
Generalized Density-Based
Clustering for Spatial Data

Mining

Dissertation im Fach Informatik

an der Fakultät für Mathematik und Informatik

der Ludwig-Maximilians-Universität München

von

Jörg Sander

Tag der Einreichung: 21.09.1998

Tag der mündlichen Prüfung: 10.12.1998

Berichterstatter:

Prof. Dr. Hans-Peter Kriegel, Ludwig-Maximilians-Universität München
Prof. Raimond Ng Ph.D., University of British Columbia, Canada

 i

Acknowledgments

I would like to thank all the people who supported me in the development of this

thesis.

First of all, I would like to thank Prof. Dr. Hans-Peter Kriegel, my supervisor

and first referee of this thesis. He made this work possible by providing his excel-

lent technical expertise and the organizational background which resulted in an in-

spiring and motivating working atmosphere. I would also like to thank Prof. Dr.

Raymond Ng for his interest in my work and his willingness to act as the second

referee.

This work could not have grown without the cooperation of my colleagues in the

KDD group at Prof. Kriegels chair, Martin Ester and Xiaowei Xu. They deserve

my very special thanks for the inspiring and productive teamwork that I could take

part in.

Many fruitful discussions which brought this work forward took place also with

other colleagues - in alphabetical order: Mihael Ankerst, Christian Boehm, Bern-

hard Braunmüller, Markus Breunig and Thomas Seidl and I thank them all.

I also appreciate the substantial help of the students whose study thesis and di-

ploma thesis I supervised, especially Florian Krebs and Michael Wimmer.

Last but not least, I would like to thank Susanne Grienberger for carefully read-

ing the manuscript and eliminating some major roughness in my English.

Munich, September 1998

ii

 iii

Table of Contents

1 Introduction ..1

1.1 Knowledge Discovery in Databases, Data Mining and Clustering2

1.2 Outline of the thesis ...6

2 Related Work .. 11

2.1 Efficient Query Processing in Spatial Databases12

2.2 Clustering and Related Algorithms ...20

2.2.1 Hierarchical Clustering Algorithms ...20

2.2.2 Partitioning Clustering Algorithms ..22

2.2.3 Region Growing ...31

2.3 Exploiting the Clustering Properties of Index Structures32

2.3.1 Query Support for Clustering Algorithms32

2.3.2 Index-Based Sampling ...34

2.3.3 Grid clustering ...35

2.3.4 CF-Tree ..37

2.3.5 STING ..38

2.4 Summary ..40

3 Density-Based Decompositions ..41

3.1 Density-Connected Sets ...42

3.1.1 Motivation ..42

3.1.2 Definitions and Properties ..44

3.2 Generalized Clustering and Some Specializations54

3.2.1 Density-Based Decompositions ...54

3.2.2 Specializations ...57

3.3 Determining Parameters ..67

3.4 Summary ..73

iv

4 GDBSCAN: An Algorithm for Generalized Clustering75

4.1 Algorithmic Schema GDBSCAN ..76

4.2 Implementation ..80

4.3 Performance ...86

4.3.1 Analytical Evaluation ...86

4.3.2 Experimental Evaluation ..88

4.4 Database Support for GDBSCAN ...92

4.4.1 Neighborhood Indices ..94

4.4.2 Multiple Neighborhood Queries ..102

4.5 Summary ..112

5 Applications .. 113

5.1 Earth Science (5d points) ...114

5.2 Molecular Biology (3d points) ..117

5.3 Astronomy (2d points) ...119

5.4 Geography (2d polygons) ..122

5.5 Summary ..128

6 Incremental GDBSCAN ...129

6.1 Motivation ...130

6.2 Affected Objects ..134

6.3 Insertions ...139

6.4 Deletions ..142

6.5 Implementation ..145

6.6 Performance Evaluation ..149

6.7 Summary ..156

7 Hierarchical GDBSCAN ..157

7.1 Nested Density-Based Decompositions ...158

7.1.1 Motivation ..158

7.1.2 Definitions and Properties ..160

 v

7.2 Algorithm H-GDBSCAN ..167

7.2.1 Multiple Clustering Levels ..168

7.2.2 Ordering the Database with respect to Cluster Structure183

7.3 Summary ..198

8 Conclusions ...199

References ...205

Index ..217

List of Definitions ...221

List of Figures ...223

vi

Chapter 1

Introduction

This chapter shortly introduces the context of this thesis which contributes to the

field of spatial data mining, especially to the task of automatically grouping objects

of a spatial database into meaningful subclasses. In section 1.1, the connection be-

tween the notions Knowledge Discovery in Databases, (Spatial) Data Mining and

Clustering is elaborated. Section 1.2 describes the goal and gives an outline of this

thesis.

2 1 Introduction

1.1 Knowledge Discovery in Databases, Data Mining
and Clustering

Both, the number of databases and the amount of data stored in a single database

are growing rapidly. This is true for almost any type of database such as traditional

(relational) databases, multimedia or spatial databases. Spatial databases are, e.g.,

databases for geo-marketing, traffic control, environmental studies or sky and earth

observation databases. The accelerated growth of such databases by far exceeds the

human capacity to analyze the data. For instance, databases on sky objects consist

of billions of entries extracted from images generated by large telescopes. The

NASA Earth Observing System, for example, is projected to generate some 50 GB

of remotely sensed data per hour.

Classical analysis methods are in general not well suited for finding and present-

ing implicit regularities, patterns, dependencies or clusters in today’s databases.

Important reasons for the limited ability of many statistical methods to support

analysis and decision making are the following:

- They do not scale to large data volumes (large number of rows/entries, large

number of columns/dimensions) in terms of computational efficiency.

- They assume stationary data which is not very common for real-life databas-

es. Data may change and derived pattern may become invalid. Then all pat-

terns derived from the data have to be calculated from scratch.

- Modeling in the large requires new types of models that describe pattern in

the data at different scales (e.g. hierarchical).

For these reasons, in the last few years new computational techniques have been

developed in the emerging research field of Knowledge Discovery in Databases

(KDD). [FPS 96] propose the following definition of KDD:

Knowledge Discovery in Databases is the non-trivial process of identifying valid,

novel, potentially useful, and ultimately understandable patterns in data.

1.1 Knowledge Discovery in Databases, Data Mining and Clustering 3

The KDD process is an interactive and iterative process, involving numerous

steps including preprocessing of the data, applying a data mining algorithm to enu-

merate patterns from it, and the evaluation of the results ([BA 96]), e.g.:

• Creating a target data set: selecting a subset of the data or focusing on a sub-

set of attributes or data samples on which discovery is to be performed.

• Data reduction: finding useful features to represent the data, e.g., using di-

mensionality reduction or transformation methods to reduce the number of

variables under consideration or to find invariant representations for the data.

• Data mining: searching for patterns of interest in the particular representation

of the data: classification rules or trees, association rules, regression, cluster-

ing, etc.

• Interpretation of results: this step can involve visualization of the extracted

patterns or visualization of the data given the extracted models. Possibly the

user has to return to previous steps in the KDD process if the results are un-

satisfactory.

For a survey of industrial applications of KDD see [PBK+ 96], and for applications

in science data analysis see [FHS 96].

The core step of the KDD process is the application of a data mining algorithm.

Hence, the notions “KDD” and “data mining” are often used in the same way. Actu-

ally, most of the research conducted on knowledge discovery in relational as well as

spatial databases is about data mining algorithms (c.f. [CHY 96] for a survey on algo-

rithms for knowledge discovery in relational databases, and [KAH 96] for an over-

view on knowledge discovery in spatial databases). The following broad definition of

data mining can be found in [FPS 96a]:

4 1 Introduction

Data mining is a step in the KDD process consisting of applying data analysis al-

gorithms that, under acceptable computational efficiency limitations, produce a

particular enumeration of patterns over the data.

The different data mining algorithms that have been proposed in the literature

can be classified according to the following primary data mining methods

([MCP 93], [FPS 96a]):

• Clustering: identifying a set of categories or clusters to describe the data.

• Classification: learning a function that maps (classifies) a data item into one

of several predefined classes.

• Regression: learning a function that maps a data item to a real-valued predic-

tion variable and the discovery of functional relationships between variables.

• Summarization: finding a compact description for a subset of data.

• Dependency Modeling: finding a model which describes significant depen-

dencies between variables (e.g., learning of belief networks).

• Change and Deviation Detection: discovering the most significant changes in

the data from previously measured or normative values.

Spatial data mining is data mining applied to spatial data, i.e. data for which at

least a distance function between objects is defined. Typically, some attributes

specify a location and possibly an extension in some d-dimensional space, for ob-

jects such as points, lines or polygons. The objects may additionally have other

non-spatial attributes.

Spatial data is typically stored and managed in spatial database systems (SDBS)

(see [Gue 94] for an overview). Applications of data mining algorithms to spatial

databases are important, e.g., for geo-marketing, traffic control or environmental

studies.

1.1 Knowledge Discovery in Databases, Data Mining and Clustering 5

In [LHO 93], attribute-oriented induction is performed by using (spatial) con-

cept hierarchies to discover relationships between spatial and non-spatial at-

tributes. A spatial concept hierarchy represents a successive merging of neighbor-

ing regions into larger regions. In [NH 94], the clustering algorithm CLARANS,

which groups neighboring objects automatically without a spatial concept hierar-

chy, is combined with attribute-oriented induction on non-spatial attributes.

[KH 95] introduces spatial association rules which describe associations between

objects based on different spatial neighborhood relations. [Ng 96] and [KN 96]

present algorithms to detect properties of clusters using reference maps and the-

matic maps. For instance, a cluster may be explained by the existence of certain

neighboring objects which may “cause” the existence of the cluster. New algo-

rithms for spatial characterization and spatial trend analysis are sketched in

[EKS 97] and elaborated in [EFKS 98]. For spatial characterization, it is important

that class membership of a database object is not only determined by its non-spatial

attributes but also by the attributes of objects in its neighborhood. In spatial trend

analysis, patterns of change of some non-spatial attribute(s) in the neighborhood of

a database object are determined. A more comprehensive overview of spatial data

mining can be found in [KHA 96].

We observe that a lot of work on spatial data mining deals with clustering.

Clustering is the task of grouping the objects of a database into meaningful sub-

classes - either as a stand alone task or in combination with some other data mining

algorithms which operate on detected clusters.

Applications of clustering in spatial databases are, e.g., the detection of seismic

faults by grouping the entries of an earthquake catalog [AS 91], the creation of the-

matic maps in geographic information systems by clustering feature spaces

[Ric 83] and detection of clusters of objects in geographic information systems and

to explain them by other objects in their neighborhood ([NH 94] and [KN 96]). An

application to a more abstract “spatial” database is the clustering of a WWW-log

6 1 Introduction

database to discover groups of similar access patterns for a Web server which may

correspond to different user profiles.

Clustering has been studied in statistics (e.g. [And 73], [Eve 81], [Har 75],

[JD 88], [KR 90]), machine learning (e.g. [CKS 88], [Fis 87], [Fis 95], [FPL 91]),

and recently in the context of KDD (e.g. [EKX 95a], [NH 94], [SEKX 98],

[WYM 97], [XEKS 98] and [ZRL 96]). The reasons for the new database-oriented

clustering methods have already been indicated: The well-known clustering algo-

rithms from statistics such as k-means [Mac 67], k-medoids [KR 90] or Single Link

Clustering [Sib 73] are too inefficient on large databases and they also assume that

all objects to be clustered can reside in main memory at the same time. Despite

growing main memories, this assumption is not always true for large databases.

Additionally, data mining in real-world database creates new challenges for clus-

tering algorithms. These kinds of databases may be highly dynamic and/or the ob-

jects may be defined by data types other than numeric - properties which are usu-

ally neglected by traditional clustering approaches.

1.2 Outline of the thesis

This thesis contributes to the field of spatial data mining, especially to the task of

clustering, i.e. automatically grouping the objects of a spatial database into mean-

ingful subclasses.

Starting from a density-based clustering approach for point objects (presented in

[EKSX 96]), we develop a general method to decompose a database into a set of

cluster-like components. This method is applicable to objects of arbitrary data type

provided only that there is (1) a binary (neighborhood) predicate for objects which

is symmetric and reflexive and there is (2) a predicate that allows the user to deter-

mine whether or not a set of objects has a “minimum weight”.

1.2 Outline of the thesis 7

Our method for density-based decompositions relies on a formal set-theoretic

framework of density-connected sets which generalizes the results of different

clustering methods and similar techniques like region growing algorithms in the

following sense: The results of these techniques for grouping objects of a database

can be described as special cases of density-based decompositions. Thus, they do

have the same underlying formal structure and can be produced by the same algo-

rithmic schema. Furthermore, density-based decompositions have the following

nice properties which are important for spatial data mining in real-world databases:

• It is possible to perform incremental updates on density-based decomposi-

tions very efficiently in a dynamic environment of insertions and deletions.

• Hierarchical descriptions of the underlying grouping of objects in a database

are possible by extending the basic algorithmic schema without a significant

loss in performance.

• The algorithmic schema can be supported very efficiently by the query pro-

cessing facilities of a spatial database system.

The theoretical foundations and algorithms concerning these tasks are elaborat-

ed in this thesis which is organized as follows:

After this introduction, related work on database oriented clustering techniques

is reviewed in chapter 2. For that purpose, methods to support efficient query pro-

cessing in spatial database systems are sketched. We also show how to integrate

clustering algorithms with spatial database management systems and present the

most recent clustering techniques from the KDD literature which essentially ex-

ploit clustering properties of spatial index structures.

In chapter 3, a motivation for the generalization of density-based clustering is

presented. After that, the notions “density-connected set” and “density-based de-

composition”, i.e. a generalized density-based clustering, are defined and impor-

tant specializations of these notions are discussed. These specializations include

8 1 Introduction

density-based clustering, clustering levels produced by the well-known single link

clustering method, results of simple forms of region growing algorithms as well as

new applications which may be appropriate for grouping spatially extended objects

such as polygons in geographic information systems. The task of determining the

parameters for certain specializations of the algorithm is also discussed in this

chapter.

In chapter 4, our algorithmic schema GDBSCAN to compute density-connected

sets is introduced and some implementation issues are discussed. The performance

is evaluated analytically for the algorithmic schema and experimentally for the

most important specialization of GDBSCAN, i.e. DBSCAN [EKSX 96]. In the ex-

perimental evaluation, the performance of DBSCAN is compared with the perfor-

mance of some newer clustering algorithms proposed in the KDD literature. The

implementation of DBSCAN used for this comparison is based on a particular spa-

tial index structure, the R*-tree. A discussion of different methods to support the

construction of a density-based decomposition concludes this chapter. The most

important technique is a new query type called “multiple neighborhood query”. We

will show that multiple neighborhood queries are applicable to a broad class of spa-

tial data mining algorithms, including GDBSCAN, to speed up the performance of

these algorithms significantly.

In chapter 5, four typical applications of our algorithm are presented in more de-

tail. First, we present a “standard” clustering application for the creation of a land-

use map by clustering 5-dimensional feature vectors extracted from several satel-

lite images. Second, 3-dimensional points on a protein surface are clustered, using

also non-spatial attributes, to extract regions with special properties on the surface

of the protein. Third, a special instance of our algorithm is applied to 2-dimensional

astronomical image data, performing ‘region growing’ to detect celestial sources

from these images. In the last application, GDBSCAN is used to detect influence

regions for the analysis of spatial trends in a geographic information system on Ba-

varia. This application demonstrates how sophisticated neighborhood predicates

1.2 Outline of the thesis 9

utilizing spatial and non-spatial attributes of the data can be used to detect interest-

ing groups of spatially extended objects such as polygons representing communi-

ties.

In chapter 6, we show that updates on a database affect a density-based decom-

position only in a small neighborhood of inserted or deleted objects. We present

incremental versions of our algorithm for updating a density-based decomposition

on insertions and deletions. A cost model for the performance of Incremental

GDBSCAN is presented and validated by using synthetic data as well as real data

from a WWW-log database showing that clustering in a dynamic environment can

be handled very efficiently.

The basic algorithm GDBSCAN determines only a single level clustering in a

single run of the algorithm. In chapter 7 this basic algorithm is extended such that

hierarchical layers of clusterings can be computed very efficiently. Hierarchical

clusterings can be described easily by “nested” density-based decompositions. The

efficiency of Hierarchical GDBSCAN is due to the fact that the costs for computing

nested or flat density-connected sets are nearly the same. Starting from the hierar-

chical version of GDBSCAN a second algorithm is developed for distance based

neighborhoods. In this algorithm a maximal distance dmax is used to produce an or-

dering of the database with respect to its clustering structure. Storing few addition-

al information for each object in this ordering allows a fast computation of every

clustering level with respect to a smaller distance than dmax. However, a “cluster-

ordering” of the database can as well be used as a stand-alone tool for cluster anal-

ysis. A visualization of the cluster-ordering reveals the cluster structure of a data

set of arbitrary dimension in a very comprehensible way. Furthermore, the method

is rather insensible to input parameters.

Chapter 8 concludes the thesis with a a short summary and a discussion of future

work.

10 1 Introduction

Chapter 2

Related Work

The well-known clustering algorithms have some drawbacks when applied to large

databases. First, they assume that all objects to be clustered reside in main memory.

Second, these methods are too inefficient when applied to large databases. To over-

come these limitations, new algorithms have been developed which are surveyed

in this chapter. Most of these algorithms (as well as our own approach) utilize spa-

tial index structures. Therefore, we first give a short introduction to efficient query

processing in spatial databases (section 2.1). Then, we survey clustering algo-

rithms and show how to integrate some of them into a database management sys-

tem for the purpose of data mining in large databases (section 2.2). Furthermore,

we discuss recently introduced methods to exploit the (pre-)clustering properties of

spatial index structures (section 2.3) to derive clustering information about large

databases. This chapter is a major extension of a similar overview given in

[EKSX 98].

12 2 Related Work

2.1 Efficient Query Processing in Spatial Databases

Numerous applications, e.g., geographic information systems and CAD systems,

require the management of spatial data. We will use the notion spatial data in a

very broad sense. The space of interest may be an abstraction of a real two- or

three-dimensional space such as a part of the surface of the earth or the geometric

description of a protein as well as a so called high-dimensional “feature space”

where characteristic properties of the objects of an application are represented by

the different values of a high-dimensional feature vector. Basic two-dimensional

data-types, e.g., are points, lines and regions. These notions are easily extended to

the general d-dimensional case. Although most research on spatial databases is

considering d-dimensional vector spaces, we will not restrict the notion spatial to

this case. We say that a database is a spatial database if at least a distance metric is

defined for the objects of the database, i.e if the space of interest is at least a metric

space.

A spatial database system (SDBS) is a database system offering spatial data-

types in its data model and query language and offering an efficient implementa-

tion of these data-types with their operations and queries [Gue 94]. Typical opera-

tions on these data-types are the calculation of the distance or the intersection. Im-

portant query types are similarity queries, e.g.:

• region queries, obtaining all objects within a specified query region and

• k-nearest neighbor (kNN) queries, obtaining the k objects closest to a speci-

fied query object.

Similarity queries are important building blocks for many spatial data mining al-

gorithms - especially for our approach to ‘generalized clustering’. Therefore, the

underlying SDBS technology, i.e. spatial index structures, to support similarity

queries efficiently, is sketched briefly in the following.

2.1 Efficient Query Processing in Spatial Databases 13

A trivial implementation of the spatial queries would scan the whole database

and check the query condition on each object. In order to speed up query process-

ing, many spatial index structures have been developed to restrict the search to the

relevant part of the space (for a survey see, e.g., [Gue 94] or [Sam 90]). All index

structures are based on the concept of a page, which is the unit of transfer between

main and secondary memory. Typically, the number of page accesses is used as a

cost measure for database algorithms because the run-time for a page access ex-

ceeds the run-time of a CPU operation by several orders of magnitude.

Spatial index structures can be roughly classified as organizing the data space

(hashing) or organizing the data itself (search trees). In the following, we will in-

troduce well-known representatives which are typical for a certain class of index

structures and which are used in the following sections and chapters.

The grid file [NHS 84] has been designed to manage points in some d-dimen-

sional data space, generalizing the idea of one-dimensional hashing. It partitions

the data space into cells using an irregular grid. The split lines extend through the

whole space and their positions are kept in a separate scale for each dimension. The

d scales define a d-dimensional array (the directory) containing a pointer to a page

in each cell. All d-dimensional points contained in a cell are stored in the respective

page (c.f. figure 1, left). In order to achieve a sufficient storage utilization of the

data pages

x-scale

y-
sc

al
e

grid cell

Figure 1: Illustration of the grid file

grid directory data page structure

14 2 Related Work

secondary memory, several cells of the directory may be mapped to the same data

page. Thus, the data space is actually divided according to the data page structure

of the grid file (c.f. figure 1, right). Region queries can be answered by determining

from the directory the set of grid cells intersecting the query region. Following the

pointers yields a set of corresponding data pages, and the points in these pages are

then examined. A drawback of this method is that the number of grid cells may

grow super-linear in the number of objects N, depending on the distribution of the

objects.

The R-tree [Gut 84] generalizes the one-dimensional B-tree to d-dimensional

data spaces, specifically an R-tree manages d-dimensional hyper-rectangles in-

stead of one-dimensional numeric keys. An R-tree may organize extended objects

such as polygons using minimum bounding rectangles (MBR) as approximations as

well as point objects as a special case of rectangles. The leaves store the MBR of

data objects and a pointer to the exact geometry if needed, e.g. for polygons. Inter-

nal nodes store a sequence of pairs consisting of a rectangle and a pointer to a child

node. These rectangles are the MBRs of all data or directory rectangles stored in

the subtree having the referenced child node as its root (c.f. figure 2).

directory

data-

level 1

directory
level 2

pages

. . .

Figure 2: Illustration of the R-tree

data page structureR-tree directory

2.1 Efficient Query Processing in Spatial Databases 15

To answer a region query, the set of rectangles intersecting the query region is

determined recursively starting from the root. In a directory node, the entries inter-

secting the query region are determined and then their referenced child nodes are

searched until the data pages are reached.

The MBRs in a directory node may overlap. They may also cover large fractions

of the data space where no objects are located. Both properties do have a negative

impact on the performance of query processing since additional paths in the tree

must be searched. Especially the split strategy (choice of split axis and choice of

split value) in case of an overflow of a page has the most significant effect on the

performance of the R-tree. Therefore, different split strategies have been proposed,

for instance the R*-tree [BKSS 90], for minimizing the overlap and coverage of

empty space in the directory of the tree.

The grid file as well as the R-tree and their variants are efficient only for rela-

tively small numbers of dimensions d. The average upper bound for d using these

index structures is about 8, but the actual value also depends on the distribution of

the data. The better the data is clustered the more dimensions can be managed ef-

ficiently.

It is a result of recent research activities ([BBKK 97], [BKK 96]) that basically

none of the known querying and indexing techniques perform well on high-dimen-

sional data for larger queries - under the assumption of uniformly distributed data.

This due to some unexpected effects in high-dimensional space. For instance, the

side length of a query grows dramatically with increasing dimension for hypercube

range queries which have a constant selectivity (i.e. relative volume). Thus, the

probability of an intersection of the query cube with a directory or data rectangle

in the known index structures approaches 1 with increasing dimension d.

Following the ideas of search trees, index structures have been designed recently

which are also efficient for some larger values of d ([BKK 96], [LJF 95]). For in-

stance, the X-tree ([BKK 96]) is similar to an R*-tree but introduces the concept of

16 2 Related Work

supernodes, i.e. nodes of variable size in the directory of the tree (see figure 3). The

basic idea is to avoid computational overhead in the directory while performing

similarity queries. Directory nodes are “merged” into one supernode (actually, di-

rectory nodes are not split) if there is a high probability that all parts of the node

have to be searched anyway for most queries.

However, this approach will perform better than a linear scan over all data ob-

jects only for values of d ≤ 16 on the average - again, depending on the distribution

of the data. These values of d are still moderate with regard to many applications.

Up to now, the indexing method which performs best for high-dimensional data,

also for values of d significantly larger than 16, seems to be the pyramid-technique

proposed recently in [BBK 98]. However, this method is highly specialized to rect-

angular shaped region queries.

The pyramid method consists of two major steps: First, an unconventional py-

ramidal partitioning strategy is applied in order to increase the chance that pages

are not intersected by a query hypercube in a high-dimensional data space (see

figure 4, left). Second, the d-dimensional points p are transformed to one-dimen-

sional pyramid values pvp (see figure 4, right) which are then managed by a tradi-

tional one-dimensional index-structure, the B+-tree. A d-dimensional rectangular

shaped range query is first transformed into one-dimensional queries selecting pyr-

Figure 3: Comparison of R-tree and X-tree structure

X-treeR-tree

... ...

... ...

2.1 Efficient Query Processing in Spatial Databases 17

amid values. This yields a set of candidates, and a “point in rectangle test” is per-

formed for each candidate to determine the answers to the original query.

This approach is primarily intended to be used for hypercube range queries and

for this case outperforms all other query processing methods. However, at this time

it is not obvious how to extend this technique to support other types of queries, e.g.,

nearest neighbor queries.

To support similarity queries in general metric spaces, all of the above methods

are not applicable since in the general case we only have a function to measure the

distance between objects. If the distance function is a metric, so-called metric trees

(see e.g. [Uhl 91]) can be used for indexing the data. Metric trees only consider rel-

ative distances between objects to organize and partition the search space. The fact

that the triangle inequality property applies to a metric distance function can be

used to prune the search tree while processing a similarity query. Most of these

structures are, however, static in the sense that they do not allow dynamic inser-

tions and deletions of objects. A recent paper ([CPZ 97]) has introduced a dynamic

Figure 4: Illustration of the pyramid technique

traditional partitioning

pyramid technique

p0

p1

p2

p3

data space and
pyramids pi

point p

height hp
of point p

pyramid p1

where pi is the pyramid in which point p is located
and hp is the height of p in pyramid pi (0 ≤ hp ≤ 1)

pyramid value pvp of p:
pvp = (i + hp)

qu
er

y
re

ct
an

gl
e

da
ta

 p
ag

es

center of the data space

18 2 Related Work

metric index structure, the M-tree, which is a balanced tree that can be managed on

the secondary memory.

The leaf nodes of an M-tree store all the database objects. Directory nodes store

so-called routing objects which are selected database objects to guide the search

operations. Associated with each routing object Or, are: a pointer to a subtree T(Or)

of Or, a covering radius r(Or) and the distance d(Or, Op) of Or to its parent object

Op (see figure 5, right). All objects in the subtree of Or are within the distance r(Or)

from Or, r(Or) > 0. A range query range(Q, r(Q)) starts from the root of the tree

and recursively traverses all paths which cannot be excluded from leading to ob-

jects Oj satisfying the condition d(Oj, Q) ≤ r(Q). The pruning criterion for exclud-

ing subtrees from the search is depicted in figure 5, left. Obviously, the perfor-

mance of this indexing technique is dependent on the distribution of distances

between the database objects.

Recently, the VA-file [WSB 98] was developed, an index structure that actually

is not an index structure. The authors prove in the paper that under the assumption

Figure 5: Illustration of the M-tree

Op

Or

Q

d(Op,Q)

d(Op,Or)

r(Q)

r(Or)

. . .

. . .

. . .

. . .

. . .

T(Or)

Or

Op

r(Or)
d(Or, Op)

r(Op)
d(Op, parent)

If d(Or, Q) > r(Q) + r(Or) then,
for each object Oj in T(Or),
it is d(Oj, Q) > r(Q).
Thus, T(Or) can be pruned.

2.1 Efficient Query Processing in Spatial Databases 19

of uniformly distributed data, above a certain dimensionality no index structure can

process a nearest neighbor query efficiently. Thus, they suggest to use the sequen-

tial scan which obtains at least the benefits of sequential rather than random disk I/

O. Clever bit encodings of the data are also devised to make the scan go faster.

The basic idea of the VA-file is to keep two files: a bit-compressed version of

the points and the exact representation of the points. Both files are unsorted, how-

ever, the ordering of the points in the two files is identical. Bit encodings for the

data points are generated by partitioning the space using only a few split lines in

each dimension. Then, a point is represented by the the grid cell in which it is con-

tained. This requires only a few bits for the coordinate of the cell in each dimen-

sion. Query processing is equivalent to a sequential scan of the compressed file

with some look-ups to the second file whenever this is necessary. In particular a

look-up occurs, if a point cannot be pruned from a search based only on the com-

pressed representation. Note that a VA-file may perform worse than a true spatial

index structure even in high-dimensional spcace if too many points share the same

bit representation. This will be the case if the data is highly skewed and there exist

high-density clusters.

As the VA-file is a very simple structure, there are two major problem associat-

ed with the VA-file: in case of correlations or clusters, many points in the database

will share a single compressed representation and therefore, the number of look-

ups will increase dramatically and second, the authors do not even provide a rule

of thumb how to determine a good or optimal number of bits to be used for quan-

tization.

Bearing their limitations in mind, spatial index structures and their query meth-

ods can nevertheless be used to improve the performance of some clustering algo-

rithms. It is also possible to build clustering algorithms “on top” of index(-like)

structures since index structures already perform some kind of pre-clustering of the

data. We will focus on these aspects in our review of clustering and related algo-

rithms in the next two sections.

20 2 Related Work

2.2 Clustering and Related Algorithms

Several types of clustering algorithms can be distinguished. One well-known dis-

tinction is that of hierarchical and partitioning clustering algorithms [JD 88]. Hier-

archical clustering methods organize the data into a nested sequence of groups.

These techniques are important for biology, social, and behavioral sciences be-

cause of the need to construct taxonomies. Partitioning clustering methods try to

recover natural groups in the data and thus construct only a single level partition of

the data. Single partitions are more important in engineering applications and are

especially appropriate for the efficient representation and compression of large

data sets.

Somehow related to clustering are region growing algorithms which are used for

image segmentation of raster images. We will see in the next chapter that the

groups of pixels constructed by region growing algorithms are connected compo-

nents that have the same underlying formal description as density-based clusters.

2.2.1 Hierarchical Clustering Algorithms

Whereas partitioning algorithms obtain a single level clustering, hierarchical algo-

rithms decompose a database D of n objects into several levels of nested partition-

ings (clusterings). The hierarchical decomposition is represented by a dendrogram,

a tree that iteratively splits D into smaller subsets until each subset consists of only

one object. In such a hierarchy, each node of the tree represents a cluster of D. The

dendrogram can either be created from the leaves up to the root (agglomerative ap-

proach) or from the root down to the leaves (divisive approach) by merging resp.

dividing clusters at each step.

Hierarchical algorithms need only a dissimilarity matrix for objects as input. If

a single level, i.e. a natural grouping in the data, is needed, a termination condition

can be defined indicating when the merge or division process should be terminated.

2.2 Clustering and Related Algorithms 21

One example of a break condition is a critical distance Dmin. If no distance between

two clusters of Q is smaller than Dmin, then the construction algorithm for the dendro-

gram stops. Alternatively, an appropriate level in the dendrogram can be selected

manually after the creation of the whole tree.

There are a lot of different algorithms producing the same hierarchical structure.

Agglomerative hierarchical clustering algorithms, for instance, basically keep

merging the closest pairs of objects to form clusters. They start with the “disjoint

clustering” obtained by placing every object in a unique cluster. In every step the

two “closest” clusters in the current clustering are merged. The most commonly

used hierarchical structures are called “single link”, “complete link”, and “average

link”, differing in principle only in the definition of the dissimilarity measure for

clusters (see figure 6 for an illustration of the single link method):

• single link:

• complete link:

• average link: 1

1. Throughout this thesis, the expression |X| denotes the number of elements in X if the argument
X of | . | is as set.

sim-sl X Y,() inf
x X∈ y Y∈,

dis cetan x y,(){ }=

sim-cl X Y,() sup
x X∈ y Y∈,

dis cetan x y,(){ }=

sim-al X Y,()
1

X Y⋅
----------------- dis cetan x y,()

x X∈ y Y∈,
∑×=

Figure 6: Single link clustering of n = 9 objects

1

1

5

5

1
3
2 4 6

5

7
8 9

1 2 3 4 5 6 7 8 9
0

1

distance
between
clusters 2

22 2 Related Work

Different algorithms, e.g. for the single-link method have been suggested (see

e.g. [Sib 73], [JD 88], [HT 93]). The single link hierarchy can also be derived from

the minimum spanning tree (MST)1 of a set of points (see [Mur 83] for algorithms

constructing the MST and [Rol 73] for an algorithm which transforms the MST

into the single-link hierarchy). However, hierarchical algorithms are in general

based on the inter-object distances and on finding the nearest neighbors of objects

and clusters. Therefore, the run-time complexity of these clustering algorithms is

at least O(n2), if all inter-object distances for an object have to be checked to find

its nearest neighbor.

