapped� Applying this
operator o to s �� �� �� �� �� �� � � results in o�s� ��
�� �� �� �� �� � �� Every variable of RHS must be bound
in LHS and every constant label must belong to the set
of declared labels�

Domain and State Space Abstractions

Our ultimate goal is to generate state spaces which pro

vide admissible heuristics to search in the original space�
First we introduce the concept of domain abstraction
and show how it generates abstract state spaces for
problems de	ned in PSVN�

�see the appendix

A domain abstraction is a map � � L � K� where L
and K are sets of labels and jKj � jLj� In other words�
a domain abstraction is just a simple mapping of the
labels to another smaller set of labels� K may be a
subset of L�

A state space abstraction is induced by a domain ab

straction by applying the map � to the seed state and
the operators� S� � ��S� �� ��s��� ��O��K �� The
action of � on an operator is to relabel the constants�

For example� consider the map � � L � K for L �
f�� �� �� �g and K � f�� �g�

��x� �

�
� x � f�� �g
� x � f�� �g

Let the original state space be de	ned as S ��
s�� O� L � where�

O �

���
��

o� �� A�A� �� � � � �� � �� ��
o� �� �X� � � � � � � �� � X ��
o� �� �� � �� B � � � B� � �� � ��
o� �� B� � �� � � � � �� � �� B �

���
��

s� �� �� �� �� � �

Then� S� � ��S� �� ��s��� ��O��K �� where

��O� �

���
��

��o�� �� A�A� �� � � � �� � �� ��
��o�� �� �X� � � � � � � �� � X ��
��o�� �� �� � �� B � � � B� � �� � ��
��o�� �� B� � �� � � � � �� � �� B ��

���
��

��s�� �� �� �� �� � �

The state spaces de	ned by the above seed states� op

erators and abstraction are depicted in 	gure ��

The key property of state space abstractions is that they
are homomorphisms and therefore the distance between
two abstract states is never more than the distance be

tween their pre
images in the original space� Moreover
this distance provides a monotonic heuristic for A��

De�nition� State Space Homomorphism� Let S and
T be state spaces with operators OS and OT respec

tively� � � S � T is a state space homomorphism if
for every state u� v � S and for every operator o � OS

v � o�u� implies that ��o� is applicable to ��u� and
��v� � ��o����u���

Theorem �� If � is a domain abstraction then � in

duces a state space homomorphism�

Proof� Because o applies to u the constant labels in
LHSo match the values of u at those positions� � maps
the matching labels of LHSo and u to identical ones�
hence ��o� applies to ��u�� Now consider the action of
o and ��o� on u and ��u� elementwise� Let u�i��LHSo�i�
and RHSo�i� represent the element at position i of state
u� and the left and right hand sides of o respectively�
Let c be a constant and A a variable bound in LHSo�

PSVN� A Vector Representation for Production Systems TR������ �

<2,5,3,2><2,5,1,1>

<5,5,1,2>

o
2

o
2

o
3

o
3

1
o

<2,2,3,5>

s 0

s 4

s1s 2

s 3

s
5

o
4

o
4

<6,4,4,6>

<6,6,4,4>

<6.4.6.4>

<4,6,6,4>

<4,4,6,6>

3
o’

o
2

2
o’

1
o’ 3

o’

2
o’

s’0

1s’
s’

2

s’
5s’

4

3s’
o’
4

o’
4

S

S’

<5,2,1,5>

<5,2,5,1>

Figure �� A state space and an abstraction

First let us derive the elements of w � ��o����u��� If
RHSo�i� � then w�i� � ��u�i��� If RHSo�i� � c then
w�i� � ��c�� If RHSo�i� � A � LHSo�j� is a variable
bound at position j in LHSo then w�i� � ��u�j��� The
elements of v � o�u� are as follows� if RHSo�i� �
then v�i� � u�i�� If RHSo�i� � c then v�i� � c� And
if RHSo�i� � LHSo�j� � A then v�i� � u�j�� Hence
w � ��o����u�� � ��v��

Theorem 	� If � is a state space homomorphism then
for any states u�� uk � S the length of the shortest
path between states ��u�� � u�� and ��uk� � u�k in
��S� � S� is less or equal to the length of the shortest
path between u� and uk in S�

