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Abstract. In registration-based tracking precise pose between a refer-
ence template and the current image is determined by warping image
patches into the template coordinates and matching pixel-wise intensi-
ties. Efficient such algorithms are based on relating spatial and temporal
derivatives using numerical optimization algorithms. We extend this ap-
proach from planar patches into a formulation where the 3D geometry of
a scene is both estimated from uncalibrated video and used in the track-
ing of the same video sequence. Experimentally we compare convergence
and accuracy of our uncalibrated 3D tracking to previous approaches.
Notably, the 3D algorithm can successfully track over significantly larger
pose changes than ones using only planar regions. It also detects occlu-
sions and removes/inserts tracking regions as appropriate in response.
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1 Introduction

In visual tracking pose parameters of a moving camera or object is extracted
from a video sequence. One way of classifying tracking methods is into feature
based, segmentation based and registration based.

In feature based tracking a feature detector is used to locate the image pro-
jection of either special markers or natural image features. Then a 3D pose
computation can be done by relating 2D image feature positions with their 3D
model. Many approaches use image contours (edges or curves) that are matched
with an a-priori given CAD model of the object [1–3]. Most systems compute
pose parameters by linearizing with respect to object motion. A characteristic
of these algorithms is that the feature detection is relatively decoupled from the
pose computation, but sometimes past pose is used to limit search ranges, and
the global model can be used to exclude feature mismatches [1, 4].

In segmentation based tracking some pixel or area based property (e.g. color,
texture) is used to binarize an image. Then the centroid and possibly higher
moments of connected regions are computed. While the centroid and moments
are sufficient to measure 2D image motion, it is typically not used for precise 3D
tracking alone, but can be used to initialize more precise tracking modalities [5].

In registration based tracking the pose computation is based on directly
aligning a reference intensity patch with the current image to match each pixel
intensity as closely as possible. Often a sum-of-squared differences (e.g. L2 norm)
error is minimized, giving the technique its popular name SSD tracking. This
technique can also be used in image alignment to e.g. create mosaics [6]. Early
approaches used brute force search by correlating a reference image patch with
the current image. While this worked reasonably well for 2D translational mod-
els, it would be unpractical for planar affine and projective (homography) im-
age transforms. Instead, modern methods are based on numerical optimization,
where a search direction is obtained from image derivatives. The first such meth-
ods required spatial image derivatives to be recomputed for each frame when
“forward” warping the reference patch to fit the current image [7], while most
recently, efficient “inverse” algorithms have been developed, which allow the real
time tracking for the above mentioned 6D affine [8] and 8D projective warp [9].
A related approach [10, 11], where instead of using spatial image derivatives, a
linear basis of test image movements are used to explain the current frame, have
proved equally efficient as the inverse methods during the tracking, but suffer
from much longer initialization times to compute the basis, and a heuristic choice
of the particular test movements.

In this paper we extend the registration based technique by involving a full
3D scene model, estimated from the same uncalibrated video, and used directly
in the computation of the motion update between frames. Hence, we are able
to utilize general image patches in a general 3D scene, and directly track the
rotational and translational camera-scene motion from image differences. Some
advantages of using a global 3D model and surface patches are that only surfaces
with salient intensity variations need to be processed, while the 3D model connect
these together in a physically correct way. We show experimentally that this
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approach yields more stable and robust tracking than previous approaches, where
each surface patch motion is computed individually.

The rest of the paper is organized as follows: we start with a presentation of
the general tracking algorithm in Section 2, and then present the details for useful
combinations of motions (3D models and 2D planar image warps) in Section 3. A
complete model acquisition and tracking system algorithm is descried in Section
4. The qualitative and quantitative evaluation of the algorithm is presented in
Section 5 followed by conclusions and a discussion in Section 6.

2 General tracking problem formulation

We consider the problem of determining the motion of a rigid structure through a
sequence of images using image registration. A sparse 3D structure for the model
described by 3D points Yi, i = 1, N is calculated in a training stage using
uncalibrated structure from motion techniques (see Section 4). The structure
points define M image regions that are tracked in the sequence. Each region Rk

is determined by a number of control points Ykj that define its geometry. For
example, a planar surface region can be specified by 4 corner points. The model
points are projected onto the image plane using a projective transformation. First
we develop the general theory without committing to a particular projection
model and denote the general 3×4 projection matrix for image It by Pt. Hence,
the model points are projected in image It using:

yti = PtYi, i = 1, N (1)

Let xk = {x1,x2, . . .xKk
} denote all the (interior) image pixels that define

the projection of region Rk in image I . We refer to I0 = T as the reference image

and to the union of the projections of the model regions in T , ∪kT (xk) as the
reference template. The goal of the tracking algorithm is to find the (camera)
motion Pt that best aligns the image template with the current image It. A more
precise formulation follows next.

