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Abstract. Let C2,k,t
n,cn be a random constraint satisfaction problem(CSP) of n binary variables,

where c > 0 is a fixed constant and the cn constraints are selected uniformly and independently
from all the possible k-ary constraints each of which contains exactly t tuples of the values as its
restrictions. We establish upper bounds for the tightness threshold for C2,k,t

n,cn to have an exponential
resolution complexity. The upper bounds partly answers the open problems regarding the CSP
resolution complexity with the tightness between the existing upper and lower bound [1].

1 Introduction

Phase transition and threshold phenomena in NP complete problems have been extensively
investigated. Many problems such as propositional satisfiability (SAT), graph coloring, and
the constraint satisfaction problem (CSP), have been shown to have a solubility threshold
under various random models. Over the past ten years, much attention has been paid to the
identification of the exact value of the threshold and/or the upper and lower bounds for the
threshold [2–4]. Recently, research interest started to switch to analytical investigation of the
links between the solubility threshold phenomena and the algorithmic complexity to solve these
NP complete problems.

In the study of the phase transition of CSPs, many natural models of random CSPs have
been proposed, but not all of them are guaranteed to exhibit a threshold. A detailed discussion
of the random models of CSPs and their limitations can be found in [5–7].

In this paper, we consider C2,k,t
n,cn , a random binary CSP model defined on n binary variables

where the cn, c > 0, constraints are selected uniformly and independently from all the possible
k-ary constraints each of which excludes exactly t tuples of the values. In [6], it is shown that
for any c > 0, if t ≥ 2k−1, then C2,k,t

n,cn is flawed in the sense that it is almost always trivially
unsatisfiable and can be checked in linear time. In [1], Mitchell shows that for 0 < t < k−1, the
resolution complexity of C2,k,t

n,cn is almost surely exponential. A similar exponential complexity
result has also been established in [8] under a different CSP random model. The main result
of this paper is a set of tightness upper bounds for the threshold of exponential complexity
of C2,k,t

n,cn . These upper bounds partly answer the open problems regarding the CSP resolution
complexity with the tightness between the existing upper and lower bound [1, 6].

In the study of the resolution complexity of SAT, there has been much interest in the neces-
sary clause density at which unsatisfiable SAT instances can be recognized polynomially [9, 10].



Currently, the best result shows that there are polynomial algorithms to certify unsatisfiable
random k-SAT instances with at least nk/2+o(1) clauses [10]. Since a binary CSP is naturally
equivalent to a SAT problem, our result shows that C2,k,t

n,cn is an alternative random SAT model
in which instances with O(n) clauses can be recognized as unsatisfiable polynomially.

The rest of the paper is organized as follows. In the next section, we introduce basic
concepts related to CSPs and their random models. In section 3, we present our results with
some discussion. Section 4 is devoted to the proof of the results.

2 Preliminaries

Throughout this paper, we consider binary CSPs defined on n variables x = (x1, · · · , xn), each
of which has D = {0, 1} as its domain. A k-ary relation over D is a map R : Dk → {0, 1}. The
set R−1(0) = {x ∈ D : R(x) = 0} is called the set of restrictions defined by the k-ary relation
R and |R−1(0)| is called the tightness of the relation.

A binary CSP C consists of a set of binary variables x = (x1, · · · , xn) and a set of constraints
(C1, · · · , Cm). Each constraint Ci is specified by its scope, a subset of the variables x, and a
relation RCi which gives a set of restrictions on the scope variables. The size of the scope of
a constraint C is denoted by |C|. Associated with a CSP is the constraint hypergraph with
vertices corresponding to the set of variables and edges corresponding to the set of constraint
scopes.

An assignment to the variables x = (x1, · · · , xn) is a solution to the CSP if it satisfies
all the relations associated with the set of constraints. A CSP is called satisfiable if there is
at least one satisfiable assignment. Throughout the rest of the paper, we assume that all the
constraints of a CSP have the same scope size, and use the following notation:

1. n, the number of variables; m, the number of constraints;

2. k, the scope size of a constraint; t, the tightness of a constraint.

Consequently, the constraint hypergraph will be always k-uniform.

