Note on Question 4.16 Page 184 (Assignment7)

In the following example, the DFAs for A and B have 6 states. However, the shortest strings differ in A and B have length $8(a a a a b b b b \in A$ but $a a a a b b b b \notin B$, aaaaabbb $\in B$ but $a a a a a b b b \notin A)$. Any string with length at most 7 is either accepted by both A and B or rejected by both A and B. Therefore, checking strings with length up to the number of states of the DFAs is not sufficient.

Consider another example. $A=\left\{(a b a b)^{*} a b a a\right\}$ and $B=\left\{a b a a(a a a a)^{*}\right\}$. For A, pumping length is $4, x=\varepsilon$, $y=a b a b, z=a b a a$. For B, pumping length is $4, x=a b a a, y=a a a a, z=\varepsilon$. The shortest strings differ in A and B have length 8 (abababaa $\in A$ but abababaa $\notin B$, abaaaaaaa $\in B$ but abaaaaaa $\notin A$). Any string with length at most 7 is rejected by both A and B except for $a b a a$, which is accepted by both A and B. Thus, checking strings with length up to the pumping length is not sufficient, either.

