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Abstract— Delays in the visual feedback can seriously
impact operator performance in telerobotics. In predictive
display synthesized visual feedback is rendered immediately
in response to operator motions. In this paper we present
a system using a geometric and appearance model that is
captured using structure-from-motion by an uncalibrated
camera. The geometric model is integrated into a registration-
based tracking algorithm that allows stable tracking of full
3D pose of the robot. Experimentally we show that predictive
scene views can be rendered with both high visual fidelity
and metric accuracy.

I. INTRODUCTION

A main challenge in telerobotics is to accurately convey
the situation at a remote worksite to the operator. The
efficient solution of many telerobotics tasks demand both
quantitative and qualitative information. Human operators
can quickly judge situations and perform actions based
on qualitative information in video streams. However,
performance degrades with delays as short as 0.4 sec-
onds [10]. Additionally, human judgment of distance made
from watching monitors or using head mounted displays
can be distorted [19]. This suggests that the augmentation
of the operator environment with metric maps of the robot
movements is beneficial.

Developments in predictive display through the latest
decade have seen systems going from augmenting delayed
video with simple wireframe drawings [16], through ones
based on displaying an appropriate 2D area of a larger
image plane, or panoramic view [3], to systems based on
various forms of 3D models. Recently Barth et al. [4] used
a calibrated stereo rig on a mobile robot to acquire and use
a 3D model for predictive display, and Yerex et al. [20] did
predictive display from uncalibrated video using an affine
linear camera approximation. In this paper we present a
method and system to model, track and render predictive
display from uncalibrated video under a full (non-linear)
perspective model.

In traditional model based tracking systems a 3D pose
computation is done by relating 2D image feature positions
with an a-priori 3D model [13], [15], [7]. However, this is
impractical in unstructured environments often encountered
in mobile robotics. Additionally, the feature detection is
relatively decoupled from the pose computation that makes

the correspondence between model and current image fea-
tures challenging. A different approach named registration
based tracking is to align a reference intensity patch with
the current image to match each pixel intensity as closely
as possible. Often a sum-of-squared differences (e.g. L2

norm) error is minimized, giving the technique its popular
name SSD tracking. The alignment problem is solved
using numerical optimization, where a search direction is
obtained from image derivatives [14], [8], [2]. One of the
disadvantages of the SSD tracking methods with respect
to robotics applications is that the position is tracked in
a 2D space (image plane). In this paper we extended the
traditional SSD tracking by imposing a global 3D model
that will allow tracking full 3D position of the robot
required for the predictive view generation. This method
gives tracking more stability as compared to the traditional
2D SSD tracking [5]. We also show how the same idea of
image variability can be used to generate a view-dependent
texture that will correctly render the model from a new
viewpoint in the predictive display. The main contributions
of the paper include:

• We use a composite model with a sparse acquired
geometry coarsely representing the scene, and an
appearance based dynamic texture representing fine
scale detail, with the property to modulate a time
varying view dependent texture to correct the sparse
geometric model.

• We extend the registration based technique from 2D
image plane tracking by involving a full 3D scene
model, estimated from the same uncalibrated video,
and used directly in the computation of the motion
update between frames.

• We integrate the tracking and dynamic texture render-
ing into a real-time predictive display system.

II. SYSTEM OVERVIEW AND MODEL

Consider the tele-robotics setup depicted in Figure 1
where an operator controls a remote robot. The remote
scene is viewed by an uncalibrated camera mounted on the
robot. Our system is designed to provide the operator with
both immediate synthesized video feedback (predictive
display) and accurate metric information (tracking and
localization). The basis of our system is a model with
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Fig. 1. Overview of the tracking with predictive display system. The robot pose is tracked using the model-based tracking algorithm from Section III.
The 3D position is transmitted to a remote operator, composed with the current (desired) operator motion and an instant rendered view from robot’s
perspective is generated using the dynamic texture model

two types of scene information. On a macroscopic level
a geometric model represents coarse scene structure, and
on a microscopic level an differential appearance basis
represents the time/view variability of both texture and fine-
scale geometry. This basis is used both to drive the tracking
pose update at the robot site and provide view-dependent
texturing at the operator site.