2.2.2 Partitioning Clustering Algorithms

Partitioning algorithms construct a partition of a database D of n objects into a set

of k clusters where k may or may not be an input parameter. The objective of a par-

titioning clustering method is to determine a partition of the set of objects into k

groups such that the objects in a cluster are more similar to each other than to ob-

jects in different clusters. However, there are a lot of alternatives to state this prob-

lem more precisely, i.e. to state formally what should be considered as a cluster and

what should be considered as a “good” partitioning. Global as well as local cluster-

ing criteria are possible. In this section, we present only the basic ideas of the most

common partitioning clustering methods.

Optimization Based Approaches

Optimization based clustering algorithms typically adopt a global clustering crite-

rion. A global clustering criterion represents each cluster by a prototype and as-

signs an object to the cluster represented by the most similar prototype, i.e. to the

prototype that has the smallest distance to the considered object. An iterative con-

trol strategy is used to optimize a notion of clustering quality such as the average

1. The use of the MST to find clusters is not restricted to the single link hierarchy. There are also
partitioning clustering algorithms based on graph theory which use the MST directly (see the next
section).

2.2 Clustering and Related Algorithms 23

distances or the squared distances of objects to its prototypes. Depending on the

kind of prototypes, we can distinguish so-called k-means, k-modes and k-medoid

clustering algorithms.

For k-means algorithms (see e.g. [Mac 67]) each cluster is represented by a pro-

totype computed as the mean value of all objects belonging to that cluster. They

typically start with an initial partition of D formed by specifying arbitrary k proto-

types. Then, the following steps are performed iteratively until the clustering crite-

rion cannot be improved:

- Assign each object to the closest prototype.

- For each cluster: recalculate the mean (prototype in the next iteration).

In practice k-means type algorithms converge fast. However, they are designed

for numerical valued d-dimensional feature vectors only, whereas data mining ap-

plications may also consist of categorical valued vectors or objects for which only

a dissimilarity measure is given.

The k-modes (see [Hua 97]) algorithm extends the k-means paradigm to categor-

ical domains. To measure the dissimilarity between two categorical vectors X and

Y, the simple matching dissimilarity [KR 90], i.e. the total number of mismatches

of the values in the corresponding attributes of X and Y, is used. Then it is possible

to find a so-called mode for a set S of categorical vectors, i.e. a vector Q that min-

imizes the sum of distances between Q and the elements of S. A mode for categor-

ical values corresponds to the mean for numerical values. Hence, the same algo-

rithmic schema as for k-means can be used to cluster categorical vectors.

In applications where only a dissimilarity measure for objects is defined, the cal-

culation of a mean or a mode of a cluster is not possible. However, there is another

type of optimizing clustering algorithm for this kind of data sets:

For k-medoid algorithms (see e.g. [KR 90]) each cluster is represented by a pro-

totype which is identical to one of the objects of the cluster. This object, called the

24 2 Related Work

medoid of a cluster is generally located near the “center” of the cluster. Like k-

means algorithms also k-modes algorithms typically start by selecting arbitrary k

prototypes to form an initial partition. Then, the following steps are performed it-

eratively until the clustering criterion cannot be improved:

- Assign each object to the closest prototype/medoid.

- Select one of the medoids and try to exchange the medoid with a non-medoid

such that the clustering criterion is improved.

Basically, k-medoid algorithms differ only in the search strategy for exchanging

medoids with non-medoids. Obviously, there is a trade-off between the resulting

clustering quality and the run-time of k-medoid algorithms. The more exhaustive

the search, the better the clustering criterion can be improved.

The first clustering algorithm used for mining in large spatial databases has been

a k-medoid type algorithm (see [NH 94]). This algorithm called CLARANS (Clus-

tering Large Applications based on RANdomized Search) is an improved k-medoid

algorithm with a randomized and bounded search strategy for exchanging proto-

types. The experiments in [NH 94] show that the algorithm CLARANS is signifi-

cantly more efficient than the well-known k-medoid algorithms PAM (Partitioning

Around Medoids) and CLARA (Clustering LARge Applications) presented in

[KR 90] while producing a result of nearly the same clustering quality.

Optimization based clustering algorithms are effective in determining the “cor-

rect” clustering if the clusters are of “convex” shape, similar size and if their num-

ber k can be reasonably estimated. However, they may sometimes suffer from the

problem of local minima due to their limited search strategy. Figure 7 depicts an

example of a k-means and a k-medoid clustering for the same 2d data set.1

1. Note that for d-dimensional numerical vectors assigning objects to the closest prototype yields
a partition that is equivalent to a Voronoi diagram of the prototypes.

2.2 Clustering and Related Algorithms 25

If k is not known in advance, various parameter values can be tried and for each

of the discovered clusterings a measure, e.g. the silhouette coefficient [KR 90], in-

dicating the suitability of the number of clusters k can be calculated. Another pos-

sible strategy is to adjust the number of clusters after the main clustering procedure

by merging and splitting existing clusters or by removing small clusters or outliers.

For instance, in the clustering algorithms called ISODATA [BH 64], conditions for

splitting and merging clusters can be specified by the user. There exists also an

adaptive k-means type algorithm that does not need k as an input parameter

[Sch 91]. This algorithm starts with an initial clustering consisting of only one pro-

totype - the mean of the whole data set. Then, the multidimensional Voronoi dia-

gram for all prototypes of the current clustering is computed and the Voronoi cell

where the largest error occurs is split, i.e. two new clusters/prototypes are inserted

in this region. This procedure is repeated until a user-specified termination condi-

tion is met.

Clustering Based on Graph Theory

Several kinds of graphs have been used for analyzing multidimensional objects.

These graphs consist of nodes which represent the objects to be clustered and edges

which represent relations between the nodes. In the simplest case, every node is

connected to all the remaining nodes, resulting in the complete graph for a data set.

medoid

Figure 7: k-means and k-medoid (k = 3) clustering for a sample data set

1

1

5

5

x

x mean

x

x

1

1

5

5

26 2 Related Work

The edge weights are the distances between pairs of objects. For the purpose of

clustering, typically a subset of the edges in the complete graph is selected to re-

flect the inherent separation among clusters. One of the best known clustering

methods based on graph theory is Zahn’s method which uses the minimum span-

ning tree (MST)1 of a data set [Zah 71].

Zahn demonstrates how the MST can be used with different notions of an incon-

sistent edge to identify clusters. The basic idea of Zahn's clustering algorithm con-

sists of the following three steps:

- Construct the MST for the set of points.

- Identify inconsistent edges in the MST.

- Remove the inconsistent edges.

The resulting connected components are the clusters. The algorithm can be ap-

plied iteratively to these components to identify subclusters. Zahn considers sever-

al criteria for the inconsistency of edges. For example, an edge is inconsistent if its

interpoint distance is significantly larger than the average of interpoint distances of

nearby edges. This notion of inconsistent edges works well in simple situations

where the clusters are well separated and the density within a cluster only varies

smoothly. Special heuristics are needed for more complex situations and a priori

knowledge of the shapes of the clusters is then needed to select the proper heuris-

tics to identify inconsistent edges. Also, the computational costs for constructing

the MST and finding inconsistent edges are very high for large data sets.

Figure 8 depicts the MST of a sample data set of two-dimensional points. The

points are grouped in three clusters and the inconsistent edges are marked.

1. A spanning tree for a set of objects D is a connected graph with no cycles that contains a node
for each object of D. The weight of a tree is the sum of the edge weights in the tree. A minimum
spanning tree of D is a spanning tree which has the minimal weight among all other spanning
trees of D.

2.2 Clustering and Related Algorithms 27

Distribution-Based Approaches

A popular statistical approach to clustering is based on the notion of a “mixture

density”. Each object is assumed to be drawn from one of k underlying populations

or clusters. In this approach which is known as “mixture decomposition” or “model

based clustering”, the form and the number of underlying cluster densities are as-

sumed to be known. Although, in principle arbitrary density functions or distribu-

tions are possible, the common practice is to assume a mixture of Gaussian distri-

butions (see e.g. [JD 88], [Sym 81]). The density of a d-dimensional vector x from

the i-th cluster is assumed to be fi(x; θ) for some unknown vector of parameters θ.

In the so-called classification maximum likelihood procedure, θ and the identify-

ing labels ci for the n objects x1, ..., xn are chosen so as to maximize the likelihood

In [BR 93] a solution for a more general model is worked out, additionally al-

lowing the incorporation of noise in the form of a Poisson process. However, even

this model is not applicable if we do not know the number of clusters or if the pro-

cesses generating the data are not Gaussian.

Figure 8: MST of a sample data set

Inconsistent Edges

L θ c1 … cn, ,(),() fci
xi θ;()

i 1=

n

∏=

28 2 Related Work

Another approach to clustering which also assumes a certain distribution of the

data but which does not require the number of clusters to be known in advance is

presented in [XEKS 98]. The clustering algorithm DBCLASD (Distribution Based

Clustering of LArge Spatial Databases) assumes that the points inside of a cluster

are randomly distributed which is quite reasonable for many applications (see e.g.

[AS 91], [BR 96] and [MS 92]). This implies a characteristic probability distribu-

tion of the distance to the nearest neighbors for the points of a cluster. The algo-

rithm DBCLASD presupposes this distribution and incrementally augments an ini-

tial cluster by its neighboring points as long as the nearest neighbor distance set of

the resulting cluster still fits the expected distribution. Thus, if the points inside of

the clusters are almost randomly distributed, DBCLASD is able to detect clusters

of arbitrary shape without requiring any further input parameters such as the num-

ber of clusters. However, incrementally checking an expected distribution implies

an inherent dependency of the discovered clustering from the order in which can-

didates from the database are generated and tested. Therefore, two heuristics to re-

duce the effects of this dependency are incorporated in the algorithm: unsuccessful

candidates for the current cluster are not discarded but tried again later; points al-

ready assigned to some cluster may switch to another cluster later.

Density-Based Approaches

Clusters can be viewed as regions in the data space in which the objects are dense,

separated by regions of low object density. The general idea of density-based clus-

tering approaches is to search for regions of high density in the data space. These

regions may have an arbitrary shape and the points inside a region may be arbitrari-

ly distributed.

A common way to find regions of high-density in the dataspace is based on grid

cell densities (see e.g. [JD 88] for an overview). A histogram is constructed by par-

titioning the data space into a number of non-overlapping regions or cells. Cells

containing a relatively large number of objects are potential cluster centers and the

boundaries between clusters fall in the “valleys” of the histogram. In general there

2.2 Clustering and Related Algorithms 29

are two possibilities to construct clusters, starting from the potential centers. In the

first method, the potential centers are taken as actual cluster centers and each object

is then assigned to the cluster with the closest center. In the second method, neigh-

boring cells are merged with the potential centers as long as the density in the

neighboring cells is similar enough to the density of the centers. That means that in

the second approach, clusters are constructed as connected regions of grid cells.

Obviously, the success of this method depends on the size of the cells which

must be specified by the user. Cells of small volume will give a very “noisy” esti-

mate of the density, whereas large cells tend to overly smooth the density estimate.

Furthermore, the memory and run-time requirements of storing and searching mul-

tidimensional histograms may become very large because the number of cells in a

d-dimensional grid grows exponentially with increasing dimension d.

Recently, the density-based clustering technique CLIQUE (CLustering In

QUEst) [AGG+ 98] has been proposed for mining in high-dimensional data spac-

es. This method also relies on a partition of the space into a regular grid. A cluster

is defined as a region, i.e. a set of connected grid cells, that has a higher density of

points than its surrounding region. More important, the method automatically de-

tects subspaces of the highest dimensionality such that high-density clusters exist

in those subspaces. A subspace is a projection of the input data into a subset of the

attributes. The identification of clusters works in two steps:

1.) Determination of dense units, i.e. cells, in all subspaces of interest.

2.) Determination of connected dense units in all subspaces of interest.

To check each cell in a high-dimensional grid is computationally unfeasible.

Therefore, to determine the dense units in all subspaces a bottom-up procedure is

used, based on the monotonicity property for high-density clusters: if S is a cluster

in a d-dimensional space, then S is also part of a cluster in (d-1)-dimensional pro-

jections of this space. The algorithm starts by determining one-dimensional dense

units. Then, having determined (k-1)-dimensional dense units, the candidate k-di-

30 2 Related Work

mensional dense units are determined and a pass over the data is made to determine

those candidates which are actually dense. The candidate generation procedure

produces a superset of all k-dimensional dense units by self-joining the set of

(k-1)-dimensional dense units where the join condition requires that the units share

the first k-2 dimensions.1

In the second step, clusters are constructed in each subspace where dense units

have been found. A labyrinth-search schema is used to determine regions of con-

nected units, i.e. units that have a common face.

In [EKSX 96] a density-based clustering method is presented which is not grid-

based. The basic idea for the algorithm DBSCAN (Density Based Spatial Cluster-

ing of Applications with Noise) is that for each point of a cluster the neighborhood

of a given radius (ε) has to contain at least a minimum number of points (MinPts),

i.e. the density in the neighborhood of points in a cluster has to exceed some thresh-

old. A simple heuristic which is effective in many cases to determine the two pa-

rameters (ε, MinPts) can be used to support the user in determining these parame-

ters. The algorithm DBSCAN checks the ε-neighborhood of each point in the

database. If the ε-neighborhood Nε(p) of a point p has more than MinPts points the

region Nε(p) is expanded to a cluster by checking the ε-neighborhood of all points

in Nε(p). For all points q where Nε(q) contains more than MinPts points, also the

neighbors of q are added to the cluster, and their ε-neighborhood is checked in the

next step. This procedure is repeated until no new point can be added to the current

cluster.

This algorithm is based on the formal notion of a cluster as a maximal set of den-

sity-connected points. A point p is density-connected to a point q if there exists a

point o such that both p and q are density-reachable from o (directly or transitive-

ly). A point p is said to be directly density-reachable from o if p lies in the neigh-

1. This bottom-up construction uses the same algorithmic trick as the Apriori algorithm for find-
ing Association Rules presented in [AS 94].

2.2 Clustering and Related Algorithms 31

borhood of o and the neighborhood of o contains at least MinPts points. We will

use this density-based clustering approach as a starting point for our generalization

in the following chapters.

2.2.3 Region Growing

Image Segmentation is a task in the field of Computer Vision which deals with the

analysis of the spatial content of an image. In particular, it is used to separate re-

gions from the rest of the image in order to recognize them as objects.

Region Growing is an approach to image segmentation in which neighboring

pixels are examined and added to a region class if no edges are detected. This pro-

cess is iterated for each boundary pixel in the region. Several image properties,

such as a low gradient or a gray-level intensity value can be used in combination

to define the membership of pixels to a region (see e.g. [Nie 90]). In general, all

pixels with grey level (or color) 0 are assumed to be the background, while pixels

with color > 0 are assumed to belong to foreground objects. A connected compo-

nent in the image is a maximal collection of uniformly colored pixels such that a

path exists between any pair of pixels in the component. Two pixels are adjacent if

one pixel lies in one of the eight positions surrounding the other pixel. Each pixel

in the image will receive a label; pixels will have the same label if and only if they

belong to the same connected component. All background pixels will receive a la-

bel of 0.

The definition of a connection between two neighboring pixels depends on the

application. In the most simple form, two pixels are adjacent if and only if their

grey level values are identical. Another possibility is that two adjacent pixels hav-

ing gray-level values x and y are defined to be connected if the absolute difference

|x - y| is not greater than a threshold (setting the threshold to 0 reduces this case to

the simple one mentioned above). Other approaches may take into account addi-

tional information about the image or may consider aggregate values such as the

average intensity value in the neighborhood of a pixel.

32 2 Related Work

2.3 Exploiting the Clustering Properties of Index
Structures

In this section, we show how spatial indexes and similar data structures can be used

to support the clustering of very large databases. These structures organize the data

objects or the data space in a way that objects which are close to each other are

grouped together on a disk page (see section 2.1). Thus, index structures contain

useful information about the distribution of the objects and their clustering struc-

ture. Therefore, index structures can be used to support and speed-up basic opera-

tions in some of the known clustering algorithms. They can be used as a kind of

preprocessing for clustering algorithms or even to build special clustering algo-

rithms which take advantage of the information stored in the directory of an index.

2.3.1 Query Support for Clustering Algorithms

Different methods to support the performance of clustering techniques have been

proposed in the literature. The techniques discussed in this section rely on the effi-

cient processing of similarity queries (kNN-queries and region queries) when using

spatial index structures.

The time complexity of hierarchical clustering algorithms is at least O(n2) if all

inter-object distances for an object have to be checked to find its NN. Already

Murtagh [Mur 83] points out that spatial index structures make use of the fact that

finding of NNs is a “local” operation because the NN of an object can only lie in a

restricted region of the data space. Thus, using n-dimensional hash- or tree-based

index structures for efficient processing of NN queries can improve the overall run-

time complexity of agglomerative hierarchical clustering algorithms. If a disk-

based index structure, e.g. a grid file or R-Tree, is used instead of a main-memory-

based index structure, these clustering algorithms can also be used for larger data

sets.

2.3 Exploiting the Clustering Properties of Index Structures 33

The k-medoid algorithm CLARANS is still too inefficient to be applied to very

large databases because its measured run-time complexity seems to be of the order

n2. In [EKX 95a] two techniques to integrate CLARANS with an SDBS using a

spatial index structure are proposed. The first is R*-tree based sampling (see sec-

tion 2.3.2), the second is called focusing on relevant clusters which uses a spatial

index structure to reduce the computational costs for comparing the quality of two

clusterings - an operation which is performed in each step of the algorithm. This

technique is described in the following:

Typically, k-medoid algorithms try to improve a current clustering by exchang-

ing one of the medoids of the partition with one non-medoid and then compare the

quality of this “new” clustering with the quality of the “old” one. In CLARANS,

computing the quality of a clustering is the most time consuming step because a

scan through the whole database is performed. However, only objects which be-

longed to the cluster of the exchanged medoid or which will belong to the cluster

of the new medoid contribute to the change of quality. Thus, only the objects of

two (out of k) clusters have to be read from disk. To retrieve exactly the objects of

a given cluster, a region query can be used. This region, a Voronoi cell whose cen-

ter is the medoid of the cluster, can be efficiently constructed by using only the in-

formation about the medoids and the minimum bounding box of all objects in the

database. Assuming the same average size for all clusters, a performance gain of k/

2 (measured by the number of page accesses) compared to [NH 94] is expected.

Clustering algorithms which group neighboring objects of the database into

clusters based on a local cluster condition can be formulated so that only a “single

scan” over the database is performed. Each object has to be examined once and its

neighborhood has to be retrieved. If the retrieval of the neighborhood of an object

can be efficiently supported - for instance, if the neighborhood can be expressed by

a region query for which a supporting spatial index structure exists - this algorith-

mic schema yields efficient clustering algorithms integrated with SDBMS.

34 2 Related Work

The algorithmic schema of a single scan clustering algorithm is as follows:

Different cluster conditions yield different cluster definitions and algorithms.

For example, the clustering algorithms DBCLASD and DBSCAN are instances of

this type of algorithm.

2.3.2 Index-Based Sampling

To cluster large databases in a limited main memory, one can select a relatively

small number of representatives from the database and apply the clustering algo-

rithm only to these representatives. This is a kind of data sampling, a technique

common in cluster analysis [KR 90]. The drawback is that the quality of the clus-

tering will be decreased by considering only a subset of the database and that it de-

pends heavily on the quality of the sample.

Traditional data sampling works only in main memory. In [EKX 95b] a method

of selecting representatives from a spatial database system is proposed. From each

data page of an R*-tree, one or several representatives are selected. Since the clus-

tering strategy of the R*-tree, which minimizes the overlap between directory rect-

angles, yields a well-distributed set of representatives (see figure 9), the quality of

the clustering will increase only slightly. This is confirmed by experimental results

[EKX 95b] which show that the efficiency is improved by a factor of 48 to 158

whereas the clustering quality decreases only by 1.5% to 3.2% when comparing the

SingleScanClustering(Database DB)

FOR each object o in DB DO

IF o is not yet member of some cluster THEN

create a new cluster C;

WHILE neighboring objects satisfy the cluster condition DO

add them to C

ENDWHILE

ENDIF

ENDFOR

2.3 Exploiting the Clustering Properties of Index Structures 35

clustering algorithm CLARANS [NH 94] with and without index-based sampling.

In principle, other page based spatial index structures could also be used for this

kind of sampling technique because their page structure usually adapts to the dis-

tribution of the data as well.

2.3.3 Grid clustering

Schikuta [Sch 96] proposes a hierarchical clustering algorithm based on the grid

file (see section 2.1). Points are clustered according to their grid cells in the grid

structure. The algorithm consists of 4 main steps:

 • Creation of the grid structure

 • Sorting of the grid cells according to cell densities

 • Identifying cluster centers

 • Recursive traversal and merging of neighboring cells

In the first part, a grid structure is created from all points which completely par-

titions the data space into a set of non-empty disjoint rectangular shaped cells con-

taining the points. Because the grid structure adapts to the distribution of the points

Figure 9: Data page structure of an R*-tree for a 2d-point database

36 2 Related Work

in the data space, the creation of the grid structure can be seen as a pre-clustering

phase (see figure 10).

In the second part, the grid data pages (containing the points from one or more

grid cells, c.f. figure 1) are sorted according to their density, i.e. the ratio of the ac-

tual number of points contained in the data page and the spatial volume of the data

page. This sorting is needed for the identification of cluster centers in the third part.

Part 3 selects the pages with the highest density as cluster centers (obviously a

number of pages may have the same cell density). Step 4 is performed repeatedly

until all cells have been clustered. Starting with cluster centers, neighboring pages

are visited and merged with the current cluster if they have a lower or equal density

than the actual page. Then the neighboring pages of the merged neighbors are vis-

ited recursively until no more merging can be done for the current cluster. Then the

next unclustered page with the highest density is selected. Experiments [Sch 96]

show that this clustering algorithm clearly outperforms hierarchical and partition-

ing methods of the commercial statistical package SPSS.

The Grid clustering approach is not very specific to the grid file. In fact, it would

be possible to apply a similar procedure to the data pages of other spatial index

structures as well and thus obtain very similar results.

Figure 10: Data page structure of a Grid File for a 2d-point database [Sch 96]

2.3 Exploiting the Clustering Properties of Index Structures 37

2.3.4 CF-Tree

[ZRL 96] presents the clustering method BIRCH (Balanced Iterative Reducing and

Clustering using Hierarchies) which uses a highly specialized tree-structure for the

purpose of clustering very large sets of d-dimensional vectors. The advantage of

this structure is that its memory requirements can be adjusted to the main memory

that is available.

BIRCH incrementally computes compact descriptions of subclusters, called

Clustering Features CF that contain the number of points, the linear sum and the

square sum of all points in the cluster:

The CF-values are sufficient for computing information about subclusters like

centroid, radius and diameter and constitute an efficient storage method since they

summarize information about subclusters instead of storing all points.

The Clustering Features are organized in a balanced tree with branching factor

B and a threshold T (see figure 11). A non-leaf node represents a cluster consisting

of all the subclusters represented by its entries. A leaf node has to contain at most

L entries and the diameter of each entry in a leaf node has to be less than T. Thus,

the parameter T has the most significant influence on the size of the tree.

In the first phase, BIRCH performs a linear scan of all data points and builds a

CF-tree. A point is inserted by inserting the corresponding CF-value into the clos-

est leaf of the tree. If an entry in the leaf can absorb the new point without violating

the threshold condition, then the CF-values for this entry are updated, otherwise a

new entry in the leaf node is created. In this case, if the leaf node contains more

than L entries after insertion, the leaf node and possibly its ancestor nodes are split.

In an optional phase 2 the CF-tree can be further reduced until a desired number of

CF n xi
i 1=

n

∑ xi
2

i 1=

n

∑, ,
 
 
 

=

38 2 Related Work

leaf nodes is reached. In phase 3 an arbitrary clustering algorithm such as CLAR-

ANS is used to cluster the leaf nodes of the CF-tree.

The efficiency of BIRCH is similar to the index based sampling (see section

2.3.2) and experiments with synthetic data sets [ZRL 96] indicate that the quality

of the clustering using BIRCH in combination with CLARANS is even higher than

the quality obtained by using CLARANS alone.

2.3.5 STING

Wang et al. [WYM 97] propose the STING (STatistical INformation Grid based)

method which relies on a hierarchical division of the data space into rectangular

cells. Each cell at a higher level is partitioned into a fixed number c of cells at the

next lower level. The skeleton of the STING structure is similar to a spatial index

structure - in fact, their default value for c is 4, in which case we have an equiva-

lence for two-dimensional data to the well-known Quadtree structure [Sam 90].

This tree structure is further enhanced with additional statistical information in

each node/cell of the tree (see figure 12). For each cell the following values are cal-

culated and stored:

CF6=CF1+CF2+CF3 CF7=CF4+CF5

CF1 CF2 CF3 CF4 CF5

Figure 11: CF-tree structure

CF8=CF6+CF7 . . .

. . .

. . .

. . .

2.3 Exploiting the Clustering Properties of Index Structures 39

 • n - the number of objects (points) in the cell.

And for each numerical attribute:

 • m - the mean of all values in the cell

 • s - the standard deviation of all values in the cell

 • min - the minimum value in the cell

 • max - the maximum value in the cell

 • distr - the type of distribution that the attribute values in this cell follow

(enumeration type)

The STING structure can be used to answer efficiently different kinds of region-

oriented queries, e.g., finding maximal connected regions which satisfy a density

condition and possibly additional conditions on the non-spatial attributes of the

points. The algorithm for answering such queries first determines all bottom level

cells which are relevant to the query and then constructs the connected regions of

those relevant cells.

The bottom level cells that are relevant to a query are determined in a top down

manner, starting with an initial layer in the STING structure - typically the root of

the tree. The relevant cells in a specific level are determined by using the statistical

information. Then, the algorithm goes down the hierarchy by one level, consider-

ing only the children of relevant cells at the higher level. This procedure is iterated

until the leaf cells are reached.

1-st layer

(i-1)-th layer

i-th layer

Figure 12: STING structure [WYM 97]

n

sattr_1
minattr_1
maxattr_1
distrattr_1

. . .
sattr_j
minattr_j
maxattr_j
distrattr_j

mattr_1 mattr_j

40 2 Related Work

The regions of relevant leaf cells are then constructed by a breadth first search.

For each relevant cell, cells within a certain distance are examined and merged

with the current cell if the average density within the area is greater than a specified

threshold. This is in principle the DBSCAN algorithm [EKSX 96] performed on

cells instead of points. Wang et al. prove that the regions returned by STING are

approximations of the clusters discovered by DBSCAN which become identical as

the granularity of the grid approaches zero.

Wang et al. claim that the run-time complexity of STING is O(C), where C is

the number of bottom level cells. C is assumed to be much smaller than the number

N of all objects which is reasonable for low dimensional data. However, to assure

C << N for high dimensions d, the space cannot be divided along all dimensions:

even if the cells are divided only once in each dimension, then the second layer in

the STING structure would contain already 2d cells. But if the space is not divided

often enough along all dimensions, both the quality of cell-approximations of clus-

ters as well as the run-time for finding them will deteriorate.

2.4 Summary

In this chapter we first gave an overview of spatial indexing methods to support

similarity queries which are important building blocks for many clustering and oth-

er spatial data mining algorithms. Second, different types of clustering algorithms

were reviewed, and we showed how many of these algorithms - traditional as well

as new ones - can be integrated into a spatial database management system using

the query processing facilities of the SDBS. In the last section, we presented dif-

ferent clustering techniques which exploit the clustering properties of spatial index

structures directly.

Chapter 3

Density-Based Decompositions

In this chapter the basic notions of our work are introduced. First, we give a short

motivation for the generalization of a density-based clustering to a density-based

decomposition (section 3.1.1). Then, we present a set-theoretic definition of densi-

ty-connected sets which characterize generalized density-based clusters

(section 3.1.2). Density-based decompositions are then simply given as classes of

density-connected sets (section 3.2.1). Important specializations of these notions

include some familiar structures from clustering and pattern recognition as well as

new applications which may be appropriate for grouping extended objects, e.g.

polygons in geographic information systems (section 3.2.2). We also discuss the

determination of parameters which may be required by some specializations and

present a simple but in most cases effective heuristic to determine parameters for

an important specialization of a density-based decomposition (section 3.3).

42 3 Density-Based Decompositions

3.1 Density-Connected Sets

3.1.1 Motivation

Clustering can be regarded as a basic operation in a two step procedure for spatial

data mining (cf. figure 13). A first step, implemented by a clustering algorithm,

where we look for implicit spatial structures or clusters or groups of “similar” ob-

jects, for instance, dense groups of expensive houses in a geographic database.

Then, in the second step, the detected structures are further analyzed. We may, for

example, explain the groups of expensive houses detected in the first step by other

features located in their neighborhood, for instance, rivers or lakes.

In principle, any clustering algorithm could be used for the first step of this task

if it is possible to apply it to the data set under consideration (recall the limitations

of traditional clustering algorithms discussed in the previous chapter). However,

the well-known clustering algorithms are designed for point-like objects, i.e. ob-

jects having no other characteristics - from the viewpoint of the algorithm - than

their position in some d-dimensional vector space, or alternatively, their distances

to other objects in a metric space.

Detect Clusters Explain Clusters

Figure 13: Clustering and spatial data mining

3.1 Density-Connected Sets 43

It is not obvious how to apply these methods to other kinds of objects, for exam-

ple to spatially extended objects like polygons in a geographic database. Using a

traditional clustering algorithm, there are in principle two possibilities: First, the

representation of the polygons by distinguished points, for example the centers of

gravity, or second, the definition of a distance measure. For instance, define the

distance between two polygons by the minimum distance between their edges.

However, these methods will often result in a very poor representation of the orig-

inal distribution of the objects in the database, which means that important infor-

mation is lost.

In figure 14, an example of the transformation to gravity centers for a set of

polygons is depicted. In the original space we can see three clusters or groups and

some smaller polygons which may be considered as noise. This structure is obvi-

ously not preserved if the polygons are transformed to points.

In the ideal case, to find cluster-like groups of objects in a geographic informa-

tion system, we want to take into account perhaps the area of the polygons - maybe

other non-spatial attributes, like average income for polygons representing com-

munities, would be also useful. And, what the example in figure 14 also suggests

 How to take into account the area or other non-spatial attributes ?
 How to use “natural” notions of connectedness (e.g. intersects or meets) ?

Transformation to gravity centers

⇒ poor representation

Figure 14: Example for a generalized clustering problem

44 3 Density-Based Decompositions

is that using natural notions of connectedness for polygons like intersects or meets

instead of distance based measures may be more appropriate.

To conclude, our goal is to extend the notion of a clustering to arbitrary (spatial)

objects so that the additional information about the objects given by their (spatial

and non-spatial) attributes can be used directly to reveal and analyze hidden struc-

tures in a spatial database.

3.1.2 Definitions and Properties

We will use the density-based clustering approach as a starting point for our gen-

eralization:

The key idea of a density-based cluster as presented in [EKSX 96] is that for

most points of a cluster the ε-neighborhood for some given ε > 0 has to contain at

least a minimum number of points, i.e. the “density” in the ε-neighborhood of the

points has to exceed some threshold. This idea is illustrated by the sample sets of

2-dimensional points depicted in figure 15. In these very simple examples we see

that clusters have a typical density of points inside which is considerably higher

than outside of the clusters. Furthermore, the density within areas of noise is lower

than the density of the clusters, and clusters may have arbitrary shape, size and

location.

Figure 15: Sample databases of 2d points

database 1 database 2 database 3

3.1 Density-Connected Sets 45

The idea of density-based clusters in [EKSX 96] can be generalized in two im-

portant ways. First, we can use any notion of a neighborhood instead of an ε-neigh-

borhood if the definition of the neighborhood is based on a binary predicate which

is symmetric and reflexive. Second, instead of simply counting the objects in the

neighborhood of an object we can use other measures to define the “cardinality” of

that neighborhood as well. Figure 16 illustrates the intuition and the goal of the fol-

lowing definitions.

Definition 1: (Notation: neighborhood of an object)

Let NPred be a binary predicate on D which is reflexive and symmetric, i.e., for

all p, q ∈ D: NPred(p, p), and if NPred(p, q) then NPred(q, p).

Then the NPred-neighborhood of an object o ∈ D is given as

NNPred(o) = {o’ ∈ D| NPred(o, o’)}.

