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Abstract. Tracking the pose of an object is a fundamental operation
in computer vision. Yet, achieving this task for arbitrary objects with-
out requiring a priori knowledge remains a major stumbling block. This
paper introduces a new method for tracking the pose of a moving object
without requiring a 3D model or textured surfaces. In the first step, a
sequence of images-poses pair is obtained and from which PCA coeffi-
cients are derived. Then, a piecewise linear observation function is build
by using the poses and the PCA coefficients from the training sequence.
The function is then used in the observation model of a Kalman filter
that tracks the pose of the object.

1 Introduction

Over the years, there has been many methods that combined successfully 2D
tracking and pose tracking in one framework [9]. One drawback of such methods
lies in the robustness of the 2D tracking. In order to establish the correspondence
between 2D patches in a sequence of images each patch must be discriminating
enough, which is a characteristic offered by textured objects. However, when
tracking objects without salient features (low textured surfaces) like the back of
a head these methods become highly unstable due to the failure of the low level
2D tracking.

When tracking subparts of an object fails because of the lack of small visual
attributes, one can often resort to the overall look of the object. Such “look”
can be provided from various sources such as a 3D CAD model [6] or based on
typical 2D views [7,1].

The present introduces a method for tracking the pose of an object by using
an imaged based representation. The representation is obtained by representing
different views of the object in a low dimensional subspace. Such a procedure is
known as principal component analysis (PCA). Also, during the data acquisition,
the actual state of the object is recorded by a magnetic tracker apparatus, such
that a coefficients-state pair is obtained for each view.

It has been shown that under varying points of view, the PCA coefficients
vary on a smooth manifold [7]. Therefore, similar views will have similar decom-
positions in the subspace. Furthermore, this implies that the set of coefficients of
all views can be clustered into subsets representing similar views. By assuming
local linearity, a mapping between coefficients and states can be obtained for
each subset. Finally, these mappings are used in a Kalman filter that is modified
to accommodate all the different observation models.



2 Previous Work

Subspace methods have been widely used in computer vision. In motion analysis,
it is often used to constraint measurements such as optical flow [2] or motion
[9] into a low dimensional subspace. As mentioned above, these methods often
suffer from the ambiguity of the 2D correspondence.

Subspace methods were also used for object recognition, or more precisely
in face recognition [10]. This recognition method also accounted for possible
translations of the target object/face. This application has also inspired many
tracking methods. In [1], each input image is robustly matched. Instead of de-
termining the PCA coefficients the usual way with the least-square criterion, a
robust objective function is minimized in order to find the coefficients. Then, by
introducing motion parameters and simultaneously minimizing a robust objec-
tive function over a set of motion parameter and PCA coefficients, the motion
can be recovered. This method makes an indirect use of the subspace. That is, it
simultaneously searches for coefficients that represents a warping, which param-
eters must also be found, of an image region. In other words, there is no process
that is carried within the subspace.

Another method was proposed in [7], where tracking is achieved by decom-
posing the input image in the subspace and then finding the closest known view
(with Ly norm) in the subspace. The method assumes that consecutive views
are strongly correlated and hence their decomposition in the subspace repre-
sent a continuous function. That method is akin to object recognition, were the
similarity between two views is reflected by similarity in the subspace.

It is important to note that these methods lack the concept of dynamic
systems, that is time and state varying models are not taken into consideration.
Yet, dynamic system have played an increasing role in computer vision and
mostly in tracking.

An analogous, but inverse application was demonstrated in [3]. Instead of
estimating the state of an object given a view, it estimates the view given a state.
First the coefficients are obtained by approximating the function that maps the
state to the subspace. Then, the coefficients are projected on the subspace basis
and the estimate of the image is obtained. The present paper aims at exactly the
inverse. That is, to track the state given changes in the observation manifold.
Moreover, it integrates a Kalman filter to account for the dynamics of the system.

