CMPUT 671 Assignment 2
 Due Oct. 23, 2003

1. Let $V=\{1, \ldots, n\}$ and assume the $\mathcal{G}_{n p}$ distribution. Show that for fixed $\epsilon>0$ if $p \in O\left(\frac{1}{n^{2 / 3+\epsilon}}\right)$ then the probability of a 4 -clique occurring in a random graph goes to zero as n goes to infinity.
Hint: use the first moment method; that is show the expected number of 4 -cliques goes to 0 .
2. Using $\mathcal{G}_{n p}$ as in the previous question, show that there is a constant c such that if $p \geq c / n$ then the probability that G is 3 -colorable goes to zero as n goes to infinity.
Hint: use the first moment method to show the probability of an independent set of sufficient size goes to zero. (i.e. there is a lower bound on the smallest possible largest set in a 3-colorable graph).
3. Note that the previous two questions say there are large sparse (e.g. $p \in O(1 / n))$ random graphs that are not 3 -colorable but at the same time have no 4 -clique, which is one thing we might look for to prove noncolorability. A 4-clique is the smallest example of a 4-critical graph; that is, it is not 3 -colorable, but if any edge is deleted then it is 3 -colorable. The wheels with odd cycles used in the first assignment are all 4-critical as well. (The 3 -critical graphs are just the odd cycles, and so easy to detect.)

In the following we will determine a lower bound on the size of the smallest non-3-colorable graph (with high probability) when $p=c / n$.
(a) Show that a critical graph must have minimum degree of at least 3 .
(b) Suppose you are looking for a critical graph on s vertices. Use (a) to give a lower bound on the number of edges in any such graph.
(c) For edge probability p, provide a formula to upper bound the probability $p(s)$ that an arbitrary set of s vertices contains a critical subgraph, by bounding the probability of it having sufficient edges.
(d) For a graph $G=(V, E)$, a subset $S \subseteq V$ induces the subgraph $G[S]=\left(S, E^{\prime}\right)$ where $E^{\prime}=\{(x, y) \mid x, y \in S,(x, y) \in E\}$.
Given a graph G with n vertices generated randomly with $p=c / n$, give a formula to upper bound the expected number, called $a(n, s)$, of subgraphs induced by a set of s vertices that contain a critical graph. For this part assume s is a fixed constant.
(e) At this point you should have a big messy formula for $a(n, s)$. Show that the sum of the expected values $a(n, s)$ for $4 \leq s \leq h$ goes to zero as n goes to infinity for suitable functions $h=h(n)$. It should not be too hard to show there exists an $\epsilon>0$ such that this is true for $h<n^{\epsilon}$.
(If you are familiar with more advanced combinatorial methods, you can do better, i.e. $h=\alpha n$ for a suitable small $\alpha>0$. For example,
you may split the sum as is done in in lemma 1 of the Chvátal and Szemerédi, Many Hard Examples for Resolution JACM Vol. 35(4) 1988, pp 759-768.)

You have shown that the smallest critical graph is large, which suggests that 3-coloring will be hard at the threshold.
4. The Hajós construction: Let K_{k} be the complete graph on k vertices. Assume we start our collection with K_{k}. Repeatedly select one of the following steps to create new G to add to the collection. (To identify x, y, we replace them by a single vertex z, and put $(z, w) \in E$ if $(x, w) \in E$ or $(y, w) \in E, w \neq x$ or y.)
(a) If G_{1} and G_{2} are in the collection (they may copies of the same graph) remove an edge $\left(x_{1}, y_{1}\right)$ from G_{1} and an edge $\left(x_{2}, y_{2}\right)$ from G_{2}. Let G be the union, identify vertices x_{1} and x_{2} and add the edge $\left(y_{1}, y_{2}\right)$.
(b) If G_{1} is in the collection and it contains a non-adjacent pair of vertices x, y, then construct G by identifying x and y.
(c) If G_{1} is in the collection then create G by adding new vertices and/or new edges to G_{1}.

Consider the following questions.
(a) Prove that every graph constructible using this method has chromatic number at least k.
(b) Let $k=4$. Show a sequence of construction steps to generate a non-3-colorable graph which is triangle free.
(c) Let $k=4$ and restrict the construction to type (a) steps only. Prove a linear upper bound on the number of edges as a function of n as n becomes large.
(d) Let $k=4$ and restrict the construction to type (a) steps only. Show that every graph constructed is 4 -critical.
(e) Let $k=4$ and restrict the construction to type (a) steps only. Show that there exists a polynomial sized proof (not necessarily a resolution proof) that the graph is not 3-colorable.
(f) * Let $k=4$ and restrict the construction to type (a) steps only to construct a graph H. Let $G \supseteq H$. Give a polynomial time algorithm to show any such G is not 3-colorable.

This exercise shows that large sparse critical subgraphs are not necessarily hard to identify. Hajós showed in 1961 that every graph with chromatic number at least k could constructed by his method. It is open as to whether or not there is always a polynomial (in n) Hajós construction for any non- k-colorable graph, but a positive answer would imply NP $=$ CO-NP, so is considered unlikely. Note that steps of type (b) reduce the number of vertices, which is "why" the complete construction may not be polynomial in n.