The model is acquired from the robot uncalibrated video.
A standard Euclidean camera model (in homogeneous coor-
dinates) relates i = 1 . . . n 2D image points yti = [u, v, 1]T

to the corresponding 3D scene points Yti = [x, y, z, 1]T so
that for each image It, at time t the reprojection property
holds:

λyti = PtYi = K[R|t]Yi, i = 1 . . . n (1)

where K is the camera matrix, R =
Rx(αx)Ry(αy)Rz(αz) the rotation matrix, t =
[tx, ty, tz]

T the translation vector, and λ the homogeneous
scale. The area between the points is divided into planar
facets. For tracking a few salient quadrilaterals over
planar scene surfaces are selected, while for rendering a
triangulation of the complete scene is sent to a standard
graphics card. Hence the tracking and pose estimation is
driven by only the most salient parts of the video stream.

Geometric and image intensity change are related dif-
ferentially in the appearance basis M . For example, in the
simple case of 2D image plane translation this relation-
ship is expressed in the well-known optic flow constraint
M∆y = ∆I , where for 2D M = [ ∂I

∂u
, ∂I

∂u
] In 2D tracking

given temporal image differences ∆I the incremental geo-
metric differences are accumulated yt,i = yt−1,i + ∆y to
follow how an image point moves over the scene. While
2D tracking works for pure image translations1 it fails in
the case of general 3D camera movement. In the next
section we develop the mathematics for a 3D tracking,
which using a different (higher dimensional) basis M

computes the 6D camera pose change ∆p from temporal
intensity differences. Section IV describes how the 3D
geometric model is computed from the tracked points using
uncalibrated Structure-From-Motion (SFM).

At the operator site the geometry and appearance model
is used to render synthesized scene views immediately
in response to motion commands. Since generally SFM
only provides a coarse geometric model, texturing with a
conventional single image texture produces incorrect views
with strong artifacts. Instead of a single texture we use

1Indeed we use 2D tracking for the first frames to bootstrap 3D tracking,
see Section VI.



an appearance basis M̂ extended (compared to M ) to
also capture non-planar (parallax) variation. A new time-
varying dynamic texture is formed by modulating T = M̂z,
and then warped onto the reprojected geometry to render
predicted scene views, see Section V. Section VI describes
how the parts are integrated into a distributed software
system. At the remote site tracking and SFM is first used
to acquire a model of geometry Y and appearance M̂ . The
model is transmitted to the operator site. Subsequently only
new camera poses p are transmitted, and the model is used
to render operator visual feedback. In the last two sections
we describe experimental results from a mobile robotics
application and conclude with a discussion and outlook.

III. SSD MODEL-BASED TRACKING

The goal of the tracking algorithm is to compute/track
how the 3D camera pose p changes over time. We devel-
oped an image-based formulation where the pose change
∆p is computed directly from the intensity variation in
time of a set of salient quadrilateral regions. For a math-
ematical intuition, let T = I0 be the template image, and
It the current image. We seek to find M such that:

∆p = ∆[αx, αy, αz, tx, ty, tz] = M−1(T − I(Wt−1) (2)

Here Wt−1 is a warp that registers the current image with
the template frame based on the previous frame pose, pt−1.
The ∆p serves to update the pose estimate from frame It−1

to It. These types of algorithms are referred as registration
based tracking or SSD tracking in the computer vision
literature [2]. The original formulation tracks a 2D position
in image space and it is not applicable for a mobile robot
that is controlled in 3D Euclidean space. We developed a
new algorithm [5] that extends the regular 2D SSD tracking
by involving the full 3D model. Next follows a detailed
description of the algorithm. Refer to Figure 2 for an
illustration of the tracking approach.