3 Subspace Representation

In a dynamic system framework, let a p x g image be represented by a pg x 1
column vector I and let E : Re?? — Re* where k < pq such that z = E(I) where
z € Re*. Furthermore, let x be the d-dimensional state of the object (i-e. pose)
and let H : Re? — Re* such that the observation function is given by z = H (x).
Therefore, by finding the two functions £ and H, it is possible to relate the state
x of an object to its view I. This section shows how to derive the function FE
from a set of training images, while the next section deals with H.



Let I1,...,Ix be a set of training images representing M points in the ReP?
manifold. The goal of principal component analysis it to reduce the dimension-
ality of the set while preserving as much of the variation inherent to the set.
These principal components are defined in terms of eigenvectors of a covariance
matrix and are ordered such that the first ones capture most of the variation of
the data set [4].

The usual and efficient way of creating the subspace was made popular by
[10]. First the average image is computed by I = Zle I,,/M. Then, for each
image I,,, calculate its deviation from the mean by AI,, = I,, — I and put
the result in a matrix A = [AI; Al,--- Alps]. The principal components are
given by the eigenvectors of the covariance matrix C = AAT. However, the
size of C (pgq x pq) is impractical. For computational efficiency, the eigenvectors
of L = AT A are first computed and denoted by V = [vy...vy]. Then, the
first k eigenvectors of the subspace are given by normalizing the columns of
U=A[v1...vk] for k S M.

Finally, the coefficients z of an image I are obtained from

z=E(I)=UT1-T1) (1)

4 Observation Model

As described in the introduction section, the last piece of the puzzle is to find a
function H(x) that maps the state to the subspace. Before going any further it
is important to look ahead and see what kind of function is sought. First of all,
there is little indication on the shape of the function H and without very good
insight it would be hazardous to commit to any. One reasonable assumption
is that H is locally linear, that is a small variation in the state x will cause a
proportional variation in z. Such an assumption is the foundation of the methods
presented in [3,7].

Given that H is locally linear, the next step is to look at how to incorporate
this in a mathematical tracking framework like Kalman filtering. The standard
Kalman filtering requires a globally linear observation function, which H is not.
The extended Kalman filter accommodates non linear functions by using the
Jacobian of the partial derivatives H, hence using local linearity. Unfortunately,
to compute the Jacobian H, one need the function H, which is unknown.

Instead, a standard Kalman filter can be used with a set of linear observation
functions 8 = {H;, Ha, ..., Hn} where H; and H; (i # j) represent observation
functions over mutually exclusive range. This can be understood as covering the
state space Re? with piecewise linear functions.

To achieve this, the subspace must be either tessellated or clustered. Because
the observation functions must be build with the available data (measured states
and coefficients) and there is no way to ensure that enough points are present
in each cell of a tessellation to build reliable functions, instead the LBG vector
quantization [5] is used for clustering.



4.1 Vector Quantization

Given a set of points Z = {zy,..., 2z} with z,, € Re®, a set of codevectors
(or codebook) € = {ci,...,cn} with ¢, € Re* and a function Q(z,,) = ¢,
that assigns a codevector to each point, the LBG algorithm divides the space
by calculating € and @ in such a way that it minimizes the average distortion
between each point and its codevector, that is
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The recursive algorithm starts with one codevector € = {c;} that is set to
the average of all the points (all points are assigned to ¢1). Then, ¢; is split into
two codevectors {ci,ca} by adding a small variation to create ¢; = (1 + €)cy
and ¢z = (1 — €)c;. The next step consists of adjusting Q(z,,) such that each
point is assigned to the closest codevector. Then, each codevector is recomputed
according to the average of all the points associated to each of them. Finally,
the recursion takes place and each new codevector is split in two.

Given a codebook, the next step is to determine linear observation functions
that represent all the members of each codevector. This requires the pairs P, =
(Zm,Xm) where z,, are the coefficients representing the mth image and x,, is
the respective state associated with the object.

For the pairs Pi,..., Py associated with a codevector c¢; the corresponding
observation function is found by solving the following equation for H;.

(2 - 2] = Hi[xi - %] 2)

In order to have reliable observation functions, the choice of the number
of training frames, codevectors and the dimensionality of the state must be
considered. For example, by assuming that the dimensionality of the tracked
pose is six, equation 2 can be written as

zi x{
— : [hl ... hk] (3)

T T
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where z € Re® and h; € Reb. Tt should be noted that in order to have
an overdetermined system f > 6. Therefore, each codevector should have at
least six points assigned to it. However, since there is very little control on
how to distribute the data set with the LBG algorithm, an easy way to avoid
underdetermined systems is to use more training images. If, as in the following
experiments, the codebook contains 128 codevectors, the minimum number of
training images would be 128 x 6 = 768, such that wisdom had us set 1024 as a
safe number of training images.



5 Kalman Filtering

Setting up the Kalman filter requires to create a dynamic function and observa-
tion function [11].

The dynamic function of an arbitrary object, say an arm, is not linear. There-
fore, a first order differential model is used instead of the linear model. That is,
using dx; = X; — X;—1 (where X represent an a posteriori estimate), the a pri-
ori estimate at time i + 1 becomes x::q = X; + %;. Incidentally, the process
noise covariance matrix () can be tailored to reflect the uncertainty due to the
magnitude of the motion by Q;11 = dx;0%; .

The other modification required by the application is that once the obser-
vation z; is available, the appropriate observation function must be used. The
selection is simply done by choosing the closest codevector ¢}, and selecting the
function H,, associated with it. The cost of performing the exhaustive search is
negligible for the size (IV) of the codebook used in the experiments.

To summarize, the system can be summarized in two pars the training part
and the tracking part.

5.1 Training

Acquire M images I,, and M states x,,.

Find the k first eigenvectors of A.

For each I,, compute z,, with equation 1.

Clustering of the coefficients z,, (find the codebook € of N codevectors).
For each codevector c,, build an observation function H,, using equation 3.

U o=

5.2 Tracking

1. Find the coefficients z; of the frame with equation 1.

2. Find the nearest codevector c;‘ to z;.

3. Time update: find the a priori estimate x; and error covariance P;

4. Measurement update: using Hj, find the a posteriori estimate X; and P;.

6 Experiments

The state measurements x; were obtained with a Polhemus Ultratrak Pro and
were sampled at the same rate than the images: 30fps. The images size is 160x120;

Two experiments were conducted. The first one involves a human circling
around a center and the second one is a moving arm. Both experiments used a
6D state space. In the first experiment, one sensor was place on the chest and the
state was composed of [z,v, z, yaw, pitch,roll]T and in the second experiment
one sensor (S1) was placed above the elbow and one sensor (S») was placed at
the wrist and the state was [Ts,,Ys,,25,, TSys YSs» 255 -

Whereas the motion in the first experiment was periodic (a person walking
around), it was not the case in the second experiment where the motion was



improvised and relatively fast. A few samples of frames are shown in figure 1.
The sequences are available at www.cs.ualberta.ca/~sleonard/track

Figure 2 shows the results for the arm sequence. The left column shows the
relative error (the difference between the estimated state and the measured state
by the magnetic tracker) in z, y, z order for the elbow and the right column show
the results for the fist. On average, the error was about 8cm off the value read by
the magnetic tracker. The randomness of the error reflects well the uncorrelated
and fast motion of the arm.

Figure 3 shows the relative error obtained for the circling sequence. The
trajectory was on a circle of about 1.2m of diameter. The shape of the curves
clearly reveal the periodicity of the motion. The correlation seems to indicate
that the system was less accurate when the subject was moving closer to the
camera. At those points is shows that the yaw is systematically off by 15 degrees
compared to the Polhemus.

7 Conclusion

This paper has introduced a method for tracking the pose of objects that could
be called “hard to track”. Instead of relying on salient features, it uses an image
based representation about the look of the object. This representation has the
form of a low dimensional subspace and is obtained from PCA. Then, it builds a
piecewise linear mapping between the state (pose) of the object and its appear-
ance in the subspace. These mapping are then included in a Kalman filtering
and they account for the observation model of the system. Results have shown
that the system tracks the pose of the object and is accurate enough for many
applications, especially in virtual reality.
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Fig. 1. Sample images.
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Fig. 2. Arm sequence (relative error)
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Fig. 3. Circle sequence (relative error)