Assume that the image motion in image t for each individual model region k

can be perfectly modeled by a parametric motion model W (xk; µ(Pt,Yk)) where
µ are 2D motion parameters that are determined by the projection of the region
control points ykj = PtYkj . As an example for a planar region the corresponding
4 control points in the template image and target image t define a homography
(2D projective transformation) that will correctly model all the interior region
points from the template image to the target image t. Note that the 3D model
motion is global but each individual region has a different 2D motion warp Wk.
For simplicity, the 2D warp is denoted by W (xk; µ(pt)) where pt are the 3D
motion parameters that define the camera projection matrix Pt.

Under image constancy assumption [12] (e.g. no illumination change) the
tracking problem can be formulated as finding pt such as:

∪kT (xk) = ∪kIt(W (xk; µ(pt))) (2)
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Fig. 1. Overview of the 2D-3D tracking system. In standard SSD tracking 2D surface
patches are related through a warp W between frames. In our system a 3D model is
estimated (from video alone), and a global 3D pose change ∆P is computed, and used
to enforce a consistent update of all the surface warps.

pt = pt−1 ◦∆p can be obtained by minimizing the following objective function
with respect to ∆p:

∑

k

∑

x

[T (xk) − It(W (xk; µ(pt−1 ◦∆p)))]2 (3)

For efficiency, we formulate the problem as an inverse compositional algo-
rithm [9] that switches the role of the target and template image. The goal is to
find ∆p that minimizes:

∑

k

∑

x

[T (W (xk; µ(∆p))) − It(W (xk; µ(pt−1)))]
2 (4)

where in this case the 3D motion parameters are updated as:

Pt = inv(∆P ) ◦ Pt−1 (5)

The notation inv(∆P ) means inverting the 3D motion parameters in a geomet-
rically valid way that will result in inverting the 3D motion, i.e. in the case when
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∆P = K[R|t] is a calibrated projection matrix, the inverse motion is given by
inv(∆P ) = K[R′| − R′t] (see Section 3). Refer to Fig. 1 for an illustration of
the tracking approach. As a consequence, if the 2D warp W is invertible, the
individual warp update is

W (xk; µ(pt)) = W (xk; µ(∆p))−1 ◦ W (xk; µ(pt−1)) (6)

Performing a Taylor extension of Eq. 4 gives:

∑

k

∑

x

[T (W (xk; µ(0))) + ∇T
∂W

∂µ

∂µ

∂p
∆p − It(W (xk; µ(pt)))] (7)

Assuming that the 3D motion for the template image is zero (which can be easily
achieved by rotating the model in order to be aligned with the first frame at the
beginning of tracking), T = T (W (xk; µ(0))). Denoting M =

∑

k

∑

x ∇T ∂W
∂µ

∂µ
∂p

,
Eq. 7 can be rewritten as:

M∆p = et (8)

where et represents the image difference between the template regions and
warped image regions. Therefore the 3D motion parameters can be computed as
the solution of a least square problem:

∆p = (MT M)−1MTet (9)

The stepest descent images M =
∑

k

∑

x ∇T ∂W
∂µ

∂µ
∂p

are evaluated at p = 0

and they are constant across iterations and can be precomputed, resulting in an
efficient tracking algorithm that can be implemented in real time (see Section
4).

Computing stepest descent images

We compute the stepest descent images from spatial derivatives of template
intensities and inner derivatives of the warp. As mentioned before, the 2D motion
parameters µ for a region k are functions of the 3D parameters p, the 3D control
points Yj and the position of the control points in the template image y0j . The
projection of the points in the current image ykj = PYj are mapped to the
template image control points through the 2D warp W (µ(p)) using:

y0j = W (µ(p))(PYkj), j = 1, Nk (10)

The warp W is a composed function, and its derivatives can be calculated as:

∂W

∂p
=

∂W

∂µ

∂µ

∂p

The warp derivatives with respect to the 2D motion parameters are directly
computed from the chosen warp expression (see Section 3 for some examples).
The explicit dependency between the 2D parameters µ and the 3D motion pa-
rameters p is in general difficult to obtain, but Eq. 10 represents their implicit
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dependency, so ∂µ
∂p

are computed using implicit function derivatives. Assume

that Eq. 10 can be written in the form (see Section 3 for some examples):

A(p)µ(p) = B(p) (11)

Taking the derivatives with respect to each component p of p:

∂A

∂p
µ + A

∂µ

∂p
=

∂B

∂p
(12)

For a given p value µ can be linearly computed from Eq. 11 and then ∂µ
∂p

is
computed from Eq. 12.

