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Abstract. The concepts of treewidth and tree-decomposition on graphs
generalize those of the trees. It is well established that when restricted
to instances with a bounded treewidth, many NP hard problems can be
solved polynomially. In this paper, we study the treewidth of the NK
landscape models. We show that the NK landscape model with adja-
cent neighborhoods has a constant treewidth, and prove that for k ≥ 2,
the treewidth of the NK landscape model with random neighborhoods
asymptotically grows with the problem size n.

1 Introduction

NK landscapes have been widely used in the study of genetic algorithms and
computational biology [1]. There are basically two classes of NK landscape mod-
els: the NK landscape model with adjacent neighborhood and the NK landscape
model with random neighborhood. Both of the two models have been analyzed
and characterized from the perspectives of statistics and computational com-
plexity [2–5].

In [2], it was shown that even though the NK landscape model with adjacent
neighborhoods can be solved polynomially and the NK landscape model with
the random neighborhood is usually NP complete, the two classes of NK models
share almost identical statistical characteristics such as the average number of
local minima and the average height of the local minima. This has puzzled
researchers in this field for a while. In [4], it was shown that the decision versions
of NK landscapes with random neighborhoods are easy to solve with probability
asymptotic to 1 under two commonly used probabilistic settings. This is more
or less in contrast to the common observation that NK landscapes with random
neighborhoods are usually hard for genetic algorithms.

In the study of constraint satisfiability problems and algorithmic graphs [6,
7], it is well-known that problems with an underlying tree structure can be solved
linearly. The concepts of treewidth and tree-decomposition of graphs generalize
the concept of trees and measure the degree to which a graph behaves like a tree
[7]. It is well established that many NP complete problems, when restricted to
instances with a bounded treewidth structure, can be solved polynomially via
dynamic programming or some other deterministic algorithms [8].

In this paper, we study the treewidth of NK landscapes in an effort to further
understand the differences between the two classes of NK models and the reasons
why they appear to be hard for genetic algorithms.
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In Section 2, we introduce the NK landscape model, its interaction graph,
and the concepts related to the treewidth and tree decomposition of graphs. In
Section 3, we study the treewidth of the NK landscape models and prove that
the adjacent neighborhood NK landscape model has a fixed treewidth and the
treewidth of the random neighborhood NK landscape model grows linearly with
the problem size n. In Section 4, we discuss the implications of our results and
future work.

2 NK Landscape Models

An NK landscape

f(x) =

n
∑

i=1

fi(xi, Π(xi)), (1)

is a real-valued function defined on binary strings of fixed length, where n > 0 is
a positive integer and x = (x1, · · · , xn) ∈ {0, 1}n. It is the sum of n local fitness

functions fi, 1 ≤ i ≤ n. Each local fitness function fi(xi, Π(xi)) depends on the
main variable xi and its neighborhood

Π(xi) ⊂ Pk({x1, · · · , xn}\{xi}) (2)

where Pk(X) denotes the set of all subsets of size k from X. The most important
parameters of an NK landscape are the number of variables n, and the size of
the neighborhood k = |Π(xi)|.

In an NK landscape, the neighborhood Π(xi) can be chosen in two ways:
the random neighborhood, where the k variables are randomly chosen from the
set {x1, · · · , xn}\{xi}, and the adjacent neighborhood, where k variables with
indices nearest to i (modulo n) are chosen. To simplify the discussion, we assume
in this paper that the adjacent neighborhoods are defined as follows: for each i,

Π(xi) = (xmax(0,i−d k

2
e), · · · , xi−1, xi+1, · · · , xmin(n,i+d k

2
e)). (3)

We use A(n, k) to represent the NK landscape model with adjacent neighborhood
and N(n, k) to represent the NK landscape model with the random neighbor-
hood.

Definition 1. The interaction graph of an NK landscape model is a graph G(V,E)
where the vertex set V = {x1 · · · , xn} corresponds to the set of variables in the
NK landscape and (xi, xj) ∈ E if and only if xi and xj both appear in a local
fitness function.

The interaction graph of an NK landscape model captures all the interactions
among the variables in the NK landscapes. A knowledge of these interactions is
critical in understanding the complexity and designing appropriate algorithms to
solve the problems. For example, if the interaction graph is a tree, then a linear
time algorithm readily exists to solve the problem. As yet another example, if the
underlying graph can be decomposed into several connected components, then
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a viable approach to the problem is to first solve the subproblems represented
by each connected component and then combine the partial solutions together.

The concept of treewidth and tree decomposition generalizes the above ideas
further. Let us start with the definition of the l-tree.