Definition 1. Random CSPs Let 0 < t < 2k be an integer and c > 0 a real number. The
random model C2,k,t

n,m ,m = cn, of CSPs specifies a random instance of CSPs by first selecting
a set of m = cn variable scopes randomly without replacement from the set of

(n
k

)

subsets of
variables, and then for each scope, choosing a relation R over the scope variables uniformly

from all the possible
( 2k

2k−t

)

relations.

The random CSP model C2,k,t
n,m ,m = cn, can be generalized to allow for non-integer tightness t as

follows. For an integer t, the constraints are constructed as usual. For a non-integer t = t0+α,
where t0 is an integer and 0 < α < 1, a constraint selects a random set of restrictions of size
t0 with probability 1− α and a random set of restrictions of size t0 + 1 with probability α.

2



3 Main Results

In this section, we present our main results with some discussion.

Theorem 1. Let C2,k,t
n,cn be a random CSP. Then, we have

lim
n→∞

Pr{C2,k,t
n,cn is satisfiable } = 0

if c and t satisfy one of the following

1. For t = 2k−2 − 1 + α, 0 < α < 1,

c >

( 2k

2k−2

)

2k(k − 1)α
(1)

2. For t = 2k−2 + j + α, 0 < α < 1, 0 ≤ j ≤ 2k−1 − 2k−2 − 1,

c >
1

k(k − 1)

( 2k

2k−2

)

(2k−2+j
2k−2

)

(1 + α
2k−2

j + 1
)−1. (2)

The theorem is proved by showing that for any tightness t satisfying 2, a random instance
of C2,k,t

n,cn almost surely implies an unsatisfiable 2-SAT subproblem. The intuition is that a
constraint C with t restrictions is equivalent to a 3-CNF formula with t clauses defined on
exactly three variables. If t > 2k−2, there is a non-zero probability that these t clauses imply
a 2-clause. As a result, if there are enough constraints, we will get enough implied 2-clauses to
form an unsatisfiable 2-CNF formula in a form called the criss-cross loop. In fact, this situation
has been shown to be true in [11] in a different context where the so-called NK landscape model
is analyzed. An NK landscape model can be viewed as a special random CSP where the number
of constraints is equal to the number of the variables and each constraint contains a unique
variable as one of its scope variables.

Since the resolution complexity of an unsatisfiable 2-SAT problem is polynomial, we have

Corollary 1. For any t and c satisfying the conditions in Theorem 1, the resolution complexity
of C2,k,t

n,cn is almost surely polynomial.

Resolution Complexity of C2,k,t
n,cn

Scope Size 2Ω(n) ([1]) Unknown Polynomial for certain c (this paper) Linear ([6])

3 {1} (1, 4) [4, 8]

4 [1, 2] (2, 3] (3, 8) [8, 16]

5 [1, 3] (3, 7] (7, 16) [16, 32]

k [1, k − 2] (k − 1, 2k−2 − 1] (2k−2 − 1, 2k−1) [2k−1, 2k]

Table 1. Ranges of tightness with different complexity
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From Theorem 1, we can see that for a given tightness 2k−2 − 1 < t < 2k−1, the resolution
complexity for the random CSP C2,k,t

n,cn is polynomial if the constraint-to-clause ratio is larger
than a certain value. This partly answers the open problems regarding the resolution complexity
of random CSP inside the tightness interval k − 2 < t < 2k−1 ([1]). For k = 3, c > 7

3 , and
integer tightness t, our results actually show that t = 2 is the exact tightness threshold for the
exponential resolution complexity. Table 1 shows the current status of the tightness interval of
different resolution complexity. The first and the last columns are from [1].

The existence of upper bounds characterized by unsatisfiable 2-SAT subproblems raises
concerns that C2,k,t

n,cn might be still flawed even if the tightness t is less that 2
k−1. However, this

is not the case. Using a random hypergraph argument and the fact that a 2-clause cycle is
satisfiable, it can be shown that for any fixed t ≤ 2k−1 − 1, C2,k,t

n,cn does have a phase transition

with a threshold lower bounded by 1
k(k−1) .

Theorem 2. For any fixed t ≤ 2k−1 − 1 and c < 1
k(k−1) , C

2,k,t
n,cn is almost surely satisfiable.
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Fig. 1. The upper bound c3(t, u) for the threshold c3(t) as a function of tightness t. Left figure: the function
itself. Right figure the derivative of the function.