3 Practically useful motion models

Different levels of 3D reconstruction - projective, affine, metric Euclidean - can
be obtained from an uncalibrated video sequence [13]. A projective reconstruc-
tion gives more degrees of freedom (15 DOF) so it might fit the data better
under different noise conditions. On the other hand, fitting a metric structure
will result in a stronger constraint, and fewer parameters can represent the model
motion (6DOF). For our tracking algorithm we will investigate two levels of ge-
ometric models reconstructed under perspective camera assumption - projective
and metric. The 3D motion of the model results in 2D motion of the regions Rk

on the image plane.
As mentioned before, the 2D motion is determined through the regions’ con-

trol points. Different motion approximations are common for the 2D-2D image
warps. Warps with few parameters (e.g 2D translation) is in general stable for
small regions or simple motion. To better capture the deformation of the region,
more parameters should be considered but in general tracking with these warps
need large surface area or stabilization from a 3D model. A natural parametriza-
tion, that also correctly capture motion of planar regions, would be a homog-
raphy warp for a perspective camera model (projective or Euclidean) and an
affine warp for a linear camera model (orthographic, weak perspective, para-
perspective). The next subsections give concrete examples of how the tracking
algorithm can be applied to three types of useful combinations of motions: an
Euclidean model with small translational patches, or larger homography patches,
and a projective model with small translational patches.

3.1 Euclidean model with translational warps

A perspective calibrated camera has the following form in Euclidean geometry:

P = K[R|t] (13)

where the internal parameters are:

K =





au s uc

0 av vc

0 0 1



 (14)
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R = Rx(αx)Ry(αy)Rz(αz) represents the rotation matrix and t = [tx, ty, tz]
T is

the translation vector. So the 3D motion parameters are p = [αx, αy, αz, tx, ty, tz].
A translational warp is controlled by one model points for each region and has
the form:

W (xk; µ) = xk + µ (15)

where µ = [µx, µy]T is the 2D image translation vector and is computed from
the motion of the control point Yk using:

µ(p) = y0k − K[R|t]Yk (16)

The inner derivatives ∂W
∂µ

and ∂µ
∂p

can be directly computed from Eq. 15,16
without needing the implicit function formulation.

3.2 Euclidean model with homography warps

The image motion of a planar patch can projectively be modeled using a ho-
mography warp that is determined by at least 4 control points Ykj . Denote the
projection of the control points in the current image by ykj . With the Euclidean
camera model, ykj = K[R|t]Ykj . A homography can be represented using 8
independent parameters µ = [µ1µ2µ3µ4µ5µ6µ7µ8]

T :

W (xk; µ) =





µ1 µ2 µ3

µ4 µ5 µ6

µ7 µ8 1



xk = Hxk (17)

The explicitly dependency of the 2D warp parameters as function of 3D motion
parameters is difficult to obtain analytically in this case, but we can apply the
method described in Section 2 to compute the inner derivatives ∂µ

∂p
using the

implicit dependency from Eq. 10:

y0j = Hykj j = 1, Nk (Nk ≥ 4) (18)

which can be put in the form of Eq. 11 A(p)µ = B(p) with

A(p) =















y1

k1
y2

k1
1 0 0 0 −y1

k1
y1

01
− y2

k1
y1

01

0 0 0 y1

k1
y2

k1
1 −y1

k1
y2
01 − y2

k1
y2
01

...
y1

kK y2

kK 1 0 0 0 −y1

kKy1

0K − y2

kKy1

0K

0 0 0 y1

kK y2

kK 1 −y1

kKy2

0K − y2

kKy2

0K















(19)

B(p) = [y1

01, y
2

01, . . . , y
1

0K , y2

0K ]T (20)

where [y1

kj , y
2

kj , 1]T are the normalized homogeneous coordinates for yki.
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3.3 Projective model with translational warp

This last example is very similar to the first one except that the 3D motion is rep-
resented by a projective 3×4 camera matrix P with 11 independent parameters
p = [p1p2 . . . p11]

T . The 2D warp parameters µ are related to p,:

µ(p) = y0k − PYk (21)

The translational warp is given by Eq. 15.
This model presents diffucilties in calculating a unique and numerically stable

inverse of the 3D motion, as required in Eq.5. To avoid this problem, while we still
compute a global motion update ∆p instead we update each warp independently
as in Eq. 6. This solution is closer to the original SSD tracking algorithm [9, 8]
and, as demonstrated by the experimental results, performs worse that our new
algorithm described in Section 2, but still better than the simple unconstrined
SSD tacker.