Definition 2. ([7]) l-Trees are defined recursively as follows:

1. A clique with l+1 vertices is an l-tree;
2. Given an l-tree Tn with n vertices, an l-tree with n+1 vertices is constructed

by adding to Tn a new vertex which is made adjacent to an l-clique of Tn

and non-adjacent to the rest of the vertices.

Definition 3. ([7]) A graph is called a partial l-tree if it is a subgraph of an l-
tree. The treewidth of a graph G is the minimum value l for which G is a partial
l-tree.

The treewidth of a graph has an equivalent definition based on the concept
of tree decomposition.

Definition 4. ([7]) A tree decomposition of a graph G = (V,E) is a pair D =
(S, T ) where S = {Xi, i ∈ I} is a collection of subsets of vertices of G and
T = (I, F ) is a tree with one node for each subset of S, such that

1.
⋃

i∈I Xi = V ,
2. for all the edges (v, w) ∈ E there exists a subset Xi ∈ S such that both v and

w are in Xi, and
3. for each vertex v, the set of nodes {i, v ∈ Xi} forms a subtree of T.

The width of the tree decomposition D = (S, T ) is maxi∈I(|Xi| − 1). And the
treewidth of a graph is the minimum width over all tree decompositions of the
graph.

3 The Treewidth of the NK landscape Models

In this section the treewidth of the NK landscapes models is studied. We start
with the treewidth of the NK landscape model with adjacent neighborhoods.
In [2], it has been shown that the NK landscape model with adjacent neigh-
borhoods can be solved by dynamic programming in linear time. The following
theorem shows that the interaction graph of the NK landscape model with ad-
jacent neighborhoods has a treewidth independent of n.

Theorem 1. Let A(n, k) be the NK landscape model with adjacent neighbor-
hoods with the underlying graph G. Then, the treewidth of G is at most 2k.

Proof. By direct construction, we can get a tree decomposition with a width k if
the cyclic interactions at the boundaries are ignored. When taking into account
the cyclic interactions at the boundaries, we can get a tree decomposition with
a width 2k. ut
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We now turn to the NK landscape model with random neighborhoods. Since
the problem is in general NP hard, we do not expect its interaction graph to
have a bounded treewidth because that will mean the problem is polynomially
solvable. Instead, we are interested in how the treewidth changes as the prob-
lem size n and the interaction size k increase, and the probability with which
the treewidth remains small enough for algorithms making use of treewidth-
related information to work efficiently. Our result below, however, shows that
the treewidth asymptotically grows linearly with n.

Definition 5. ([7]) Let G(V,E) be a graph with |V | = n. A partition (S,A,B)
of V is a balanced l-partition if the following conditions are satisfied:

1. |S| = l + 1;
2. 1

3 (n− l − 1) ≤ |A|, |B| ≤ 2
3 (n− l − 1); and

3. S separates A and B, i.e., there are no edges between vertices of A and
vertices of B.

Theorem 2. Let w(n, k) be the treewidth of the interaction graph of the NK
landscape model with random neighborhoods. Then, for k ≥ 2, there is a fixed
constant δ > 0 such that

lim
n
Pr{w(n, k) ≤ δn} = 0. (4)

Proof. Let l = w(n, k). It is well-known that if a graph has a treewidth l, then
the graph must have a balanced l-partition [7]. Consider the interaction graph
G = G(V,E) of the NK landscape with random neighborhoods. Let P be the
set of all the partitions of the vertex set V that satisfies the first two conditions
in Definition 5. For a given P = (S,A,B) ∈ P, define a random variable IP as
follows:

IP =

{

1, if P is a balanced partition;
0, otherwise.

(5)

and let O be the event that IP is 1, i.e., that there are no edges between vertices
of A and vertices of B. Recall that Π(xi) is the set of neighbors of the i-th local
fitness function. For each 1 ≤ i ≤ n with xi ∈ A (or xi ∈ B), let Oi be the event
that Π(xi) ⊂ A

⋃

S (Π(xi) ⊂ B
⋃

S respectively). For xi ∈ S, let Oi be the
event that Π(xi) ⊂ A

⋃

S or Π(xi) ⊂ B
⋃

S. Then, by the definition of the NK
landscape model with random neighborhoods and its interaction graph, we have

O =
⋂

1≤i≤n

Oi. (6)

Since each local fitness function selects its neighbors independently, O1, · · · , On

are mutually independent. We have

Pr{O} =

n
∏

i=1

Pr{Oi}. (7)



Treewidth of NK Landscapes 5

For xi ∈ A (or xi ∈ B), we have

P{Oi} ≤

( 2

3
(n−l−1)+l

k

)