Each quadrilateral region Rk is defined by 4 con-
trol points Yk = [Yk1,Yk2,Yk3,Yk4]. Let xk =
{x1,x2, . . .xKk

} denote all the (interior) image pixels that
define the projection of region Rk in image I . For each
quadrilateral a plane-to-plane warp W registers it’s location
in the image It with the template T . This warp function
is composed of a 3D to 2D geometric projection of the
control points ytkj = P (pt)Ykj = K[R|t]Ykj , j = 1, 4,
and a planar warp function for the interior points. Here
a projective homography, (Appendix, Equation 13) is the
geometrically correct plane-to-plane transform. Hence the
composed warp function is W (xk; µ(pt, Yk)), where µ are
the 2D warp parameters determined by the projection of
the region control points. Note that the 3D model motion
is global but each individual local region has a different
2D motion warp Wk. To simplify notation in the following
the 2D warp is written W (xk; µ(pt)).

Under the common image constancy assumption used in
motion detection and tracking [11] the tracking problem

P  = inv(   P) P
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Fig. 2. Overview of the 2D-3D tracking system. In standard SSD tracking
2D surface patches are related through a warp W between frames. In our
system a 3D model is estimated (from video alone), and a global 3D pose
change ∆P is computed, and used to enforce a consistent update of all
the surface warps.

can be formulated as finding pt such that:

∪kT (xk) = ∪kIt(W (xk ; µ(pt))) (3)

The new motion parameters are obtained by function
composition, (since adding projection matrices is not geo-
metrically meaningful) pt = pt−1 ◦∆p, and are computed
by minimizing the image residual ∆T with respect to ∆p:

∆T =
∑

k

∑

x

[T (xk) − It(W (xk ; µ(pt−1 ◦ ∆p)))]2 (4)

Computationally it is more efficient to compute the
derivatives once on the static template rather than the time
varying image. This yields an algorithm in the so called
inverse compositional class[2]. The goal is to find ∆p that
minimizes:
∑

k

∑

x

[T (W (xk; µ(∆p))) − It(W (xk ; µ(pt−1)))]
2 (5)

where in this case the 3D motion parameters are updated
as:

Pt = inv(∆P ) ◦ Pt−1 (6)

where inv(∆P ) = K[R′| − R′t] inverts the 3D motion
parameters in a geometrically valid way. As a consequence,
if the 2D warp W is invertible, the individual warp update
is (see Figure 2):

W (xk; µ(pt)) = W (xk; µ(∆p))−1 ◦ W (xk; µ(pt−1))
(7)

Performing a Taylor expansion of Equation 5 gives:

∑

k

∑

x

[T (W (xk; µ(0)))+∇T
∂W

∂µ

∂µ

∂p
∆p−It(W (xk ; µ(pt)))]

(8)



Define the 3D pose of the template image as zero,
T = T (W (xk; µ(0))). Denoting M =

∑

k

∑

x ∇T ∂W
∂µ

∂µ
∂p

,
Equation 8 can be rewritten as:

M∆p ' et (9)

where et represents the image difference between the
template regions and warped image regions, and the motion
∆p is computed as the least squares solution to Equation 9.

The derivative images M =
∑

k

∑

x ∇T ∂W
∂µ

∂µ
∂p

are
evaluated at p = 0 and they are constant across iterations
and can be precomputed, resulting in an efficient tracking
algorithm that can be implemented in real time. A detailed
derivation of M is presented in Appendix.

IV. GEOMETRIC MODEL FROM UNCALIBRATED VIDEO

Several techniques for extracting scene structure and
camera motion from uncalibrated video have been de-
veloped in the past decade [9]. Most of these methods
assume a static scene and estimate the structure from a
set of corresponding points. Depending on the camera
model and calibration data the estimated model can vary
from a projective, affine, or to a metric or 3D Euclidean
model. A mobile robot is controlled in a metric world and
therefore the tracking and model used for tracking have to
be upgraded to Euclidean. We chose a stratified approach
to recover the metric model (projective reconstruction that
is upgraded to a metric structure using automatic self-
calibration).

Recall projection Equation 1, yti = PtYi, i = 1, n t =
1, m. In an uncalibrated setup Pt is the 3 × 4 projection
matrix that has 11 DOF. A calibrated projection matrix
can be decomposed as Pet = K[R|t]. There are in
general 15 DOF between the projective reconstruction and
its corresponding Euclidean one that are encoded by a
projective transformation H s.t. Pet = PtH .