Figure 16: Generalization of density-based clusters

 Basic idea of a density-based cluster for DBSCAN:

Generalized Minimum Cardinality
MinWeight(NNPred(o))

Generalized Neighborhood
NNPred(o) = {p | NPred(o, p)}

“distance ≤ ε” “ | Nε | ≥ MinPts”

NPred(o,p)
reflexive, symmetric
for pairs of objects

MinWeight(N)
arbitrary predicate
for sets of objects

Generalization

“NPred-neighborhood has at least MinWeight”

“ ε-neighborhood contains at least MinPts points”

46 3 Density-Based Decompositions

The definition of a cluster in [EKSX 96] is restricted to the special case of a dis-

tance based neighborhood, i.e., Nε(o) = {o’ ∈ D| |o - o’| ≤ ε}. A distance based

neighborhood is a natural notion of a neighborhood for point objects, but if cluster-

ing spatially extended objects such as a set of polygons of largely differing sizes it

may be more appropriate to use neighborhood predicates like intersects or meets to

detect clusters of polygons (cf. figure 14).

Although in many applications the neighborhood predicate will be defined by

using only spatial properties of the objects, the formalism is in no way restricted to

purely spatial neighborhoods. As well, we can use non-spatial attributes and com-

bine them with spatial properties of objects to derive a neighborhood predicate (see

for instance the application to a geographic database in section 5.4).

Another way to take into account the non-spatial attributes of objects is as a kind

of “weight” when calculating the “cardinality” of the neighborhood of an object.

For this purpose, we can define an arbitrary predicate expressing the “minimum

weight” for sets of objects.

Definition 2: (Notation: minimum weight of a set of objects)

Given an arbitrary unary predicate MinWeight for sets of objects from a database

D. We say that a set of objects N ⊆ D has minimum weight (with respect to the

predicate MinWeight) if MinWeight(N).

The density threshold condition | Nε(o) | ≥ MinPts in the definition of density-

based clusters is just a special case for the definition of a MinWeight predicate.

There are numerous other possibilities to define a MinWeight predicate for subsets

S of a database D. Simply summing up values of some non-spatial attribute for the

objects in S is another example. If we want to cluster objects represented by poly-

gons and if the size of the objects should be considered to influence the “density”

in the data space, then the area of the polygons could be used as a weight for these

objects. A further possibility is to specify ranges for some non-spatial attribute val-

3.1 Density-Connected Sets 47

ues of the objects, i.e. specifying a selection condition and counting only those ob-

jects which satisfy this selection condition (see e.g. the biology application in

section 5.2). Thus, we can realize the clustering of only a subset of the database D

by attaching a weight of 1 to those objects that satisfy the selection condition and

a weight of 0 to all other objects. Note that using non-spatial attributes as a weight

for objects, one can “induce” different densities, even if the objects are equally dis-

tributed in the space of the spatial attributes. Note also, that by means of the

MinWeight predicate the combination of a clustering with a selection on the data-

base can be performed “on the fly” while clustering the database. Under certain cir-

cumstances, this may be more efficient than performing the selection first, because

the algorithm GDBSCAN to compute generalized clusters can use existing spatial

index structures to speed-up the clustering procedure.

We will now define two special properties for MinWeight predicates (for later

use see chapter 6 and chapter 7):

Definition 3: (incrementally evaluable MinWeight, monotonous MinWeight)

A MinWeight predicate for sets of objects is called incrementally evaluable if

there is a function weight: Po(Objects) → R and a threshold T ∈ R such that

 and MinWeight(N) iff weight(N) ≥ T.

A MinWeight predicate for sets of objects is called monotonous if the following

condition holds: if N1 ⊆ N2 and MinWeight(N1) then also MinWeight(N2).

Incrementally evaluable MinWeight predicates compare the weight of a set N of

objects to a threshold and the weight of the set N can be evaluated incrementally in

the sense that it is the sum of the weights of the single objects contained in N. Min-

Weight predicates having this property are the most important MinWeight predi-

cates for practical use. For a monotonous MinWeight predicate it holds that if a set

N has minimum weight, then every super-set of N also has minimum weight. Note

that if the function weight in the definition of an incrementally evaluable Min-

weight N() weight o{ }()

o N∈
∑=

48 3 Density-Based Decompositions

Weight predicate is positive, i.e. weight(N) ≥ 0 for all subsets N of D, the corre-

sponding MinWeight predicate is obviously monotonous. The density threshold

condition | Nε(o) | ≥ MinPts in the definition of density-based clusters is an example

for a definition of a MinWeight predicate which is both, incrementally evaluable

and monotonous.

We can now define density-connected sets, analogously to the definition of den-

sity-based clusters, in a straightforward way (see also [SEKX 98]). First, we ob-

serve that there are two kinds of objects in the “area” of a density-connected set,

objects “inside” (core objects) and objects “on the border” (border objects) of a

density-connected set. In general, the NPred-neighborhood of a border object may

have a significantly lower weight than the NPred-neighborhood of a core object.

Therefore, to include all objects belonging to the “area” of the same density-con-

nected set, we would have to define the predicate MinWeight in a way, which may

not be characteristic for the respective density-connected set. For instance, if we

use an incrementally evaluable MinWeight predicate, we would have to set the

threshold value T to a relatively low value. This value, however, may then also be

characteristic for objects which do not belong to any cluster - particularly in the

presence of a large amount of noise objects. Core objects and border objects are

illustrated in figure 17 for the 2-dimensional case using a distance based neighbor-

hood and cardinality in the definition of the MinWeight predicate.

Therefore, we require that for every object p in a density-connected set C there

must be an object q in C so that p is inside of the NPred-neighborhood of q and

Figure 17: Core objects and border objects

q: core object
p: border objectp

q

3.1 Density-Connected Sets 49

NPred(q) has at least minimum weight. We also require that the objects of the set

C have to be somehow “connected” to each other. This idea is elaborated in the fol-

lowing definitions and illustrated by 2-dimensional point objects using a distance

based neighborhood for the points and “cardinality of the ε-neighborhood ≤
MinPts” for the MinWeight predicate.

Definition 4: (directly density-reachable)

An object p is directly density-reachable from an object q with respect to NPred

and MinWeight in a database D if

1) p ∈ NNPred(q) and

2) MinWeight(NNPred(q)) holds (core object condition).

The predicate directly density-reachable is symmetric for pairs of core objects.

In general, however, it is not symmetric if one core object and one border object

are involved. Figure 18 shows the asymmetric case.

Lemma 1:

If object p is directly density-reachable from object q with respect to NPred and

MinWeight, and also p is a core object, i.e. MinWeight(NNPred(p)) holds, then also q

is directly density-reachable from p.

Proof: Obvious. ❏

Figure 18: Direct density-reachability

p directly density-
reachable from q
q not directly density-
reachable from p

p

q

50 3 Density-Based Decompositions

Definition 5: (density-reachable, >D)

An object p is density-reachable from an object q with respect to NPred and

MinWeight in a database D if there is a chain of objects p1, ..., pn, p1 = q, pn =

p such that for all i=1, ..., n-1: pi+1 is directly density-reachable from pi with re-

spect to NPred and MinWeight in D.

If NPred and MinWeight are clear from the context, we will sometimes denote

the fact that p is density-reachable from q in the database D as “p >D q”.1

Density-reachability is a canonical extension of direct density-reachability. This

relation is transitive but it is not symmetric. Figure 20 depicts the relations of some

sample objects and, in particular, the asymmetric case.

Although not symmetric in general like direct density-reachability, density-

reachability is symmetric for core objects because a chain from q to p can be re-

versed if also p is a core object. For core objects the density-reachability is also re-

flexive, i.e. a core object is density-reachable from itself.

Lemma 2:

(a) density-reachability is transitive

(b) density-reachability is symmetric for core objects

(c) density-reachability is reflexive for core objects

1. The notation p >D q will be used extensively in chapter 6 where we must distinguish a database
before and after an update.

Figure 19: Density-reachability

p density-
reachable from q

q not density-
reachable from p

p

q

3.1 Density-Connected Sets 51

Proof:

(a) density-reachability is the transitive hull of direct density-reachability.

(b) Let p be density-reachable from q with respect to NPred and MinWeight. Then,

there is a chain of objects p1, ..., pn, p1 = q, pn = p such that for all i=1, ..., n-1: pi+1

is directly density-reachable from pi with respect to NPred and MinWeight. Since

NPred is symmetric and each object pj for j=1, ..., n-1satisfies the core object con-

dition, q is density-reachable from pn-1. By assumption, p is a core object. But then

pn-1 is density-reachable from p (lemma 1). Hence, by transitivity (a), q is density-

reachable from p.

(c) NPred is a reflexive predicate, thus, p ∈ NNPred(p). Then, if p also satisfies the

core object condition, i.e. MinWeight(NNPred(p)) holds, p is density-reachable from

p by definition. ❏

Two border objects of the same density-connected set C are possibly not densi-

ty-reachable from each other because the core object condition might not hold for

both of them. However, for a density-connected set C we require that there must be

a core object in C from which both border objects are density-reachable. Therefore,

we introduce the notion of density-connectivity which covers this relation of bor-

der objects.

Definition 6: (density-connected)

An object p is density-connected to an object q with respect to NPred and Min-

Weight in a database D if there exists an object o such that both, p and q are den-

sity-reachable from o with respect to NPred and MinWeight in D.

Density-connectivity (cf. figure 20) is a symmetric relation. For density-reach-

able objects, the relation of density-connectivity is also reflexive. The relation is

not transitive. But if p is density-connected to q via o1 and q is density-connected

52 3 Density-Based Decompositions

to r via o2 then p is density-connected to r iff either o1 is density-reachable from o2

or o2 is density-reachable from o1.

Lemma 3:

(a) density-connectivity is symmetric

(b) density-connectivity is reflexive for core objects

Proof:

(a) By definition.

(b) Because a core object o is density-reachable from itself (lemma 2 (c)). ❏

Now, a density-connected set is defined to be a set of density-connected objects

which is maximal with respect to density-reachability.

Definition 7: (density-connected set)

A density-connected set C with respect to NPred and MinWeight in D is a non-

empty subset of D satisfying the following conditions:

1) Maximality: For all p, q ∈ D: if p ∈C and q is density-reachable from p

with respect to NPred and MinWeight in D, then also q ∈C.

2) Connectivity: For all p, q ∈ C: p is density-connected to q with respect to

NPred and MinWeight in D.

Figure 20: Density-connectivity

p

qo

p and q are density-connected
to each other by o

3.1 Density-Connected Sets 53

Note that a density-connected set C with respect to NPred and MinWeight con-

tains at least one core object and has at least minimum weight: since C contains at

least one object p, p must be density-connected to itself via some object o (which

may be equal to p). Thus, at least o has to satisfy the core object condition. Conse-

quently, the NPred-Neighborhood of o has to satisfy MinWeight.

The following lemmata are important for validating the correctness of our clus-

tering algorithm. Intuitively, they state the following. Given the parameters NPred

and MinWeight, we can discover a density-connected set in a two-step approach.

First, choose an arbitrary object from the database satisfying the core object condi-

tion as a seed. Second, retrieve all objects that are density-reachable from this seed

obtaining the density-connected set containing the seed.1

Lemma 4: Let p be an object in D and MinWeight(NNPred(p)) = true. Then the set

O = {o ∈D | o is density-reachable from p with respect to NPred and MinWeight}

is a density-connected set with respect to NPred and MinWeight.

Proof: 1) O is not empty: p is a core object by assumption. Therefore p is density-

reachable from p (Lemma 2 (c)). Then p is in O. 2) Maximality: Let q1 ∈O and q2

be density-reachable from q1 with respect to NPred and MinWeight. Since q1 is

density-reachable from p and density-reachability is transitive with respect to

NPred and MinWeight (Lemma 2 (a)), it follows that also q2 is density-reachable

from p with respect to NPred and MinWeight. Hence, q2 ∈O. 3) Connectivity: All

objects in O are density-connected via the object p. ❏

Furthermore, a density-connected set C with respect to NPred and MinWeight is

uniquely determined by any of its core objects, i.e. each object in C is density-

reachable from any of the core objects of C and, therefore, a density-connected set

1. As we will see in the next chapter, retrieving all objects that are density-reachable from a core
object o is very simple. Starting with o, iteratively collect all objects that are directly density-
reachable. The directly density-reachable objects are collected by simply retrieving the NPred-
neighborhood of objects.

54 3 Density-Based Decompositions

C contains exactly the objects which are density-reachable from an arbitrary core

object of C.

Lemma 5: Let C be a density-connected set with respect to NPred and MinWeight.

Let p be any object in C with MinWeight(NNPred(p)) = true. Then C equals the set

O = {o ∈D | o is density-reachable from p with respect to NPred and MinWeight}.

Proof: 1) O ⊆ C by definition of O. 2) C ⊆ O: Let q ∈ C. Since also p ∈ C and

C is a density-connected set, there is an object o ∈ C such that p and q are density-

connected via o, i.e. both p and q are density-reachable from o. Because both p and

o are core objects, it follows by symmetry for core objects (lemma 2 (b)) that also

object o is density-reachable from p. With the transitivity of density-reachability

wrt. NPred and MinWeight (lemma 2 (a)) it follows that q is density-reachable from

p. Then q ∈ O. ❏

3.2 Generalized Clustering and Some Specializations

3.2.1 Density-Based Decompositions

A generalized density-based clustering or density-based decomposition DBD of

a database D with respect to NPred and MinWeight is the set of all density-connect-

ed sets in D with respect to specific NPred and MinWeight predicates, i.e. all “clus-

ters” from a density-based decomposition DBD are density-connected sets with re-

gard to the same parameters NPred and MinWeight. A density-based decomposi-

tion additionally contains a set called the noise relative to the given clustering DBD

of D which is simply the set of objects in D not belonging to any of the clusters of

DBD. We will use the notation “density-based decomposition” and “generalized

density-based clustering” interchangeable and sometimes abbreviate the notions to

3.2 Generalized Clustering and Some Specializations 55

“decomposition”, “generalized clustering” or even shorter “clustering” if the

meaning is clear from the context.

The formal requirements for a density-based decomposition of a database D are

given in the following definition:

Definition 8: (density-based decomposition)

A density-based decomposition DBD of a database D with respect to NPred and

MinWeight is defined by the following conditions:

1) DBD = {S1, . . ., Sk; N}, k ≥ 0

2) S1 ∪ . . . ∪ Sk ∪ N = D

3) For all i ≤ k:

Si is a density-connected set with respect to NPred and MinWeight in D

4) If there exists S such that S is a density-connected set in D with respect

to NPred and MinWeight then there also exists an i ≤ k such that S = Si

5) N = D \ (S1 ∪ . . . ∪ Sk).

The set N is called the noise with respect to the decomposition DBD and is

denoted by noiseDBD.

A density-based decomposition DBD of a database D with respect to NPred and

MinWeight is also denoted as DBD(D, MinWeight, NPred).

According to condition 2) the union of the sets in a density-based decomposition

DBD of D is the database D itself. Condition 3) states that each element of the de-

composition, except one, is a density-connected set with respect to the given “pa-

rameters” NPred and MinWeight. Condition 4) means that all density-connected

sets in D with respect to NPred and MinWeight must be included in a decomposi-

tion. Condition 4) simply states that the set N is the “rest” of objects which do not

belong to any of the density-connected sets in the decomposition. This set N is not

a density-connected set and may also be empty.

56 3 Density-Based Decompositions

There are other possibilities to define what should be considered as a generalized

clustering based on definition 7 (density-connected set). However, our notion of a

density-based decomposition has the nice property that two clusters or density-

connected sets can at most overlap in objects which are border objects in both clus-

ters. This is the content of the following lemma. Figure 21 illustrates the overlap of

two clusters using cardinality and MinPts = 4.

Lemma 6: Let DBD be a generalized density-based clustering of D with respect to

NPred and MinWeight. If C1, C2 ∈DBD and C1 ≠ C2, then for all p ∈C1 ∩ C2 it

holds that p is not a core object, i.e. MinWeight(NPred(p)) = false.1

Proof: Since NPred and MinWeight are the same for all clusters in DBD it follows

that if p ∈ C1 ∩ C2 would be a core object for C1, then p would also be a core object

for C2. But then, it follows from Lemma 5 that C1 = C2 holds, in contradiction to

the assumption. Hence, p is not a core object. ❏

In the following subsections we will see that “density-based decomposition” is

a very general notion which covers familiar structures from clustering, pattern rec-

ognition as well as new applications which are appropriate for grouping spatially

extended objects such as polygons in geographic information systems.

1. For an ε-neighborhood and cardinality we even get the stronger result that for MinPts ≤ 3 there
is no overlap between clusters. This is true because if a border object o would belong to two dif-
ferent clusters then its ε-neighborhood must contain at least 3 objects. Hence, o would be a core
object. But then, the two clusters would not be different.

Figure 21: Overlap of two clusters for MinPts = 4

cluster 1 cluster 2

border point in both clusters

3.2 Generalized Clustering and Some Specializations 57

We omit the term “with respect to NPred and MinWeight” in the following

whenever it is clear from the context. As already indicated, there are different kinds

of objects in a density-based decomposition DBD of a database D: core objects

(satisfying condition 2 of definition 4) or non-core objects otherwise. We refer to

this characteristic of an object as the core object property of the object. The non-

core objects in turn are either border objects (no core object but density-reachable

from another core object, i.e. member of a density-connected set) or noise objects

(not a core object and not density-reachable from other objects, i.e. member of the

set noiseDBD).

3.2.2 Specializations

In the following subsections we introduce some specializations of density-based

decompositions for several different types of databases. For this purpose, we only

have to specify the predicate NPred that defines the neighborhood for objects and

the predicate MinWeight for the minimum weight of sets of objects. In the next

chapter we will see that all these instances can be detected by the same general al-

gorithmic scheme.

3.2.2.1 Single Link Levels

The clusterings which corresponds to levels in the single-link hierarchy (cf.

section 2.2.1) are equivalent to density-based decompositions of the database. A

level in the single-link hierarchy determined by a “critical distance” Dmin = ε is

specified as follows:

• NPred(o, o’) iff | o - o’| ≤ Dmin
NNPred(o) = {o’ ∈ D| |o - o’| ≤ Dmin}

• MinWeight(N) = true

58 3 Density-Based Decompositions

Remember that the distance between two clusters, i.e. sets of points, for the sin-

gle link method is defined by the minimum distance between two points in the clus-

ters. Two clusters are merged at a certain level of the single link hierarchy if their

minimum interpoint distance is less or equal to the distance associated with the re-

spective level. Therefore, the only requirement for our density-connected sets is

that a point q is in the neighborhood of a point p if their distance from each other

is less or equal to the “level distance” Dmin. No special conditions with respect to

the predicate MinWeight are necessary.

As already mentioned, the well-known “single-link effect” can occur if we use

the above definition of a density-connected set. If there is a chain of points between

two clusters where the distance of each point in the chain to the neighboring point

in the chain is less than or equal to Dmin, then the two clusters will not be separated.

Figure 22 illustrates a clustering determined by a level in the single link hierarchy.

In this example there is one large cluster. By visual inspection, we might say that

this cluster consists of three different groups of points. However, these groups of

points cannot be separated by the single link method because they are connected

by a line of points having an interpoint distance similar to the distances within the

three subgroups. To describe the subgroups of points as distinct density-connected

.

. .
 .

. .
 .

. .
 .

. .
.

. .
 . . .
 .

. . .

. .
 .

. .
 .

. . .

. . .

. .
.

. . .

Figure 22: Illustration of single link level

Dmin

MinPts = 1

Dmin

cluster 1 singleton clusterscluster 1

singleton clusters

singleton clusters

3.2 Generalized Clustering and Some Specializations 59

sets, we have to modify the definition of the MinWeight predicate (as in the next

specialization DBSCAN).

Note that the predicate MinWeight could alternatively be defined in the follow-

ing way to specify a single link level:

• MinWeight(N) iff | N | ≥ 1 or as MinWeight(N) iff | N | ≥ 2 and every point p

in the set noiseDBD has to be considered as a cluster of its own.

The condition MinWeight(N) iff | N | ≥ 1 is equivalent to ‘MinWeight(N) = true’

for neighborhood sets N since a neighborhood set is never empty.

Looking at the second alternative to define the MinWeight predicate for a single

link clustering level, we can easily see that a level in the single link hierarchy is a

very special case of the next specialization of a density-based decomposition.

3.2.2.2 DBSCAN

A density-based clustering as defined for DBSCAN (cf. section 2.2.2: Density-

Based Approaches) is an obvious specialization of a density-based decomposition

since we started our generalization from this instance. A density-based clustering

found by DBSCAN is a density-based decomposition determined by the following

parameter setting:

• NPred(o, o’) iff | o - o’| ≤ ε

NNPred(o) = Nε(o) = {o’ ∈ D| |o - o’| ≤ ε}

• MinWeight(N) iff | N | ≥ MinPts, i.e. the cardinality of N is greater than the

density threshold MinPts.

Obviously, if we set MinPts equal to 1 or 2 in this specialization, we have an

equivalence to a level in the single link hierarchy as described in the previous sec-

tion. In general, however, using higher values for MinPts will not be equivalent to

60 3 Density-Based Decompositions

a level in the single-link hierarchy but will avoid or at least significantly weaken

the single link effects.

Figure 23 illustrates the effect of using MinPts = 4 for the same 2-dimensional

dataset as in figure 22. The value for ε is depicted and corresponds to the value

Dmin in figure 22. There is a chain of points between the different density-connect-

ed sets, but now, these sets are not merged into one single cluster because for the

points within the chain the cardinality of the ε-neighborhoods is at most three.

Our experiments indicate that a value of 2*d (d = dimension of the dataspace)

for MinPts is suitable for many applications. However, if there is a very large

amount of noise in the data or if the database is not really a set of objects, i.e. there

are objects having identical spatial attributes (see for instance the application in

section 5.1), we have to choose a larger value for MinPts to separate some of the

meaningful density-connected sets.

3.2.2.3 Density-Based Clustering Using a Grid Partition

In the last chapter we have seen that there are several grid-based approaches to the

clustering problem which consider clusters as regions of connected grid cells with

a high point density. Clusters which are found by those approaches that define

cluster 1

cluster 3

cluster 2

noise

Figure 23: Illustration of DBSCAN result

ε

MinPts = 4

3.2 Generalized Clustering and Some Specializations 61

“high density” by a (typically user-defined) threshold for the point density can be

described as density-connected sets. There are different specializations of our def-

initions depending on the different procedures for finding connected regions of

grid cells. We will present two of them which are related to clustering techniques

discussed in the previous chapter.

First, the procedure performed by STING (cf. section 2.3.5) for finding connect-

ed regions of bottom level cells in the STING structure is in principle the same as

for DBSCAN, except, that the objects to be clustered are grid cells not points. Let

D be the set of all relevant bottom layer cells in the STING structure and let l, c,

and f denote the side length of bottom layer cells, the specified density, and a small

constant number set by STING. Then the regions of bottom layer cells found by

STING are density-connected sets with respect to the following predicates NPred

and MinWeight:

• NPred(c, c’) iff | c - c’| ≤ d , where

NNPred(c) = {c’ ∈ D| |c - c’| ≤ d}

• MinWeight(N) iff , i.e. the average density within the cell area N is

greater than the density threshold f.

In the definition of the minimum distance d (see [WYM 97]) usually the side

length of l of the cells is the dominant term. As a result, this distance can only

reach the neighboring cells. Only when the granularity of the bottom layer grid is

very small, the second term may be larger than l and this distance could cover a

larger number of cells.

Note that the density-connected sets defined by the above predicates only cover

regions of relevant cells in the bottom layer of the STING structure. The set D of

relevant cells is determined in a top down manner by the STING algorithm before

the construction of connected regions begins. A cell is called relevant if it satisfies

an additional selection condition. If no such condition is specified, i.e. only the

d max l
f

cπ
------,()=

c
c N∈
∑

N
---------------- f≥

62 3 Density-Based Decompositions

density condition must be considered, then all cells are “relevant”. In this case, the

above specification of density-connected sets by the predicates NPred and Min-

Weight also represents a possible definition of clusters for a grid-based clustering

approach which is not specific to the STING structure.

The STING algorithm selects certain grid cells using a grid directory. However,

we can specify these density-connected sets directly in the set of all bottom layer

cells. We simply have to integrate the selection conditions used by the STING al-

gorithm for finding relevant cells into our NPred and MinWeight predicates. For

this purpose, let D now be the set of all bottom layer cells, l, c, and f as before, and

let S be a selection condition using the non-spatial attributes of the STING cells

(e.g. distribution type), i.e. S(c) holds if the cell c satisfies the condition S. We can

specify the connected regions of STING as density-connected sets in the following

way:

• NPred(c, c’) iff (S(c) ⇔ S(c’)) and | c - c’| ≤ d , where

NNPred(c) = {c’ ∈ D| NPred(c, c’)}

• MinWeight(N) iff for all c ∈ N: S(c) and , i.e. the average density

within the cell area N is greater than the density threshold f and the cells sat-

isfy the selection condition S.

There are several other possibilities to define density-connected sets for grid

cells based on point density. Perhaps the most simple version is given by an NPred

definition which defines neighboring cells by having a common face, and the pred-

icate MinWeight using a density thresholdf for single cells. The neighborhood of

cells can be expressed simply by using the grid indices of the cells: Assume, that

we have a d-dimensional grid that partitions the space along a number of split lines

m1, ..., md in each dimension. Then each cell c can be addressed by a vector

adr(c)=(c1, ..., cd), where 1 ≤ ci ≤ mi for each i ≤ d. To connect only cells c having

a higher point count than f, i.e. |c| ≥ f, we have to integrate this condition into the

definition of the neighborhood above - analogous to the integration of a selection

d max l
f

cπ
------,()=

c
c N∈
∑

N
---------------- f≥

3.2 Generalized Clustering and Some Specializations 63

condition S in the NPred definition for STING. The formal specification for this

kind of density-based clusters is as follows: Let D be the set of all cells in the grid

and let adr(c)=(c1, ..., cd) and adr(c’)=(c’1, ..., c’d) be the addresses of the two cells

c and c’.

• NPred(c, c’) iff (|c| ≥ f ⇔ |c’| ≥ f) and there is an i such that for all j ≠ i: cj = c’j
and ci = c’ i + 1 or ci = c’ i - 1. NNPred(c) = {c’ ∈ D| NPred(c, c’)}.

• MinWeight(N) iff |c| ≥ f for all c ∈ N, i.e. the density of each cell within the

area N is greater than the density threshold f.

Note that although there is a universal quantifier in the definition of the predi-

cate MinWeight, we do not have to check the density condition for each element of

a neighborhood set NNPred(c) to ensure that MinWeight(NNPred(c)) holds. From our

neighborhood definition it follows that if one cell c’ in the set NNPred(c) satisfies

the condition |c’| ≥ f , then the condition holds for all cells in the set.

If the high-density cells are selected in a separate step, before connected regions

are constructed - like, for instance, in the CLIQUE algorithm (see section 2.2.2,

density-based approaches) - the set D is the set of all cells c already satisfying the

condition |c| ≥ f. Then, the requirement (|c| ≥ f ⇔ |c’| ≥ f) and |c| ≥ f in the last

definition of NPred and MinWeight can be omitted to specify connected regions of

such cells. As a consequence, the definition of MinWeight reduces to ‘true’.

Figure 24 depicts an example of this kind of grid-based clustering for the same

dataset as in figure 22 and figure 23. The figure shows connected regions of grid

cells using a density-threshold f = 3 for single cells.

64 3 Density-Based Decompositions

3.2.2.4 Simple Forms of Region Growing

Having seen the specializations to grid-based clustering approaches, it is easy to

recognize that there are also specializations of density-based decompositions

which are equivalent to structures found by simple forms of region growing (see

section 2.2.3). The pixels in an image can be considered as grid cells and the gray-

level intensity values correspond to the point densities for grid cells. The differ-

ence, however, between clustering based on grid cell densities and region growing

is, that for region growing there is not a single density-threshold value to select

“relevant” cells. All pixels except background pixels are relevant, and we have to

distinguish different gray-levels, i.e. different classes of pixels, to form the con-

nected regions. Pixels are only connected if they are adjacent and have similar at-

tribute values, e.g. gray-level intensity.

For the formal specification of connected regions of pixels in an image, the de-

gree of similarity required for the attributes of pixels may be expressed by a a value

t ∈ R. The neighborhood of a pixel may then be given by the neighboring pixels in

the image having similar attribute values, and the MinWeight predicate may be

Figure 24: Illustration of density-based clustering using a grid approach

density-threshold f = 3
1

1 1 1

11 11 2 1 2

3 4 6 4 1 1 8 6 7 3

1 4 4 3 1 1 1

2 1 1 2 3 5 3 1 1

1 1 6 1 5 1 1

1 3 4 4

1 1 2 1 1

3.2 Generalized Clustering and Some Specializations 65

used to exclude regions in the image that contain only background pixels, i.e. pixels

p with gray-level(p) = 0.

Let D be the set of all pixels in the image, t ∈ R be a threshold value for the sim-

ilarity of gray-level values, and let (xp, yp) be the coordinates of a pixel p. Then, a

connected region of pixels in an image, as produced by a simple region growing

algorithm, is a density-connected set with respect to the following NPred and Min-

Weight predicates:

• NPred(p, p’) iff gray-level(p) ≥ 0, gray-level(p’) ≥ 0, |gray-level(p) - gray-lev-

el(p’)| ≤ t, |xp - xp’| ≤ 1 and |yp - yp’| ≤ 1, i.e. the gray-levels of pixels p and p’

are similar and the pixels are not background pixels and are adjacent.

NNPred(p) = {p’ ∈ D| NPred(p, p’)}

• MinWeight(N) = true

Figure 25 illustrates regions in a raster image which have different gray-level in-

tensities and which can be considered as density-connected sets.

3.2.2.5 Clustering polygonal objects

A further specialization of density-connected sets allows the clustering of spatially

extended objects such as polygons. We already mentioned this type of application

Figure 25: Illustration of simple region growing

region 1

region 2

region 3

NPred:

the same gray-level
neighboring cell with

MinWeight = true

66 3 Density-Based Decompositions

in the motivation for our generalization of density-based clusters (section 3.1.1). A

most simple definition of an NPred and MinWeight predicate for describing clus-

ter-like groups of polygons uses intersection for the neighborhood of polygons and

compares the area of the region of connected polygons to a user-specified threshold

value MinArea. More formally, if D is a set of polygons, then a density-connected

set of polygons in D is given by the following NPred and MinWeight predicates:

• NPred(p, p’) iff intersects(p, p’)

NNPred(p) = {p’ ∈ D| NPred(p, p’)}

• MinWeight(N) iff

To take into account other non-spatial attributes of polygons, for example at-

tributes used in a geographic information system (see e.g. the application in

section 5.4), we can simply integrate corresponding “selection” conditions into the

definition of the NPred and/or the MinWeight predicates. In the definitions of the

NPred and MinWeight predicates for grid-based clustering and region growing, we

have already seen examples of how to use selection conditions. Integrating such

conditions into the definition of the NPred and MinWeight predicates for polygons

can be accomplished in the same way. Figure 26 illustrates an example for the clus-

tering of polygonal objects using the simple NPred and MinWeight predicates as

specified above.

area p()

p N∈
∑ MinArea≥

Figure 26: Illustration of clustering polygonal objects

cluster 1

cluster 2

cluster 3

NPred: intersects

MinWeight:
sum of areas ≥ 10% of total area

3.3 Determining Parameters 67

3.3 Determining Parameters

GDBSCAN requires a neighborhood predicate NPred and a predicate for the min-

imum weight of sets of objects, MinWeight. Which parameters will be used for a

data set depends on the goal of the application. Though, for some applications it

may be difficult to determine the correct parameters, we want to point out that in

some applications there may be a natural way to provide values without any further

parameter determination, i.e. there is a natural notion of a neighborhood for the ap-

plication which does not require any further parameter estimation (e.g. intersects

for polygons). In other cases, we may only know the type of neighborhood that we

want to use, for example, a distance based neighborhood for the clustering of point

objects. Parameters may be re-used in different but similar applications, e.g., if the

different datasets are produced by a similar process. And, we will see in chapter 5

that there are even applications where the appropriate parameter values for GDB-

SCAN can be derived analytically (e.g. section 5.2).

In case of a distance based neighborhood combined with a MinWeight predicate

which compares cardinality to a threshold value, we can use a simple but in most

cases effective heuristic to determine the specific distance and threshold values that

are most suitable for the clustering application. This simple heuristic which is ef-

fective in many cases to determine the parameters ε and MinPts for DBSCAN (cf.

section 3.2.2.2) - which is the most important specialization of GDBSCAN - is pre-

sented in the following subsection.