(

n−1
k

) = (
1

3
)k(2 +

l

n− 1
)k. (8)

Similarly, for xi ∈ S, we have

Pr{Oi} ≤ 2(
1

3
)k(2 +

l

n− 1
)k. (9)

Then,

Pr{O} ≤ 2l+1(
1

3
)kn(2 +

l

n− 1
)kn. (10)

Let I =
∑

P∈P

IP . By its definition, we have

|P| =

(

n

l + 1

)

∑

1

3
(n−l−1)≤a≤ 2

3
(n−l−1)

(

n− l − 1

a

)

≤

(

n

l + 1

)

2n−l−1. (11)

It follows that the expectation of I satisfies

E{I} =
∑

P∈P

E{IP }

≤

(

n

l + 1

)

2n−l−12l+1(
1

3
)kn(2 +

l

n− 1
)kn

≤

(

n

l + 1

)

2n(
2

3
+

1

3

l

n− 1
)kn. (12)

Let 0 < y = l+1
n
< 1. We obtain from Stirling’s formula that

(

n

l + 1

)

∼
1

√

2πy(1− y)n

(

1

yy(1− y)1−y

)n

. (13)

And hence,

E{I} ≤
1

√

2πy(1− y)n

(

2

yy(1− y)1−y
· (

2

3
+

1

3
y)k

)n

. (14)

Since for k ≥ 2,

lim
y→0

(

2

yy(1− y)1−y
· (

2

3
+

1

3
y)k

)

= 2(
2

3
)k < 1, (15)

there exists a 0 < δ < 1 such that

lim
n

1
√

2πδ(1− δ)n

(

2

δδ(1− δ)1−δ
· (

2

3
+

1

3
δ)k

)n

= 0. (16)
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Therefore, we have

lim
n
Pr{w(n, k) ≤ δn} ≤ lim

n
Pr{I > 0}

≤ lim
n
E [I] = 0. (17)

This concludes the proof. ut

4 Conclusions and Future Work

As we have shown in the previous sections, the treewidth of the NK landscape
is bounded by the interaction index for the adjacent neighborhood model, but
grows linearly with the problem size for the random neighborhood model. In
addition to the NP complete study of the random neighborhood model, our
result is the first one that depicts the difference between the two statistically
similar NK landscape models.

It is well-known that optimization problems with bounded treewidth can be
decomposed into independent sub-problems and solved polynomially using dy-
namic programming techniques. This is the case for the NK landscapes with
adjacent neighborhoods [2]. Other examples include the constraint satisfaction
problems and the inference problem for Bayesian networks [6, 9] in which the
popular tree-clustering method run polynomially if the problems under consid-
eration have a bounded treewidth. For the random neighborhood model, our
result shows that algorithms that make use of the information about the struc-
tures of the interactions in the same way as the tree-clustering approach cannot
solve the problem efficiently.

An interesting question that deserves further investigation is “Do genetic al-
gorithms exploit the treewidth-related structural information? And if so, to what
extent do they rely on that information to work?” We suspect that the answer
to the first question is affirmative. In fact, this is best illustrated by the recent
work on sampling-based genetic algorithms. Instead of using genetic operators
to generate new solutions, these sampling-based algorithms generate candidate
solutions by sampling some probability distributions on the solution space and
update the distributions based on the information gathered as new solutions are
evaluated. The probability distributions may be modelled as the product of inde-
pendent distributions [10], decomposable distributions naturally obtained from
the knowledge about the interaction structures[11], or Bayesian networks that
are constructed from the existing candidate solutions[12]. All of these models
depend on the factorization of a multivariate probability distribution into the
form

p(x1, · · · , xn) =
1

Z

∏

C∈C

ψC(xC),

where p(·) is the original distribution and C is a tree decomposition of a graph,
the structure of which is defined (explicitly or implicitly) by the designers of the
sampling-based algorithms and is believed to be able to capture the interaction
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structure of the original optimization problems. The effectiveness and efficiency
of these sampling-based algorithms thus depend critically on how well the fac-
torization approximates the real tree-decomposition of the original problem, and
on the width of the tree decomposition which is lower bounded by the treewidth
of the original problem.

Another direction of future work is to study the treewidth of the NK land-
scape models by considering the number of local fitness functions as a parameter
as well as the interaction index k. By relaxing the requirement that each variable
is associated with a local fitness function in the current model, we can consider a
more generalized model in which the number of variables that have an associated
local fitness function is another tunable parameter. It would be interesting to
study the treewidth of such a generalized NK landscape model.
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