Proof� Let o�o����ok�� be a shortest path between u�
and uk in S� Since � � S � S� is a homomorphism�
��o�o����ok��� � ��o����o�������ok��� is an applicable
sequence of operators forming a path between states u��
and u�k� The shortest path between u

�

� and u
�

k cannot
be longer than this� hence the result follows�

It is instructive to consider how there can be a shorter
path than ��o�o����ok���� Let the states on this path be
u�����u

�

i���u
�

j ���u
�

k� If u
�

i � u�j then ��oi������oj��� can be
eliminated from the path� because the sequence corre

sponds to a loop� As a special case if u�j � u�k then

��o�������oj��� is a path between u�� and u�k shorter
than ��o�o����ok���� Alternatively suppose there is a
state v � S such that v is not equal to ui for any i but
there is a path between v and uk in S� If v

� � ��v� � u�j

then u�����v
����u�k is also a path between u

�

� and u
�

k which
might be shorter than u�����u

�

j ���u
�

k� Note that this path
does not correspond to a path between u� and uk in S�

Theorem
� Let S be state space and S� be obtained
by domain abstraction �� Let heuristic function h�u�
for state u and goal state g �u� g � S�� be de	ned as
the length of the shortest path between ��u� and ��g�
is S�� h�u� is a monotonic heuristic function�

Proof� Let d�u� v� denote the length of the shortest
path between u and v in S and let d����u�� ��v�� de

note the length of the shortest path between ��u� and
��v� in S� � ��S�� Pearl �Pearl �
��� has shown that
a heuristic is monotonic if d�u� v� � h�u� � h�v� for all
states u� v � S� Consider the path obtained by concate

nating the shortest path between ��v� and ��u� and the
shortest path between ��u� and ��g�� The length of this
path is h��y� � d����u�� ��v�� � h�u�� But the length
of the 	rst leg d����u�� ��v�� between ��v� and ��u� is
less or equal to d�u� v� because � � S � S� is a homo

morphism� h��v� is the length of a path between ��v�
and ��g�� hence d�u� v� � h�u� � h��v� � h�v��

Building the Abstract Space

Ultimately� we want to build the abstract space ��S��
We also want to calculate the distance h�s� between
��s� and ��g� for all ��s� � ��S� to obtain heuristic
values for s � S� In this section we also address the
issue of operator invertibility and non
surjective state
space homomorphisms�

De�nition� Pattern Database� Let g � S be a goal
state and � a domain abstraction� A pattern database
is a table indexed by ��s� �s � S� containing values of
the length of the shortest path between ��s� and ��g�
in ��S��

Because ��S� will be entirely expanded� to construct
the pattern database we can employ breadth �rst traver

sal from the goal state using the inverses of the opera

tors� This way� we expand ��S� and at the same time
obtain h�s� for all s � S�

However� operators de	ned in PSVN are not necessarily
invertible� First we examine what operator de	nitions
give rise to invertible operators� and then we describe
how to build the abstract space and obtain h�s� if some
of the operators are not invertible�

Invertibility

De�nition� Invertible Operator� An operator o is
invertible if all of the labels of the source state s can
be uniquely recreated from the de	nition of o and the
labels of o�s��

Consider the following operator de	nitions�

o� �� A�A� � � � � �� �� � �

PSVN� A Vector Representation for Production Systems TR������ �

o� �� A�A� � � � � � �� � �

o� �� A�A� � � � � � �A� �

o� �� �� � � � � � � � �� �

o� is not uniquely invertible� Since A does not occur in
RHS� its inverse cannot have a binding in its LHS� In
o�� A can be bound to any label of L� hence all states
resulting from o��� could be of the form � A�A� � �
where A � L� o� is invertible� because A overwritten
on the second position is implicitly bound at the 	rst
position�

o��� �� A� �� � � � � A�A� � �

o� is is not invertible� In o
��

� the value bound at the
third position� uniquely determines the labels for the
	rst two� but o��� cannot know what label to assign to
the third position� For example

� �� �� �� � � �o� � � �� �� �� � �

The label � on the third position of the source state is
not present in the resulting state nor does o� explicitly
specify this label to match� Hence the source state can

not be recreated from the o� and the resulting state� o�
is also not invertible� because it cannot be determined
for o��� what the label of the third position used to be
before label � overwrote it�

De�nition� Present Label Binding� Let o � LHS �
RHS� A variable A bound in LHS is present in RHS�
if it is used to assign a label in RHS or if there is a j
such that LHS�j� � A and RHS�j� � � The latter case
is equivalent to LHS�j� � A and RHS�j� � A�

Theorem �� An PSVN operator is invertible if and only
if there is no i such that LHS�i� � and RHS�i� �� and
every variable bound in LHS is present in RHS�

Proof� Let us consider every pair of label designations
at corresponding positions� Let c� c�� c� represent con

stant labels� A�B variable bindings� and i a position�
According to our de	nition of invertible operator� the
inverse operator must be able to recreate the original
source state from its de	nition and the original result

ing state�

� LHS�i� � and RHS�i� �

The label at position i does not change� hence it
does not violate invertibility

� LHS�i� � and RHS�i� � A
LHS�i� � and RHS�i� � c

The label of the source state in position i is not
bound and not speci	ed to match any particu

lar label� This label is overwritten by the label
bound to A or by label c� Hence the inverse op

erator cannot determine what label to assign to
position i to recover the overwritten label� Such
a condition necessarily violates invertibility�

� LHS�i� � A and RHS�i� �
LHS�i� � A and RHS�i� � c
LHS�i� � A and RHS�i� � B

If A is present in RHS then the inverse opera

tor can assign the label bound to it to position
i� otherwise the label cannot be uniquely deter

mined�

� LHS�i� � c and RHS�i� �
LHS�i� � c and RHS�i� � A
LHS�i� � c� and RHS�i� � c�

The label to assign to position i by the inverse
operator is explicitly speci	ed and hence invert

ibility is not violated�

Theorem �� If � is a domain abstraction and o is an
invertible operator then ��o� is also invertible�

Proof� � only relabels constants in an operator de	ni

tion� hence the conditions listed for the proof of theorem
� apply the same way�

If all operators of o � O are invertible� then a breadth
	rst traversal using ��O��� from ��g� will generate
��S� and can be used to calculate the heuristic val

ues� If one or more of the operators are not invertible
we can still achieve our goal� but some extra processing
is needed�

Theorem �� Let S �� s�� O� L �� g � S and � be a
domain abstraction� If all operators of O are invertible
then the pattern database obtained by a breadth 	rst
traversal from ��g� using ��O��� �the inverses of the
abstract operators� has entries for all s � S from which
g can be reached�

Proof� If g is reachable from s in S� then so is ��g�
from ��s� in ��S�� because � � S � ��S� is a homo

morphism� If o is invertible then so is ��o� � as we
proved �� hence there is a path in terms of the opera

tors ��O��� from ��g� to ��s� if there is a path in terms
of the operators from O connecting s and g�

While operators of PSVN are not necessary invertible�
for every operator there is a 	nite number of possible
inverses� It is justi	ed to use the closed world assump

tion� because L is a 	nite set of labels� However when
more than one variables may have ambiguous bindings�
the number of inverses can be potentially large� Even if
one generates all inverses� the technique of generating
��S� from ��g� using these inverse operators� may give
rise to a much larger space which embeds the real ��S��

We present two techniques to build the abstract state if
the operators are not invertible� First we generate ��S�
from ��g� using all possible inverses of the operators�

Consider state space S �� s�� O� L �� goal state g and
abstraction � � L� K where

L � f�� �� �� �� �g

PSVN� A Vector Representation for Production Systems TR������ �

K � f�� �g

s� �� �� �� �� � �

g �� �� �� �� � �

O �

�
o� �� � �� � � � � �� � � �

o� �� A� �B� � � � �B� � A �

	

��x� �

�
� x � f�� �� �g
� x � f�� �g

Then� by generating all possible inverses and applying
��

��s�� �� �� �� �� � �

��g� �� �� �� �� � �

��O� �

�
��o�� �� � �� � � � � �� � � �

��o�� �� A� �B� � � � �B� � A �

	