Heuristic for DBSCAN Using a k-distance Plot

DBSCAN uses a distance based neighborhood “distance less or equal than ε” and

the comparison of the cardinality of an ε-neighborhood to a threshold (MinPts) for

the MinWeight predicate. Thus, we have to determine appropriate values for ε and

MinPts. The density parameters of the “thinnest”, i.e. least dense, cluster in the da-

68 3 Density-Based Decompositions

tabase are good candidates for these global values specifying the lowest density

which is not considered to be noise.

For a given k ≥ 1 we define a function k-distance, mapping each object to the

distance from its k-th nearest neighbor. When sorting the objects of the database in

descending order of their k-distance values, the plot of this function gives some

hints concerning the density distribution in the database. We call this plot the sort-

ed k-distance plot (see figure 27 for an example).

If we choose an arbitrary object p, set the parameter ε to k-distance(p) and the

parameter MinPts to k+1, all objects with an equal or smaller k-distance value are

core objects, because there are at least k+1 objects in an ε-neighborhood of an ob-

ject p if ε is set to k-distance(p). If we can now find a threshold object with the max-

imum k-distance value in the “thinnest” cluster of D, we would obtain the desired

parameter values. Therefore, we have to answer the following questions:

1) Which value of k is appropriate?

2) How can we determine a threshold object p?

Figure 27: Sorted 3-distance plot for sample database 3

3-
di

st
an

ce

objects

database 3

3.3 Determining Parameters 69

We will discuss the value k first, assuming it is possible to set the appropriate

value for ε. The smaller we choose the value for k, the lower are the computational

costs to calculate the k-distance values and the smaller is the corresponding value

for ε in general. But a small change of k for an object p will in general only result

in a small change of k-distance(p). Furthermore, our experiments indicate that the

k-distance plots for “reasonable” k (e.g. 1 ≤ k ≤ 10 in 2d space) do not significantly

differ in shape and that also the results of DBSCAN for the corresponding param-

eter pairs (“distance ≤ ε”, “cardinality of ε-neighborhood ≥ k”) do not differ very

much. Therefore, the choice of k is not very crucial for the algorithm. We can even

fix the value for k (with respect to the dimension of the dataspace) eliminating the

parameter involving MinPts for DBSCAN. Considering only the computational

cost, we would like to set k as small as possible. On the other hand, if we set k = 1,

the k-distance value for an object p will be the distance to the nearest neighbor of

p and the result will be equivalent to a level in the single-link hierarchy (cf.

section 3.2.2.1). To weaken the “single-link effect”, we must choose a value for

k > 1.

We propose to set k to 2*dimension - 1. Our experiments indicate that this value

works well for databases D where each object occurs only once, i.e. if D is really a

set of objects. Thus in the following, if not stated otherwise, k will be set to this

value, and the value for MinPts will be fixed according to the above strategy

(MinPts = k + 1, e.g. MinPts = 4 in 2d space).

To determine ε, we have to know an object in the “thinnest” cluster of the data-

base with a high k-distance value for that cluster. Figure 27 shows the sorted 3-dis-

tance plot for sample database 3 (cf. figure 15) which is very typical for databases

where the density of clusters and the density of noise differ significantly. Our ex-

periments indicate that the threshold object is an object near the first “valley” of

the sorted k-distance plot. All objects with a higher k-distance value (to the left of

70 3 Density-Based Decompositions

the threshold) will then be noise, all other objects (to the right of the threshold) will

be assigned to some cluster (see figure 28 for an illustration).

In general, it is very difficult to detect the first “valley” automatically, but it is

relatively simple for a user to recognize this valley in a graphical representation.

Additionally, if the user can estimate the percentage x of noise, a proposal for the

threshold object can be derived, because we know that most of the noise objects

have a higher k-distance value than objects of clusters. The k-distance values of

noise objects are located on the left of the k-distance plot, so that we have to select

an object after x percent of the sorted k-distance plot.

There is in general a range of values for the parameter ε that yield the same clus-

tering because not all objects of the “thinnest” cluster need to be core objects. They

will also belong to the cluster if they are only density-reachable. Furthermore, the

ε-value may be larger than needed if the clusters are well separated and the density

of noise is clearly lower than the density of the thinnest cluster. Thus, the robust-

ness of the parameter determination, i.e. the width of the range of appropriate ε-

values, depends on the application. However, in general the width of this range is

wide enough to allow the parameters to be determined in a sorted k-distance plot

3-
di

st
an

ce

objects

Figure 28: Determining ε using the sorted 3-distance plot

ε := 3-distance value

noise clusters

of threshold object

3-distance(o)

threshold object o

first valley

3.3 Determining Parameters 71

for only a very small sample of the whole database (1% - 10%). Figure 29 depicts

the range for ε yielding the same clustering for sample database 3 in the sorted 3-

distance plots for 100% and a 10% sample of the database.

Obviously, the shape of the sorted k-distance plot and hence, the effectiveness

of the proposed heuristic depends on the distribution of the k-nearest neighbor dis-

tances. For example, the plot will look more “stairs-like” if the objects are distrib-

uted regularly within clusters of very different densities or the first “valley” will be

less clear if the densities of the clusters differ not much from the density of noise

(which also means that the clusters are not well separated). Then, knowing the ap-

proximate percentage of noise in the data may be helpful.

Figure 30 illustrates the effects of different cluster densities and unclear cluster

borders on the k-distance plot for two example databases using k=3. The arrows in

the figure point at different 3-distance values indicating which of the depicted clus-

ters A, B, C or D are density-connected sets if we use MinPts = 4 and set ε equal

to the respective 3-distance values.

Figure 29: Range for ε in sorted 3-distance plot yielding the same clustering

3-
di

st
an

ce

objects

1.9

3.3

3-
di

st
an

ce

objects

100% of database 3 10% sample of database 3

72 3 Density-Based Decompositions

To conclude, we propose the following interactive approach for determining the

parameters for DBSCAN:

• The user gives a value for k (default value is k = 2*dimension - 1).

• The system computes and displays the k-distance plot for a small sample of
the database.

• The user selects an object as the threshold object and the k-distance value of
this object is used as the ε-value (if the user can estimate the percentage of
noise, the system can derive a proposal for the threshold object from it).

• MinPts is set to k+1.

Figure 30: Examples of sorted 3-distance plots for different data distributions

3-
di

st
an

ce
objects

3-
di

st
an

ce

objects

→

→

clusters and noise not well separated

clusters with different densities

A

BC

D A, B, C, D

B, C, D
C, D D

A B

A, B

C, D

C D

3.4 Summary 73

3.4 Summary

In this chapter, we have seen that the notion of a density-based clustering can be

generalized to cover structures produced by different clustering algorithms, pat-

terns recognized by region growing algorithms as well as “connected” groups of

objects of - in principle - arbitrary data-type satisfying certain conditions, for in-

stance polygons from a geographic information system. Some of these instances

have been discussed in greater detail.

The generalization of a density-based clustering, i.e. a density-based decompo-

sition, was introduced formally as a set of density-connected sets plus a set of out-

liers, called ‘noise’. Density-connected sets have been defined with respect to two

“parameters”: a neighborhood predicate NPred which has to be symmetric and re-

flexive, and a predicate MinWeight for the minimum weight of neighborhood sets.

These predicates are necessary to define the notions of density-reachability and

density-connectedness which in turn are needed to define the notion of a density-

connected set for objects of arbitrary data-type.

A density-connected set was defined as a set of density-connected objects which

is maximal with respect to density-reachability. Two objects p and q from a data-

base D are density-connected in D if there is an object o in D such that p and q are

both density-reachable from o (directly or transitive). An object p is called directly

density-reachable from an object q if p is in the NPred-neighborhood of q and this

NPred-neighborhood of q has minimum weight, i.e. MinWeight(NNPred(q)) holds.

We also discussed in this chapter how to determine additional parameters which

may be required by some specializations. Then a simple but in most cases effective

heuristic was presented to determine these additional parameters for a density-

based clustering as defined for DBSCAN, which is the most important specializa-

tion of a density-based decomposition.

74 3 Density-Based Decompositions

Chapter 4

GDBSCAN: An Algorithm for
Generalized Clustering

In this chapter, the algorithm GDBSCAN to construct density-based decomposi-

tions is introduced (section 4.1). This is basically an algorithmic schema which is

independent from the specific predicates for the neighborhood of objects, and the

minimum weight for sets of objects. We shortly discuss some implementation is-

sues (section 4.2), and present both an analytical and experimental performance

evaluation (section 4.3). After that, we introduce and evaluate some advanced da-

tabase techniques, i.e. neighborhood indices and multiple neighborhood queries, to

support not only our algorithm but also a broader class of spatial data mining ap-

plications of which GDBSCAN is just a special member (section 4.4).

76 4 GDBSCAN: An Algorithm for Generalized Clustering

4.1 Algorithmic Schema GDBSCAN

To find a density-connected set, GDBSCAN starts with an arbitrary object p and

retrieves all objects density-reachable from p with respect to NPred and Min-

Weight. Density-reachable objects are retrieved by performing successive NPred-

neighborhood queries and checking the minimum weight of the respective results.

If p is a core object, this procedure yields a density-connected set with respect to

NPred and MinWeight (see lemmata 4 and 5). If p is not a core object, no objects

are density-reachable from p and p is assigned to NOISE. This procedure is itera-

tively applied to each object p which has not yet been classified. Thus, a density-

based decomposition and the noise according to definition 8 is detected.

In figure 31, we present a basic version of GDBSCAN omitting details of data

types and generation of additional information about clusters:

SetOfObjects is either the whole database or a discovered cluster from a previ-

ous run. NPred and MinWeight are the global density parameters. The cluster iden-

tifiers are from an ordered and countable data-type (e.g. implemented by Integers)

Figure 31: Algorithm GDBSCAN

GDBSCAN (SetOfObjects, NPred, MinWeight)

// SetOfObjects is UNCLASSIFIED; Object.Processed = FALSE

ClusterId := nextId(NOISE);

FOR i FROM 1 TO SetOfObjects.size DO

Object := SetOfObjects.get(i);

IF NOT Object.Processed THEN

IF ExpandCluster(SetOfObjects,Object,ClusterId,NPred,MinWeight)

THEN ClusterId := nextId(ClusterId)

END IF

END IF

END FOR;

END; // GDBSCAN

4.1 Algorithmic Schema GDBSCAN 77

where UNCLASSIFIED < NOISE < “other Ids”, and each object will be marked

with a cluster-id Object.ClId. The function nextId(clusterId) returns the successor

of clusterId in the ordering of the data-type (e.g. implemented as Id := Id+1). The

function SetOfObjects.get(i) returns the i-th element of SetOfObjects. In figure 32,

function ExpandCluster constructing a density-connected set for a core object Ob-

ject is presented in more detail.

A call of SetOfObjects.neighborhood(Object,NPred) returns the NPred-neigh-

borhood of Object in SetOfObjects as a set of objects (neighbors). If the NPred-

neighborhood of Object has minimum weight, the objects from this NPred-neigh-

borhood are inserted into the set Seeds and the function ExpandCluster succes-

Figure 32: Function ExpandCluster

ExpandCluster(SetOfObjects, Object, ClId, NPred, MinWeight):Boolean;

neighbors := SetOfObjects.neighborhood(Object,NPred);

Object.Processed := TRUE;

IF MinWeight(neighbors) THEN // object is a core object

Seeds.init(NPred, MinWeight, ClId);

Seeds.update(neighborhood, Object);

WHILE NOT Seeds.empty() DO

currentObject := Seeds.next();

neighbors := SetOfObjects.neighborhood(currentObject, NPred);

currentObject.Processed := TRUE;

IF MinWeight(neighbors) THEN

Seeds.update(neighbors, currentObject);

END IF; // MinWeight(neighbors)

END WHILE; // seeds.empty()

RETURN True;

ELSE // Object is NOT a core object

SetOfObjects.changeClId(Object,NOISE);

RETURN False;

END IF; // MinWeight(neighbors)

END; // ExpandCluster

78 4 GDBSCAN: An Algorithm for Generalized Clustering

sively performs NPred-neighborhood queries for each object in Seeds, thus find-

ing all objects that are density-reachable from Object, i.e. constructing the density-

connected set that contains the core object Object.

The class Seeds controls the main loop in the function ExpandCluster. The

method Seeds.next() selects the next element from the class Seeds and deletes it

from the class Seeds. The method Seeds.update(neighbos, centerObject) inserts

into the class Seeds all objects from the set neighbors which have not yet been

considered, i.e. which have not already been found to belong to the current density-

connected set. This method also calls the method to change the cluster-id of the ob-

jects to the current clusterId. Figure 33 presents the pseudo-code for the method

Seeds.update.

In this version of GDBSCAN it does not matter in which order the elements are

inserted or selected from the class Seeds. We may use for instance a stack or al-

ternatively a queue to implement the class Seeds without changing the result of the

algorithm. In all cases, the principle idea of the algorithm, i.e. the kind of procedure

that is performed to construct connected groups of “neighboring” objects, is similar

to the idea of a region growing algorithm. Note, however, that region growing al-

Figure 33: Method Seeds::update()

Seeds::update(neighbors, CenterObject);

SetOfObjects.changeClId(CenterObject,ClId);

FORALL Object FROM neighbors DO

IF NOT Object.Processed THEN

Object.Processed := TRUE;

insert(Object);

END IF; // Object is “new”

IF Object.ClId IN {UNCLASSIFIED, NOISE} THEN

SetOfObjects.changeClId(Object,ClId);

END IF; // Object is UNCLASSIFIED or NOISE

END FORALL;

END; // Seeds::update

4.1 Algorithmic Schema GDBSCAN 79

gorithms are highly specialized to pixels in an image and therefore presuppose a

“grid-based” neighborhood, whereas density-connected sets can be defined for any

data type.

The cluster-id of some objects p which are marked as NOISE because they do

not have the minimum weight may be changed later if they are density-reachable

from some other object of the database. This may happen only for border objects

of a cluster. Those objects are then not added to Seeds because we already know

that an object with a cluster-id of NOISE is not a core object, i.e. no other objects

are density-reachable from them.

If two clusters C1 and C2 are very close to each other, it might happen that some

object p belongs to both C1 and C2. Then p must be a border object in both clusters

according to Lemma 6. In this case, object p will only be assigned to the cluster

discovered first. Except from these rare situations, the result of GDBSCAN is in-

dependent of the order in which the objects of the database are visited due to lem-

mata 4 and 5.

Obviously, the efficiency of the above algorithm depends on the efficiency of

the neighborhood query because such a query is performed exactly once for each

object in SetOfObjects. The performance of GDBSCAN will be discussed in detail

in section 4.3. There, we will see that neighborhood predicates based on spatial

proximity like distance predicates or intersection can be evaluated very efficiently

by using spatial index structures.

There may be reasons to apply a post-processing to a clustering obtained by

GDBSCAN. According to definition 8, each set of objects having MinWeight is a

density-connected set. In some applications (see for example chapter 5), however,

density-connected sets of this minimum size are too small to be accepted as clus-

ters. Furthermore, GDBSCAN produces clusters and noise. But for some applica-

tions a non-noise class label for each object is required. For this purpose, we can

re-assign each noise object and each object of a rejected cluster to the closest of the

80 4 GDBSCAN: An Algorithm for Generalized Clustering

accepted clusters. This post-processing requires just a simple scan over the whole

database without much computation, in particular no region queries are necessary.

Therefore, such post-processing does not increase the run-time complexity of

GDBSCAN.

Specializations of the algorithmic schema GDBSCAN could be defined for all

the parameter specializations introduced in the previous chapter (see section 3.2).

In general, we will specify instances of GDBSCAN simply by introducing the pa-

rameter specializations whenever it is needed. We only name one specialization

explicitly which is DBSCAN ([EKSX 96]), because this is the most important spe-

cialization with respect to our applications.

Definition 9: (DBSCAN)

DBSCAN is a specialization of the algorithm GDBSCAN using the parameter

specializations introduced in section 3.2.2.2, i.e.

• NPred: “distance ≤ ε”

• MinWeight(N): | N | ≥ MinPts.

4.2 Implementation

In this section, we shortly discuss some implementation issues. The algorithm

GDBSCAN from the previous section is an algorithmic schema which needs to be

specialized for different databases/data-types, special neighborhood predicates,

and predicates to determine the minimum weight of neighborhood sets. Therefore,

to provide a flexible, easily extendible and portable implementation of the algorith-

mic schema GDBSCAN, we choose an object-oriented programming approach us-

ing the C++ programming language and the LEDA1 library. The code has been de-

1. “Library of Efficient data-types and Algorithms”. For documentation and code see
http://www.mpi-sb.mpg.de/LEDA

4.2 Implementation 81

veloped and tested on HP workstations under HP-UX 10.X using g++ 2.7.X, and

on Intel Pentium PCs under Win95/NT using Borland C++ 5.01. The graphical

user-interface needs LEDA, version 3.6, which is available for these (and other)

platforms.

Figure 34 illustrates the main parts interacting in the generalized clustering proce-

dure using the algorithmic schema GDBSCAN.

The major components are:

- a (maybe external) database DBS storing objects of a specific data type, pro-

viding indices and query-processors.

- a ClusterInfo component responsible for further information about the dis-

covered density-connected sets, and for the presentation of results.

- GDBSCAN, the central component for the general clustering procedure.

GDBSCAN interacts with the database to access objects, retrieve neighbor-

hoods and to store the generated information about cluster membership for single

objects. GDBSCAN also interacts with ClusterInfo to provide the information

Figure 34: Software Architecture of GDBSCAN

DBDB

QueryprocessorQueryprocessor

IndexIndex
RR**

ClusterInfoClusterInfo

•• Center Center
•• MBR MBR
••

•• NPredQuery NPredQuery
•• MinWeight MinWeight
•• Cursor / Fetch Cursor / Fetch
•• setClusterId setClusterId

GDBSCANGDBSCAN

•• Create Info Create Info
•• Update Info Update Info

•• Options Options

DBSDBS

82 4 GDBSCAN: An Algorithm for Generalized Clustering

needed to generate summary descriptions of density-connected sets, for instance,

centers and minimum bounding boxes in case of d-dimensional data points. Such

additional information about a generalized clustering may also be stored in and re-

trieved from the external database.

The three components roughly correspond to three main classes in our imple-

mentation: GDBSCAN_DBS, CLUSTER_INFO, and GDBSCAN. There is only

one more important class needed to make our algorithm independent from a spe-

cific data type: GDBSCAN_DATA. Usually the database has its own internal data

type that is returned by its functions. This data type might contain more informa-

tion than GDBSCAN requires (only a few fields). So another data type is created

for GDBSCAN. This data type can be also used to provide, for example, a drawing

function for visualization, an info function to let the user retrieve information on-

line and so on.

To model and to implement the interaction of the basic classes

GDBSCAN_DATA, GDBSCAN_DBS, CLUSTER_INFO, and GDBSCAN, the

following object-oriented concepts and “design patterns” were used (see

[GHJ+ 95] for a detailed catalog of many object-oriented design patterns):

• Abstract Classes / Templates

Abstract Classes / Templates are used to define the skeleton of an algorithm.

Subclasses have to define the functions specific to the particular application.

This also means that the base classes cannot be instantiated directly but have

to be derived first. The template parameter <DATA>, modeling the objects

which are processed by the algorithm GDBSCAN, is common to all our tem-

plate classes. This allows the same code to operate on different data types.

• Class Adapter

Creates a compatible interface by combining classes using multiple inherit-

ance. In our case this is the interface to a database because the interface pro-

vided by a DBMS itself may be different for different database systems.

4.2 Implementation 83

• Object Adapter

Allows to exchange the adaptee at run-time, using a pointer to the adapted

class. This pattern is used to allow classes derived from GDBSCAN_DBS as

well as different CLUSTER_INFO classes to be chosen and exchanged at

run-time.

In the following, the above mentioned classes are shortly described. For this pur-

pose, only the most important public methods and fields are presented.

 • GDBSCAN_DATA (abstract class)

The data objects passed to GDBSCAN should be derived from this class. All

fields/methods used by GDBSCAN are defined here. These are

- ObjectId to identify objects

- ClusterId to store the cluster membership of an object

- compare(GDBSCAN_DATA) to compare two objects. This function is de-

fined purely virtual making this class abstract. Usually compare should re-

turn zero if the compared data objects occupy the same location in the feature

space. If this case is excluded by the semantics of the specializations, this

function is not needed and can then be redefined to do nothing.

 • GDBSCAN_DBS (abstract class / template <class DATA>)

This class provides the basis for the connection/interface to a database:

- GDBSCAN_cursor() and GDBSCAN_fetch() are methods to enable the algo-

rithm to scan each object of the database.

- GDBSCAN_set_clusterId(DATA, CLUSTER_ID) is a method that sets the

cluster-id of an object of type DATA to an identifier of type CLUSTER_ID.

- GDBSCAN_MinWeight(DataList) is the method which evaluates the predi-

cate MinWeight for a neighborhood set, given by a list of type DataList.

84 4 GDBSCAN: An Algorithm for Generalized Clustering

- GDBSCAN_SET_Neighborhood() selects the NPred-neighborhood to be

used for the generalized clustering. If the selected neighborhood requires ad-

ditional parameters, methods must also be implemented to determine them;

at least the user must be asked for the values of these parameters.

- GDBSCAN_GET_Neighborhood(DATA, DataList) is the central method

which implements an NPred-neighborhood. It returns a list (DataList) of all

objects satisfying the neighborhood predicate.

 • CLUSTER_INFO (abstract class / template <class DATA>)

This class can be used to collect additional information about clusters, such as

centers and minimum bounding rectangles, during the scanning process.

- createTemp(newId) is called whenever a new cluster is found to create a new

entry of some sort.

- updateTemp(DATA) is called for each object assigned to a cluster to update

the entry. Online visualization during the scan can be accomplished through

a clusterInfo class that not only updates its internal state by this method, but

also draws a visualization of the object.

- commitTemp() closes the entry. Entries may be saved, for instance in the ex-

ternal database.

 • GDBSCAN (template <class DATA>)

This class provides the actual algorithm:

- GDBSCAN(DB, clusterInfo) is the constructor for the class. It takes two argu-

ments and sets the database used by GDBSCAN equal to DB and the cluster-

Info equal to clusterInfo. These settings can be changed anytime by using the

following two methods:

GDBSCAN_set_database(DB)

GDBSCAN_set_clusterInfo(clusterInfo).

4.2 Implementation 85

- GDBSCAN_doGDBSCAN() scans the whole database for clusters.

- GDBSCAN_expand_cluster(DATA) tries to construct a density-connected set

starting with DATA as first origin of an NPred-neighborhood query.

Figure 35 depicts the graphical user interface of our implementation1 and illus-

trates the setting of parameters for GDBSCAN in this environment.

1. This implementation of GDBSCAN is available from the author. Request should be made by
sending an e-mail to sander@dbs.informatik.uni-muenchen.de.

Figure 35: Graphical user interface and parameter setting

86 4 GDBSCAN: An Algorithm for Generalized Clustering

4.3 Performance

In this section, we evaluate the performance of GDBSCAN. In section 4.3.1 we

discuss the performance of GDBSCAN with respect to the underlying spatial index

structure. In section 4.3.2 an experimental evaluation and a comparison with the

well-known clustering algorithms CLARANS and BIRCH is presented.

4.3.1 Analytical Evaluation

The run-time of GDBSCAN obviously is O(n * run-time of a neighborhood query):

n objects are visited and exactly one neighborhood query is performed for each of

them. The number of neighborhood queries cannot be reduced since a cluster-id for

each object is required. Thus, the overall run-time depends on the performance of

the neighborhood query. Fortunately, the most interesting neighborhood predicates

are based on spatial proximity - like distance predicates or intersection - which can

be efficiently supported by spatial index structures. For complex objects like poly-

gons, we can perform additional filter-refinement steps. These filters typically use

approximations such as minimum bounding rectangles to reduce the number of ob-

jects for which an expensive test, e.g. the intersection of polygons, will be per-

formed on the exact and eventually very complex geometry. Such a multi-step fil-

ter-refinement procedure using at least a spatial index structure (see figure 36) is

assumed to be available in an SDBS for efficient processing of several types of spa-

tial queries (see e.g. [BKSS 94]).

Figure 36: Multi-step filter-refinement procedure for spatial query processing

Filter Step
(index-based) candidates

Refinement Step
(exact evaluation)

final results

Additional Filter Steps

...

(approximation based)

4.3 Performance 87

Table 1 lists the run-time complexity of GDBSCAN with respect to the under-

lying spatial index structure.

Without any index support, to answer a neighborhood query a scan through the

whole database has to be performed. Thus, the run-time of GDBSCAN would be

O(n2). This does not scale well with the size of the database. But if we use a tree-

based spatial index like the R*-tree, the run-time is reduced to O (n log n): the

height of an R*-tree is O(log n) for a database of n objects in the worst case. At

least in low-dimensional spaces, a query with a “small” query region has to traverse

only a limited number of paths in the R*-tree. Since most NPred-neighborhoods

are expected to be small compared to the size of the whole database, the average

run-time complexity of a single neighborhood query using such an index structure

is then O(log n). Furthermore, if we have a direct access to the NPred-neighbor-

hood, e.g. if the objects are organized in a grid, the run-time is further reduced to

O(n) because in a grid the complexity of a single neighborhood query is O(1).

Techniques to improve the performance of GDBSCAN further by exploiting

special properties of the algorithm are presented in section 4.4. Such techniques are

important, especially for very complex objects where the refinement step of a

neighborhood query is very expensive or in very high-dimensional spaces where

the query performance of all known spatial index structures degenerates.

run-time complexity of: - a single neighborhood query - the GDBSCAN algorithm

without index O(n) O(n2)

with spatial index O(log n) O(n * log n)

with direct access O(1) O(n)

Table 1: Run-time complexity of GDBSCAN

88 4 GDBSCAN: An Algorithm for Generalized Clustering

4.3.2 Experimental Evaluation

GDBSCAN is implemented in C++ allowing various NPred-neighborhoods and

MinWeight predicates to be specified. In addition, different index structures to sup-

port the processing of the NPred-neighborhood queries can be used.

The following experiments were run on HP 735 / 100 workstations. In order to

allow a comparison with CLARANS and BIRCH - which both use a distance based

neighborhood definition - the specialization to DBSCAN (cf. definition 9) is used.

Processing of neighborhood queries is based on an implementation of the R*-tree

([BKSS 90]). For an evaluation of other instances of GDBSCAN see the applica-

tions in chapter 5.

To compare DBSCAN with CLARANS in terms of effectiveness (accuracy),

our three synthetic sample databases are used which are depicted in figure 15.

Since DBSCAN and CLARANS are clustering algorithms of different types, they

have no common quantitative measure of the classification accuracy. Therefore,

we evaluate the accuracy of both algorithms by visual inspection. In sample data-

base 1, there are four ball-shaped clusters of significantly differing sizes. Sample

database 2 contains four clusters of non-convex shape. In sample database 3, there

are four clusters of different shape and size with a small amount of additional noise.

To show the results of both clustering algorithms, we visualize each cluster by a

different color (grayscale). For the result of CLARANS, we also indicate the clus-

ter centers and the corresponding partition of the data space.

For CLARANS, we provided the correct number of clusters, i.e. we set the pa-

rameter k (number of clusters) to 4 for these sample databases. For DBSCAN, the

parameter ε is set, giving a noise percentage of 0% for sample databases 1 and 2,

and 10% for sample database 3, respectively (see the heuristic described in the pre-

vious section).

4.3 Performance 89

The clusterings discovered by CLARANS are depicted in figure 37, the cluster-

ings discovered by DBSCAN are depicted in figure 38. DBSCAN discovers all

clusters and the noise points (according to definition 8) from all sample databases.

CLARANS, however, splits clusters if they are relatively large or if they are close

to some other cluster. Furthermore, CLARANS has no explicit notion of noise. In-

stead, all points are assigned to their closest medoid.

These examples are rather “hard” for k-medoid (and k-means) type clustering al-

gorithms. They are also intended to illustrate some drawbacks of these types of al-

gorithms when applied to data sets containing clusters of non-convex shape and of

largely differing sizes.

Figure 37: Clusterings discovered by CLARANS

 database 1 database 2 database 3

x

x

x

x

x

x

x

x

x

x

x x

Figure 38: Clusterings discovered by DBSCAN

 database 1 database 2

 database 3

cluster 2
cluster 1

cluster 4

cluster 3

cluster 2

cluster 1

cluster 4

cluster 3 cluster 2

cluster 1

cluster 4cluster 3

database 3

90 4 GDBSCAN: An Algorithm for Generalized Clustering

To test the efficiency of DBSCAN and CLARANS, we used the SEQUOIA

2000 benchmark data ([SFGM 93]). The SEQUOIA 2000 benchmark database

uses real data sets that are typical for Earth Science tasks. There are four types of

data in the database: raster data, point data, polygon data and directed graph data.

The point data set contains 62,584 Californian landmarks, extracted from the US

Geological Survey’s Geographic Names Information System, together with their

location. The point data set occupies about 2.1 MB. Since the run-time of CLAR-

ANS on the whole data set is very high, we have extracted a series of subsets of the

SEQUOIA 2000 point data set containing from 2% to 20% representatives of the

whole set. The run-time comparison of DBSCAN and CLARANS on these data-

bases is presented in table 2 and depicted in figure 39 (note that in this figure the

log of the run-times is depicted). The results of our experiments show that the run-

time of DBSCAN is almost linear to the number of points. The run-time of CLAR-

ANS, however, is close to quadratic to the number of points. Thus, DBSCAN out-

performs CLARANS by a factor of between 250 and 1,900 which grows with in-

creasing size of the database.

number of points DBSCAN CLARANS

1,252 3 758

2,503 7 3,026

3,910 11 6,845

5,213 16 11,745

6,256 18 18,029

7,820 25 29,826

8,937 28 39,265

10,426 33 60,540

12,512 42 80,638

62,584 233 ???

Table 2: Comparison of run-time for DBSCAN and CLARANS (in sec.)

4.3 Performance 91

Since we found it rather difficult to set the parameters of BIRCH appropriately

for the SEQUIOA 2000 point data, we used the test data sets DS1, DS2 and DS3

introduced by Zhang et al. ([ZRL 96]) to compare DBSCAN with BIRCH. All

three data sets consist of 100,000 2-dimensional points which are randomly distrib-

uted within 100 ball-shaped clusters. The data sets differ in the distribution of the

cluster centers and their radii. The cluster centers are placed on a grid on DS1,

placed along a sine curve in DS2, and placed randomly in DS3. The data sets are

depicted in figure 40.

The implementation of BIRCH - using CLARANS in phase 3 - was provided by

its authors. The run-time of DBSCAN (see table) was 1.7, 1.9 and 11.6 times the

run-time of BIRCH on database 1, 2 and 3 respectively which means that also

BIRCH is a very efficient clustering algorithm. Note, however, that in general the

same restrictions with respect to cluster shapes and/or their size and location apply

to BIRCH as they apply to CLARANS. Furthermore, the clustering features - on

which BIRCH is based - can only be defined in a Euclidean vector space implying

a limited applicability of BIRCH compared to GDBSCAN (and compared to

CLARANS)

0

1

2

3

4

5

0 20,000 40,000 60,000 80,000

Size of database N

L
O

G
(r

u
n

-t
im

e)

DBSCAN

CLARANS

Figure 39: run-time comparison with CLARANS

92 4 GDBSCAN: An Algorithm for Generalized Clustering

.

4.4 Database Support for GDBSCAN

Neighborhood queries using predicates which are based on spatial proximity are

not only the most important query type for many spatial data mining algorithms but

also the basic query type for exploratory data analysis in spatial databases. To

speed-up the processing of these types of queries, typically, spatial index structures

combined with a multistep filter-refinement procedure are used in an SDBMS (cf.

section 4.3.1). There are however several reasons to consider more sophisticated

data set DBSCAN BIRCH

DS1 82.37 48.48

DS2 79.78 41.01

DS3 520.45 44.21

Table 3: Comparison of run-time for DBSCAN and BIRCH (in sec.)

Figure 40: Data sets for the performance comparison with BIRCH

DS1

DS2

DS3

4.4 Database Support for GDBSCAN 93

strategies to improve the performance of spatial data mining algorithms, including

the performance of our GDBSCAN algorithm, because spatial databases have the

following characteristics with respect to data mining.

1. Expensive neighborhood queries:

If the spatial objects are fairly complex or if the dimension of the data space

is very high, retrieving the neighbors of some object using the standard tech-

nique is still very time consuming. Computing, for instance, the intersection

of two complex polygons is an expensive operation that must be performed

for almost all candidates retrieved in the first filter step using, for example, an

R-tree. Also, retrieving the neighborhood for simple objects like points using

for instance an ε-range query may require many page accesses for high-di-

mensional data because the performance of spatial index structures degener-

ates with increasing dimension d of the data space (see chapter 2).