Having established that C2,k,t
n,cn has a phase transition, it is obvious that the tightness t serves

almost the same role as the parameter p in the (2+p)-SAT to model the gradual changing
from the first order transition to the second order transition. For each fixed tightness 1 ≤ t ≤
2k−1 − 1, let ck(t) be the constraint-to-variable ratio threshold of the satisfiability transition.
When t = 1, we get the k-SAT model, and hence, ck(1) is exactly the k-SAT threshold. As t
gradually increases, ck(t) decreases to a limit value larger than or equal to

1
k(k−1) , continuously

or discontinuously. Theorems 1 and 2 indicate that for random CSPs, it is possible to have
any types of easy-hard complexity pattern if we can pick an appropriate tightness and ratio
relation. The property of the threshold as a function of the clause-to-variable ratio and the
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tightness deserves further investigation and the behavior of the upper bounds in Theorem 1,
as depicted in Figure 1, is suggestive.

4 Proof of the Results

4.1 Proof of Theorem 1

First, we need some definitions that are used to characterize unsatisfiable 2-SAT problems.

Definition 2. Given a vertex set U = {u0, u1, · · · , u3p+1} with the size |U | = l = 3p + 2,
a k-criss-cross loop (k-cc-loop)is a k-uniform hypergraph L(U,E) with the set of hyperedges
E = {E1, · · · , El} defined as

Ei = (ui, ui−1) ∪ Li, 1 ≤ i ≤ p or p+ 2 ≤ i ≤ 3p,

Ep+1 = (u0, up+1) ∪ Lp+1, E3p+1 = (u0, up) ∪ L3p+1,

E3p+2 = (u0, up+1) ∪ L3p+2

where Li, 1 ≤ i ≤ 3p+2 is a sequence of vertex subsets of size k−2 such that {ui, 1 ≤ i ≤ l−1}
and Li, 1 ≤ i ≤ l are mutually disjoint.

In a hypergraph of k-cc-loop, there are exactly two cycles touched at the special vertex u0.
This construct was first proposed by Franco in [9] and is closely related to the notion of simple
cycle used in the study of the phase transition of random 2-SAT.

Definition 3. Let L(U,E) be a k-cc-loop and C be a set of constraints each of which cor-
responds to an hyperedge of L(U,E). We say C is a reducible k-cc-loop on L(U,E) if each
constraint Ci implies a 2CNF clause defined on the cyclic variables such that the resulting
2CNF clauses form two contradictory cycles, making the formula unsatisfiable.

Lemma 1. Let C2,k,t
n,cn be a random CSP. Let V = {v0, v1, · · · , v3p+1} be an ordered subsequence

of variables and Li, 1 ≤ i ≤ l be an ordered sequence of subsets of variables that are mutually
disjoint and disjoint with V . Then, the probability that C2,k,t

n,cn contains a reducible k-cc-loop
defined by V, Li, 1 ≤ i ≤ l, is

1

4

(

2rck!

nk−1

)l

O(1),

where r is such that

1. For t = 2k−2 − 1 + α with 0 < α < 1,

r =
1

( 2k

2k−2

)

(1 + 2k−2α),
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2. For t = 2k−2 + j + α with 0 ≤ α < 1 and 0 ≤ j ≤ 2k−1 − 2k−2 − 1,

r =

(2k−2+j
2k−2

)

( 2k

2k−2

)

(1 + α
2k−2

j + 1
)

Proof. Let N =
(n
k

)

be the number of possible hyperedges. Then the probability that C2,k,t
n,cn

contains the sequence of constraints defined on V, Li, 1 ≤ i ≤ l is

1
(N
cn

)

(

N − l

cn− l

)

. (3)

For a given sequence (u0, u1, · · · , ul−2) of literals of the variables (v0, v1, · · · , vl−2) and a con-
straint C containing two variables vi and vj as its scope variables, we calculate the probability
that C implies the clause ui ∨ uj . We focus on the second case, i.e., t = 2

k−2 + j + α with 0 ≤
α < 1 and 0 ≤ j ≤ 2k−1 − 2k−2 − 1, and the first case of t = 2k−2 − 1 + α can be obtained
similarly. Recall that a constraint selects a restriction set of size t = 2k−2 + j with probability
1− α and of size t = 2k−2 + j + 1 with probability α.