Several well known estimation algorithms have been
developed to recover the projective structure and motion
of a scene using the fundamental matrix (2 views), the
trilinear tensor (3 views) or multi view tensors for more
than 3 views. In our system we used the method developed
by Urban et. al [18] that estimates the trilinear tensors for
triplets of views and then recovers epipoles from adjoining
tensors. The projection matrices are computed at once using
the recovered epipoles. The global structure Yi and the rest
of the projection matrices Pt are recovered by integrating
new views through the trilinear tensor between the new
and two previous views. Assuming that the cameras have
zero skew and aspect ratio and the principal point is
approximately known, the Euclidean projections Pet =
PtH are recovered using self-calibration [17]. The resulting
metric structure is H−1Yi. There is still an absolute
scale ambiguity that cannot be recovered without additional
metric scene measurements, but since this scale remains
fixed over a video sequence, we can use a 6DOF Euclidean
motion model for tracking between frames.

V. DYNAMIC TEXTURE

In convectional graphics textures are represented as an
image on a 3D mesh. This assumes that the geometry
accurately models the true underlying scene. As mentioned
before, the SFM geometric model only approximates the
scene geometry so the texture changes from view to view.
We model this appearance change with a time-varying
dynamic texture.

From the training set of m images It we obtain a
set of corresponding texture Tt by warping the image
model points yti to canonical (here mean) position wt =
∑

t=1,m yti. If the SFM geometry would be accurate the
texture images would be constant. In our case they vary and
we can smoothly parametrize this variation using a basis
M̂ such as:

Tt = M̂zt, t = 1, m. (10)

It has been shown [6], [12] that the modulation coef-
ficients vary smoothly with viewing angle and that the
basis M̂ captures the geometric and non-geometric (e.g.
photometric) texture variability up to a first order model of
true intensity variation.

The analytical derivation of M̂ starts with the same
principle of image constancy under a warp W (x, µ) as in
the tracking section (Equation 3). The error introduced by
the geometry can be viewed as a pixel rearrangement due to
a perturbed warp W (x, µ̂), We study the intensity variation
introduced by this warp ∆T = T (xk) − It(W (xk, µ̂)).
Denoting µ̂ = µ + ∆µ and approximating the image
residual with its first order Taylor approximation (as in
the tracking) we get (dropping t and k):

∆T = T (x; ∆µ) − I(W(x; µ))
= T + ∇T ∂W

∂µ
∆µ − I(W(x; µ))

≈ ∇T ∂W
∂µ

∆µ

(11)

Residual errors due to imperfect tracking or SFM cause
a planar shift in the texture coordinates. This is modeled
by the same linear subspace as used in tracking, and for
the analytic form of the warp derivatives see appendix,
Equation 16. Here it is sufficient to note that they are
spanning an 8-dimensional subspace in which (part of) our
texture variability will lie.

∆T =

[

∂T

∂u
,
∂T

∂v

]

∂W

∂µ
∆µ = [b1 . . .b8]





z1

...
z8



 = M̂hzh

(12)
For the tracking, quadrilaterals were selected specifically

to be planar in the scene. In rendering we need to render
all model facets, planar or not. This introduces a further
2 dimensions of parallax variability to M̂ . Finally, a 9-
dimensional linear subspace will cover light variation.
Analytical derivation of these are similar and details can
be found in [12].

In real world scenes it is unpractical to calculate the
texture basis analytically as some information is incomplete



or missing (eg. for parallax variability we need a dense
depth map, and for light the surface normals). We instead
estimate the texture from image statistics in the original
set of textures. Knowing that texture variability can be
compactly approximated by a basis M̂ of dimension 8 +
2 + 9 = 19 we extract this linear subspace (or a slightly
larger one) M̃ = [z̃1 . . . z̃r] using PCA from the original
texture images.