2. Large number of neighborhood queries:

For a typical spatial data mining algorithm, a very large number of neighbor-

hood queries has to be performed to explore the data space. An extreme ex-

ample is our GDBSCAN algorithm which has to perform a neighborhood

query for each object in the database.

3. Sequences of neighborhood queries for objects contained in the database:

Many spatial data mining algorithms investigates the neighborhood of objects

which are already contained in the database (in contrast to “new” objects, i.e.

objects which are located in the same data space as the database objects but

which are not stored in the database). Furthermore, the order in which the ob-

jects are investigated is often determined by a control structure which is sim-

ilar to the control structure of our GDBSCAN algorithm. That means, starting

from some objects, the algorithm repeatedly retrieves the neighborhood of ob-

ject which have been located in the neighborhood of objects which have al-

ready been processed.

This property applies as well to a typical manual data analysis procedure

94 4 GDBSCAN: An Algorithm for Generalized Clustering

where short response times for similarity queries are also required. Typically,

manual data exploration is started with a similarity query such as a k-nearest

neighbor query for an arbitrary object o, i.e. an object which may not be stored

in the database. Then, the neighborhood of the starting object o may be further

explored by searching for other similar objects. Then, however, we will use

the answers of previous queries as starting objects. These objects are all stored

in the database. For example, in an image database where the images are rep-

resented by high-dimensional feature vectors, we may look for a suitable im-

age that must be similar to a given picture.

In the following subsections we discuss strategies to support the performance of

spatial data mining algorithms, including GDBSCAN, in spatial databases where

the above mentioned properties hold. First - if they exist - we can use materialized

neighborhood indices as proposed in [EKS 97]. These neighborhood indices will

speed-up the performance of GDBSCAN significantly for spatial databases con-

taining spatially extended objects or containing high-dimensional data. Second,

since a neighborhood query must be performed for a large number of objects of the

database, we can develop and utilize techniques to perform multiple neighborhood

queries. The gain in performance will be a large factor, in comparison with the use

of single independent neighborhood queries.

4.4.1 Neighborhood Indices

In [EKS 97] a general approach to spatial data mining based on a small set of da-

tabase primitives for spatial data mining is presented (including some new algo-

rithms for spatial characterization and spatial trend detection). The motivation of

these database primitives is as follows. First, in spatial databases the explicit loca-

tion and extension of objects define implicit relations of spatial neighborhood. Sec-

ond, most data mining algorithms for spatial databases will make use of those

neighborhood relationships. The reason is that the main difference between data

mining in relational DBS and in SDBS is that attributes of the neighbors of some

4.4 Database Support for GDBSCAN 95

object of interest may have an influence on the object and therefore have to be con-

sidered as well.

We will shortly introduce some of the basic concepts of this approach to see that

the techniques used to support the database primitives for spatial data mining can

also be applied to our generalized clustering approach.

Neighborhood Graphs and Database Primitives for Spatial Data Mining

The database primitives for spatial data mining are based on the concepts of neigh-

borhood graphs and neighborhood paths which in turn are defined with respect to

neighborhood relations between objects. There are different types of neighborhood

relations which are important for spatial data mining in general: topological, dis-

tance and direction relations. For our purpose it is not necessary to discuss theses

types of relations here (see [EFKS 98] for more details). We will move directly to

the notion of neighborhood graphs and paths.

Definition 10: (neighborhood graph)

Let neighbor be a neighborhood relation and DB be a database of spatial objects.

A neighborhood graph is a graph with nodes N = DB and

edges where an edge e = (n1, n2) exists iff neighbor(n1,n2) holds.

We assume the standard operations from relational algebra like selection, union,

intersection and difference to be available for sets of objects and sets of neighbor-

hood paths (e.g. the operation selection(set, predicate) returns the set of all ele-

ments of a set satisfying the predicate predicate). Only the following important op-

erations are briefly described:

• neighbors: Graphs × Objects × Predicates --> Sets_of_objects

The operation neighbors(graph, object, predicate) returns the set of all ob-

jects connected to object in graph satisfying the conditions expressed by the

predicate predicate.

GDB
neighbor N E,()=

E N N×⊆

96 4 GDBSCAN: An Algorithm for Generalized Clustering

• paths: Sets_of_objects --> Sets_of_paths

The operation paths(objects) creates all paths of length 1 formed by a single

element of objects. Typically, this operation is used as a type cast for selected

starting objects which are investigated by using a data mining algorithm.

• extensions: Graphs × Sets_of_paths × Integer × Predicates -> Sets_of_paths

The operation extensions(graph, paths, max, predicate) returns the set of all

paths extending one of the elements of paths by at most max nodes of the

graph. The extended paths must satisfy the predicate predicate. The elements

of paths are not contained in the result implying that an empty result indicates

that none of the elements of paths could be extended. This operation can be

implemented as an iterative application of the neighbors operation.

The number of neighborhood paths in a neighborhood graph may become very

large. However, for the purpose of KDD, we are mostly interested in paths “leading

away” from the start object. We conjecture that a spatial KDD algorithm using a

set of paths which are crossing the space in arbitrary ways will not produce useful

patterns. The reason is that spatial patterns are most often the effect of some kind

of influence of an object on other objects in its neighborhood. Furthermore, this in-

fluence typically decreases or increases more or less continuously with an increas-

ing or decreasing distance. To create only relevant paths, the argument predicate

in the operations neighbors and extensions can be used to select only a subset of all

paths. The definition of predicate may use spatial as well as non-spatial attributes

of the objects or paths (see [EFKS 98] for the definition of special filter predicates

selecting only “starlike” sets of path, i.e. paths “leading away” from a start object.).

Many different spatial data mining algorithms can be expressed in terms of these

basic notions, because they basically investigate certain neighborhood paths in an

appropriately defined neighborhood graph. This is also true for our generalized

clustering algorithm GDBSCAN (see [EFKS 98] for other examples, including

spatial characterization and spatial trend detection). For these algorithms, the ob-

jects of a spatial database are viewed as the nodes of a neighborhood graph, and the

4.4 Database Support for GDBSCAN 97

relevant edges and paths of the graph are created on demand - given the definition

of the respective neighborhood relation. Therefore, the efficiency of many spatial

data mining algorithms depends heavily on an efficient processing of the neighbors

operation since the neighbors of many objects have to be investigated in a single

run of a data mining algorithm.

Neighborhood Indices

There may be two important characteristics for data mining in certain types of spa-

tial databases such as geographic information systems that can justify the materi-

alization of relevant information about the neighborhood relations. These charac-

teristics may hold for a spatial database, in addition to the properties 1. to 3. stated

above (expensive neighborhood queries, large number of neighborhood queries,

and sequences of neighborhood queries for objects contained in the database):

4. Similar neighborhood graphs for many data mining operations:

Different spatial data mining algorithms may use very similar neighborhood

graphs. Thus, very similar neighbors operations will be performed again and

again. An example is to combine spatial trend detection and spatial character-

ization, i.e. first, detect objects which are the center for interesting spatial

trends and then find a spatial characterization for the regions around these ob-

jects (see [EFKS 98] for details). In this case, both algorithms will perform

nearly the same neighbors operations.

5. Rare updates:

Many spatial databases are rather static since there are not many updates on

objects such as geographic maps or proteins.

The idea of neighborhood indices is to avoid database accesses to the spatial ob-

jects themselves by materializing relevant information about the neighborhoods of

the objects in the database. This approach is similar to the work of [Rot 91] and

[LH 92]. [Rot 91] introduces the concept of spatial join indices as a materialization

of a spatial join with the goal of speeding-up spatial query processing. This paper,

98 4 GDBSCAN: An Algorithm for Generalized Clustering

however, does not deal with the questions of efficient implementation of such in-

dices. [LH 92] extends the concept of spatial join indices by associating each pair

of objects with their distance. In its basic form, this index requires O(n2) space be-

cause it needs one entry not only for pairs of neighboring objects but for each pair

of objects. Therefore, in [LH 92] a hierarchical version of distance associated join

indices is proposed. In general, however, we cannot rely on such hierarchies for the

purpose of supporting spatial data mining.

We define a neighborhood index for spatially extended objects including infor-

mation about distance, direction and topological relations between objects in the

following way:

Definition 11: (neighborhood index)

Let DB be a set of spatial objects and let c and dist be real numbers. Let D be a

direction predicate and T be a topological predicate. Then the neighborhood in-

dex for DB with maximum distance c, denoted by Nc
DB, is defined as follows:

Nc
DB = {(o1, o2, dist, D, T) | |o1 - o2| ≤ dist ∧ dist ≤ c ∧ D(o1, o2) ∧ T(o1, o2)}.

A neighborhood index stores information about pairs of objects up to a certain

distance c. The distance dist between any two objects in a neighborhood index

Nc
DB is less than the maximum distance c which means that a neighborhood index

does not contain information about all pairs of objects.

For storing and retrieving the information contained in a neighborhood index,

usual one-dimensional index structures such as B-trees or Hashing can be used. A

simple implementation of a neighborhood index using a B+-tree on the attribute

Object-ID is illustrated in figure 41. Implementing neighborhood indices for high-

dimensional spatial data by one-dimensional index structures offers a large speed-

4.4 Database Support for GDBSCAN 99

up in the processing of neighborhood queries - if the neighborhood index is appli-

cable.

A neighborhood index Nc is applicable to the neighborhood graph Gr if the max-

imum distance c of Nc is greater than the maximum possible distance between ob-

jects fulfilling the neighborhood relation r, because then all neighbors with respect

to r can be found in this neighborhood index. For many neighborhood relations,

there is an upper bound for the distance between pairs of objects. Clearly, this is

true for all distance based neighborhoods which may combine spatial proximity

with conditions on non-spatial attributes (recall section 3.2.2 for examples).

Obviously, if two indices Nc1 and Nc2, c1 < c2, are available and applicable, us-

ing Nc1 is more efficient because in general it will be smaller than the index Nc2.

In figure 42 the algorithm for processing the neighbors operation selecting the

smallest available index is sketched.

Updates of the database, i.e. insertions, deletions or modifications of spatial ob-

jects, require updates of the derived neighborhood indices. These updates on a de-

rived neighborhood can be performed easily because the updates on an object are

in general restricted to the neighborhood of this object. This relevant neighborhood

can be retrieved by simply using neighbors operations.

Object-ID Neighbor Distance Direction Topology

o1 o2 2.7 southwest disjoint

o1 o3 0 northwest overlap

.

B+-
tree

Figure 41: Sample Implementation of a Neighborhood Index

100 4 GDBSCAN: An Algorithm for Generalized Clustering

Performance Evaluation

Obviously, if available, a neighborhood index can be used for the GDBSCAN al-

gorithm. Typically, neighborhood indices may be available for spatial databases

such as geographic information systems. Geographic information systems offer

many opportunities for very different kinds of spatial data mining algorithms - all

using neighbors operations - because in general much information for each object

is stored in these databases (objects may have a spatial extension and many non-

spatial attributes). Consequently, we used a geographic information system on Ba-

varia to evaluate the performance of neighborhood indices.

To determine the performance gain for GDBSCAN using neighborhood indices,

it is sufficient to measure the speed-up for single neighbors operations. Therefore,

we compared the performance of single neighbors operations with and without a

materialized neighborhood index. Although, the expected speed-up may be theo-

retically obvious, we performed some experiments for the Bavaria database repre-

senting Bavarian communities with one spatial attribute (2-d polygon) and 52 non-

spatial attributes such as average rent or rate of unemployment. The performance

of the neighbors operation (intersects) using a neighborhood index was compared

neighbors (graph Gr, object o, predicate pred)

- Index Selection:

Select the smallest available neighborhood index NI applicable to Gr.

- Filter Step:

If NI exists, use it and retrieve as candidates c the neighbors of o stored in

NI.

Else, use the ordinary spatial index and retrieve as candidates the set of ob-

jects c satisfying o r c.

- Refinement Step:

From the set of candidates, return all objects o’ that fulfill o r o’ as well as

pred(o’).

Figure 42: Algorithm neighbors using neighborhood indices

4.4 Database Support for GDBSCAN 101

with an operation based on a usual multi-step filter-refinement procedure including

an R-tree. The neighborhood index was implemented by using a B+-tree. Figure 43

depicts the results of these experiments.

Figure 43, on the left, presents the speed-up factor for the filter step in the exe-

cution of the neighbors operation, varying the number N of objects in the database.

As we can see, this is more or less a constant factor for the 2-dimensional data sets

since the performance of one- and two-dimensional range queries in B+-trees and

R-trees differ in general only by a factor as depicted. This factor, i.e. the perfor-

mance gain, will increase dramatically with increasing dimension d because the

performance of spatial indices degenerates for high-dimensional data (cf.

section 2.1).

The speed-up factors for the refinement step, varying the average number of ver-

tices, i.e. the complexity of the polygons, is depicted in figure 43, on the right. The

speed-up factor for the refinement step obviously increases with increasing com-

plexity of the objects because the evaluation of a neighborhood predicate like in-

tersects is much more expensive using the exact object representation than using

the information stored in a neighborhood index.

To conclude, a large performance gain for databases containing very complex

objects or high-dimensional data can be achieved by using a neighborhood index.

However, the cost for creating a neighborhood index, i.e. materializing the neigh-

Speed-up for the filter step of the
neighbors operation using a

neighborhood index

0

1

2

3

4

5

0 20,000 40,000 60,000 80,000 100,000

Number of objects in the database

S
p

ee
d

-u
p

 f
ac

to
r

 Speed-up for the refinement step of the
neighbors operation using a

neighborhood index

0

5

10

15

20

25

30

0 100 200 300 400 500

Average number of vertices for polygonal object

S
p

ee
d

-u
p

 f
ac

to
r

Figure 43: Speed-up for the neighbors-operation using a neighborhood index

102 4 GDBSCAN: An Algorithm for Generalized Clustering

borhoods in a spatial database, are nearly the same as the cost for a single run of

GDBSCAN without a neighborhood index (or any other spatial data mining algo-

rithm looking at the neighborhood of all objects). Therefore, creating a neighbor-

hood index will only pay off if it will be used several times by different algorithms.

If no materialized neighborhood index is available, there are other possibilities

to improve the performance of our algorithm. One such technique, i.e. multiple

neighborhood queries, is presented in the next subsection.

4.4.2 Multiple Neighborhood Queries

The three characteristics of spatial data mining described on page 93 are fulfilled

for our GDBSCAN algorithms, i.e. we have a large number of sequences of expen-

sive neighborhood queries. The neighborhood queries are expensive, mostly be-

cause for very large databases the processing of a neighborhood query has to be

disk-based. Furthermore, with increasing dimension of the data space, an increas-

ingly large part of the file containing the data has to be loaded from disk to answer

a single neighborhood query because the performance of index structures degener-

ates with increasing dimension. Therefore, we introduce a technique called “mul-

tiple neighborhood query” to decrease the run-time of GDBSCAN dramatically.

The basic idea for the application of multiple neighborhood queries is rather

simple. Assume, there are a many neighborhood queries which must be performed

for a specific data mining task. Instead of processing these neighborhood queries

separately, we can design an operation which processes several neighborhood que-

ries simultaneously. As we will see, this operation will reduce the overall run-time

for all neighborhood queries by a large factor. This is due to the fact that the num-

ber of disk accesses is reduced significantly by our technique.

Before we will describe multiple neighborhood queries in detail, we want to

point out that this is an important technique not only for GDBSCAN. In fact, the

4.4 Database Support for GDBSCAN 103

algorithmic scheme GDBSCAN is an instance of an even more general scheme

which covers many algorithms performing spatial data mining tasks. All instances

of this so called “ExploreNeighborhoods-scheme” can benefit from an operation

performing multiple neighborhood queries because this scheme can be easily trans-

formed into an equivalent scheme that uses multiple neighborhood queries.

The ExploreNeighborhoods-scheme for spatial data mining which is based on

the exploration of neighborhoods is depicted in figure 44. The points in the argu-

ment list of some functions indicate additional arguments which may be necessary

for different instances of this algorithmic scheme.

Starting from some objects which are passed to the procedure as a parameter

startObjects, the algorithm repeatedly retrieves the neighborhood of objects taken

from the class contolList as long as the function condition_check returns TRUE for

the controlList. In the most simple form, the function checks whether controlList is

not empty. If the neighborhood of objects should only be investigated up to a cer-

tain “depth”, then an additional parameter for the number of steps that have to be

performed can be used in the function condition_check. The control structure of the

main loop works as follows: objects are selected from the controlList, one at a time,

and a neighborhood query is performed for this object. The procedures proc_1 and

proc_2 perform some processing on the selected object as well as on the answers

ExploreNeighborhoods(db, startObjects, NPred, ...)
contolList := startObjects;

WHILE (condition_check(contolList, ...) = TRUE)

object := contolList.choose(...);

proc_1(object, ...);

answers := db.neighborhood(object, NPred);

proc_2(answers, ...);

contolList := (contolList ∪ filter(answers, ...)) − {object};

ENDWHILE

Figure 44: Algorithmic scheme ExploreNeighborhoods

104 4 GDBSCAN: An Algorithm for Generalized Clustering

to the neighborhood query that will vary from task to task. Then, the controlList is

updated. Some or all of the answers which are not yet processed are simply inserted

into the class controlList. The function filter(answers, ...) removes from the set of

answers at least those objects which have already been in the controlList in previ-

ous states of the algorithm, if there any exists. This must be done to guarantee the

termination of the algorithm.

It is easy to see that GDBSCAN obviously is an instance of an ExploreNeigh-

borhoods-algorithm. Also the manual data exploration in a spatial database de-

scribed above (point 3 on page 93) as well as spatial characterization and spatial

trend detection can be subsumed by our ExploreNeighborhoods-scheme. For these

tasks, the loop is additionally controlled by the number of steps (i.e. the length of

the neighborhood path) and the procedures proc_1 and proc_2 perform the actual

analysis of the neighborhoods for the purpose of characterization and trend detec-

tion (for details of these algorithms see [EFKS 98]). Note that even the material-

ization of a spatial neighborhood index (cf. section 4.4.1) can be regarded as a spe-

cial case of the ExploreNeighborhoods-scheme. In this case, the argument

startObjects represents the whole database, proc_1 is empty, i.e. it performs noth-

ing; proc_2 simply inserts the neighborhood set into the neighborhood index, and

the filter function always returns the empty set. Another typical application of an

explore neighborhood scheme is the classification of a set of objects simultaneous-

ly using a k-nearest neighbor classificator.

Algorithms which follow the ExploreNeighborhoods-scheme can be easily re-

formulated in a way that they use multiple neighborhood queries instead of a single

neighborhood query at a time. Figure 45 presents the transformed algorithmic

scheme “ExploreNeighborhoodsMultiple” using multiple neighborhood queries.

As we can see, the reformulation can be done in a purely syntactical way which

means that a multiple neighborhood query would be very easy to use if this feature

would be available, for instance, as a basic operation provided by a spatial database

management system.

4.4 Database Support for GDBSCAN 105

Obviously, the algorithmic scheme ExploreNeighborhoodsMultiple performs

exactly the same task as the original ExploreNeighborhoods scheme. The only dif-

ferences are that a set of objects is selected from the control-list instead of a single

object and a multiple neighborhood query is performed instead of a single neigh-

borhood query. However, in one execution of the main loop, the algorithm will

only make use of the first element of the selected objects and the corresponding set

of answers.

Our transformed algorithmic scheme may seem “odd” because some kind of

buffering for the elements of setOfAnswers must be implemented in the query pro-

cessor of the database - if the run-time should be improved compared to the non-

transformed algorithmic scheme. One may have expected a transformed scheme in

which all neighborhoods for all the selected objects are processed after the execu-

tion of the method multiple_neighborhoods and thus no special buffering in the da-

tabase would be necessary. This approach, however, would have two important

disadvantages.

First, there exists no general syntactical transformation for this approach in

which the semantics of the non-transformed algorithm is preserved. The reason is

ExploreNeighborhoodsMultiple(db, startObjects, NPred, ...)
contolList := startObjects;

WHILE (condition_check(contolList, ...) = TRUE)

setOfObjects := contolList.choose_multiple(...);

// setOfObjects = [object1, ..., objectm]

proc_1(setOfObjects.first(), ...);

setOfAnswers := db.multiple_neighborhoods(setOfObjects, NPred);

// setOfAnswers = [answers1, ..., answersm]

proc_2(setOfAnswers.first(), ...);

contolList := (contolList ∪ filter(setOfAnswers.first(), ...)) − {object};

ENDWHILE

Figure 45: Algorithmic scheme ExploreNeighborhoodsMultiple

106 4 GDBSCAN: An Algorithm for Generalized Clustering

that the argument lists of the procedures proc_1, proc_2 and filter are not deter-

mined completely in the scheme ExploreNeighborhoods. The procedures may, for

instance, be dependent on the controlList which is possibly changed in each execu-

tion of the main loop. This dependency can in general not be modeled by purely

syntactical means in a transformed scheme where all selected objects and the cor-

responding answers are processed in one execution of the main loop. On the other

hand, in the transformed scheme that we actually propose, this problem does not

exist. The procedures proc_1, proc_2 and filter must not be changed and they op-

erate under the same pre-conditions as in the non-transformed scheme.

The second advantage of our approach is that a multiple neighborhood query

must only produce a complete answer to the first element in the argument setOfOb-

jects instead of complete answers to all elements of setOfObjects. This allows us

to devise implementations of multiple neighborhood queries which compute the

neighborhoods of selected objects incrementally. As we will see, this may be more

efficient if we consider the overall run-time of the ExploreNeighborhoodsMultiple

algorithm.

So far, we have argued that it is highly desirable to have efficient techniques for

multiple neighborhood queries integrated into a spatial database management sys-

tem. In the following, we describe two strategies for the implementation of multi-

ple-neighborhood operations which are intended to reduce the number of disk I/O.1

The first implementation of multiple neighborhood queries is based on the linear

scan. This strategy is very simple but most effective in terms of a possible speed-

up. Furthermore, the linear scan is applicable to retrieve the NPred-neighborhood

for arbitrary neighborhood predicates defined on objects having an arbitrary data

type. For instance, if only a dissimilarity distance function (which is not a metric)

1. Under special assumptions, further improvements may be possible by reducing the number of
main memory operations. For instance, if the neighborhood is distance-based and the distance
function is a metric, we can exploit inter-object distances between the query centers and use the
triangle inequality to possibly reduce the number of distance computations.

4.4 Database Support for GDBSCAN 107

is given for a clustering problem, we must use the linear scan to retrieve the neigh-

borhood of an object because there exists no suitable index structure for this type

of application. But even in case of an Euclidean vector space, if the dimension of

the space is very high, it may be most efficient to use a kind of optimized linear

scan such as the VA-file (cf. chapter 2, section 2.1).

Implementation on top of a linear scan (e.g. the VA-file)

Using the linear scan, the method db.neighborhood(object, NPred) retrieves the

NPred-neighborhood of a single object o from a database db by simply checking

the condition NPred(o, o’) for each object o’ ∈ db and returning those objects o’

which fulfil this condition as result. That means that each page of the database must

be read from disk. Obviously, we can perform a condition check on more than one

object while performing a single scan over the database. Therefore, the implemen-

tation of the method db.multiple_neighborhoods(setOfObjects, NPred) just per-

forms a single scan over the database db and checks the condition NPred(o, o’) for

each object o in SetOfObjects and each object o’ in the database db, returning a set

of neighborhoods as result. If m is the number of objects contained in setOfObjects

and m answers can be held in main memory at the same time, then the speed-up

factor with respect to disk I/O is exactly equal to m for a multiple neighborhood

query compared to m single neighborhood queries.

Implementation on top of a true index structure (e.g. the X-tree)

For true index structures, e.g. an X-tree, there are several possibilities to imple-

ment the method db.multiple_neighborhood(object, NPred). Here, we introduce an

implementation which is very similar to the technique for the linear scan. In fact,

our method will become identical to the method for the linear scan if the perfor-

mance of the index structure degenerates to the performance of the linear scan.

When answering a single neighborhood query for an object o using an X-tree, a

set of data pages which cannot be excluded from the search is determined from the

directory of the tree. These pages are then examined and the answers to the query

are determined. The amount of pages to be read from disk depends on the size of

108 4 GDBSCAN: An Algorithm for Generalized Clustering

the database, the degree of clustering, the dimension of the data space and on the

size of the neighborhood (e.g. the distance in case of a range query).

To answer a multiple neighborhood query for a set of objects O = {o1, ..., om},

we propose the following procedure. First, we determine the data pages to be read

as if answering only a single neighborhood query to determine the neighborhood

of o1. However, when processing these pages, we do not only collect the answers

in the neighborhood of o1 but also collect answers for the objects oi (i=2, ..., m) if

the pages loaded for o1 would also be loaded for oi. After this first step, the query

for o1 is completely finished and the neighborhoods for all the other objects are par-

tially determined. Then, in the next step, we determine the remaining data pages

for the object o2, i.e. we consider only those data pages relevant for o2 which have

not been processed in the first step. Again, we determine answers for all remaining

objects and at least the answer-set for o2 will be completed. This procedure is re-

peated until the set O is empty, i.e. the neighborhoods for all objects in O are de-

termined.

This procedure for a multiple neighborhood query may seem to be equivalent to

a more simple non-incremental scheme: determine all data pages which have to be

read from disk for all objects in O and collect the complete answer-sets for all ob-

jects o1, ..., om from these pages in a single pass. The number of data pages which

have to be read from disk is actually the same for both methods if we consider only

one multiple neighborhood query for some objects o1, ..., om. However, if we con-

sider the overall run-time of ExploreNeighborhoodsMultiple, the incremental com-

putation of the neighborhood sets may be more efficient with respect to disk I/O.

The reason is that objects which are inserted into the control-list in one execution

of the main loop can be additionally selected for a multiple neighborhood query in

the next execution of the loop.

Assume that in the first execution of the loop the neighbors p1, ..., pk of o1 are

inserted into the control-list and that these objects are additionally selected at the

4.4 Database Support for GDBSCAN 109

beginning of the second execution. Then, the multiple neighborhood query is exe-

cuted for the set O = {o2, ..., om, p1, ..., pk} which means that now all data pages

are considered which have not been processed for object o1 and, therefore, have to

be loaded for object o2. It is very likely for an ExploreNeighborhoods-algorithm -

especially for GDBSCAN - that some of these pages must also be considered for

some objects pi (i =1, ..., k) because the objects contained in an instance of the con-

trol-list are usually not very far away from each other. Then, the answers for the

objects pi are (partially) collected from the current data pages determined by the

object o2. These pages will not be loaded again when pi becomes the first element

of the selected objects. If we had used the non-incremental evaluation of a multiple

neighborhood query, to find the neighbors of p1, ..., pk, we would have to load these

pages again, resulting in an overall higher number of disk I/O.

Note that, furthermore, our implementation of a multiple neighborhood query,

on top of a multi-dimensional index, converges to the method for the linear scan

when the page selectivity decreases, e.g. with increasing dimension of the data

space. In the worst case, the index has no selectivity at all, which means that no

data page can be excluded from a neighborhood-search for a single object. Then,

all pages will be read to compute the neighborhood for the first object o1 in O =

{o1, ..., om} and therefore - as for the linear-scan-method - the answers for all ob-

jects o2, ..., om can also be determined completely. This yields the maximum pos-

sible speed-up with respect to disk I/O for this case.

Now, it is obvious that in any case our incremental method will load at most as

many data pages as the non-incremental method and thus it will never perform

worse than the non-incremental alternative.

Performance Evaluation

We performed several experiments to measure the speed-up factors for DBSCAN

with respect to disk I/O using multiple neighborhood queries compared to single

neighborhood queries. Figure 46 presents the results: the average run-time for de-

110 4 GDBSCAN: An Algorithm for Generalized Clustering

termining the neighborhood of an object when using a single neighborhood query

compared to multiple neighborhood queries and the corresponding speed-up fac-

tors - for both, the linear scan and the X-tree.

The average values for the run-time of a neighborhood query depicted in

figure 46 were determined by using DBSCAN. For this purpose we clustered sev-

eral 2-dimensional test databases and selected as many objects as possible from the

seed-list of DBSCAN for a multiple neighborhood query. Each database contained

100,000 points. The points were randomly distributed within clusters having a sig-

nificantly higher density than the noise which was also randomly distributed out-

Average I/O time for a range query

1

10

100

1,000

0.0025 0.0050 0.0075 0.0100 0.0150 0.0200

Radius

I/O
 T

im
e

(m
se

c
x

10
)

Speed-up of I/O time for DBSCAN using
multiple neighborhood queries

1.00

10.00

100.00

1000.00

0.0025 0.0050 0.0075 0.0100 0.0150 0.0200

Radius

S
p

ee
d

-u
p

Figure 46: Performance of the multiple-neighbors operation

Scan, single queries

Scan, multiple queries

X-tree, single queries

X-tree, multiple queries

Speed-up for Scan

Speed-up for X-tree

4.4 Database Support for GDBSCAN 111

side the clusters. Different numbers of cluster (100 - 300) and different amounts of

noise (10 % - 30%) were used.

We can see in figure 46 that the average I/O time for a multiple range query de-

creases dramatically with increasing size of the range yielding very large speed-up

factors for both the X-tree and the linear scan - up to 50 using the X-tree and up to

850 using the linear scan. These speed-up factors correspond to the average size of

the seeds-list of DBSCAN while clustering our test databases.

There are two interesting points concerning the differences between the X-tree

and the linear scan. First, the speed-up factors for the linear scan are much larger

than the speed-up factors for the X-tree. Second, when using multiple neighbor-

hood queries, the scan outperforms the X-tree with respect to I/O time if the size of

the neighborhood exceeds a certain value. In our experiments, this point occurred

when the ε-neighborhoods contained about 80 objects on the average. These dif-

ferences are for the most part due to the following two facts: firts, in a single exe-

cution of multiple_neighborhoods(setOfObjects, NPred) the answers for all ob-

jects contained in setOfObjects are completely determined by the linear scan

method while the X-tree - except for the “first” object in setOfObjects - generates

only partial answers; second, in two dimensional space the X-tree has a very high

page selectivity for a single range query, i.e. only very limited number of data pag-

es are considered to answer the range query for the “top object” in setOfObjects.

However when increasing the dimension d of the data space the page selectivity of

the X-tree will degenerate. That means also that for higher dimensions, the curves

in figure 46 for the X-tree will converge to the curves of the linear scan.

Note that the speed-up of the I/O time using multiple neighborhood queries in-

creases significantly with the size of the neighborhoods. Therefore, multiple neigh-

borhood queries will yield the largest benefit for the hierarchical version of GDB-

SCAN (see chapter 7) where we use large neighborhood queries to generate a

hierarchy of density-based decompositions.

112 4 GDBSCAN: An Algorithm for Generalized Clustering

There are, however, two limits for the speed-up factors which can be obtained

by using multiple neighborhood queries in an ExploreNeighborhoods-algorithm.

The first limit is determined by the average size of the control-list during the exe-

cution of an ExploreNeighborhoodsMultiple-algorithm. Obviously, the speed-up

using a multiple neighborhood query can be at most as large as the number of ob-

jects which are processed collectively. Consequently, the maximum possible

speed-up factor for an ExploreNeighborhoodsMultiple-algorithm is equal to the

average number of objects contained in the control-list during the execution of the

algorithm. The second limit for the speed-up factors is given by the size of the main

memory needed to hold the answer-sets for all neighborhood queries. That means,

we may not be able to execute the neighborhood queries for all objects contained

in the control-list simultaneously if their answers would not fit into the main mem-

ory. In this case, only a subset of all possible neighborhood queries will be execut-

ed simultaneously.

4.5 Summary

In this chapter, the algorithmic schema GDBSCAN to construct density-based de-

compositions was introduced. We indicated how GDBSCAN can be implemented

independently from the specific predicates for the neighborhood of objects, and the

minimum weight for sets of objects. Furthermore, a performance evaluation

showed that GDBSCAN is efficient for large databases if the neighborhood queries

can be supported by spatial access structures.

We also introduced advanced database techniques such as neighborhood indices

and multiple neighborhood queries to speed-up the performance of GDBSCAN by

large factors. Especially, we showed that multiple neighborhood queries can be ap-

plied to all instances of an even more general algorithmic schema called Explore-

Neighborhoods. This schema does not only cover our GDBSCAN algorithm as an

instance but also a broader class of different spatial data mining algorithms.

Chapter 5

Applications

In this chapter, we present four typical applications of GDBSCAN. In the first ap-

plication we cluster a spectral space (5d points) created from satellite images in dif-

ferent spectral channels which is a common task in remote sensing image analysis

(section 5.1). The second application comes from molecular biology. The points on

a protein surface (3d points) are clustered to extract regions with special properties.