As we are dealing with binary constraints, it is easy to see that the constraint C implies
the claus ui ∨ uj if and only if the set of restrictions contains the set of 2

k−2 binary vectors
(ui, uj , ∗) with ∗ being any binary vectors in {0, 1}

k−2. Therefore, the probability that C implies
the clause ui ∨ uj is

r =

(2k−2k−2

j

)

( 2k

2k−2+j

)

(1− α) +

(2k−2k−2

j+1

)

( 2k

2k−2+j+1

)

α

=

(2k−2+j
2k−2

)

( 2k

2k−2

)

(1 + α
2k−2

j + 1
). (4)

Since there are l−2 ways to select the literal sequences (both of the positive and negative literals
of special variable v0 have to appear) and the constraints select their restrictions independently,
the probability that the sequence of constraints is a reducible k-cc-loop is

rl2l−2. (5)

The lemma is proved by combining (3), (4), and (5). ut

Lemma 2. Let t = 2k−2 + α, 0 ≤ α < 1. The expected number of reducible k-cc-loops in the
random CSP C2,k,t

n,cn is
1

4n
(2rck(k − 1))lO(1)

where r the same as in Lemma 1.

Proof. Let V = {v0, v1, · · · , v3p+1} be an ordered subsequence of variables and Li, 1 ≤ i ≤ l,

be an ordered sequence of subsets of variables that are mutually disjoint and disjoint with V .
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From lemma 1, the probability that the CSP contains a reducible k-cc-loop on V and Li is

1

4

(

2rck!

nk−1

)l

O(1)

The number of ways of choosing the ordered sequence (V, Li) is

(

n

l − 1

)

(l − 1)!
l−1
∏

i=0

(

n− l + 1− (k − 2)i

k − 2

)

=

(

n

l − 1

)

(l − 1)!
1

((k − 2)!)l
(n− l + 1)!

(n− l + 1− l(k − 2))!

∼ nlnl(k−2) = nl(k−1)

where the term
l−1
∏

i=0

(n−l+1−(k−2)i
k−2

)

is the total number of ways to choose the sequence Li. ut

Proof of Theorem 1. Assume that t = 2k−2 + α with 0 < α < 1. Let p = ln2 n so that
l = O(ln2 n). Let Al be the number of reducible k-cc-loops contained in C

2,k,t
n,cn . We need to show

that Pr{Al > 0} > 0 for sufficiently large n. Lemma 2 tells us that

lim
n→∞

E{Al} =∞.

We go with the second moment method. To do so, we claim that

var(Al) = o(E{Al}
2).

For an ordered sequence of variables and its associated sequence of subsets of variables L =
(V = (v0, · · · , vl−2), Li, 1 ≤ i ≤ l, let IL be the indicator function of the event that C

2,k,t
n,cn

contains a reducible k-cc-loop on L. Then, Al =
∑

L

IL with the sum over all the possible

choices of L. We have

var(Al) =
∑

L

var(IL) +
∑

L6=M

(E [ILIM]− E [IL]E [IM]).

By the proof of lemma 2,

E2[Al] = (
1

4n
(2rck(k − 1))l)2O(1).

It is easy to see that
∑

L

var(IL) = o(E2[Al]). We will prove that

∑

L6=M

E [ILIM] = o(E2[Al]). (6)

Let L1 = (V1, L
1
i , 1 ≤ i ≤ l) and L2 = (V2, L

2
i , 1 ≤ i ≤ l) be two ordered sequences of variables

and associated sequences of subsets of variables. Consider two sets of hyperedges obtained in
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the same way as that in Definition 2. We say that L1 and L2 share q hyperedges if the two
sets of hyperedges have q hyperedges in common.

Assume that L1 and L2 share q hyperedges. Similar to the proof of lemma 1, we have

E [IL1 |IL2 ] ≤
1

(N−l
cn−l

)

(

N − 2l + q

cn− 2l + q

)

rl−q2l−q−2 (7)

=
1

4

(

2rck!

nk−1

)l−q

O(1) (8)

Therefore, from lemma 1

E [IL1IL2 ] =

(

2rck!

nk−1

)2l−q

O(1).