4 Tracking system and model aquisition

We incorporated the proposed 3D tracking algorithm is a system that initializes
the model from 2D image tracking over a limited motion in an initial video
segment and then switches to track and refine the model using 3D model based
tracking. The main steps in the implemented method are:

1. Several salient surface patches are selected in a non-planar configuration
from a scene image and tracked in about 100 frames using standard (planar)
SSD trackers as in [9, 8].

2. From the tracked points a 3D model is computed using structure from motion
and the stratified uncalibrated approach [13] (projective reconstruction that
is upgraded to a metric structure using automatic self-calibration). There are
several well known estimation algorithms to recover the projective structure
and motion of a scene using the fundamental matrix (2 views), the trilinear
tensor (3 views) or multi view tensors for more than 3 views. In our system
we used the method developed by Urban et all [14] that estimates the tri-
linear tensors for triplets of views and then recovers epipoles from adjoining
tensors. The projection matrices are computed at once using the recovered
epipoles. New views are integrated through the trilinear tensor between the
new and two previous views. Assuming that the cameras have zero skew and
aspect ratio (au = av and s = 0) and the principal point (uc,vc) is approx-
imately known, the Euclidean projections is recovered using self-calibration
[15]. There is still an absolute scale ambiguity that cannot be recovered with-
out additional metric scene measurements, but since this scale remains fixed
over the sequence, we can use a 6DOF Euclidean motion model for tracking
between frames.

3. The 3D model is related to the start frame of 3D tracking using the 2D
tracked points yi and camera matrix computed using resection (non-linear
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for accuracy) from yi ↔ Yi 2D-3D correspondences. Then the model based
tracking algorithm is initialized by computing the stepest descent images M

at that position. The tracking is now continued with the 2D surface patches
integrated in the 3D model that enforces a globally consistent motion for all
surface patches.

4. New patches visible only in new views are added by first tracking their image
projection using 2D tracking then computing their 3D coordinates through
intersection in n ≥ 2 views then incorporate them in the 3D model. In
the current implementation the user specifies (clicks on) the image control
points yi that will characterize the new surfaces but in the future we plan
to automatically select salient regions.

5 Experimental results

Two important properties of tracking methods are convergence and accuracy.
Tracking algorithms based on a optimization and spatio-temporal derivatives
(Eq. 7) can fail to converge because the image difference between consecutive
frames is too large, and the first order Taylor expansion around p t−1is no longer
valid, or some disturbance causes the image constancy assumption to be invalid.

In the numerical optimization the pose update ∆p is computed by solving an
overdetermined equation system, Eq. 8. Each pixel in a tracking patch provides
one equation and each model freedom (DOF) one variable. The condition number
of M affects how measurement errors propagate into ∆p, and ultimately if the
computation converges or not. In general, it is more difficult to track many DOF.
In particular, models W which cause very apparent image change, such as image
plane translations are easy to track, while ones with less apparent image change
such as scaling and out-of-plane rotations are more difficult. A general plane-
plane transform such as the homography contains all of these and tend to have
a relatively large condition numbers. By tracking a 3D model, the convergence
is no longer solely dependent on one surface patch alone, and the combination of
differently located and oriented patches can give an accurate 3D pose estimate.

In Fig. 2 planar regions in the image sequence are tracked using an 8DOF
homography. When each patch is tracked individually (top images) the first re-
gion is lost already after 77 frames and all lost after 390 frames. (See supplied
video1 left). The condition numbers for M varies between 5 ∗ 105 and 2 ∗ 107,
indicating a numerically ill conditioned situation. When instead the regions are
related by the global 3D model, pose is successfully tracked through the whole
sequence of 512 frames (video1 right). Additionally the model allows the detec-
tion and removal of the region on the left roof side when it becomes occluded
and the introduction of three new regions on the right roof side and the smaller
outhouse when they come into view. The condition number of the 6DOF (3 rot,
3 trans) model is 900, which is significantly better than the 8DOF homography.

The next experiment uses a simpler 2DOF translation model to relate regions
as described in Sections 3.1 and 3.3, and either an Euclidean or Projective global
3D model. In Fig. 3 three cases are compared. In the first, (figure top and video2
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Fig. 2. Top Tracking individual patches using a homography. Not all regions can be
tracked thought the whole sequence and occlusion is not handled. Bottom Through
the 3D model each region motion is rigidly related to the model, and tracking succeeds
through the whole sequence. The model also allows detection and removal of occluded
regions and introduction of new regions. See supplied video1

left) no model is is used, and almost half of the region trackers are lost starting
already from frame 80. Because only 2D spatial x and y derivatives are used in
M the condition number is very low at an average 1.3. In the middle sequence,
a projective model is used to relate the regions. This stabilizes the tracking
until about frame 400, where one tracker is slightly off target and further about
430 some are lost due to occlusion. The projective model has 11 DOF and the
condition number is quite high at 2 ∗ 104. In the final (figure bottom) sequence
a Euclidean model relates the trackers, and provides handling of occlusions.
The condition number is a reasonable 600, and the whole 512 frame sequence is
successfully tracked.

In the final experiment we evaluate the accuracy by tracking four sides of a
cube textured with a calibration pattern, see Fig. 4. For each frame we superim-
pose the warped image onto the template, displaying each using separate color
channels. Hence any misalignment can be seen as color bands between the white
and black squares. We measured the width of these bands and found that for
the Euclidean model with homography warps on average misalignments were less
than 1 pixel, and worst case over several hundred frames was 2 pixels. The 3D
model will constrain the relative location of the regions, and inaccuracies in the
estimated model causes the (small) misalignments we observed. In the case of no
3D model and tracking with homography warps alone the regions would even-
tually lose track (as in the previous house sequence). But for the frames when
they converged alignment was very good, with an error significantly less than a
pixel. This is to be expected since the homography parameters allow exactly the
freedoms needed to warp planar surfaces into any camera projection.



11

Fig. 3. Top Translation tracking of individual regions. Though the video sequence
many patches are lost. Middle A projective 3D model is used to relate the regions,
and provide more stable tracking through the whole sequence. Bottom An Euclidean
model relates the region, and also allow the introduction of new regions. video2

6 Discussion

We have shown how a 3D scene model, estimated from images alone, can be
integrated into SSD region tracking. The method makes tracking of a-priori
unknown scenes more stable and handles occlusions by removing and introducing
tracking regions as appropriate when new views become available.

In combining different types of 3D global models and 2D region warps we
found that

– Tracking planar regions using an 8DOF homography without a 3D model
is unstable due to the many DOF estimated, but limited image signature
available from geometric change of only one planar patch.

– On the other hand, using the estimated 3D model we constrain multiple
individual patches to move in a consistent way and achieve very robust and
stable tracking of full 3D pose over long sequences.

– With some loss in generality and magnitude of maximum trackable pose
change the 8DOF homography can be replaced by simple 2DOF translational
trackers. Each individual such tracker has to use only a small image region
since it doesn’t deform projectively, but instead many regions can be used.
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Fig. 4. Accuracy experiment. Left Scene image. Right current image and template
superimposed indicate accurate alignment video3

Using 2DOF regions and either an Euclidean or projective 3D model this
gives almost as good tracking as the homography + 3D model, and makes
execution somewhat faster.

Convergence in the last case (translational only warp) over large angular changes
in camera viewpoint can be improved by using a few view-dependent templates,
each associated with a smaller angular range, and switch these in and out de-
pending on the current angular pose computed from the 3D model. While this
introduces a risk for drifts and errors from the templates being slightly offset,
in practice we have found it works well using 5-10 different templates over the
visible range of a patch.

Visual tracking has many applications in e.g. robotics, HCI, surveillance and
model building. Tracking and modeling are interrelated in that (as we have
shown) a model improves tracking, and tracking can also be used to obtain
the image correspondences needed for a model. In unstructured environments
this used to present a chicken-and-egg like problem: Without a model it was
difficult to track, and without tracking one couldn’t obtain a model. Our method
integrates both into a system which is started by defining regions to track in
only a 2D image. First 2D tracking is used over an initial video segment with
moderate pose change to obtain point correspondences and build a 3D model
from image data. After the model is built the system switches to 3D tracking and
is now ready to handle large pose changes and provide full 3D pose (rotation,
translation) tracking.

A main feature of our method is that 3D pose change ∆P is computed directly
from image intensity derivatives w.r.t. P . Note that this guarantees the best 3D
pose update available from the linearized model (here using L2 norm, but other
e.g. robust norms are also possible[8]). This is unlike the more common approach
of first tracking 2D image correspondences, and then computing a 3D pose from
points, where first each 2D point location is committed to based on a locally
optimal image fit but without regards to the global 3D constraints.
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