��O��� ���������
�������

��o��
��

� �� �� �� � � � � �� �� � �

��o��
��
� �� �� �� � � � � �� �� � �

��o��
��

� �� A�B�B�A � � � A� �� B� � �
��o��

��

� �� A�B�B�A � � � A� �� B� � �
��o��

��
� �� A�B�B�A � � � A� �� B� � �

��o��
��

� �� A�B�B�A � � � A� �� B� � �

��������
�������

<1,1,1,1>

φ()o1 φ()o2

φ()o2

<1,2,1,2><1,2,1,1>

φ()o2

<1,1,1,2><2,1,1,1>

<2,1,1,2>

φ()o1

φ()o1

φ()o1

φ()o1

<2,2,1,2> <2,1,1,1><2,2,1,1>

φ()o2

φ()o2 φ()o2φ()o2

s
0

s1 s
2

s
3

φ()o2

<1,2,3,4>

<1,3,3,1>

<2,3,3,1>

<2,3,3,2>

2o

o1

2o

2o

2o

s
2

s1

s
0

s
3

S

S’

g

g

Figure �� A state space and its abstraction expanded
by generating all possible inverses of non
invertible op

erators

The state space S and its abstraction S� is shown on
	gure �� The states in the abstract space enclosed in
dashed boundaries do not have pre
images in S and
were obtained because unique inverses of the operators
could not be determined� Starting the expansion from

��s�� as opposed to ��g� and using ��O� as opposed to
��O��� does not generate these spurious states�

Another technique to generate ��S� and to calculate the
pattern database is to search for ��g� in ��S� from ��s�
and building an explicit graph with backwards edges
corresponding to the inverses of the operators� First
one would use a depth 	rst traversal of ��S� from ��s��
and build ��S� as an explicit graph �adjacency list�� but
if ��u� is connected to ��v� then the backward edge
��v�� ��u� is added �instead of ��u�� ��v��� Then a
breadth 	rst traversal of this explicit graph from ��g�
can be used to obtain the heuristic values�

Surjectivity

De�nition� Surjective State�Space Homomorphism�
Let � � S � S� be a state space homomorphism� �
is surjective if and only if for every state s� � S� there
is a state s � S such that s� � ��s��

Non
surjective state space homomorphisms arise quite
often� When � � S � S� is non
surjective� the pattern
database contains entries which will never be mapped
to by �� These entries take up space in the database
but they are never used� To demonstrate non
surjective
homomorphisms� consider the � 	 � sliding
tile puzzle
depicted on 	gure �� The shaded tile is empty so a

1 2

3

Figure �� � 	 � Sliding Tile Puzzle

neighboring tile can be slid into its place� The number
of possible states reachable by legal moves is ��� Label
� represents the empty tile� The state on 	gure � is
represented as � �� �� �� � �� tile � is on position �
�top left�� tile � is on position � �top right�� tile � is on
position � �bottom left� and tile � �empty� is on position
� �bottom right�� The operator de	nitions are�

O �

�����
����

o� �� A� �� � � � � �� A� � ��
o� �� A� � �� � � � �� � A� ��
o� �� �A� � � � � � � �� � A ��
o� �� � �A� � � � � � �A� � ��

o��� � o��� � o��� � o���

�����
����

The state space S ��� �� �� �� � ��O� f�� �� �� �g � is
shown on 	gure �� We consider three domain abstrac

tions of which two give rise to non
surjective homomor

phisms�

PSVN� A Vector Representation for Production Systems TR������ �

2

1 2
1 2

1

2

2

2

2

21
1

2

1 2

1

1

1

1

2

1

1

2

3

3

3

3

3

3

3

3

3

3

3

3

Figure �� The � 	 � Sliding Tile Puzzle State Space

Let �� � f�� �� �� �g � f�� �g be de	ned as�

���x� �

�
� x � �
� x �� �

���S� has four states� Three states of S are mapped
to each state of S�� For goal state � �� �� �� � �� the
pattern database is�

��s� h�s�

� �� �� �� � � �
� �� �� �� � � �
� �� �� �� � � �
� �� �� �� � � �

This pattern database gives the exact distance as a
heuristic for states � �� �� �� � � and � �� �� �� � � but
estimates � �� �� �� � � to be � moves away when it
is actually � moves away� ���S� is depicted on 	gure

2 2

2

2

2

2

2 2

2

2

2 2

Figure �� ���S�

�� This homomorphism is surjective because there is a
pre
image in S for each state of S��

Let us now consider another domain abstraction �� �
f�� �� �� �g � f�� �� �g de	ned as�

���x� �

�
� x � �
x x �� �

Observe that this abstraction has two ��s �hence two
empty tiles� and therefore it increases the branching
factor� Moreover �� is a non
surjective homomorphism�
because there are states in ���S� which have no pre

image in S� These states of ���S� have dashed line
boundaries in 	gure ��

1

2

1

2

1

2

2

1

1

2

12

2

1 1

2

2

1

2

1

1

1 2

2

Figure �� ���S�

Another illustrative example of a non
surjective homo

morphism is obtained by applying domain abstraction
on a di�erent representation of this puzzle� In the pre

vious state representation the label on position i in
the vector actually corresponds to a tile in the puz

zle� We can also describe states in vector form such
that the indices represent the tiles and the labels repre

sent the positions the tiles currently occupy� Examples
of this dual representation are shown on 	gure �� Vec

1

2 3

3 2

1 <2,4,3,1>

<4,1,2,3>
1 3

2 <3,1,4,2>

3

12
<4,3,2,1>

Figure �� Dual Representation of the � 	 � Sliding Tile
Puzzle

tor � �� �� �� � � represents the state where tile � is on
position � �bottom right�� tile � is on position � �top
left�� tile � is on position � �top right� and tile � �the

PSVN� A Vector Representation for Production Systems TR������ �

empty tile� is on position � �bottom left�� The operators
describing the puzzle�s moves are as follows�

O �

����������������������
���������������������

o� �� �� � � � � � � �� � � � ��
o� �� �� � � � � � � �� � � � ��
o� �� � �� � � � � � � �� � � ��
o� �� � �� � � � � � � �� � � ��
o� �� � � �� � � � � � � �� � ��
o� �� � � �� � � � � � � �� � ��
o	 �� �� � � � � � � �� � � � ��
o
 �� � �� � � � � � � �� � � ��
o� �� � � �� � � � � � � �� � ��
o�� �� �� � � � � � � �� � � � ��
o�� �� � �� � � � � � � �� � � ��
o�� �� � � �� � � � � � � �� � ��

o��� � o��� � o��� � o��� � o��� � o��� �

o��	 � o��
 � o��� � o���� � o
��
�� � o

��
��

����������������������
���������������������

Now let us consider domain abstraction �� de	ned as

���x� �

�
� x � �
x x �� �

�� renders positions � and � indistinguishable� ���S�
has �� states ��gure ��� � of them do not have a pre

2

1 3

1

2 3

2 1

3

2

13

1

23

1 2

3
1 2

3

1
2
3

1 2

3 2

1 3

2

13 3
1

2

2

1

3 3 1

2

2

1

3

2 1

3

2

2 1

3

3

1

1

3
2

1

2

3

3

1

2

1

23

12

3

2

3 1

<2,3,2,1>

<2,1,2,3>

<3,1,2,2>

<2,2,3,1>

<1,2,3,2><1,2,2,3>

<2,2,1,3>

<2,3,1,2>

<3,2,2,1>

<2,1,3,2>

<1,3,2,2>

<3,2,1,2>

Figure �� ���S�

image in S� �� abstracts the positions the tiles occupy
rather than the tiles themselves� The actual puzzle
states of S enclosed in the ellipses on 	gure � corre

spond to one state of ���S�� The states enclosed in
dashed boundaries do not have pre
images in S� It is
interesting to see how the branching factor increases� if
the empty tile is on position � or �� it can be swapped
with the tile across the diagonal � an otherwise illegal
move� In this case� either tile � or tile � or both are

on position �� which represents positions � and � in the
original space�

��S� as a Heuristic

Naturally� we are interested in knowing how such a pat

tern database is expected to perform� �Korf �

�� used
pattern databases to 	nd optimal solutions to random
instances of the Rubik�s Cube for the 	rst time�� His
abstraction rendered all edge pieces to the same iden

tical label� while the stickers on the corner kept their
identities� This mapping actually corresponds to the
� 	 � 	 � mini cube which only has � corner cubies�
This puzzle is also sold commercially� �Culberson �
Schae�er �

�� have used pattern databases together
with the Manhattan distance heuristic to search the ��
sliding
tile puzzle� They also took advantage of geomet

rical symmetries o�ered by the puzzle� Considering the
size of the state spaces �
 ���� and
 ���� �� pattern
databases promise to 	nd optimal paths in very large
spaces using heuristic search� A large scale study of
the relationship between the expected number of states
expanded and the size of the pattern database was con

ducted by �Holte � Hern�adv�olgyi �

�� A linear re

lationship was 	rst conjectured by �Korf �

�� and he
later re	ned it based on �Korf � Reid �

���

Let t be the expected number of states expanded in the
worst case� and b and d be the e�ective branching factor
and the depth of the optimal solution respectively� P �x�
is the probability that state s � S has a heuristic value
h�s� � x� Then

t�b� d� P � �

d��X
i��

biP �d� i� ��

Korf suggested that the above formula can be reduced
to

t
 n
logbm

m

where m is the size of the pattern database� Our study
�Holte � Hern�adv�olgyi �

� has con	rmed that a sim

ple relationship of the form

t �m� � c

holds for some state space and solution speci	c con

stants � and c� This is a very important property be

cause the performance of the pattern database with re

spect to the number of states expanded can be predicted

�Mike Reid and Herbert Kociemba also have imple�
mentations of optimal solvers� but they take advantage
of the fact that Rubik
s Cube is a permutation group
and other special properties of the puzzle� Contact
cube�lovers�ai�mit�edu for more information� Korf
s pro�
gram uses pure search �IDA	� with a heuristic de�ned by a
pattern database�

PSVN� A Vector Representation for Production Systems TR������ �

from the amount of memory it occupies� Our randomly
generated pattern databases for the � sliding
tile puzzle
suggest that pattern databases of size ���� � which is
equivalent to ��� of the size of the original space �
outperform the Manhattan distance heuristic� We also
found that using more than one pattern databases to

gether outperform a single pattern database with the
same memory requirements� The number of states ex

panded using three pattern databases is approximately
half of the number of states expanded by a single pat

tern database with size of the combined capacities of
the three� Having more than three databases does not
increase performance further in our experiments�

We also generated a large number of domain maps that
all gave rise to abstract spaces of the same size� and we
found �Holte � Hern�adv�olgyi �

� that some pattern
databases are clearly superior to others of the same size
due to larger heuristic values on average and!or a fa

vorable distribution of heuristic values in the original
space� We are currently investigating how to predict
from the domain map the performance of the pattern
database it generates without calculating the distribu

tion of heuristic values in the original space�

Concluding Remarks

In this paper we presented a production system� PSVN�
which acts on 	xed length vectors of labels� We de	ned
domain maps of labels which induce state space homo

morphisms and hence provide admissible heuristics �
which can be stored in pattern databases � for search
algorithms such as A� and IDA�� We also explored
properties of state spaces de	ned in PSVN and abstrac

tions generated by domain maps� We established nec

essary and su�cient conditions for PSVN operators to
be invertible and described how to build the abstract
space and calculate the pattern database which pro

vides the heuristic estimates for search� Some abstrac

tions give rise to non�surjective homomorphisms� i�e�
the abstract state space will have states which do not
have pre
images in the original space� If possible� such
homomorphisms should be avoided because the corre

sponding pattern database will contain entries which
are never used�

Pattern databases proved to be useful to guide search in
very large state spaces �Korf �

�� Culberson � Scha

e�er �

��� Such pattern databases can automatically
be obtained for spaces de	ned in PSVN by domain ab

straction� A large scale experimental study �Holte �
Hern�adv�olgyi �

� suggests that the performance of a
pattern database can be predicted from the amount of
memory it requires� Encouraged by these early results�
we continue to investigate properties of state spaces de

	ned in PSVN and pattern databases obtained by ab

stractions�

Acknowledgment

The work presented in this paper is partially sup

ported by an NSERC� postgraduate scholarship and
an NSERC operating grant�

References

Culberson� J� C�� and Schae�er� J� �

�� E�ciently
searching the ��
puzzle� Technical report� Department
of Computer Science� University of Alberta�

Culberson� J� C�� and Schae�er� J� �

�� Searching
with pattern databases� Advances in Arti�cial Intel�
ligence �Lecture Notes in Arti�cial Intelligence �	��

��������

Fikes� R�� and Nilsson� N� J� �
��� STRIPS� A new ap

proach to the application of theorem proving to prob

lem solving� Arti�cial Intelligence ����
�����

Holte� R� C�� and Hern�adv�olgyi� I� T� �

� A space

time tradeo� for memory
based heuristics� To Appear
in the Proceedings of the Sixteenth National Confer�
ence on Arti�cial Intelligence �AAAI���
�

Holte� R� C�� Perez� M� B�� Zimmer� R� M�� and Mac

Donald� A� J� �

�� Hierarchical A�� Searching
abstraction hierarchies e�ciently� Proceedings of the
Thirteenth National Conference on Arti�cial Intelli�
gence �AAAI���
 ��������

Korf� R� E�� and Reid� M� �

�� Complexity analysis
of admissible heuristic search� Proceedings of the Fif�
teenth National Conference on Arti�cial Intelligence
�AAAI���
 ��������

Korf� R� E� �
��� Depth
	rst iterative
deepening� An
optimal admissible tree search� Arti�cial Intelligence
���
����
�

Korf� R� E� �

�� Finding optimal solutions to Ru

bik�s Cube using pattern databases� Proceedings of
the Fourteenth National Conference on Arti�cial In�
telligence �AAAI��

 ��������

Pearl� J� �
��� Heuristics� Intelligent Search Strategies
for Computer Problem Solving� Addison � Wesley�

Prieditis� A� E� �

�� Machine discovery of e�ective
admissible heuristics� Machine Learning �����������

Slaney� J�� and Thi�ebaux� S� �

�� Adventures in
blocks world� Technical report� Research School of In

formation Sciences and Engineering and Centre for In

formation Science Research� Australian National Uni

versity� TR
ARP
�

��

Valtora� M� �
��� A result on the computational com

plexity of heuristic estimates for the A� algorithm� In�
formation Sciences ����
�

�Natural Sciences and Engineering Research Council of
Canada

PSVN� A Vector Representation for Production Systems TR������

Appendix

Examples of Problem Spaces

n�m Sliding Tile Puzzle

The n	m sliding tile puzzle is played on an n	m grid
of tiles of which one is missing� A neighboring tile can
be slid into this missing one� The objective of the game
is to bring the scrambled grid of tiles into a particular
goal state� Figure
 shows the � 	 � sliding tile puzzle�

1 2 3

4 5 6

7 8

3

7

2

4 1

5

8 6

1 2 3
4 5 6
7 8 9Indices:

Position

Figure
� � 	 � Sliding Tile Puzzle� the goal state and
a scrambled state�

with a goal and a scrambled state and the indices for
the operator de	nitions� A state is represented as a
vector of
 labels� The labels correspond to the tiles�
and the indices correspond to the positions shown in
	gure
� The operators for the � 	 � sliding tile puzzle
are de	ned as follows�

O �

���
��

o�� o�� o�� o�� o�� o��
o	� o
� o�� o��� o��� o���

o��� � o��� � o��� � o��� � o��� � o��� �

o��	 � o��
 � o��� � o���� � o
��

�� � o
��

��

���
��

where

o� �� �� X� � � � � � � � � � X� �� � � � � � � �
o� �� � �� X� � � � � � � � � �X� �� � � � � � �
o� �� � � � �� X� � � � � � � � � �X� �� � � � �
o� �� � � � � �� X� � � � � � � � � �X� �� � � �
o� �� � � � � � � �� X� � � � � � � � � � X� �� �
o� �� � � � � � � � �� X � � � � � � � � � � X� � �
o	 �� �� � � X� � � � � � � � X� � � �� � � � � �
o
 �� � �� � � X� � � � � � � �X� � � �� � � � �
o� �� � � �� � � X� � � � � � � �X� � � �� � � �
o�� �� � � � �� � � X� � � � � � � �X� � � �� � �
o�� �� � � � � �� � � X� � � � � � � �X� � � �� �
o�� �� � � � � � �� � � X � � � � � � � � X� � � � �

Rubik�s Cube

Rubik�s Cube is one of the most famous combinatorial
puzzles� The � 	 � 	 � cube �	gure ��� consists of

Figure ��� Rubik�s Cube

� corner cubies� �� edge cubies and � middle cubies�
The visible faces of these cubies are covered with col

ored stickers� The goal state is arranged such that all
stickers on the same side have identical colors� Each
face can be turned clockwise or counter clockwise
�
degrees �quarter turns�� The state space consists of
�������������
������ � ������ � ���� di�erent states�
n 	 n 	 n versions for n � �� �� �� �� � are also available
commercially as well as Megaminx� which is a dodeca

hedron rather than a cube� The middle pieces do not
move with respect to each other� A state of Rubik�s
Cube can be represented as a vector of �� labels� one
for each of the �� stickers�� The positions correspond
to those on 	gure ��� O consists of �� quarter turn