To prove (6), we need to count the number of pairs of k-cc-loops sharing q hyperedges.
The idea of the counting is similar to those used in [9]. The following concepts about the cycle
nodes in a k-cc-loop are required. Let L be a k-cc-loop and S a set of hyperedges in L. We call
a cycle node appearing in L

1. fixed if it belongs to at least two hyperedges in S;

2. limited if it belongs to one hyperedges in S; and

3. free if it does not appear in any edges in S.

We need to consider two different cases: (1) The set of shared hyperedges is connected; and (2)
The set of shared hyperedges has h ≥ 2 connected components. In each of the cases, we also
need to distinguish how many of the 4 special hyperedges (hyperedges containing the special
node v0) are shared.

Write Aq for the total number of pairs of k-cc-loops sharing q and Aq(S) for the total
number of pairs of k-cc-loops sharing a given set S of q hyperedges.

Case 1: (The shared hyperedges are connected) Let S be such a set of hyperedges
with |S| = q. We consider three situations:

1. (Each node appears in S are incident to at most two hyperedges of S). In this case, S
makes q − 1 cycle nodes fixed and 2 cycle nodes limited in any k-cc-loops containing S.
Therefore, the total number of pairs of k-cc-loops containing S is

|Aq(S)| ≤



lk2n(l−1−(q−1)−2)

(

n

k − 2

)l−q




2

=
l2k4(nl−q−2n(k−2)(l−q))2

(k − 2)!2(l−q)

=
l2k4

n4((k − 2)!)2(l−q)
n2(k−1)(l−q). (9)
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where the term l is for the number of possible positioning of S in a k-cc-loop. As the number
of sets of hyperedges like S is less than

(

n

q − 1

)

(q − 1)!

(

n

k − 1

)2(
n

k − 2

)q−2

= nn(k−1)q 1

((k − 2)!)q
,

the total number of pairs of k-cc-loops sharing q hyperedges in this case is less than

|Aq(S)| · number of S ≤
l2k4

n3((k − 2)!)2l−q
n2(k−1)ln−(k−1)q. (10)

2. (One node v appear in three or more hyperedges in S and q = |S| < p + 3) In this case,
depending on the number of hyperedges that v appears (3 or 4), S makes q − 2 (or q − 3)
cycle nodes fixed and 3 (or (4)) cycle nodes limited in any k-cc-loops containing S. It follows
that

|Aq(S)| ≤



k3nl−1−(q−2)−3

(

n

k − 2

)l−q




2

=
k6

n4((k − 2)!)2(l−q)
n2(k−1)(l−q) (11)

The number of such S is at most

(

n

q − 2

)(

n

k − 1

)3(
n

k − 2

)q−3

≤ nq−2n(k−2)(q−3)n3(k−1) = nn(k−1)q 1

((k − 2)!)q
.

Then, the total number of pairs of k-cc-loops sharing S like this is at most

k6

n3((k − 2)!)2l−q
n2(k−1)ln−(k−1)q. (12)

3. (One node v appears in three or more hyperedges in S and q = |S| ≥ p+3) In this case, in
addition to the above, we need to consider the situation where S itself forms a cycle. Then,
S makes q − 1 fixed cycle nodes and 1 limited cycle node. The total number of k-cc-loop
pairs sharing S like this is at most

k2

n2((k − 2)!)2l−q
n2(k−1)ln−(k−1)q. (13)

Case 2: (The shared hyperedges form h ≥ 2 connected components) Again, let
S be such a set of hyperedges with |S| = q. In this case, the total number of sets of shared
hyperedges is more than that in Case 1. But this is compensated by the decreasing of free
cycle nodes—the total number of fixed cycle nodes is q − h (q − h− 2 or q − h− 3, depending
on the number of special hyperedges in S), while the total number of limited cycle nodes is
at least 2h. As a result, the total number of pairs of k-cc-loops sharing a set of disconnected
hyperedges is less than the bounds we get in Case 1.
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In summary, the total number of pairs of k-cc-loops sharing a set of q hyperedges is such
that

|Aq| ≤







l2k4

n3(k−2)!)2l−q
n2(k−1)ln−(k−1)q, if q ≤ p+ 2

k2

n2(k−2)!)2l−q
n2(k−1)ln−(k−1)q, if q > p+ 2.

(14)

Summing over all the 0 ≤ q < l gives the desired result of (6).