Rendering a new view

New views are rendered by modulating the texture
basis M̃ and warping it to the projected geometry. The
modulation coefficients z are calculated by interpolating
the texture coefficients zt from the training set for the
new camera pose. For achieving real time rendering we
implemented the texture blending in hardware using nVidia
register combiners [6].

VI. PREDICTIVE DISPLAY SYSTEM

The model based tracking algorithm has been incorpo-
rated into a predictive display system that is using the
geometric model and dynamic texture to generate synthetic
images of the current robot view for a remote operator
(Figure 1). In the bootstrapping phase the geometric model
and dynamic texture basis are generated from a set of
training images and in the tracking phase the geometric
model is tracked and a predictive view is generated.

Bootstrapping phase
1) Several salient surface patches are selected in a non-

planar configuration from a scene image and tracked
in about m ≈ 100 frames using standard (2D image-
plane) SSD trackers as in [2], [8].

2) From the tracked points yit, a 3D model points
Yi, i = 1, m are computed and tessellated into
quadrilateral regions. The dynamic texture basis M̃

is estimated from the training images warped to a
standard shape. The geometric model is stored and
texture basis is transmitted to the operator site.

3) The 3D model is related to the start frame of 3D
tracking using the 2D tracked points yi and camera
matrix computed using camera resection (non-linear
for accuracy [9]) from yi ↔ Yi 2D-3D correspon-
dences. Then the model based tracking algorithm is
initialized by computing the derivatives images M at
that position.

Tracking and predictive display phase
For each time step:

robot site:
4) track robot pose p = (αx, αy, αz, tx, ty, tz)
5) send position to operator site
user remote site:
6) add current operator motion command
7) project geometric model in new location

yi = K[R(αx, αy, αz)|t(tx, ty, tz)]Yi

8) compute the dynamic texture T for the new location
T = M̃z(p)

9) warp T onto the projected structure and display
10) send motion command to robot site

During tracking patches that become occluded are de-
tected and removed. Similarly new patches visible only in
new views are added and incorporated in the model by
first tracking their image projection using 2D tracking then
computing their 3D coordinates through camera intersec-
tion in n ≥ 2 views. In the current implementation the user
specifies (clicks on) the image control points yi that will
characterize the new surfaces but in the future we plan to
automatically select salient regions.

VII. EXPERIMENTAL RESULTS

To evaluate the tracking and predictive display system,
we captured a model of a research lab. We used the model
based tracking algorithm from Section III to recover camera
location along two motion trajectories. Figure 3 shows the
planar patches that are being tracked in two positions along
the trajectories.

Fig. 3. Tracking planar patches. The model also allows detection and
removal of occluded regions.

The first trajectory was a straight line in the horizontal
plane of about 1m. Figure 5 (left) illustrates the recovered
trajectory. For measuring the accuracy of the tracking
algorithm we calibrated the 3D room model assuming some
given real dimensions (here the size of the monitor screen)
so we could get the translation in meters. We found that
the trajectory had about 0.95 cm mean deviation from a
straight line and 5.1 cm mean deviation from the horizontal
plane. The recovered line length was about 1.08 m, that
result in an error of 0.08 m with respect to the measured
ground truth. There was no camera rotation along the first
trajectory, that corresponded to the measured rotation (error
was less than 1 degree on average).

We tracked the second trajectory along two perpen-
dicular lines in the horizontal plane. In this experiment,
the physical motion was not particularly smooth and the
recorded data therefore also somewhat jumpy. We mea-
sured the angle between the two lines fitted to the recovered
positions (see Figure 5) as 82◦. Hence it had an error of
about 8◦ with respect to the ground truth.

The experiments show that the accuracy of the mea-
surements connected to projective properties e.g. deviation



Fig. 4. Examples of predictive views (top row) and the corresponding actual images (bottom row). Results for the entire track sequence are shown in
video1 [1].
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Fig. 5. Recovered positions for the straight line trajectory (left) and the
2 perpendicular lines trajectory (left). The red line are the fitted 3D lines
to each line segment.

from lines, planes) is higher that the accuracy in measured
distances. This is due to the difficulty in calibrating a
projective structure from only natural scene data.