To find such regions is a subtask for the problem of protein-protein docking

(section 5.2). The third application uses astronomical image data (2d points) show-

ing the intensity on the sky at different radio wavelengths. The task of clustering is

to detect celestial sources from these images (section 5.3). The last application is

the detection of spatial trends in a geographic information system. GDBSCAN is

used to cluster 2d polygons creating so-called influence regions which are used as

input for trend detection (section 5.4).

114 5 Applications

5.1 Earth Science (5d points)

In this application, we use a 5-dimensional feature space obtained from several sat-

ellite images of a region on the surface of the earth covering California. These im-

ages are taken from the raster data of the SEQUOIA 2000 Storage Benchmark

([SFGM 93]). After some preprocessing, five images containing 1,024,000 inten-

sity values (8 bit pixels) for 5 different spectral channels (1 visible, 2 reflected in-

frared, and 2 emitted (thermal) infrared) for the same region were combined. Thus,

each point on the surface, corresponding to an earth surface area of 1,000 sqare

meters, is represented by a 5-dimensional vector, for example.

p1: 222 217 222 155 222

p2: 243 240 243 235 243

...

Finding clusters in such feature spaces is a common task in remote sensing digital

image analysis (e.g. [Ric 83]) for the creation of thematic maps in geographic in-

formation systems. The assumption is that feature vectors for points of the same

type of underground on the earth are forming groups in the high-dimensional fea-

ture space (see figure 47 illustrating the case of 2d raster images).

Figure 47: Relation between 2d image and feature space

• • • •
• • • •
• • • •
• • • •

surface of the earth feature space

Channel 1

Channel 216.5 22.020.018.0
8

12

10

•

(12,17.5)

(8.5,18.7)
•••

•
••• •

••

••••
1 1 1 2
1 1 2 2
3 2 3 2
3 3 3 3

Cluster 1 Cluster 2

Cluster 3

5.1 Earth Science (5d points) 115

Mapping a sample of about 50,000 of the 1,024,000 5-dimensional vectors to 3-

dimensional vectors using the FastMap method ([FL 95]) yields a visualization as

shown in figure 48. This visualization gives an impression of the distribution of

points in the feature space indicating that there are in fact clusters.

Application 1 has two characteristics which did not exist in the synthetic data-

bases used in the previous chapters. First, the coordinates of points can only be in-

tegers with values between 0 and 255 in each dimension. Second, many of the ras-

ter points have exactly the same features, i.e. are represented by the same 5-

dimensional feature vector. Only about 600,000 of the 1,024,000 feature vectors

are different from each other.

We used the specialization DBSCAN for this application. The parameters were

determined manually. For reasons of efficiency, we computed the sorted 9-dist

graph only for a 1% sample of all points and selected 1.42 as the value for ε. These

neighborhoods are very small due to the first characteristic of the application, e.g.

for about 15% of the points the distance to the 9th nearest neighbor is 0. To take

into account the second characteristic of the data, we increased the default value

for MinPts, i.e. we set MinPts = 20. To summarize, the following setting was used:

NPred(X,Y) iff | X - Y | < 1.42

MinWeight(N) iff | N | ≥ 20

Figure 48: Visualization of the SEQUOIA 2000 raster data

116 5 Applications

There are several reasons to apply a post-processing to improve the clustering

result of GDBSCAN. First, GDBSCAN only ensures that a cluster contains at least

MinPts points, but a minimum size of 20 points is too small for this application,

especially because many points have the same coordinates. Therefore, we accepted

only the clusters containing more than 200 points. This value seems arbitrary but a

minimum size can be chosen reasonably after the size of all clusters is known. Sec-

ond, GDBSCAN produces clusters and noise. But for this application a non-noise

class label for each raster point is required. Therefore, we reassigned each noise

point and each point of a rejected cluster to the closest of the accepted clusters. We

obtained 9 clusters with sizes ranging from 598,863 to 2,016 points.

To visualize the result, each cluster was coded by a different color/grayscale.

Then each 2-dimensional point in the image of the surface of the earth was colored

according to the identificator of the cluster containing the corresponding 5-dimen-

sional vector. The resulting image is shown in figure 49. A high degree of corre-

spondence between the obtained image and a physical map of California can easily

be seen. A detailed discussion of this correspondence is beyond the scope of this

work.

Figure 49: Visualization of the clustering result for the
SEQUOIA 2000 raster data

5.2 Molecular Biology (3d points) 117

5.2 Molecular Biology (3d points)

Proteins are biomolecules consisting of some hundreds to thousands of atoms.

Their mode of operation lies in the interaction with other biomolecules, e.g. pro-

teins, DNA or smaller partner molecules. These interactions are performed by the

so-called docking, i.e. the process of connecting the partner molecules.

Molecular biologists point out that the geometry of the molecular surfaces at the

interaction site plays an important role along with the physicochemical properties

of the molecules. A necessary condition for protein-protein docking is the comple-

mentarity of the interaction site with respect to surface shape, electrostatic poten-

tial, hydrophobicity, etc. We use the crystallographically determined atom coordi-

nates of proteins and protein complexes from the Brookhaven Protein Data Bank

([BKW+ 77], [PDB 94]) and derive for each protein a surface with some 10,000

equally distributed 3d points. For each point on the protein surface, several geo-

metric and physicochemical features are computed. The solid angle (SA), for ex-

ample, is a geometric feature describing the degree of convexity or concavity of the

surface in the neighborhood of the considered point (see [Con 86]).

A database system for protein-protein docking has to process queries for pro-

teins with complementary surfaces. This search is performed at the level of surface

segments, defined as a set of neighboring surface points with similar non-spatial at-

tributes, e.g. with similar SA values. The segments should have a good correlation

with the known docking sites of the proteins, i.e. a docking site on a protein surface

should consist of a small number of segments. Therefore, finding a segmentation

of protein surfaces is an important subtask for a protein docking database. We ap-

plied GDBSCAN for this task.

The parameters NPred and MinWeight were determined analytically. We used

MinWeight predicates similar to the one used for the specialization DBSCAN, i.e.

comparing a value derived from a neighborhood set to a threshold MinPts. The dif-

ference is that we did not use “simple” cardinality of the neighborhood set but we

118 5 Applications

simultaneously performed a selection on the SA values. The SA values are normal-

ized in the interval [0, 1] such that high SA values indicate points on a convex sur-

face segment, and low SA values indicate points on a concave surface segment. To

find the convex segments, we used SA values between 0.75 and 1.00; for points on

a concave surface segment, we used SA values between 0.00 and 0.65. The NPred-

neighborhood is distance based. Since the surface points are equally distributed

with a density of 5 points per Å2, we calculated the average 5th-nearest-neighbor

distance and used this value of 0.6 for ε in the definition of the NPred-neighbor-

hood. Consequently, MinPts was set to 5 in the definition of the MinWeight predi-

cate. To summarize, the following settings were used:

For convex segments:

NPred(X,Y) iff | X - Y | < 0.6

MinWeight(N) iff | { p ∈ N | 0.75 ≤ SA(p) ≤ 1.00} | ≥ 5

For concave segments:

NPred(X,Y) iff | X - Y | < 0.6

MinWeight(N) iff | { p ∈ N | 0.00 ≤ SA(p) ≤ 0.65} | ≥ 5

Note that if we would use the specialization DBSCAN with “simple” cardinali-

ty, only a single cluster containing all points of the protein surface would be found.

In applications with equally distributed points, GDBSCAN can only find reason-

able clusters if the MinWeight predicate is defined appropriate, i.e. the MinWeight

predicate must “simulate” regions of different density. We searched for clusters

covering at least 1% of the surface points of the protein. For example, for the pro-

tein 133DA consisting of 5,033 surface points, only clusters with a minimum size

of 50 surface points were accepted. For this protein 8 convex and 4 concave clus-

ters (segments) were found by using the above parameter settings. Figure 50 de-

picts the clustering results of GDBSCAN for this protein. Note that some of the

clusters are hidden in the visualization because only one view angle for the protein

5.3 Astronomy (2d points) 119

is depicted. GDBSCAN discovered the most significant convex and concave sur-

face segments of the protein, which can easily be verified by visual inspection.

5.3 Astronomy (2d points)1

Surveys of the sky form an integral part of astronomy. Celestial sources detected

in a survey are typically classified by the domain scientists; large surveys will de-

tect many objects and enable statistical studies of the objects in a given classifica-

tion. Surveys may also reveal exotic or anomalous objects or previously unidenti-

fied classes of objects. A typical result of a survey is a 2-dimensional grid of the

intensity on the sky (though additional dimensions, e.g. frequency or velocity, po-

larization, may also be acquired). The measured intensity is typically the sum of

the emission from discrete sources, diffuse emission (e.g. from the atmosphere, in-

terplanetary medium or interstellar medium), and noise contributed by the survey-

ing instrument itself. Modern surveys are capable of producing thousands of imag-

es of the sky, consuming 10 GB - 1 TB of storage space, and may contain 105 to

106 or more sources (e.g. [BWH 95], [CCG+ 95]).

1. Special thanks to T. Joseph W. Lazio for making the astronomy data available and for his sub-
stantial help in understanding and modeling this application.

Figure 50: Visualization of the clustering results for protein 133DA

convex segments concave segments

120 5 Applications

Maximizing the yield from a survey requires an accurate and efficient method

of detecting sources. The traditional method of separating the discrete sources from

the noise and other emissions is to require that the sources exceed a predefined

threshold, e.g. 5σ, where σ is an estimate of the rms intensity in the image (e.g.

[BWH 95]). Recently, alternate methods which utilize the expected statistics of the

intensity ([ZCW 94]) or classifier systems ([WFD 95]) have been applied.

An extreme example of a noisy image is shown on the left side of figure 51. The

image shows the intensity, as measured by the Very Large Array (information on

the VLA is available at <URL:http://info.aoc.nrao.edu/doc/vla/html/VLAho-

me.shtml>), in a direction towards the Galactic center at a radio wavelength of

4,865 MHz. The image is dominated by a celestial source near the center, and the

sidelobes which appear as radial spokes and are produced by the optics of the in-

strument. A second image of the same area at a slightly different wavelength was

also given for this application. Because of its similarity to the first image, it is not

depicted. The intensity values in the images range from -0.003084 to 0.040023 and

from -0.003952 to 0.040509 respectively.

We applied GDBSCAN using the same parameter settings for both images. The

neighborhood of a raster point (pixel) is defined as a 3x3 array of points (pixels).

Figure 51: Visualization of the astronomy data

grayscale representation of one image

5.3 Astronomy (2d points) 121

For a region in the image to be of special interest we require an average intensity

of 0.005 for each pixel in the region. This requirement is integrated into the defini-

tion of our MinWeight predicate which compares the total intensity for all 9 pixels

in a neighborhood with a threshold equal to 0.045:

NPred(X,Y) iff | X - Y | < 1.42

MinWeight(N) iff

The resulting clusterings for both images are given in figure 52. For example,

the brightest celestial source can easily be identified as the cluster in the center.

For the other clusters, it is not so easy to verify that they are in fact celestial

sources. But this is a traditional problem with source detection in astronomy. The

only way to confirm a weak source is to detect it again in different images, e.g. if

it can be detected again by looking at it at slightly different frequencies. A source

is required to appear at the same position, maybe with a shift of a pixel or two, at

intensity p()
p N∈
∑ 0.045≥

Figure 52: Clustering results for both astronomy images

122 5 Applications

all frequencies. Therefore, we extracted only the clusters which are present in both

images. There are 20 of them. The result of this procedure is depicted in figure 53.

5.4 Geography (2d polygons)1

In the following, we present a simple method - based on GDBSCAN - for detecting

“hot spots” on a geographic map possibly containing spatial trends (see

[EKSX 97]; for a more comprehensive approach to detect spatial trends see

[EFKS 98]). The specialization of GDBSCAN to polygonal data (see chapter 3,

section 3.2.2.5) is used to extract regions of interest from a geographic information

system on Bavaria.

A geographic information system is an information system to manage data rep-

resenting aspects of the surface of the earth together with relevant facilities such as

roads or houses. The Bavaria information system is a database providing spatial

and non-spatial information on Bavaria with its administrative units such as com-

munities, its natural facilities such as the mountains and its infrastructure such as

1. Special thanks to Henning Brockfeld (Institute of Economic Geography, University of Munich)
for introducing us into the KDD needs of economic geographers.

Figure 53: Potential sources in astronomy data

cluster present in both images

5.4 Geography (2d polygons) 123

roads. The database contains the ATKIS 500 data ([Atkis 96]) and the Bavarian

part of the statistical data obtained by the German census of 1987. The implemen-

tation of the information system follows the SAND (Spatial And Non-spatial Da-

tabase) architecture ([AS 91]): the spatial extension of all objects (e.g. polygons

and lines) is stored and manipulated by using an R*-tree, the non-spatial attributes

of the communities (54 different attributes such as the rate of unemployment and

the average income) are managed by a relational database management system.

The Bavaria database may be used, for example, by economic geographers, to dis-

cover different types of knowledge. In the following, we shortly discuss the tasks

of spatial trend detection.

A trend has been defined as a temporal pattern in some time series data such as

network alarms or occurrences of recurrent illnesses ([BC 96]), e.g. “rising interest

rates”. We define a spatial trend as a pattern of systematic change of one or several

non-spatial attributes in 2D or 3D space.

To discover spatial trends of the economic power, an economic geographer may

proceed as follows. Some non-spatial attribute such as the rate of unemployment is

chosen as an indicator of the economic power. In a first step, areas with a locally

minimal rate of unemployment are determined which are called centers, e.g. the

city of Munich. The theory of central places ([Chr 68]) claims that the attributes of

such centers influence the attributes of their neighborhood to a degree which de-

creases with increasing distance. For example, in general it is easy to commute

from some community to a close by center. This will result in a lower rate of un-

employment in this community. In a second step, the theoretical trend of the rate

of unemployment in the neighborhood of the centers is calculated, e.g.

• when moving away from Munich, the rate of unemployment increases

(confidence 86%)

In a third step, deviations from the theoretical trends are discovered, e.g.

124 5 Applications

• when moving away from Munich in south-west direction, then the rate of un-

employment is stable (confidence 97%)

The goal of the fourth step is to explain these deviations. For example, if some

community is relatively far away from a center, but is well connected to it by train,

then the rate of unemployment in this community is not as high as theoretically ex-

pected.

We conjecture that this process of trend detection is relevant not only for eco-

nomic geography but also for a broader class of applications of geographic infor-

mation systems, e.g. for environmental studies. The steps are summarized as fol-

lows and are illustrated by figure 54:

1) discover centers, i.e. local extrema of some non-spatial attribute(s).

2) determine theoretical trend as well as observed trend around the centers.

3) discover deviations of the observed from the theoretical trend.

4) explain deviations by other spatial objects in that area and direction.

GDBSCAN is used to extract density-connected sets of neighboring objects

having a similar value of non-spatial attribute(s). In order to define the similarity

on an attribute, we partition its domain into a number of disjoint classes, e.g. “very

high”, “high”, “medium”, “low”, “very low”. A function attribute-class maps at-

center theoretical trend observed trend

deviation highways

Figure 54: Trend analysis in geographic geography

5.4 Geography (2d polygons) 125

tribute values to the respective class values, i.e. attribute-class(X) denotes the class

of the attribute value X. Values in the same class are considered as similar to each

other. The sets with the highest or lowest attribute value(s) are most interesting and

are called influence regions, i.e. the maximal neighborhood of a center having a

similar value in the non-spatial attribute(s) as the center itself. Then, the resulting

influence region is compared to the circular region representing the theoretical

trend to obtain a possible deviation.

Different methods may be used for this comparison, e.g. difference-based or ap-

proximation-based methods. A difference-based method calculates the difference

of both, the observed influence region and the theoretical circular region, thus re-

turning some region indicating the location of a possible deviation. An approxima-

tion-based method calculates the optimal approximating ellipsoid of the observed

influence region. If the two main axes of the ellipsoid differ in length significantly,

then the longer one is returned indicating the direction of a deviation. These meth-

ods are illustrated in figure 55.

GDBSCAN can be used to extract the influence regions from an SDBS by using

the following parameter setting (where we exclude sets of less than 2 objects):

NPred(X, Y) iff intersect(X, Y) ∧ attribute-class(X) = attribute-class(Y)”

MinWeight(N) iff | N | ≥ 2

Influence Region Approx.-Based Method Diff.-Based Method

Figure 55: Comparison of theoretical and observed trends

126 5 Applications

Seven centers with respect to a high average income are present in the Bavaria

database. Figure 56 depicts the influence regions of these centers in the Bavaria da-

tabase with respect to high average income detected by GDBSCAN; some of which

are discussed in the following:

Figure 56: Influence regions with respect to average income extracted
from the Bavaria database

influence region

influence region

influence region

of Nuremberg

of Ingolstadt

of Munich

5.4 Geography (2d polygons) 127

The influence region of Nuremberg is circle-shaped showing no significant de-

viation - in contrast to the influence regions of Nuremberg and Munich.

The influence region of Ingolstadt is elongated, indicating a deviation in west-

east direction caused by the river Danube traversing Ingolstadt in this direction.

Figure 57 shows the approximating ellipsoid and the significantly longer main axis

in west-east direction.

The influence region of Munich has four significant deviations from the theoret-

ical region (NE, SW, S and SE). Figure 58 illustrates the difference between the

observed influence region and the theoretical circular region. These areas coincide

with the highways originating from Munich.

Figure 57: Explanation of the influence region of Ingolstadt

River DanubeApproximation-Based Method

Figure 58: Explanation of the influence region of Munich

HighwaysDifference-Based Method

128 5 Applications

5.5 Summary

In this chapter we presented several applications for different parameter special-

izations of GDBSCAN. First, we presented an application of DBSCAN to a 5-dimen-

sional spectral space. To determine the clusters in such a spectral space is an impor-

tant task for the creation of, for example, land-use maps. Second, we extracted

concave and convex surface segments on 3-dimensional protein data. In this applica-

tion we applied a specialization of GDBSCAN that used a selection condition on

non-spatial attributes in the definition of the MinWeight predicate. In the third appli-

cation we applied GDBSCAN to 2-dimensional astronomical images to detect celes-

tial sources. In this application GDBSCAN uses the intensity values of the objects/

pixels as a weight in the definition of the MinWeight predicate. In the last application,

we used GDBSCAN to find interesting regions for trend detection in a geographic

information system on Bavaria., i.e. a database of 2-dimensional polygons also hav-

ing several non-spatial attributes. A spatial trend was defined as a pattern of system-

atic change of one or several non-spatial attributes in 2d or 3d space. Additionally,

we discussed how the discovered knowledge can be useful for economic geogra-

phers. The neighborhood predicate NPred for objects was defined by using intersec-

tion and the similarity of non-spatial attribute values.

Chapter 6

Incremental GDBSCAN

In this chapter we present an incremental version of GDBSCAN (see also

[EKS+ 98] for a short presentation with respect to the specialization DBSCAN).

After motivating incremental clustering applications (section 6.1), we show that

due to the density-based nature of GDBSCAN the insertion or deletion of an object

affects the current clustering only in the neighborhood of this object (section 6.2).

Thus, efficient algorithms can be given for incremental insertions and deletions to

an existing clustering (section 6.3, 6.4, 6.5) which yield the same result as the ap-

plication of non-incremental GDBSCAN to the whole updated database. For a per-

formance evaluation, we compare the incremental version of our algorithm with

the specialization to DBSCAN using a 2d spatial database as well as a WWW-log

database (section 6.6). The incremental version of DBSCAN yields significant

speed-up factors compared to non-incremental DBSCAN, even for large numbers

of updates. This demonstrates the efficiency of the proposed algorithm.

130 6 Incremental GDBSCAN

6.1 Motivation

Many companies have recognized the strategic importance of the knowledge hid-

den in their large databases and, therefore, have built data warehouses. A data

warehouse is a collection of data from multiple sources, integrated into a common

repository and extended by summary information (such as aggregate views) for the

purpose of analysis [MQM 97]. When speaking of a data warehousing environ-

ment, we do not anticipate any special architecture but we address an environment

with the following two characteristics:

• Derived information is present for the purpose of analysis.

• The environment is dynamic, i.e. many updates occur.

Typically, a data warehouse is not updated immediately when insertions and de-

letions on the operational databases occur. Updates are collected and applied to the

data warehouse periodically in a batch mode, e.g. each night [MQM 97]. Then, all

patterns derived from the warehouse by data mining algorithms have to be updated

as well. This update must be efficient enough to be finished when the warehouse

has to be available for users again, e.g. the next morning. Due to the very large size

of the databases, it is highly desirable to perform these updates incrementally

([FAAM 97], [Huy 97]).

Maintenance of derived information such as views and summary tables has been

an active area of research [MQM 97], [Huy 97]. The problem of incrementally up-

dating mined patterns after making changes to the database has just recently started

to receive more attention.

For example, in a medical database, one may seek associations between treat-

ments and results. The database is constantly updated and at any given time, the

medical researcher is interested in obtaining the current associations. In a database

containing news articles, for example, patterns of co-occurrence amongst the top-

6.1 Motivation 131

ics of articles may be of interest. An economic analyst receives a lot of new articles

every day and he would like to find relevant associations based on all current arti-

cles. In a WWW access log database [MJHS 96], we may want to find and monitor

groups of similar access patterns by clustering the access sequences of different us-

ers. These patterns may change in the course of time because each day new log-

entries are added to the database and old entries (past a user-supplied expiration

date) are deleted. The groups of similar access patterns may correspond to user

groups and/or groups of logically connected Web pages.

Up to now, only a few investigations on the problem of incrementally updating

mined patterns on changes of the database are available. [CHNW 96] and

[FAAM 97] propose efficient methods for incrementally modifying a set of asso-

ciation rules mined from a database.1 [EW 98] introduce generalization algorithms

for incremental summarization in a data warehousing environment.2 The task

which we consider in this chapter is the incremental clustering.

The clustering of earthquake epicenters stored in an earthquake catalog, for in-

stance, could be done incrementally. Earthquake epicenters occur along seismical-

ly active faults, and are measured with some errors, so that in the course of time the

observed earthquake epicenters should be clustered along such seismic faults

[AF 96]. When clustering this type of database incrementally, there are no dele-

tions but only insertions of new earthquake epicenters over time.

1. The task of mining association rules has been introduced by [AS 94]. An association rule is a
rule I1 ⇒ I2 where I1 and I2 are disjoint subsets of a set of items I. For a given database DB of
transactions (i.e. each record contains a set of items bought by some customer in one transaction),
all association rules should be discovered having a support of at least minsupport and a confi-
dence of at least minconfidence in DB. The subsets of I that have at least minsupport in DB are
called frequent sets.
2. Summarization, e.g. by generalization, is another important task of data mining. Attribute-ori-
ented generalization (see [HCC 93]) of a relation is the process of replacing the attribute values
by a more general value - one attribute at a time, until the number of tuples of the relation
becomes less than a specified threshold. The more general value is taken from a concept hierar-
chy which is typically available for many attributes in a data warehouse.

132 6 Incremental GDBSCAN

Another important application for incremental clustering may be the clustering

of WWW access log databases. These databases typically contain access log en-

tries following the Common Log Format specified as part of the HTTP protocol

[Luo 95]. Such log entries mainly contain information about the machine, the user,

the access date and time, the Web page accessed, and the access method. Figure 59

depicts some sample log entries from the WWW access log database of the Insti-

tute for Computer Science at the University of Munich.

In this application, the goal of clustering is to discover groups or clusters of sim-

ilar access patterns. Access patterns can be described by the sequence of Web pag-

es accessed by a user in a single session.

A session is constructed from the basic access log database by restructuring the

log entries: all log entries with identical IP address and user-id within a given max-

imum time gap are grouped into a session, and redundant entries, i.e. entries with

file name suffixes such as “gif”, “jpeg”, and “jpg” are removed [MJHS 96]. A ses-

sion has the following general structure:

session::= <ip_address, user_id, [url1, . . ., urlk]>

Then, the task of discovering groups of similar access pattern can be handled by

clustering the user sessions of a Web log database. A WWW provider may use the

discovered clusters of sessions as follows:

Figure 59: Sample WWW access log entries

romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:44:50 +0100] "GET /~lopa/ HTTP/1.0" 200 1364

romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:45:11 +0100] "GET /~lopa/x/ HTTP/1.0" 200 712

fixer.sega.co.jp unknown - [04/Mar/1997:01:58:49 +0100] "GET /dbs/porada.html HTTP/1.0" 200 1229

scooter.pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] "GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

6.1 Motivation 133

- The users associated with the sessions of a cluster form some kind of user

group. The topics which are contained in the Web pages accessed by a user

group can be interpreted as a user profile. This kind of information may, for

example, be used to develop marketing strategies.

- The URLs of the sessions contained in a cluster represent topics which are

“connected by user interests”. This information could be used to reorganize

the local Web structure. For example, URLs contained in a cluster can be

made easily accessible from each other via appropriate new links.

The access patterns may change in the course of time. New entries are inserted

into the WWW access log database each day and they will expire after a certain

time, i.e. they are deleted from the database after a specified period, for instance,

after six months. Assuming a constant daily number of WWW accesses, the num-

bers of insertions and deletions in this type of application are the same for each day.

GDBSCAN is applied to static databases. In a data warehouse, however, the da-

tabases may have frequent updates and thus may be rather dynamic. After inser-

tions and deletions to the database, the clustering discovered by GDBSCAN has to

be updated. Incremental clustering means to consider only the old clusters and the

objects inserted or deleted during the day instead of applying the clustering algo-

rithm to the (very large) updated database.

Due to the density-based nature of GDBSCAN, the insertion or deletion of an

object affects the current clustering only in the neighborhood of this object. In sec-

tion 6.2 we examine which part of an existing clustering is affected by an update

of the database. Then, we present algorithms for incremental updates of a cluster-

ing after insertions (section 6.3) and deletions (section 6.4). It is an important ad-

vantage of our approach that, based on the formal notion of clusters, it can be easily

seen that the incremental algorithm yields the same result as the non-incremental

GDBSCAN algorithm. In section 6.6, we demonstrate the high efficiency of incre-

mental clustering on a spatial database as well as on a WWW access log database.

134 6 Incremental GDBSCAN

6.2 Affected Objects

Let D be a database, NPred be a binary neighborhood predicate and let MinWeight

be a predicate for the minimum weight of sets of objects. Recall that we denote by

NNPred(o) the NPred-neighborhood of an object o. Additionally, we introduce the

notation N2NPred(o) for an enhanced neighborhood of o, i.e. the set of all objects

which are in the neighborhood of objects o’ which in turn are in the neighborhood

of object o:

Definition 12: (enhanced neighborhood N2NPred(o))

N2NPred(o) = {q ∈ D | ∃ o' ∈ NNPred(o) ∧ q ∈ NNPred(o’)}

We want to show that changes to a clustering of a database D are restricted to a

neighborhood of an inserted or deleted object p. Objects contained in NNPred(p) can

change their core object property, i.e. core objects may become non-core objects

and vice versa. This is due to the fact that for all objects p’ ∈ NNPred(p) also the

property p ∈ NNPred(p’) holds. Therefore, insertion or deletion of object p may af-

fect MinWeight(NNPred(p’)). Objects in N2NPred(p) \ NNPred(p) keep their core ob-

ject property, but non-core objects may change their connection status, i.e. border

objects may become noise objects or vice versa, because their NPred-neighbor-

hood may contain objects with a changed core object property. For all objects out-

side of N2NPred(p) it holds that neither these objects themselves nor objects in their

NPred-neighborhood change their core object property. Therefore, the connection

status of these objects is unchanged.

Figure 60 illustrates the possible changes with respect to core object property

and connection status in a sample database of two-dimensional objects using pa-

rameter values for DBSCAN as depicted. In this figure, the object a ∈ NNPred(p) is

a core object only if object p is contained in the database. Otherwise, object a is a

6.2 Affected Objects 135

border object. As a consequence, object c ∈ NNPred(a) will be density-reachable,

depending on the presence of object p. The core object property of object b is not

affected by the insertion or deletion of p.

All objects outside N2NPred(p) keep their core object property and their connec-

tion status. They may, however, change their cluster membership because new

density-connections may be established or removed - in case of an insertion resp.

deletion.

After the insertion of some object p, non-core objects (border objects or noise

objects) in NNPred(p) may become core objects implying that new density-connec-

tions may be established, i.e. chains p1, ..., pn, p1 = r, pn = s with pi+1 directly den-

sity-reachable from pi for two objects r and s may arise which were not density-

reachable from each other before the insertion. Then, one of the pi for i < n must

be contained in NNPred(p).

When deleting some object p, core objects in NNPred(p) may become non-core

objects implying that density-connections may be removed, i.e. there may no long-

er be a chain p1, ..., pn, p1 = r, pn = s with pi+1 directly density-reachable from pi

for two objects r and s which were density-reachable from each other before the

deletion. Again, one of the pi for i < n must be contained in NNPred(p).

 Figure 60: Changing core object property and connection status

p
a
b

c

insert/delete object p
a: border object ↔ core object
c: noise object ↔ border object

(MinPts = 4, ε as depicted)

136 6 Incremental GDBSCAN

Figure 61 illustrates our discussion using a sample database of 2d objects and an

object p to be inserted or to be deleted. NNPred(o) = {o’ ∈ D| |o - o’| ≤ ε}, ε is as

depicted, and MinWeight(N) iff | N | ≥ 4. The objects a and b are then density-con-

nected without using one of the elements of NNPred(p). Therefore, a and b belong

to the same cluster independently from p. On the other hand, the objects d and e in

D \ NNPred(p) are only density-connected via c in NNPred(p) if the object p is con-

tained in the database, so that the cluster membership of d and e is affected by p.

In general, on an insertion or deletion of an object p, the set of affected objects,

i.e. objects which may potentially change their cluster membership after the up-

date, is the set of objects in NNPred(p) plus all objects density-reachable from one

of these objects in D ∪ {p}. The cluster membership of all other objects not in the

set of affected objects will not change. This is the intuition of the following defini-

tion and lemma. In particular, the lemma states that a cluster or density-connected

set in the database is independent of an insertion or deletion of an object p if a core

object of the density-connected set is outside the set AffectedD(p). Note that a den-

sity-connected set is uniquely determined by any of its core objects. Therefore, by

definition of AffectedD(p) it follows that if one core object of a density-connected

set is outside (inside) AffectedD(p), then all core objects of the density-connected

set are outside (inside) the set AffectedD(p).

 Figure 61: Affected objects in a sample database

a

b

AffectedD(p)

p
c

d

e

D

6.2 Affected Objects 137

Definition 13: (affected objects)

Let D be a database of objects and p be some object (either in or not in D). We

define the set of objects in D affected by the insertion or deletion of p as

AffectedD(p) := NNPred(p) ∪ {q | ∃ o ∈NNPred(p) ∧ q >D∪{p} o }.

Lemma 7: Let D be a set of objects and p be some object.

Then ∀ o ∈ D: o ∉AffectedD(p) ⇒ {q | q >D\{p} o} = {q | q >D∪{p} o}.

Proof (sketch): 1) ⊆ : because D \ {p} ⊆ D ∪ {p}. 2) ⊇ : if q ∈{q | q >D∪{p} o},

then there is some chain q1, ..., qn, q1 = o, qn = q, qi+1 ∈NNPred(qi) and qi is a core

object in D ∪ {p} for all i < n and, for all i, it holds that qi >D∪{p} o. Because qi is

a core object for all i < n and the density-reachability is symmetric for core objects,

it also holds that o >D∪{p} qi. If there exists an i < n such that qi ∈NNPred(p), then

qi >D∪{p} p implying also o >D∪{p} p due to the transitivity of density-reachability.

By definition of the set AffectedD(p) it now follows that o ∈AffectedD(p) in contrast

to the assumption. Thus, qi ∉ NNPred(p) for all i < n implying that all the objects

qi, i < n, are core objects independent of p and also qn ≠ p because otherwise

qn-1 ∈NNPred(p). Thus, the chain q1, ..., qn exists also in the set D \ {p} and then

q ∈{q | q >D \ {p} o}. ❏

Due to lemma 7, after inserting or deleting an object p, it is sufficient to reapply

GDBSCAN to the set AffectedD(p) in order to update the clustering. For that pur-

pose, however, it is not necessary to retrieve the set first and then apply the clus-

tering algorithm. We simply have to start a restricted version of GDBSCAN which

does not loop over the whole database to start expanding a cluster, but only over

certain “seed”-objects which are all located in the neighborhood of p. These

“seed”-objects are core objects after the update operation which are located in the

NPred-neighborhood of a core object in D ∪ {p} which in turn is located in

NNPred(p). This is the content of the next lemma.