4.2 Proof of Theorem 2

The proof of Theorem 2 is based on the concepts and results of hypertrees and unicycles in
random hypergraphs.

Definition 4. ([12]) Let G be a k-uniform hypergraph with r vertices and s edges. The excess
of G is defined to be

ex(G) = (k − 1)s− r.

Generalizing the concepts of trees and cycles in graphs, we call a connected hypergraph G (1)
a hypertree if ex(G) = −1; (2) unicyclic if ex(G) = 0.

Consider the random k-uniform constraint hypergraph G(n,m) associated with C2,k,t
n,cn . From

[12], for c < 1
k(k−1) , G(n,m) almost surely consists of hypertrees and unicyclic components.

In this case, an instance of the random CSP is satisfiable if and only if the subproblems
corresponding to the components of the constraint hypergraph are all satisfiable. A subproblem
corresponding to a hypertree is satisfiable [5]. In the following, we prove that a subproblem
corresponding to a unicyclic component is also satisfiable if the tightness of the constraint is
less than 2k−1. We break up the task into three lemmas.

Lemma 3. For any uncyclic k-uniform hypergraph G with the edge set E = (E1, · · · , Et), we
have

|Ei ∩ Ej | ≤ 2, ∀1 ≤ i, j ≤ t.

Proof. Assume that a = |Ei ∩ Ej | > 2. Let

G
′

= (V,E − {Ei}).

Then, G
′

has at most k − a + 1 connected components {G1, · · · , Gk−a+1}. Since a connected
hypergraph has at least an excess of -1, we have

ex(G) = ex(G1) + · · ·+ ex(Gk−a+1) + (k − 1) ≥ a− 2 > 0.

A contradiction to the unicyclicness of G.

Due to Lemma 3, we only need to consider unicycles in which edges have at most size 2
intersection.
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Lemma 4. Let C be a CSP such that

1. Its constraint graph G(V,E) is unicyclic ;
2. The tightness t is less than 2k−1; and
3. There are a pair of hyperedges Ei and Ej with |Ei ∩ Ej | = 2.

Then, C is satisfiable.

Proof. Let G
′

= (V,E − {Ei}). Since |Ei ∩ Ej | = 2. There should be exact k − 1 connected
components in G

′

such that (1) one of the component contains the intersection Ei ∩ Ej , and
each of the rest of the components contains exact one vertex from Ei −Ej ; and (2)each of the
connected components has an excess of -1. Otherwise, G would have an excess larger than 0.
The satisfiability of the CSP can be shown by first satisfying the constraint corresponding to
the hyperedge Ei and then satisfy other constraints. This is possible because for the tightness
t < 2k−1, there is always at least one assignment that satisfies Ei and Ej simultaneously.

Now, we are in a position to deal with the situation where hyperedges have an intersection
with a size at most 1.

Lemma 5. Let C be a CSP such that

1. Its constraint graph G(V,E) is unicyclic ;
2. The tightness t is less than 2k−1; and
3. For any pair of hyperedges Ei and Ej, we have with |Ei ∩ Ej | ≤ 1.

Then, C is satisfiable.

Proof. In this case, the constraint hypergraph G(V,E) contains one cycle F = (F1, · · · , Fl) of
the form

|Fi ∩ Fi+1| = 1, 1 ≤ i ≤ i− 1, |Fi ∩ F1| = 1.

and some additional hypetree branches attached to the cycle. If there is a partial assignment
to the variables satisfying the constraints in the cycle, then we can always extend it to satisfy
the hypetree branches. To see there exists such a partial assignment, let yi = Fi ∩ Fi+1 and
yn = Fn ∩ F1. Consider the two possible assignments 0 and 1 to y1. If we assign y1 = 0 or 1,
we can find assignments to yi, 2 ≤ i ≤ n− 1 to satisfies E1, · · · , En−1. Assume that yn is forced
to take the value a0 for the assignment y1 = 0 and a1 for the assignment y1 = 1. Since there
are at most 2k−1 − 1 restrictions to the variables in E1, we know at least one of the pairs
(y1 = 0, yn = a0) and (y1 = 1, yn = a1) can satisfies the constraint corresponding to E1. This
shows the existence of a partial assignment that satisfies the constraints corresponding to the
cycle hyperedges.
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