For each recovered position we generated the view
predicted from the model (video1 [1]). Figure 4 (top
row) shows examples of rendered views along the two
trajectories using the dynamic texture model. Comparing
them with the real views (bottom row), we notice that the
dynamic texture model produces good quality renderings
that realistically represent the actual images. The limited
field of view is due to the viewing frustum defined in the
original training sequence that was uses in building the
model.

VIII. DISCUSSION

A main consideration in designing robotic tele-operation
systems is the quality of sensory feedback provided to the
human operator. For effective tele-operation the operator
must get the feeling of being present in the remote site
and get immediate visual feedback from his or her motion
commands. We showed how a geometric model can be
estimated from images and then used both for stabilizing
SSD tracking and to display a predictive view for the
operator. For generating a realistic looking view of the
remote scene, a time-varying dynamic texture is overlaid to
the projected geometry. Our technique eliminates the need
for expensive range sensors and calibrated setups to capture
the remote scene geometry, and instead uses inexpensive
consumer web or video cameras with a standard PC’s.

The model is initialized from a training sequence but can
be improved during tracking by adding/removing patches
while they become visible/occluded. While the model
tracking can handle large changes the dynamic texture is
precomputed at the beginning and in the current imple-
mentation is not updated over time. We are developing an
on-line algorithm that is using incremental PCA to auto-
matically update the texture basis. Another limitation of the
present system is the manual way of selecting new patches
that can be replaced with an automatic feature detector.
Our model directly relates geometric robot pose and image
views, and this also can support control interfaces where
the motion goal is specified in image space instead of
robot motor space. One such possible intuitive interaction
paradigm is tele-operating the robot by “pointing” in the
image space or by dragging the model viewpoint to obtain



the desired next view, and then have the robot move to this
location using visual servo control.

APPENDIX

COMPUTING DERIVATIVES IMAGES

We compute the variability basis from spatial derivatives
of template intensities and inner derivatives of the warp. As
mentioned before, the 2D warp parameters µ (homography
parameters) are functions of 3D rotation and translation
parameters p, the 3D control points Yj and the position
of the control points in the template image y0j :

y0j = W (µ(p))(PYj) = Hyj j = 1, 4 (13)

where

H =





µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 1



 (14)

The warp W is a composed function, and its derivatives
can be calculated as:

∂W

∂p
=

∂W

∂µ

∂µ

∂p

First the warp derivatives with respect to the 2D homog-
raphy parameters µ are directly computed from the warp
expression

W (xk ; µ) = Hx (15)

∂W

∂µ
=

[

u 0 v 0 1 0 −uc2

c1

− vc2

c1

0 u 0 v 0 1 −uc3

c1

− vc3

c1

]

(16)

where x = [u, v]T , c1 = 1+µ7u+µ8v, c2 = µ1u+µ3v +
µ5, and c3 = µ2u + µ4v + µ6.

However, the explicit dependency between the 2D pa-
rameters µ and the 3D motion parameters p is in general
difficult to obtain, but Equation 13 represents their implicit
dependency, so ∂µ

∂p
are computed using the implicit func-

tion theorem. Equation 13 can be written in the form

A(p)µ(p) = B(p) (17)

with

A(p) =















y1

1
y2

1
1 0 0 0 −y1

1
y1

01
− y2

1
y1

01

0 0 0 y1
1 y2
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1y

2
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1y
2
01

...
y1

N y2

N 1 0 0 0 −y1

Ny1

0N − y2

Ny1

0N

0 0 0 y1

N y2

N 1 −y1

Ny2

0N − y2

Ny2
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(18)
B(p) = [y1

01, y
2

01, . . . , y
1

0N , y2

0N ]T

(19)
where [y1

j , y2

j , 1]T are the normalized homogeneous coor-
dinates for yj .

Taking the derivatives with respect to each component p

of p:
∂A

∂p
µ + A

∂µ

∂p
=

∂B

∂p
(20)

For a given p value µ can be linearly computed from
Equation 17 and then ∂µ

∂p
is computed from Equation 20.
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