138 6 Incremental GDBSCAN

Lemma 8: Let D be a set of objects. Additionally, let D* := D ∪ {p} after insertion

of an object p or D* = D \ {p} after deletion of p and let c be a core object in D*.

C = {o | o >D* c} is a cluster in D* and C ⊆ AffectedD(p) ⇔ ∃ q, q’ : q ∈NNPred(q’),

q’ ∈NNPred(p), c >D∗ q, q is core object in D* and q’ is core object in D ∪ {p}.

Proof (sketch): If D* := D ∪ {p} or c ∈ NNPred(p), the lemma is obvious by defi-

nition of AffectedD(p). Therefore, we consider only the case D* := D \ {p} and

c ∉ NNPred(p).

“=>”: C ⊆ AffectedD(p) and C ≠ ∅. Then, there exists o ∈ NNPred(p) and

c >D∪{p} o, i.e. there is a chain of directly density-reachable objects from o to c.

Now, because c ∉ NNPred(p) we can construct a chain o=o1, . . ., on=c,

oi+1 ∈NNPred(oi) with the property that there is j ≤ n such that for all k, j ≤ k ≤ n,

ok ∉ NNPred(p) and for all k, 1≤ k< j, ok ∈ NNPred(p). Then q=oj ∈ NNPred(oj-1),

q’=oj-1 ∈NNPred(p), c >D∗ oj, oj is a core object in D* and oj-1 is a core object in D

∪ {p}.

“<=”: obviously, C = {o | o >D* c} is a density-connected set (see lemma 4). By

assumption, c is density-reachable from a core object q in D* and q is density-

reachable from an object q’∈NNPred(p) in D ∪ {p}. Then also c and hence all ob-

jects in C are density-reachable from q’ in D ∪ {p}. Thus, C ⊆ AffectedD(p).❏

Due to lemma 8, the general strategy for updating a clustering would be to start

the GDBSCAN algorithm only with core objects that are in the NPred-neighbor-

hood of a (previous) core object in NNPred(p). However, it is not necessary to redis-

cover density-connections which are known from the previous clustering and

which are not changed by the update operation. For that purpose, we only need to

look at core objects in the NPred-neighborhood of those objects that change their

core object property as a result of the update. In case of an insertion, these objects

may be connected after the insertion. In case of a deletion, density-connections be-

tween them may be lost. In general, this information can be determined by using

6.3 Insertions 139

very few region queries. The remaining information needed to adjust the clustering

can be derived from the cluster membership before the update. Definition 14 intro-

duces the formal notions which are necessary to describe this approach. Remem-

ber: objects with a changed core object property are all located in NNPred(p).

Definition 14: (seed objects for the update)

Let D be a set of objects and p be an object to be inserted or deleted. Then, we

define the following notions:

UpdSeedIns = {q | q is a core object in D ∪ {p}, ∃ q’: q’ is core object in

D ∪ {p} but not in D and q ∈NNPred(q’)}

UpdSeedDel = {q | q is a core object in D \ {p}, ∃ q’: q’ is core object in D but

not in D \ {p} and q ∈NNPred(q’)}

We call the objects q ∈ UpdSeed “seed objects for the update”.

6.3 Insertions

When inserting a new object p, new density-connections may be established but

none are removed. In this case, it is sufficient to restrict the application of the clus-

tering procedure to the set UpdSeedIns. If we have to change the cluster member-

ship for an object from C to D, we perform the same change of the cluster mem-

bership for all other objects in C. Changing the cluster membership of these objects

does not involve the application of the clustering algorithm but can be handled by

simply storing the information which clusters have been merged.

When inserting an object p into the database D, we can distinguish the following

cases:

140 6 Incremental GDBSCAN

• (1) (Noise)

UpdSeedIns is empty, i.e. there are no “new” core objects after insertion of p.

Then, p is a noise object and nothing else is changed.

• (2) (Creation)

UpdSeedIns contains only core objects which did not belong to a cluster before

the insertion of p, i.e. they were noise objects or equal to p, and a new cluster

containing these noise objects as well as p is created.

• (3) (Absorption)

UpdSeedIns contains core objects which were members of exactly one cluster

C before the insertion. The object p and possibly some noise objects are ab-

sorbed into cluster C.

• (4) (Merge)

UpdSeedIns contains core objects which were members of several clusters be-

fore the insertion. All these clusters, the object p and possibly some noise ob-

jects are merged into one cluster.

Figure 62 illustrates the most simple forms of the different cases when inserting

an object p into a sample database of 2d points using parameters NPred(o, o’) iff

|o - o’| ≤ ε (ε as depicted) and MinWeight(N) iff | N | ≥ 3.

In case one, there are no other objects in the ε-neighborhood of the inserted ob-

ject p. Therefore, p will be assigned to noise and nothing else is changed. In case

two, objects p and c are the objects with a changed core object property. But, since

no other core objects are contained in their neighborhood the set UpdSeedIns con-

tains only these two objects. The points p and c are “new” core objects and there-

fore a new cluster is created, containing p and c as well as a, b, and e which were

noise objects before the insertion, but which are now density-reachable from p or

from c. In case three, after the insertion of p, object d changed its core object prop-

erty and object a is a core object contained in the neighborhood of d. The object p

6.3 Insertions 141

is also an object with changed core object property. Hence, the set UpdSeedIns con-

sists of the objects p, a and d. In this case, the object p and the previous noise object

b are absorbed into the existing cluster. In case four, the inserted point p is a core

object. Points b and c have a changed core object property, and points a and d are

core objects located in their neighborhood. These two objects are now density-con-

nected via point p and consequently the two former clusters are merged. Also the

point e is included into this new cluster. The point e was a noise object before the

insertion, but is now directly density-reachable from p.

Figure 63 presents a more complicated example of merging clusters when in-

serting an object p. In this example the value for ε is as depicted and the threshold

value for the minimum weight (using cardinality) is equal to 6. Then, the inserted

point p is not a core object, but o1, o2, o3 and o4 are core objects after the update.

The previous clustering can be adapted by analyzing only the ε-neighborhood of

these objects: cluster A is merged with cluster B and C because o1 and o4 as well

Figure 62: The different cases of the insertion algorithm

case 1: noise case 2: creation

case 3: absorption case 4: merge

p p

p p

a
b

c

e
d

a
b

cd
a b c d

e

142 6 Incremental GDBSCAN

as o2 and o3 are mutual directly density-reachable implying the merge of B and C.

The changing of cluster membership for objects in case of merging clusters can be

done very efficiently by simply storing the information about the clusters that have

been merged. Note that, using cardinality, this kind of “transitive” merging can

only occur if the threshold value is larger than 5, because otherwise p would be a

core object and then all objects in Nε(p) would already be density-reachable from p.

6.4 Deletions

As opposed to an insertion, when deleting an object p, density-connections may be

removed, but no new connections are established. The difficult case for deletion

occurs when the cluster C of p is no longer density-connected via (previous) core

objects in NNPred(p) after deleting p. In this case, we do not know in general how

many objects we have to check before it can be determined whether C has to be

split or not. In most cases, however, this set of objects is very small because the

split of a cluster is not very frequent and in general a non-split situation will be de-

tected in a small neighborhood of the deleted object p. An actual split is obviously

the most expensive operation of incremental clustering.

Figure 63: “Transitive” merging of clusters A, B, C by the insertion algorithm

objects from cluster A

objects from cluster B

objects from cluster C

p
A

B

C

o1

o2 o3
o4

6.4 Deletions 143

When deleting an object p from the database D, we can distinguish the following

cases:

• (1) (Removal)

UpdSeedDel is empty, i.e. there are no core objects in the neighborhood of ob-

jects that may have lost their core object property after the deletion of p. Then

p is deleted from D and eventually other objects in NNPred(p) change from a

former cluster C to noise. If this happens, the cluster C is completely removed

because then C cannot have core objects outside of NNPred(p).

• (2) (simple Reduction)

All objects in UpdSeedDel are directly density-reachable from each other.

Then p is deleted from D and some objects in NNPred(p) may become noise.

• (3) (potential Split)

The objects in UpdSeedDel are not directly density-reachable from each other.

These objects belonged to exactly one cluster C before the deletion of p. Now

we have to check whether or not these objects are density-connected by other

objects in the former cluster C. Depending on the existence of such density-

connections, we can distinguish a split and a non-split situation. Note that

these situations may occur simultaneously.

Figure 64 illustrates the different cases when deleting p from a sample database

of 2d points using parameters NPred(o, o’) iff |o - o’| ≤ ε (ε as depicted) and

MinWeight(N) iff | N | ≥ 3.

Case one is inverse to the example for a creation of a new cluster (see figure 62).

The point p is deleted and as a consequence the point c looses its core object prop-

erty. There are no further core objects in the neighborhood of p and c. Therefore

the remaining points a and b will become noise. Analogously, the second case is

inverse to an absorption. When deleting p, also point d changes its core object prop-

erty. In this example, the points b and c are assigned to noise because they are no

144 6 Incremental GDBSCAN

longer density-connected to any core object of the cluster. Case three is the most

difficult situation. If p is deleted, the points a, b, and c loose their core object prop-

erty and the points d, e, and f are core objects located in their neighborhood. That

means, that the set UpdSeedDel contains the three objects, d, e, and f. However,

these three objects are not directly density-connected. Therefore, we must try to

find a density-connection between them. In the example, we can easily see that

points d and e are still density-connected to each other, but f is not density-connect-

ed to any of these two points. The cluster has to be split into two parts. One con-

taining the object f, the other containing the objects d and e. This is done by a pro-

cedure similar to GDBSCAN (see section 4.1). However, the main loop

corresponding to GDBSCAN has only to consider the three points d, e, and f, i.e. a

function corresponding to ExpandCluster constructs density-connected sets, start-

ing only from one of these objects.

p

Figure 64: The different cases of the deletion algorithm

case 3: split and no split

case 2: reduction

p

case 1: removal

split

p

no split

a
b

c

e
d

a
b

cd

a b

c

d

e

f

6.5 Implementation 145

The implementation of both, the incremental insertion and the incremental de-

letion is discussed in greater detail in the next section.

6.5 Implementation

Although, we have distinguished different cases for insertions and deletions, the

implementation of all these cases can be roughly described by the following single

sequence of steps:

1. Detect objects with a changed core object property.

2. Collect the core objects in the NPred-neighborhood of those objects detected

in step 1.

3. (Try to) connect the core objects collected in step 2.

In step one and two simply the set UpdSeedIns resp. UpdSeedDel is constructed.

Trying to connect the different core objects from UpdSeed is more or less simple

in case of an insertion, and may fail in case of a deletion if a cluster is actually split.

For an efficient implementation of incremental insertions and incremental dele-

tions, we have to keep the number of NPred-neighborhood queries needed for the

update of the clustering as small as possible.

In general, step one requires one NPred-neighborhood query for the inserted or

deleted object p plus an additional NPred-neighborhood query for each object q

contained in this neighborhood of p to determine which of those objects q have

changed their core object property. Then, step two requires additional NPred-

neighborhood queries for all those objects that actually changed their core object

property to collect the relevant core objects for the set UpdSeed. However, when

146 6 Incremental GDBSCAN

using incrementally evaluable MinWeight predicates which are most frequently

used for clustering, the sets UpdSeedIns and UpdSeedDel can be computed very fast.

Incrementally evaluable MinWeight predicates (cf. definition 3) compare the

weight of a set of objects N to a threshold, i.e. MinWeight(N) iff weight(N) ≥ T. Fur-

thermore, the weight of the set N can be evaluated incrementally, i.e.

.

If using an incrementally evaluable MinWeight predicate, we store for each ob-

ject in the database the weight of its NPred-neighborhood and the number of ob-

jects contained in this neighborhood, when initially clustering the database. Then,

we only have to perform a single NPred-neighborhood query for the object p to be

inserted or deleted to detect all objects q’ with a changed core object property. Such

objects can be determined by simply analyzing the new weights for the objects in

the neighborhood of p, because an object q ∈ NNPred(p) has a changed core object

property if

- in case of inserting p:

weightstored(NNPred(q)) ≤ T and weightstored(NNPred(q)) + weight({p}) ≥ T

- in case of deleting p:

weightstored(NNPred(q)) ≥ T and weightstored(NNPred(q)) − weight({p}) ≤ T.

In the second step, we have to determine all core objects o ∈ NNPred(q’) for those

objects q’ satisfying the above condition (if there are any). Since after step one the

NPred-neighborhood of p is still in main memory, we check this set for neighbors

of q’ first and perform an additional NPred-neighborhood query only if we know

that there are more objects in the neighborhood of q’ than already contained in

NNPred(p). After step two, we have to update the stored sum of weights and the

stored number of objects for the neighborhood of the retrieved objects.

weight N() weight o{ }()

o N∈
∑=

6.5 Implementation 147

The above strategy is a major performance improvement for incrementally eval-

uable MinWeight predicates because objects with a changed core object property

after an update (different from the inserted or deleted object p) are not very fre-

quent (see section 6.6). Since this fact can already be detected in the NPred-neigh-

borhood of p, a lot of NPred-neighborhood queries can be saved in step one and

two.

Step three, i.e. trying to connect the core objects in the set UpdSeed, requires a

different number of NPred-neighborhood queries depending on the situation. In

fact, when inserting an object p into the database, no additional NPred-neighbor-

hood query is necessary. All new density-connections can be detected in the neigh-

borhoods which have already been retrieved in step one and two.

To achieve that no further accesses to objects of the database are necessary to

change cluster membership - even in the case of merging clusters - we introduce

equivalence classes of cluster-identifiers. Each equivalence class of cluster-identi-

fiers represents the identifiers for a single density-connected set. A merge situation

is then characterized by a set UpdSeedIns containing objects having cluster-identi-

fiers from different equivalence classes. In the beginning, each equivalence class

contains exactly one cluster-identifier corresponding to the density-connected sets

in the initial clustering. Then, if a merge situation occurs, i.e. if we find core objects

with cluster-identifiers from different equivalence classes, for example A and B, we

simply unite these classes, and thus get a new equivalence class C replacing the

classes A and B.

Unlike an incremental insertion, which is a very efficient operation in any case,

an incremental deletion requires additional NPred-neighborhood queries to be per-

formed in step three if a “potential split” occurs. If a “potential split” occurs, then

the clustering procedure must also consider objects outside the set UpdSeedDel.

However, it can stop in case of a non-split situation as soon as the objects from the

set UpdSeedDel are density-connected to each other.

148 6 Incremental GDBSCAN

The procedure to detect density-connections between the objects in UpdSeedDel

is implemented by a function which is similar to ExpandCluster in the algorithm

GDBSCAN (see figure 32). To reduce the number of NPred-neighborhood queries

in case of a “potential split”, however, we perform a kind of “breadth first search”.

The main difference is that the candidates for further expansion of a current densi-

ty-connected set are explicitly managed in a queue. Furthermore, the expansion

starts in parallel from each object contained in UpdSeedDel. This is more efficient

than for instance a depth-first search, due to the following reasons:

• In a non-split situation, which is more frequent than a split, we stop as soon

as all members of UpdSeedDel are found to be density-connected to each oth-

er. The breadth-first search implies that the shortest density-connections, i.e.

consisting of a minimum number of objects and thus requiring the minimum

number of region queries, are detected first.

• A split situation is in general the more expensive case because the parts of the

cluster to be split actually have to be discovered. The algorithm stops when all

but the last part have been visited. Usually, a cluster is split only into two parts

and one of them is relatively small. Using breadth-first search, we can save

many NPred-neighborhood queries on the average because then we only have

to visit the smaller part of the cluster and a small percentage of the larger one.

The procedure for handling a potential split uses a new cluster-identifier for each

part that is expanded. Because we do not want to undo this labeling of objects in

case of a non-split situation, we simply insert the new cluster-identifier(s) into the

existing equivalence class representing the cluster under consideration. On the oth-

er hand, if a part is actually separated from the current cluster, a new equivalence

class is created, containing only the new cluster-identifier.

Obviously, from time to time, we have to reorganize the cluster-identifiers for

the whole database. This must be done after the occurrence of many split and

merge situations in order to keep the computational overhead for managing the

6.6 Performance Evaluation 149

equivalence classes of cluster-identifiers small. Such a reorganization, however,

requires only a single scan over the database, and the split as well as the merge sit-

uations are the most rare cases when inserting or deleting an object more or less

randomly.

6.6 Performance Evaluation

In this section, we evaluate the efficiency of IncrementalGDBSCAN versus

GDBSCAN. As we will see, surprisingly few NPred-neighborhood queries have to

be performed on the average if we can use all the above features of our implemen-

tation, especially for incrementally evaluable MinWeight predicates. For this pur-

pose, the specialization to DBSCAN, i.e. a distance based neighborhood and car-

dinality for the weight of sets of objects, is used. This yields an incrementally

evaluable MinWeight predicate.

We present an experimental evaluation using a 2d spatial database as well as a

WWW access log database. For this purpose, we implemented both algorithms in

C++ based on implementations of the R*-tree (for the 2D spatial database) and the

M-tree (for the WWW log database) respectively. Furthermore, an analytical com-

parison of both algorithms is presented and the speed-up factors are derived for

typical parameter values depending on the database size and the number of up-

dates.

For the first set of experiments, we used a synthetic database of 1,000,000 2d

points with k = 40 clusters of similar sizes. 21.7% of all points are noise, uniformly

distributed outside of the clusters, and all other points are uniformly distributed in-

side the clusters with a significantly higher density than the noise. In this database,

the goal of clustering is to discover groups of neighboring objects. A typical real

150 6 Incremental GDBSCAN

world application for this type of database is clustering earthquake epicenters

stored in an earthquake catalog (cf. section 6.1).

In this type of application, there are only insertions. The Euclidean distance was

used as distance function and an R*-tree as an index structure. The radius ε for the

neighborhood of objects was set to 4.48 and the threshold value MinPts for the

minimum weight was set to 30. Note that the MinPts value had to be rather large

to avoid ’single link effects’ (see the discussion in section 3.2.2.2). This is due to

the high percentage of noise. We performed experiments on several other synthetic

2d databases with n varying from 100,000 to 1,000,000, k varying from 7 to 40 and

with the noise percentage varying from 10% up to 20%. Since we always obtained

similar results, we restrict the discussion to the above database.

For the second set of experiments, we used a WWW access log database of the

Institute for Computer Science at the University of Munich. This database contains

1,400,000 entries. All log entries with identical IP address and user-id within a time

gap of one hour were grouped into a session and redundant entries, i.e. entries with

file name suffixes such as “gif”, “jpeg”, and “jpg” were removed. This preprocess-

ing yielded about 69,000 sessions.

Entries are deleted from the WWW access log database after six months. As-

suming a constant daily number of WWW accesses, there are 50% of insertions and

50% of deletions in this type of application. Note that this is the largest value for

incremental deletions to be expected in real-world applications, because a higher

value would mean that the database size converges to zero in the course of time.

We used the following distance function for pairs of URL lists s1 and s2 from the

WWW sessions:

dist s1 s2,()
s1 s2∪ s1 s2∩–

s1 s2∪
--=

6.6 Performance Evaluation 151

The domain of dist is the interval [0 . . 1], dist(s,s) = 0 and dist is symmetric and

fulfills the triangle inequality1, i.e. dist is a metric function. Therefore, we can use

an M-tree to index the database and to support the performance of ε-range queries.

In our application, the radius ε for the neighborhood of objects was set to 0.4 and

the threshold value MinPts for the minimum weight was set to 2. Thus, the cluster-

ing corresponds to a “single link level” (cf. section 3.2.2.1).

The function dist is very simple because it does not take into account any kind

of ordering in the sequence of Web pages accessed by a user in a single session.

For practical applications, it may be worthwhile to develop other distance func-

tions which may for instance use the hierarchy of the directories to define the de-

gree of similarity between two URL lists.

In the following, we compare the performance of IncrementalDBSCAN versus

DBSCAN. Typically, the number of page accesses is used as a cost measure for da-

tabase algorithms because the I/O time heavily dominates CPU time. In both algo-

rithms, region queries are the only operations requiring page accesses. Since the

1. To prove the condition , we first show that it

holds if b = a ∪ c for any a and c:

. We now

show that for any other set b the left-hand side of the inequality will only be larger. For this pur-

pose, we rewrite the inequality to and show that the sum

 will be decreased for any set b which is not equal to a ∪ c: Assume a and c are

given. Then define b’ = a ∪ c. Now any set b can be constructed by inserting into b’ all objects

from b which are not already contained in b’ (yielding a new set b’’), and then subtracting all

objects from b’’ which do not belong to b (yielding the set b). In the first step, and

 do not change; and can only become larger. Consequently, the sum will

decrease. The objects subtracted from b’’ in the second step must now be contained either in a or

in c. But then again, and can only become smaller; and do not

change because holds after the insertions. Therefore, the sum will further decrease. ❏

a b∪ a b∩–
a b∪

b c∪ b c∩–

b c∪
--------------------------------------+

a c∪ a c∩–
a c∪

-------------------------------------≥

a b∪ a b∩–
a b∪

b c∪ b c∩–

b c∪
--------------------------------------+

a c∪ a–
a c∪

a c∪ c–

a c∪
---------------------------+=

2 a c∪ a c+–
a c∪

--=
2 a c∪ a c∪ a c∩+()–

a c∪

a c∪ a c∩–
a c∪

a c∪ a c∩–

a c∪
--------------------------------------≥==

1
a b∩
a b∪
----------------– 1

b c∩
b c∪
----------------–+

a c∪ a c∩–
a c∪

--------------------------------------≥

a b∩
a b∪

b c∩
b c∪
----------------+

a b’∩

b’ c∩ a b’∪ b’ c∪

a b’’∩ b’’ c∩ a b’’∪ b’’ c∪

b’’ a c∪⊇

152 6 Incremental GDBSCAN

number of page accesses of a single region query is the same for DBSCAN and for

IncrementalDBSCAN, we only have to compare the number of region queries.

Thus, we use the number of region queries as the cost measure for our comparison.

Note that we are not interested in the absolute performance of the two algorithms

but only in their relative performance, i.e. in the speed-up factor as defined below.

To validate this approach, we performed a set of experiments on our test databases

and found that the experimental speed-up factor always was slightly larger than the

analytically derived speed-up factor (experimental value about 1.6 times the ex-

pected value in all experiments).

DBSCAN performs exactly one region query for each of the n objects of the da-

tabase (see algorithm in figure 32), i.e. the cost of DBSCAN for clustering n ob-

jects denoted by CostDBSCAN(n) is

The number of region queries performed by IncrementalDBSCAN depends on

the application and, therefore, it must be determined experimentally. In general, a

deletion affects more objects than an insertion. Thus, we introduce two parameters

rins and rdel denoting the average number of region queries for an incremental in-

sertion resp. deletion. Let fins and fdel denote the percentage of insertions resp. de-

letions in the number of all incremental updates. Then, the cost of the incremental

version of DBSCAN for performing m incremental updates denoted by

CostIncrementalDBSCAN (m) is as follows:

Table 4 lists the parameters of our performance evaluation and the values ob-

tained for the 2d spatial database as well as for the WWW-log database. To deter-

mine the average values (rins and rdel), the whole databases were incrementally in-

CostDBSCAN n() n=

CostIncrementalDBSCAN m() m fins rins× fdel rdel×+()×=

6.6 Performance Evaluation 153

serted and deleted, although fdel (percentage of deletions) is equal to zero for the 2-

dimensional spatial database.

Now, we can calculate the speed-up factor of IncrementalDBSCAN versus

DBSCAN. We define the speed-up factor as the ratio of the cost of DBSCAN (ap-

plied to the database after all insertions and deletions) and the cost of m calls of In-

crementalDBSCAN (once for each of the insertions resp. deletions), i.e.:

Figure 65 and figure 66 depict the speed-up factors depending on the size n of

the database for several values of updates m. For relatively small numbers of daily

updates, e.g. m = 1,000 and n = 1,000,000, we obtain speed-up factors of 633 for

the 2d spatial database and 260 for the WWW-log database. Even for rather large

Parameter Meaning
Value for
2d spatial
database

Value for
WWW-log
database

n number of database objects 1,000,000 69,000

m number of (incremental) updates varying varying

rins average number of region queries for an
incremental insertion

1.58 1.1

rdel average number of region queries for an
incremental deletion

6.9 6.6

fdel relative frequency of deletions in the number
of all updates

0 0.5

fins relative frequency of insertions in the number
of all updates (1- fdel)

1.0 0.5

Table 4: Parameters of the performance evaluation

SpeedupFactor
CostDBSCAN n fins m× fdel m×–+()

CostIncrementalDBSCAN m()
---=

n fins m× fdel m×–+()
m fins rins× fdel rdel×+()×
---=

154 6 Incremental GDBSCAN

numbers of daily updates, e.g. m = 25,000 and n = 1,000,000, IncrementalDB-

SCAN yields speed-up factors of 26 for the 2d spatial database and 10 for the

WWW-log database.

0

10

20

30

40

50

60

70

80

90

100

0 500,000 1,000,000 1,500,000 2,000,000

size of database (n)

sp
ee

d
-u

p
 f

ac
to

r

1,000

5,000

10,000

25,000

50,000

100,000

number of
updates (m)

Figure 65: Speed-up factors for 2d spatial databases

0

10

20

30

40

50

60

70

80

90

100

0 500,000 1,000,000 1,500,000 2,000,000

size of database (n)

sp
ee

d
-u

p
 f

ac
to

r

1,000

5,000

10,000

25,000

50,000

100,000

number of
updates (m)

Figure 66: Speed-up factors for the Web-log database

6.6 Performance Evaluation 155

When setting the speed-up factor to 1.0, we obtain the number of updates (de-

noted by MaxUpdates) up to which the multiple application of the incremental ver-

sion of DBSCAN for each update is more efficient than the single application of

DBSCAN to the whole updated database.

Figure 67 depicts the values of MaxUpdates depending on n for fdel values up to

0.5 which is the maximum value to be expected in most applications. This figure

was derived by setting rins to 1.34 and rdel to 6.75. These values are computed as

the average over all test databases - 2d and Web-log. Note that - in contrast to the

significant differences of other characteristics of the two applications - the differ-

ences of the values for rins and rdel are rather small, indicating that the average val-

ues are a realistic choice for many applications. The MaxUpdates values obtained

are much larger than the actual numbers of daily updates in most real databases.

For databases without deletions (that is, fdel = 0), MaxUpdates is approximately

3 * n, i.e. the cost for 3 * n updates on a database of n objects using Incremen-

talDBSCAN is the same as the cost of DBSCAN on the updated database contain-

ing 4 * n objects. Even in the worst case of fdel = 0.5, MaxUpdates is approximately

0.25 * n. These results clearly emphasize the relevance of incremental clustering.

0

200,000

400,000

600,000

800,000

1,000,000

0 500,000 1,000,000 1,500,000 2,000,000

size of database (n)

M
ax

U
p

d
at

es

0.0

0.1

0.2

0.3

0.4

0.5

relative
frequency of
deletions
(f_del)

Figure 67: MaxUpdates for different relative frequencies of deletions

156 6 Incremental GDBSCAN

6.7 Summary

Data warehouses provide a lot of opportunities for performing data mining tasks

such as classification and clustering. Typically, updates are collected and applied

to the data warehouse periodically in a batch mode, e.g. during the night. Then, all

patterns derived from the warehouse by some data mining algorithm have to be up-

dated as well.

In this chapter, we introduced the first incremental clustering algorithm - based

on GDBSCAN - for mining in a data warehousing environment. Due to the density-

based nature of GDBSCAN, the insertion or deletion of an object affects the cur-

rent clustering only in a small neighborhood of this object. Thus, efficient algo-

rithms have been presented for incremental insertions and deletions to a clustering,

yielding the same result as the application of GDBSCAN to the whole updated da-

tabase.

A performance evaluation of IncrementalDBSCAN versus DBSCAN using a

spatial database as well as a WWW-log database was presented, demonstrating the

efficiency of the proposed algorithm (at least for incrementally evaluable Min-

Weight predicates). For relatively small numbers of daily updates, e.g. 1,000 up-

dates in a database of 1,000,000 objects, IncrementalDBSCAN yields speed-up

factors of several hundred. Even for rather large numbers of daily updates, e.g.

25,000 updates in a database of 1,000,000 objects, we obtain speed-up factors of

more than 10.

Chapter 7

Hierarchical GDBSCAN

In this chapter, we will introduce the notion of a hierarchical density-based decom-

position or hierarchical clustering. A hierarchical clustering, formally described as

a nested density-based decomposition, is simply a hierarchy of “flat” density-based

decompositions (section 7.1). We present two different versions of a modified

GDBSCAN algorithm to compute nested density-based decompositions. The first

is a general version to construct all clustering levels of a nested density-based de-

composition with respect to a given sequence of parameters (section 7.2). The sec-

ond algorithm is a more specialized version for distance-based neighborhood pred-

icates (section 7.1). The advantage of the second algorithm is that we do not

produce clustering levels explicitly. We just create an order of the database with

respect to a maximum distance ε, and store very few additional information. This

cluster-order can be used for the construction of arbitrary clustering levels with re-

spect to distance values less than ε or as a “stand-alone” tool for analyzing the clus-

tering structure of data sets having an arbitrary dimension.

158 7 Hierarchical GDBSCAN

7.1 Nested Density-Based Decompositions

7.1.1 Motivation

So far, we have only considered “flat” density-based decompositions or cluster-

ings. That means that we have partitioned the database into a set of density-con-

nected sets and a set containing noise objects. There are, however, data mining ap-

plications where hierarchical clustering information about the data is more useful

than a simple partitioning. This is especially the case if an application has one of

the following properties:

• The clustering structure of a dataset is best represented by a hierarchical struc-

ture, for instance, a dendrogram as produced by hierarchical clustering algo-

rithms (cf. chapter 2, section 2.2.1). That means, hierarchical layers of

clusters are a “natural” representation of the data set, and therefore are an im-

portant property of the data which we may want to detect by a data mining al-

gorithm. Several clustering levels may be considered as being correct. Then,

a clustering level can be selected for further investigation depending on the

granularity of the analysis.

• Hierarchical clustering information about the data allows us to select the

“best” clustering level after the clustering process. That means that a hierar-

chical clustering procedure is less sensitive to a correct parameter determina-

tion. Different layers of clusterings correspond to different parameter settings,

and thus the “correct” or “best” clustering parameters can be determined after

the clustering process. The additional information which is available for a hi-

erarchical clustering structure allows us also to use other criteria for selecting

the appropriate clustering than the density parameters, for instance, the num-

ber and the sizes of the clusters.

7.1 Nested Density-Based Decompositions 159

• It may not be appropriate to use a single parameter setting for the whole data

set. To describe the clusters present in different regions of the data space cor-

rectly, it may be necessary to select clusters from different levels in the hier-

archy. That means, we can choose different parameters for different regions

of the data space.

Figure 68 and figure 69 illustrate two different data sets where hierarchical clus-

tering information is more instructive than a simple flat density-based decomposi-

tion.

Figure 68 gives an example of a two-dimensional data set with an inherently ho-

mogeneous hierarchical clustering structure. One can easily see that there are rea-

sonable clusters present at distinct levels which are defined by different density-

parameters. Clusters at different density levels are exemplified on the right side of

the figure.

Figure 68: Example of a hierarchical clustering structure

level 1

level 2

level 3

160 7 Hierarchical GDBSCAN

Figure 69 gives an example where different density parameters can be used for

different regions of the data space to describe the clustering structure. In this ex-

ample, it is not possible to detect the clusters A, B, C1, C2, and C3 simultaneously

using the same density parameters. A flat density-based decomposition could only

consist of the clusters A, B, and C, or C1, C2, and C3. In the second case, the objects

from A and B would be noise.

These properties of the above examples could be easily detected in an appropri-

ate hierarchical representation of the clustering structures, i.e. a hierarchical den-

sity-based decomposition of the database. A hierarchical density-based decompo-

sition or hierarchical clustering can be described as a nested density-based

decomposition which is formally introduced in the next section.

7.1.2 Definitions and Properties

A nested density-based decomposition is a hierarchy of “flat” density-based de-

compositions as defined in chapter 3, definition 8. However, to construct a hierar-

chy of density-based decompositions, further assumptions with respect to the den-

Figure 69: Example of clusters with respect to different density parameters

A

B

C C1 C2

C3

7.1 Nested Density-Based Decompositions 161

sity parameters are required, i.e. we need a sequence of density parameters

specifying density-connected sets of increasing density.