1 2 3

4 5

6 7 8

9 10 12 13 14 15 16 17 20

21 22

11

23 24 25 26 28

29 30 31 32 33 34 35 3736 38

27

18

39

19

40

41 42 43

44 45

46 47 48

Figure ��� Indices of Rubik�s Cube Stickers

�because the middle cubies do not move� they do not
have to be represented in the states�

PSVN� A Vector Representation for Production Systems TR������ ��

operations��

O �

�
o�� o�� o�� o�� o�� o��

o��� � o��� � o��� � o��� � o��� � o���

	

We show the de	nition of one of the �top face� quarter
turn operators�

� A� B� C�
D� E�
F� G� H�

I� J� K� L� M� N� O� P� Q� R� S� T�
� � � � � � � �
� � � � � � � � � � � �

� � �
� �
� � �

�

� C� E� H�
B� G�
A� D� F�

R� S� T� I� J� K� L� M� N� O� P� Q�
� � � � � � � �
� � � � � � � � � � � �

� � �
� �
� � �

Blocks World

The Blocks World is a famous benchmark problem
for planning� An in
depth discussion of the problem
and the cardinality of the state space can be found in
�Slaney � Thi�ebaux �

��� There are n blocks which
can be stacked on each other �	gure ���� There is also
a robot arm which can lift up a block and place it on
top of another block or on the table�

Representing the Blocks World in a vector notation is
not obvious because the relative order of the stacks on
the table is irrelevant� We discuss two representations
of Blocks World which overcomes this di�culty� The
	rst form requires an exponential number of rules and
gives rise to non
surjective homomorphisms which of

ten have more spurious states in the abstract state than
states in the original space� The second representation
uses a polynomial number of rules but it also gives rise
to non
surjective homomorphisms� However abstrac

tions of this latter representation have a manageable
number of states without pre
images and the size of
the abstract space �including the spurious states� for
coarse grained abstractions is usually smaller than the
original space�

�sometimes a ��
 degree turn is also counted as a single
operation

A

B D

C

Figure ��� The � Blocks World

We represent each state in the n Blocks World with a
vector of length n � � and labels L � f�� �� �� ���� ng�
The 	rst n positions represent the blocks and the last
position represents the robot arm� Having the label
k �� � on position i � n means that block k is on
top of block i and label k on position n � � it means
that block k is in the robot arm� Label � on position
i � n expresses that no block is on top of block i� � on
position n� � represents that the robot arm is empty�
The con	guration of blocks on 	gure �� hence is written
as � �� �� �� �� � � for label assignments A � �� B � ��
C � � and D � ��

A rule that picks up block i from block j is de	ned as�

� ��� � �� ��� � i� � ��� � � �
i j � n� �

�

� ��� � � ��� � �� ��� � i �

The inverse of the above operator would place block
i on top of block j� To lift a block i from the table�
the left hand side of the operator must make sure that
that block i is not on top of any of the other blocks �
which requires an exponential number of rules� Another
solution is to extend PSVN to include negation�

The second representation uses �n � � length vectors
to describe a state and labels L � f�� �� �� ����� n � �g�
Label k � � on position i � n means that block k � �
is on top of block i� Label k on position n � � means
that block k � � is in the robot arm� Label � � like in
the previous notation � represents empty� The positions
n��� ���� �n�� can have labels either � or �� Label � on
position i � n� � represents that block i� n is on the
table and label � on these positions means that block
i � n is not on the table� The con	guration of blocks

PSVN� A Vector Representation for Production Systems TR������ ��

on 	gure �� is represented as � �� �� �� �� �� �� �� �� � �
for label associations A � �� B � �� C � � and D � ��

A rule that picks up block i from block j is de	ned as�

� �� � �� �� � i� �� �� � �� �� � �� �� �
i j n� � n� i� �

�

� ��� � � ��� � �� ��� � i� �� ��� � � ��� �

The inverse of the operator de	ned above puts block i
from the robot arm onto top of block j�

The operator which picks up block i from the table is
de	ned as

� �� � �� �� � �� �� � �� �� �
i n� � n� i� �

�

� ��� � � ��� � i� �� ��� � �� ��� �

and its inverse places block i from the robot arm onto
the table�

This work is dedicated to the memories of Rob�s late
father and Istv�an�s late mother�

