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Abstract. Recently modern non-Euclidean structure and motion esti-
mation methods have been incorporated into augmented reality scene
tracking and virtual object registration. We present a study of how the
choice of projective, affine or Euclidean scene viewing geometry and sim-
ilarity, affine or homography based object registration affects how ac-
curately a virtual object can be overlaid in scene video from varying
viewpoints. We found that projective and affine methods gave accurate
overlay to a few pixels, while Euclidean geometry obtained by auto cali-
brating the camera was not as accurate and gave about 15 pixel overlay
error.

1 Introduction

In Augmented Reality a virtual object is registered with and visually overlaid
into a video stream from a real scene[1]. In classical AR systems this is com-
monly achieved by a-priori geometric modeling for the registration and using
external devices (e.g. magnetic) to track camera pose. Using visual tracking
through the real scene camera offers several advantages. Since ideally the real
and virtual camera should be the same, it avoids the calibration to an unrelated
external sensor. It also allows error minimization using image measurements di-
rectly between the real scene and virtual object. Recent progress in geometric
vision furthermore offers a variety of methods for auto-calibration and alignment
of object without needing any a-priori information. These new methods intro-
duce a variety of choices in building an AR system. First, under varying camera
models, the scene-camera pose tracking can be done in Euclidean[11], affine[7]
or projective[10] formulation. Second, the VR object is normally given as an
a-priori (Euclidean) graphics model, but in recent work also captured image-
based objects have also been inserted[2, 9]. Third, the transform which aligns
the object can either be similarity[3], affine or homography[12].

An important consideration in designing a system is choosing the geometric
representation for the above three parts so that the accuracy constraints of the
task at hand are satisfied. This is perhaps particularly important in industrial
applications where AR can be used e.g. to overlay geometric guides for machining
and assembly. In AR a relevant way to characterize accuracy is in pixel repro-
jection error. Note that this is different from e.g. absolute errors in computed
camera pose and scene structure, since some errors will cancel out when pro-
jected. However, AR is also different from pure re-projection. In the alignment



phase the AR object and the scene geometry are related, and inconsistencies
in either can make them impossible to align correctly. In this paper we present
a study of the reprojection errors when inserting and AR-rendering an object
under Euclidean, affine and projective geometry.

In the next section we first define and describe the geometry of AR capture
and rendering in general, then specialize this to each of the chosen geometries.
In Section 3 we compare experimentally the accuracy under each geometry, and
finally in Section 4 we summarize and reflect on the consequences of our study.

2 Theory

Below we will first present a general formulation of an AR system that will later
be specialized for particular camera and scene models.

An augmented reality system involves inserting a virtual object into a real
scene, and continue to render the scene augmented with the new object. We
assume that the geometry of the object is given a-priory as a set of 3D coordinates
Xo. The basic steps of an AR system, as illustrated in Figure 1, are:

Image plane
structure W

structure
Scene

Scene−Object
transform

projection
Scene−Camera

Augmented 
scene

Augmented
object

Real scene

structure
Object

Xo

X s

P
o

Q

P

Fig. 1. Coordinate frames in the AR system

Scene structure and motion Before inserting the object, the structure of
the scene Xs has to be recovered from a set of fiducial points uik, i = 1 . . .N

tracked in a sequence of training images Ik, k = 1 . . .M . This is a common
and well studied problem in computer vision, known as structure from motion
(SFM). The 3D structure Xs is related to its projection uk in image k by the
projection matrix Pk:

uk = PkXs (1)

The projection matrix contains both camera internal parameters and camera
motion parameters (external) expressed with respect to a reference frame. For
our study we consider that the camera is uncalibrated i.e. both the internal and
external parameters are unknown.

After recovering the scene structure, its motion can continue to be tracked
from the projection of the scene points, by factoring Pk in Equation 1.



Object registration The core problem in an AR system is how to relate the
object structure Xo with the scene structure Xs such as the augmented structure
Xa = [Xs; Xos] can be rendered using the scene projection matrix Pk. This
involves recovering the geometric transformation Q that registers the object
reference system with the scene reference system: X os = QXo. Another way to
solve the registration problem is to recover a virtual camera matrix P o

k such as
the projection of the object with this camera appears correct. It is easy to see
that P o

k = PkQ.
Scene rendering After the virtual object has been inserted into the scene
geometry, the augmented scene Xa is rendered using the current projection
matrix Pk. Alternatively, a virtual camera P o

k can computed by transforming
the scene camera to the object coordinates and the virtual object is rendered
separately and overlaid onto the current scene.

Different AR systems can be created depending on the chosen camera model
and reconstruction method. In the next subsections we will present four ex-
amples, starting with a projective camera model and reconstructed projective
structure, that is then upgraded to an Euclidean structure. Next an affine model
is reconstructed assuming an affine camera, that can be upgraded to a metric
model if the camera is constrained to weak perspective.

2.1 Projective structure

The most common camera model is the projective, represented by a 3×4 matrix
P

p
k . We assume N points tracked in M views. Let the homogeneous coordinates

of the 3D scene points and 2D image points be:

Xi = [Xi, Yi, Zi, 1]T uik = [uik, vik, 1]T , i = 1 . . .N, k = 1 . . .M (2)

They are related by the projection equation:

ρikuik = P
p

k Xi (3)

where ρik is a nonzero scale factor, which in general is different for each point
and view. It has been shown that P

p

k can be recovered up to a 3D projective
transformation [5]. There are several well known estimation algorithms to recover
the projective structure and motion of a scene using the fundamental matrix (2
views), the trilinear tensor (3 views) or multi view tensors for more than 3 views.
In our experiments we used the algorithm developed by Urban et all [15] that
estimates the trilinear tensors for triplets of views and then recovers epipoles
from adjoining tensors. The projection matrices are computed at once using the
recovered epipoles.

At the registration stage the projective scene structure is related by the
object structure by a 3D projective transformation Qp (4×4 matrix) that has in
general 15 DOF and can be recovered from 5 corresponding points. In practice
the corresondences are specified by aligning the projection of 5 fiducial points in
two views from which their projective coordinates are recovered.



2.2 Euclidean structure

In many applications we are interested in recovering the Euclidean structure of
the scene and the true (Euclidean) projection matrices. As mentioned before,
there is a ambiguity in recovering the projective structure that cannot be solved
without additional knowledge. The estimated projection matrices differ from the
’real’ ones by a 3D projective transformation (4 × 4 matrix):

P e
k = P

p

k H Xe = H−1X (4)

The Euclidean camera has the form:

P e
k = ρK[Rk| − Rktk] K =





fu s u0

0 fv v0

0 0 1



 (5)

where R and t are the 3D rotation and translation, respectively, and K is a
calibration matrix.

If we assume that the cameras have zero skew and aspect ratio (fu = fv and
s = 0) and the principal point (u0,v0) is approximatively known, the Euclidean
projections can be recovered using self-calibration [14]. There is still a scale
ambiguity that cannot be recovered without additional metric measurements.

The estimated Euclidean structure of the scene is related to the Euclidean

structure of the object by a similarity transformation Qe =

[

sR t

OT 1

]

. Qe has in

general 7DOF and can be recovered from 3 or more corresponding points. Similar
to the case of projective structure we specified the projection of 3 fiducial points
in 2 views and recover their Euclidean coordinates.

At the stage of rendering, the estimated Euclidean projection matrix can
be factored into its components (Equation 5) and the object can be rendered
though a traditional computer graphics pipeline.

2.3 Affine structure

When the object depth is small relative to the distance from the camera to the
object, the camera can be approximated with a 2 × 4 affine projection matrix
P a. For the linear affine camera, structure and motion can be estimated effi-
ciently using factorization [13]. N points tracked in M views, with the affine
coordinates uik = [uik, vik]T , form a 2M × N measurement matrix W that can
is factored into M projection matrices P a

k , k = 1 . . .M and an affine structure
Xi = [Xi, Yi, Zi]

T , i = 1 . . .N that satisfy the reprojection property:

uk = P a
k X (6)

The affine structure of the scene is registered with the object structure using
a 3D affine transformation Qa that has in general 12DOF and can be estimated
from 4 corresponding points. The object is inserted into the scene by specifying
the projection of 4 fiducial points in 2 views from which their affine coordinates
can be recovered. When rendering the augmented scene, new affine projection
matrices consistent with the affine structure X are estimated and used for re-
projection.



2.4 Scaled Euclidean structure under weak perspective projection

When the projection model is constrained to weak perspective, the affine struc-
ture of the scene can be upgraded to scaled Euclidean. The weak perspective
projection matrix has the form:

P a
k = [skRk|tk] (7)

where Rk contains the components ik and jk along the camera rows and columns
of the rotation, sk is a scale factor and tk represents the image plane translation.
To constrain P a

k in this format we align the reference coordinate system with
the pixel coordinate system of camera row and column.

Let us denote P a = [R̂|t] and X̂ the projection matrices and structure esti-
mated by the factorization algorithm (P a = [P a

1
; . . . P a

M ] is a 2M × 4 matrix).

The matrices R̂ and X̂ are a linear transformation of the metric scaled rotation
matrix R and the metric shape matrix X . More specifically there exist a 3 × 3
matrix H such that:

R = R̂H

X = H−1X̂
(8)

H can be determined by imposing constraints on the components of the scaled
rotation matrix R:

îTk HHT îk = ĵTk HHT ĵk ( = s2

k)

îTk HHT ĵk = 0 k ∈ {1..M}
(9)

The resulting scene structure is metric and is related to the object structure
by a similarity transformation that can be recovered from 3 or more correspond-
ing points (same as the structure in Section 2.2).

When rendering, the recovered 2 rows of rotation can be completed to a full
3D rotation matrix by adding a last row perpendicular to the first two. This
allow traditional graphics light and shading to be applied on the virtual object.
The main problem with this structure is that there is no perspective effect when
rendering and that can result in distorted views.

3 Experiments

We have performed a set of experiments comparing Euclidean, affine and projec-
tive formulations. Using a uniform setup and procedure ensures that we actually
contrast the models as opposed to artifacts of a particular implementation.

A scene consisting of two planes with a calibration pattern as background
was built. Since scene geometry is estimated the particular scene structure and
texture doesn’t matter, but the high contrast corners on the pattern are easy to
track (see Figure 2 top left). To allow accuracy measurements an AR structure
of a cube with one corner cut off (giving four simultaneously visible planes) is
introduced both as an AR virtual object and physically into the scene using a
real object made closely to the geometric specifications of the virtual AR object.



The scene is viewed by a commodity machine vision camera, 640x480 pixels
Basler A301fc with a Pentax 12mm lens. To allow precise point correspondences
between views high contrast corner markings on the background and cube were
tracked using XVision[4]. Errors relating to the physical object geometry and
tracking were both less than one pixel.

For each particular choice of geometry and alignment transform the following
experimental procedure was followed:

1. The structure and motion of the scene was obtained from an image sequence
of 20 frames, with an angular camera variation of 30◦ pan and tilt w.r.t. the
scene. (Because scene planes were 90◦ apart it was difficult to move more
without loosing track of points on one of the planes.)

2. The scene and virtual AR object was registered using a varying number of
corresponding points in two views to establish a basis transform between
real and virtual frames. Here the actual tracked points of the real cube was
used in place of the user clicking to avoid user induced alignment errors. We
ensured that the fiducial points were not coplanar and the insertion frames
were about 7◦ apart.

3. The virtual AR object was reprojected into 128 different views (again with
an angular camera variation of about 30degrees to maintain simultaneous
tracking on all planes). The errors were computed by comparing the point
reprojections with the tracked points on the real version of the same object
physically inserted into the scene.

The most important aspect of an AR system is how precisely the virtual
object is rendered in new views. Over all views the average reprojection error
is a few pixels for all models except the Euclidean. The Euclidean model has a
constant error of about 15 pixels. We think is due to the auto-calibration giving
an erroneous scene structure, which is incompatible with the object. Hence it
cannot be aligned with the few freedoms of the similarity transform. Further evi-
dence for this is that when instead using a projective homography, the alignment
was comparable to the other types of geometric structure.

The reprojection error is not constant, but increases as the camera viewpoint
becomes more distant from the views where the object was registered. We found
that the effects of camera translations were minor, while rotations mattered.
In Figure 2 (bottom) we can see that for the projective and affine models, the
re-projection error starts at 2-4 pixels near the insertion view and rises to about
6 pixels at farther views. This behaviour was similar for all angular directions
on a viewing sphere.

Another consideration is the number of points used in aligning the AR object
and scene structure. Most published systems have used the minimum number
needed for a particular transform (e.g. 3 for similarity, 4 for affine and 5 for
projective). However, doing a least squares fit over more points can even out
errors as seen in Fig. 2 (top right).

Overall, we found that for views close to the insertion view, the affine model
had a slight advantage of the projective. The affine model is linear and can be
accurately estimated for small viewpoint variations. Over all views the affine
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Fig. 2. Experiment scene (top left) and results when varying the number of points
used to align the AR object (top right) as well as a function of the angular difference
between viewpoint and closest insertion view (bottom)

and projective methods are about equal. The projective method obviously is
better than the affine at viewpoints distant from the insertion point, where the
linear affine camera model is invalid. Practically in AR accuracy in views far
away from the registration views often matter less, since the most salient views
would be picked out for the object registration and insertion. In distant views
the projection of the object is also smaller, and unlikely to be used by an human
for precision judgments.

4 Discussion

In this paper we presented a study of the accuracy of AR object registration in
Euclidean, affine and projective geometries. We found that for most situations
either and affine or projective method work well. The affine gives the lowest
error, 2-3 pixels for small viewpoint variations, while the projective is slightly
better for large viewpoint variations. The object insertion transform also mat-
ters. A transform with more freedoms can “stretch” the object to fit the scene
structure better. In this respect metric methods obtained by upgrading projec-



tive or affine structure to Euclidean showed problems in aligning scene structure
(with estimation errors) with the predefined AR object.

However a Euclidean metric structure can be valuable. Non-Euclidean in-
sertion requires the user to click on a number of point (4-5) in two images to
define a basis transform. This has been argued to be unintuitive. Using an Eu-
clidean similarity the user can specify the object insertion in familiar concepts
of metric translations and rotations. Another reason for a metric model is to
allow standard graphics calculations of light and shading. Hybrid AR systems
could be built using non-Euclidean methods for accurate alignment, but metric
calculations for e.g. lighting.

We studied the most common method of using one global registration be-
tween the scene and AR object. Variations of this are possible For instance,
insertion by local feature alignment have been used in the case of planar trans-
fer[12]. Explicit minimization of image error is also used in visual servoing where
instead of a virtual object real objects are aligned in real scenes. These meth-
ods can achieve subpixel errors[6], and have recently been transferred to the AR
application[8].
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