For this purpose, we need a list of neighborhood predicates [NPred1, ..., NPredn]

which must be ordered in the sense that for all p ∈ D the condition

 holds. Furthermore, we have to assume a monoto-

nous MinWeight predicate, i.e. if N1 ⊆ N2 and MinWeight(N1) then also Min-

Weight(N2) (cf. definition 3, chapter 3). Then, if we combine the list of neighbor-

hood predicates with a monotonous MinWeight predicate, we obtain a sequence of

density parameters [(MinWeight, NPred1), ..., (MinWeight, NPredn)] specifying in-

creasing density values for density-connected sets. For these density parameters,

we can prove that density-connected sets with respect to a “higher” density are

completely contained in density-connected sets with respect to a “lower” density.

This is the content of the following lemma.

Lemma 9: Let D be a database of objects, let MinWeight be a monotonous predicate

for the minimum weight of sets of objects, and let NPred1 and NPred2 be two neigh-

borhood predicates such that for all p ∈ D: .

If DCS1 is a density-connected set with respect to NPred1 and MinWeight, DCS2 is

a density-connected set with respect to NPred2 and MinWeight, and p is a core ob-

ject in DCS1 and DCS2. Then DCS2 ⊆ DCS1

Proof: Let o ∈ DCS2. Then, by lemma 5, o is density-reachable from p with respect

to NPred2 and MinWeight in D. By definition, there is a chain of objects p1, ..., pn,

p1=p, pn=o such that for all i=1, ..., n−1: pi+1 is directly density-reachable from pi

with respect to NPred2 and MinWeight in D. That means that for all i=1, ..., n−1:

 and holds. Since, by assumption,

 holds for all q ∈ D, and the MinWeight predicate is

NNPredi 1+
p() NNPredi

p()⊆

NNPred2
p() NNPred1

p()⊆

pi 1+ NNPred2
pi()∈ MinWeight NNPred2

pi()()

NNPred2
q() NNPred1

q()⊆

162 7 Hierarchical GDBSCAN

monotonous, it follows that and

is also satisfied for all i=1, ..., n-1. That means, o is also density-reachable from p

with respect to NPred1 and MinWeight in D. But then, again by lemma 5, it holds

that o ∈ DCS1. ❏

Figure 70 illustrates the content of lemma 9 using our DBSCAN specialization

and two-dimensional point objects. The neighborhood predicates are defined by

using two different distances ε1 and ε2 as depicted, and the threshold value MinPts

is set to 3. The ε-neighborhoods satisfy the condition that for all p ∈ D:

, and the MinWeight predicate, i.e. comparing the cardinality of

a neighborhood to a threshold, is obviously monotonous. In this example, we can

easily recognize the set inclusion of density-connected sets satisfying the precon-

ditions of lemma 9, i.e. C1 and C2 are density-connected sets with respect to ε2 and

C is a density-connected set with respect to ε1 completely containing the sets C1

and C2.

We can now define a nested density-based decomposition recursively as a tree

consisting of “simple” density-based decompositions. The previous lemma guar-

antees that this tree actually represents the intended hierarchical partitioning of a

pi 1+ NNPred1
pi()∈ MinWeight NNPred1

pi()()

Nε2
p() Nε1

p()⊆

Figure 70: Illustration of lemma 9

MinPts = 3C

C1
C2

ε2 ε1

7.1 Nested Density-Based Decompositions 163

data set which is induced by the set-inclusion of density-connected sets satisfying

the preconditions of lemma 9.

Definition 15: (nested density-based decomposition)

Let D be a database of objects, let MinWeight be a monotonous predicate for the

minimum weight of sets of objects, and let [NPred1, ..., NPredn], n ≥ 1, be a se-

quence of neighborhood predicates such that for all p ∈ D and for all

1 ≤ i < n−1: .

A nested density-based decomposition of a database D with respect to

NPred1, ..., NPredn and MinWeight denoted as

is a rooted tree defined by the following conditions:

The empty tree is defined to be a nested density-based decomposition.

NDBD(D, MinWeight, [NPred1, ..., NPredn]) is equal to the empty tree if

[NPred1, ..., NPredn] is the empty sequence. Otherwise, the root of the tree is a

density-based decomposition DBD(D, MinWeight, NPred1) = {S1, . . ., Sk; N} of

D with respect to NPred1 and MinWeight, and the subtrees of this root are the

nested density-based decompositions

Figure 71 illustrates definition 15, i.e. the tree structure of a nested density-

based decomposition.

NNPredi 1+
p() NNPredi

p()⊆

NDBD(D, MinWeight, [NPred1, ..., NPredn])

NDBD(S1, MinWeight, [NPred2, ..., NPredn]),

. . .,

NDBD(Sk, MinWeight, [NPred2, ..., NPredn]).

164 7 Hierarchical GDBSCAN

If NDBD(D, MinWeight, [NPred1, ..., NPredn]) is a nested density-based de-

composition of D, then n is called the height of the decomposition tree. A level i in

a nested density-connected set corresponds to a density-based decomposition of

the database D with respect to the specific parameters NPredi and MinWeight used

at height i of the tree. Therefore, we define a clustering-level of a nested density-

based decomposition as the set of all density-connected sets in the tree with respect

to the same parameters used at level i; the noise of a clustering-level is defined to

be the union of all noise sets N from the root down to the respective level i.

Definition 16: (clustering-level of a nested density-based decomposition)

Let NC=NDBD(D, MinWeight, [NPred1, ..., NPredn]) be a nested density-based

decomposition of D, let N1, ..., Nx be sets of noise contained in the density-based

decompositions from the root down to the level i−1.

Figure 71: Structure of a nested density-based decomposition

DBD(D, MinWeight, NPred1)

= {S1, . . ., Sk; N}

DBD(S1, MinWeight, NPred2)

= {S11, . . ., S1k’; N1}
DBD(Sk, MinWeight, NPred2)

= {Sk1, . . ., Skk’’ ; Nk}

. . .

.

NDBD(D, MinWeight, [NPred1, ..., NPredn]):

.

.

. . .

7.1 Nested Density-Based Decompositions 165

Furthermore, let DBD(S1, MinWeight, NPredi)={S1
1, . . ., S1

m1; N1}, ...,

DBD(Sj, MinWeight, NPredi)={Sj
1, . . ., Sj

mj; N
j} be the nodes at level i of the

tree NC. Then, the clustering-level i of NC, is defined as:

such that

{S1, ..., Sk}= {S1
1, . . ., S1

m1} ∪ ... ∪ {Sj
1, . . ., Sj

mj}, and

N = N1 ∪ ... ∪ Nx ∪ N1
 ∪ ... ∪ Nj.

Lemma 10: Let NC=NDBD(D, MinWeight, [NPred1, ..., NPredn]) be a nested den-

sity-based decomposition of D. Then, a clustering-level clustering-level(NC, i) =

{S1, ..., Sk; N} of NC is a (“simple”) density-based decomposition of the database D

with respect to NPredi and MinWeight.

Proof (sketch): To prove the lemma, we show that the conditions 1) to 5) of

definition 8 hold for the clustering level.

1) clustering-level(NC, i) = {S1, ..., Sk; N}, k ≥ 0: by definition.

2) S1 ∪ . . . ∪ Sk ∪ N = D: Obviously, S1 ∪ . . . ∪ Sk ∪ N ⊆ D. Let o ∈ D. Object

o is either a core object at level i, i.e. o is a core object with respect to NPredi and

MinWeight or o is not a core object at level i. If o is core object at level i then o is

also a core object at all levels j ≤ i because and the

predicate MinWeight is monotonous. Then, there must be a path in the tree of the

nested density-based decomposition NC from the root down to level i such that o

is always contained in one of the density-connected sets of the density-based de-

compositions associated with a node in the tree. But then, o is contained in one of

the sets S1, ..., Sk. In the other case, if o is not a core object at level i, there is a small-

est level j ≤ i such that o is not a core object at level j. If j < i, then o is contained

in one of the noise sets of level j+1, and therefore o is also contained in the set N.

If j = i then o is either contained in one of the density-connected sets Si, 1 ≤ i ≤ k,

clustering-level(NC, i) = {S1, ..., Sk; N}

NNPredi 1+
o() NNPredi

o()⊆

166 7 Hierarchical GDBSCAN

or o is contained in one of the noise sets of level i depending on whether o is den-

sity-reachable or not. Thus, in all cases o ∈ S1 ∪ . . . ∪ Sk ∪ N, which means that

D ⊆ S1 ∪ . . . ∪ Sk ∪ N.

3) For all i ≤ k: Si is a density-connected set with respect to NPredi and MinWeight

in D by definition.

4) If there exists S such that S is a density-connected set in D with respect

to NPredi and MinWeight then there also exists an i ≤ k and S = Si: Let S be a den-

sity-connected set in D with respect to NPredi and MinWeight. Let o ∈ S be a core

object in S. Then, as already shown for condition 2), o is also a core object at all

levels j ≤ i and thus o must be contained in one of the sets Si, 1 ≤ i ≤ k. However,

then by lemma 5 it follows that S = Si.

5) N = D \ (S1 ∪ . . . ∪ Sk): by condition 2) and the obvious fact that noise objects

are not density-reachable, i.e. N ∩ (S1 ∪ . . . ∪ Sk) = ∅. ❏

For the reasons indicated in section 7.1.1, we may be interested in several clus-

tering levels of a nested density-based decomposition of a database D. In general,

however, clustering levels are meaningful only if we have a certain type of a neigh-

borhood predicate which can be specialized such that different specializations rep-

resent the different clustering levels.

The most important type of neighborhood for this purpose is a distance-based

neighborhood, i.e. NPred(o, o’) iff | o - o’| ≤ ε, where different values of ε, for in-

stance ε1 ≥ ... ≥ εn, correspond to different clustering levels. Another type of a

neighborhood predicate which may be adapted for the specification of clustering

levels is a neighborhood predicate combining a spatial neighborhood with a non-

spatial selection condition S, i.e. NPred(o, o’) iff spatial-neighbors(o, o’) and S(o)

and S(o’). Then, different clustering levels can be induced by different selection

conditions S1, ..., Sn becoming more and more restrictive, e.g. S1=A1(N),

S2=A1(N)∧ A2(N), ..., Sn=A1(N) ∧ ... ∧ An(N).

7.2 Algorithm H-GDBSCAN 167

7.2 Algorithm H-GDBSCAN

In the following section, we will see that a nested density-based decomposition,

and hence all clustering levels, can be computed in a similar way and, most impor-

tant, in nearly the same time as the computation of a “simple” or “flat” density-

based decomposition. This is due to the fact that “smaller” density-connected sets

which are contained in a larger density-connected set (cf. lemma 9) can be comput-

ed without much extra cost while computing the larger density-connected set.

The most expensive part of the construction of a density-connected set is the re-

trieval of the NPred-neighborhood for all objects from the databases, especially

with respect to the number of I/O operations (see chapter 4, section 4.3). However,

only a small amount of additional computations is needed to determine a neighbor-

hood for an object p if and the neigh-

borhood is already available. This is true because we just have to scan

the “larger” neighborhood to find all objects located in the neighbor-

hood , instead of consulting the database again.

To make use of this fact, we have to modify our GDBSCAN algorithm in such

a way that only a database access for the “largest” neighborhood is necessary when

constructing several clustering levels simultaneously. That means, we only want to

perform neighborhood queries for the NPred1-neighborhood from an ordered se-

quence [NPred1, ..., NPredn] of neighborhood predicates.

We present two different versions of a modified GDBSCAN algorithm. The first

is a general version to construct all clustering levels of a nested density-based de-

composition with respect to NPred1, ..., NPredn and MinWeight. The second is a

more specialized version only for distance-based neighborhood predicates. The ad-

vantage of the second algorithm is that we do not produce all clustering levels for

a set of given distances ε1, ..., εn explicitly. We just create an order of the database

NNPred2
p() NNPred2

p() NNPred1
p()⊆

NNPred1
p()

NNPred1
p()

NNPred2
p()

168 7 Hierarchical GDBSCAN

enhanced with additional information using the largest distance ε1. Then, we can

easily extract from this order all clustering levels corresponding to arbitrary dis-

tances ε, assuming only that ε ≤ ε1.

7.2.1 Multiple Clustering Levels

To detect multiple clustering levels in a single pass over the database, it is pos-

sible to use an algorithm which is very similar to GDBSCAN. However, our algo-

rithm must process several “parameters” at the same time which forces us to obey

a specific order of objects in the function which expands clusters. In the following,

we present the algorithm to construct hierarchical layers of clusters in more detail.

The main loop H-GDBSCAN is nearly the same as GDBSCAN (cf. figure 31).

The difference consists only in passing the additional parameters NPred1, ...,

NPredn to the function MultipleExpandCluster. Otherwise, it works as if using sim-

ple GDBSCAN for the largest NPred-neighborhood NPred1 (see figure 72).

Figure 72: Algorithm H-GDBSCAN

H-GDBSCAN (SetOfObjects, [NPred1, ..., NPredn], MinWeight)

// SetOfObjects is UNCLASSIFIED; Object.Processed = FALSE

ClusterIdL1 := nextId(NOISE);

FOR i FROM 1 TO SetOfObjects.size DO

Object := SetOfObjects.get(i);

IF NOT Object.Processed THEN

IF MultipleExpandCluster(SetOfObjects,Object,ClusterIdL1,

[NPred1, ..., NPredn],MinWeight)

THEN ClusterIdL1 := nextId(ClusterIdL1)

END IF;

END IF;

END FOR;

END; // H-GDBSCAN

7.2 Algorithm H-GDBSCAN 169

Also the structure of the function MultipleExpandCluster (see figure 73) does

not differ much from the function ExpandCluster for non-hierarchical GDBSCAN

(cf. figure 32, chapter 4). Only the additional parameters NPred1, ..., NPredn are

passed to the class MultipleSeeds instead of passing a single neighborhood predi-

cate to the more simple class Seeds.

The outer IF-condition in the function MultipleExpandCluster checks the core

object property for Object, passed from H-GDBSCAN. If Object is not a core ob-

ject at clustering-level 1 (defined with respect to the “largest” neighborhood pred-

Figure 73: Function MultipleExpandCluster

MultipleExpandCluster(SetOfObjects, Object,

ClId, [NPred1, ..., NPredn], MinWeight):Boolean;

neighbors := SetOfObjects.neighborhood(Object,NPred1);

Object.Processed := TRUE;

IF MinWeight(neighbors) THEN // core object at level NPred1

MultipleSeeds.init(ClId, [NPred1, ..., NPredn], MinWeight);

MultipleSeeds.update(neighbors, Object);

WHILE NOT MultipleSeeds.empty() DO

currentObject := MultipleSeeds.next();

neighbors := SetOfObjects.neighborhood(currentObject, NPred1);

currentObject.Processed := TRUE;

IF MinWeight(neighbors) THEN

MultipleSeeds.update(neighbors, currentObject);

END IF; // MinWeight(neighbors)

END WHILE; // NOT MultipleSeeds.empty()

RETURN True;

ELSE // NOT a core object at level NPred1 (and NPred2, ..., NPredn)

SetOfObjects.changeClId(Object, [NOISE, ..., NOISE]);

RETURN False;

END IF; // MinWeight(neighbors)

END; // MultipleExpandCluster

170 7 Hierarchical GDBSCAN

icate NPred1), then the object can also not be a core object at all the other clustering

levels given by NPred2, ..., NPredn because the MinWeight predicate is assumed

to be monotonous. Then, the control is returned to the main loop H-GDBSCAN

which selects the next unprocessed object of the database. Otherwise, if Object is

a core object at clustering-level 1, then a density-connected set S at level 1 is ex-

panded in the WHILE-loop of the function MultipleExpandCluster. At the same

time, all density-connected sets with respect to smaller neighborhood predicates

NPred2, ..., NPredn - which are completely contained in S (cf. lemma 9) - are con-

structed as well. The control of this non-trivial task is completely deferred to the

class MultipleSeeds which has to analyze the neighborhood of a current object for

all neighborhood predicates NPred1, ..., NPredn to determine the correct order in

which objects are investigated, and to assign correct cluster-ids for the objects at

all clustering-levels. The implementation of the class Seeds for GDBSCAN was

very simple, i.e. we could use for instance a stack or a queue. Now, the structure of

the class MultipleSeeds is more complicated. In the following, we will illustrate

this structure step by step.

We can think of MultipleSeeds as a list of lists, enhanced with additional infor-

mation. The structure of the multiple seeds-list is illustrated in figure 74.

Figure 74: Structure of MultipleSeeds

. . .
L1 L2 Ln

Id1 Id2 Idn

clustering-level:

lists:

current cluster-Id:

outLevel

minimum weight: MinWeight

NPred1 NPrednNPred2neighborhood:

7.2 Algorithm H-GDBSCAN 171

Each list in MultipleSeeds corresponds to one of the neighborhood predicates in

the parameter-list of H-GDBSCAN. Roughly speaking, an object o is inserted into

the list Li if i is the largest level such that o is contained in the NPredi-neighborhood

of a currentObject and currentObject has been a core object with respect to NPredi.

A pointer outLevel indicates the list, i.e. the clustering-level, from which the last

currentObject has been taken out by the operation MultipleSeeds.next(). Associat-

ed with each clustering-level is a current cluster-id for that clustering-level. The

cluster-ids of objects are assigned on the basis of these “cluster-level-ids”.

We adopt a hierarchical labeling scheme for cluster-ids of objects matching the

tree structure of a nested density-based decomposition. A cluster-id for an object o

is now not a simple data type, but an array of cluster-ids storing one id for each

clustering-level, i.e. o.clusterId = [Id1, ..., Idn]. If Integers are used for the single

ids, and we represent noise by the number 0, a complex cluster-id for object o may

have for instance the following entries: [2, 1, 4, 0, 0]. The meaning is that o belongs

to cluster 2 at level 1, and o also belongs at level 2 to the cluster 1 within cluster 2

of level 1, and so on (o is a noise object at level 4 and level 5 in this example). In

general, all objects which belong to the same density-connected set at a certain

clustering-level share the same prefix of their cluster-ids, i.e.: if o and o’ belong to

the same density-connected set at clustering-level i and o.clusterId=[Id1, ..., Idn],

and o’.clusterId=[Id’1, ..., Id’ n] then it holds that Id1=Id’1, ..., Idi=Id’ i.

We will now look at the methods of the class MultipleSeeds in greater detail.

The most simple one is the initialization of a new instance when a new density-con-

nected set at the first clustering-level has to be expanded. A call of the method

MultipleSeeds.init(ClId, [NPred1, ..., NPredn], MinWeight) results in a multiple

seeds-list as illustrated in figure 75. All sub-lists are empty, and all but the current

cluster-id for the first clustering-level, i.e. L1, are set to NOISE; outLevel points to

the first list L1.

172 7 Hierarchical GDBSCAN

In the course of execution, objects are inserted into MultipleSeeds by the meth-

od MultipleSeeds.update resulting in a state of the multiple seeds-list in which

some of the sub-lists contain objects, and some sub-lists may be empty (see

figure 76, left, for an illustration). The intuitive meaning of such a state can be de-

scribed as follows. An object o which is contained in the list Li is a candidate for

further expansion of all current density-connected sets at all levels j ≤ i. The reason

for this is that o has been inserted into the list Li only because o has been in the

NPredi-neighborhood of another object p which has been a core object at level i,

(which was also the largest i such that p has been a core object). But then, it holds

that p has also been a core object at all levels j ≤ i and o was contained also in these

NPredj-neighborhoods, because if j ≤ i then .

In such an arbitrary state of the MultipleSeeds, the next object from the set of

candidates for further expansion has to be selected. We already indicated that be-

cause of expanding density-connected sets for all given clustering-levels simulta-

neously, we always have to obey a specific order for the selection of candidates.

Obviously, we must always select the next elements from MultipleSeeds such that

density-connected sets with respect to smaller neighborhoods are finished first.

Figure 75: Method MultipleSeeds::init()

. . .
L1 L2 Ln

NPred1 NPrednNPred2

ClId NOISE NOISE

outLevel

∅ ∅∅

MultipleSeeds after init(ClId, [NPred1, ..., NPredn], MinWeight):

minimum weight: MinWeight

NNPredi
p() NNPredj

p()⊆

7.2 Algorithm H-GDBSCAN 173

More precisely: Assume, there are two current density-connected sets Si and Sj

with respect to neighborhoods NPredi resp. NPredj, where j < i. Then, the cluster

Si must be completely contained in the cluster Sj. Therefore, in such an incomplete

state, we must select as candidates for further expansion of the cluster Sj those ob-

jects first which are also candidates for the cluster Si before considering other can-

didates for Sj. For an arbitrary number of clustering-levels this means that we must

select the next object from the set of candidates for the unfinished density-connect-

ed sets with respect to the smallest neighborhood. Consequently, we have to select

an object from that sub-list of MultipleSeeds having the largest or “deepest” clus-

tering-level which is not empty. This is performed by the method Multiple-

Seeds.next(), depicted in figure 76, which also deletes this object from the multi-

ple seeds-list.

The method MultipleSeeds.update(neighbors, currentObject) has to accom-

plish three important tasks. First, the objects contained in a current neighbors set

must be correctly inserted into the sub-lists of MultipleSeeds. Second, a cluster-id

must be assigned to the objects, and third, the current cluster-level-ids of the class

MultipleSeeds must be correctly incremented. We will consider these tasks one af-

ter another. However, before we can understand the update of a multiple seeds-list,

Figure 76: Method MultipleSeeds::next()

MultipleSeeds::next() : OBJECT

i := largest clustering-level

such that Li is not empty;

outLevel := i;

nextObject := LoutLevel.choose();

delete(nextObject, LoutLevel);

RETURN nextObject;

END // next()

. . .

L1 Ln

Id1 Id2 Idn

outLevel

minimum weight: MinWeight

NPred1 NPrednNPred2

∅
. . .

Li

∅
. . .

∅
next()

174 7 Hierarchical GDBSCAN

we have to be familiar with the concepts of a “core-level” and a “reachability-lev-

el” for objects.

Definition 17: (core-level of an object p)

Let p be an object from a database D, let [NPred1, ..., NPredn] be a list of neigh-

borhood predicates such that for all i=1, ..., n−1,

and let MinWeight be a monotonous predicate for the minimum weight of ob-

jects. Then, the core level of p denoted as core-level(p) is defined as

Figure 77 illustrates the core-level of an object p and a MinWeight predicate de-

fined as MinWeight(N) iff | N | ≥ 4.

NNPredi 1+
p() NNPredi

p()⊆

core-level(p)
UNDEFINED if MinWeight NNPred1

p()() FALSE=,

max 1 j n MinWeight NNPredj
p()()≤ ≤{ } else,







=

p
NPredn

Npredn-1

. .
 .

NPredi

. .
 .

NPred1

Figure 77: Core-level of an object p

MinWeight(N) iff | N | ≥ 4

core-level(p)=i

core-level(p) = largest level index such that p is a core object

7.2 Algorithm H-GDBSCAN 175

Intuitively, the core-level of an object p is the largest level index i in a sequence

of levels represented by our list of neighborhood predicates [NPred1, ..., NPredn]

at which p is a core object. In other words, if core-level(p) = i then it holds that the

condition is true for all NPredj such that 1 ≤ j ≤ i, and the

condition is false for i < j ≤ n. Note that the “largest” level index corresponds to the

“smallest” neighborhood around p.

In a call of the method MultipleSeeds.update(neighbors, currentObject), the

core-level of the object currentObject can be determined easily because the argu-

ment neighbors contains the NPred1-neighborhood of currentObject which in turn

contains all NPredj -neighborhoods for the larger clustering-levels j = 2, ..., n.

The concept of a reachability-level is more closely related to the actual order in

which the objects are examined by the algorithm H-GDBSCAN. Therefore, we de-

fine the reachability-level of an object p with respect to another object o from

which p is density-reachable. There may be more than one object o for which the

reachability-level of p is defined.

Definition 18: (reachability-level of an object p with respect to an object o)

Let p and o be objects from a database D, let [NPred1, ..., NPredn] be a list of

neighborhood predicates such that for all

i=1, ..., n−1, and let MinWeight be a monotonous predicate for the minimum

weight of objects. Then, the reachability level of p with respect to o denoted as

reachability-level(p, o) is defined as

MinWeight NNPredj
p()()

NNPredi 1+
p() NNPredi

p()⊆

UNDEFINED if MinWeight NNPred1
o()() FALSE=,

max 1 j n MinWeight NNPredj
o()() p NNPredj

o()∈∧≤ ≤{ } else,






=

reachability-level(p, o) =

176 7 Hierarchical GDBSCAN

The reachability-level of p with respect to o is the smallest neighborhood at

which p is a candidate for further expansion of a density-connected set. More pre-

cisely, the reachability-level of object p with respect to o is the largest level index

i in a sequence of levels represented by our list of neighborhood predicates

[NPred1, ..., NPredn] at which p is directly density-reachable from the core object

o. Note that this requires o to be a core object. Therefore, the reachability-level can-

not be larger than the core-level of o.

Figure 78 illustrates the reachability-level of objects p1, p2, and p3 with respect

to an object o for a sequence of neighborhood predicates [NPred1, ..., NPred4] as

depicted and a MinWeight predicate defined as MinWeight(N) iff | N | ≥ 4.

The object o is a core object only in level one and level two, object p1 is found

in NPred1-neighborhood of o, p2 is found in the NPred2-neighborhood of o, and

p3 is found in the NPred3-neighborhood of o. Then, the reachability-level of p2

with respect to o is equal to 2. But also the reachability-level of p3 with respect to

o is equal to 2 (and not equal to 3) because p3 is directly density-reachable from o

o
NPred4

NPred3

NPred2

NPred1

p2
p3

p1

Figure 78: Reachability-level of objects p1, p2, p3 with respect to o

MinWeight(N) iff | N | ≥ 4

reachability-level(p1,o)=1

reachability-level(p2,o)=2

reachability-level(p, o) = largest level index such that p is
directly density-reachable from core object o

reachability-level(p3,o)=2

7.2 Algorithm H-GDBSCAN 177

only with respect to NPredi and MinWeight if i ≤ 2. The reachability-level of p1

with respect to o is equal to 1 because p1 is not contained in the NPredi -neighbor-

hood of o for clustering-levels i which are larger than 1.

In our algorithm, we will use an attribute reachability-level for each object p. In

the beginning, we set p.reachability-level to reachability-level(p, o) for an object o

which is not a core object at clustering-level one, i.e. we the reachability-level to

UNDEFINED. Consequently, the reachability-level of objects is only defined for

objects which are contained in the multiple seeds-list because if they are inserted

into MultipleSeeds they must be at least density-reachable from a core object at

level one.

For our algorithm, the reachability-level of an object p determines the position

of p in the multiple seeds-list which means that p.reachability-level may change as

long as p is a member of the multiple seeds-list. The object p has always to be con-

tained in that sub-list of MultipleSeeds which is associated with the largest reach-

ability-level of p. As we can easily see, this requirement is a necessary pre-condi-

tion for the method MultipleSeeds.next() to select the next element correctly.

However, this implies that the reachability-level of an object p which is already a

member of the multiple-seeds list has to be changed if p becomes again directly

density-reachable from another core object at a larger clustering-level.

Figure 79 depicts an example for a changing reachability-level of an object p in

the course of execution of the algorithm. Le o1 be the first object selected for an

expansion of clusters. Then, the reachability-level of p with respect to o1 (at time

t) is equal to two because o1 is a core object at levels one and two and p is contained

in the NPred2-neighborhood of o1. Assume that the next object selected by the

method MultipleSeeds.next() is object o2. Now, at time t+1, the object p is directly

density-reachable from o2 at level three and therefore, the reachability-level of p at

time t+1 is changed to three.

178 7 Hierarchical GDBSCAN

Now, we can explain the method MultipleSeeds.update which is called by the

function MultipleExpandCluster. The algorithm for the update of a multiple seeds-

list is depicted in figure 80. As already indicated, it consists of the three parts “in-

crementing cluster-level-ids”, “insertion of yet unprocessed objects”, and “assign-

ment of correct cluster-ids to each object”. To see that our algorithm is correct, we

have to look at these different parts in more detail.

The insertion of the objects from the set neighbors into the multiple seed-list is

controlled by two variables, Object.processed and Object.reachability_level.

‘Object.processed = TRUE’ holds only if a neighborhood query has already been

performed for Object - either because it has been the first object considered for ex-

panding a new density-connected set at level one or because it has been selected

for further expansion of a cluster by the method MultipleSeeds.next(), i.e. it has al-

ready been a member of the multiple seeds-list. Obviously, these objects must not

be inserted into the multiple seeds-list (again). Therefore, Object is considered for

o1 NPred4

NPred3

NPred2

NPred1

p
o2

o1
NPred4

NPred3

NPred2

NPred1

p
o2

Figure 79: Changing reachability-level of an object p

MinWeight(N) iff | N | ≥ 4

reachability-level(p,o1)=2

currentObject = o1

reachability-level(p,o2)=3

currentObject = o2

MultipleSeeds.next() = o2

7.2 Algorithm H-GDBSCAN 179

MultipleSeeds::update(neighbors, CenterObject);

c_level := core_level(CenterObject);

IF c_level > outLevel THEN

currentClusterIds[outLevel + 1] = nextId(currentClusterIds[outLevel + 1]);

FOR i := outLevel + 2 TO max_level DO

IF i ≤ c_level THEN

currentClusterIds[i] = nextId(NOISE);

IF c_level < i ≤ max_level THEN

currentClusterIds[i] = NOISE;

END FOR;

SetOfObjects.changeClId(CenterObject, currentClusterIds);

FORALL Object FROM neighbors DO

previous_r_level := Object.reachability_level;

new_r_level := reachability_level(Object, CenterObject, c_level);

IF NOT Object.Processed THEN

IF previous_r_level = UNDEFINED THEN

Object.reachability_level := new_r_level;

insert(Object, Lnew_r_level);

ELSE

IF new_r_level > previous_r_level THEN

Object.reachability_level := new_r_level;

delete(Object, Lprevious_r_level);

insert(Object, Lnew_r_level);

FOR i := previous_r_level+1 TO max_level DO

IF i ≤ new_r_level THEN

Object.ClIds[i] := currentClusterIds[i];

IF new_r_level < i ≤ max_level THEN

Object.ClIds[i] := NOISE;

END; // MultipleSeeds::update

Figure 80: Method MultipleSeeds::update()

Insert

Increment
cluster-level-ids

Assign
cluster-ids

180 7 Hierarchical GDBSCAN

insertion only if Object.processed = FALSE holds. This condition, however, does

not exclude that Object may already be a member of MultipleSeeds which can be

decided by looking at the variable Object.reachability_level.

If Object.reachability_level = UNDEFINED, it holds that Object is not yet a

member of the multiple seeds-list, because, in any case, if an object is inserted into

MultipleSeeds, its reachability-level will be set to a defined value. For those ob-

jects, we simple compute the new reachability-level ‘new_r_level’ with respect to

the current core object (CenterObject), and insert Object into the sub-list of Multi-

pleSeeds which is associated with new_r_level. In the other case, i.e.

if Object.reachability_level has a value different from UNDEFINED, then Object

must have been directly density-reachable from a previously selected core object,

and hence, has been inserted into the multiple seeds-list. Because it also holds that

Object.processed = FALSE, Object must still be a member of MultipleSeeds. In

this case, we check if the new reachability-level of Object is larger than the previ-

ous reachability-level. If yes, the reachability-level of Object must be changed to

the new reachability-level and Object must be moved to the corresponding sub-list

for that new reachability-level.

The assignment of cluster-ids for objects is made on the basis of the reachabili-

ty-level, i.e. it is based on the direct density-reachability from the current core ob-

ject. However, new cluster-ids are only assigned for levels greater than the previ-

ous reachability-level of an object (we assume that UNDEFINED is the smallest

reachability-level). For levels which are smaller than or equal to the previous

reachability-level, a cluster-id has already been set or it is UNDEFINED. Such

cluster-ids which are already set will not change because we are still expanding the

same density-connected set at these levels. Only if the reachability-level of an ob-

ject increases, we have to assign the current cluster-level-ids from the previous

reachability-level up to the new reachability-level. That is necessary because Ob-

ject has become directly density-reachable from the core object CenterObject at

larger clustering-levels, and therefore belongs to the current clusters at these larger

7.2 Algorithm H-GDBSCAN 181

level. For clustering-levels that are even larger than the new reachability-level of

Object, the cluster-id has to be set to NOISE because Object is not yet density-

reachable from a core object at these levels. Obviously, this assignment of cluster-

ids for objects is only correct if the cluster-level-ids are correct.

The setting for the cluster-level-ids is controlled by the core-level of the current

core object (CenterObject). However, nothing is changed if the core-level of the

CenterObject is smaller than the current outLevel, i.e. smaller than the level from

which CenterObject was selected. In this case, CenterObject has been density-

reachable from another core object at level one up to outLevel and its cluster-ids

are already set correctly. Furthermore, no current cluster has been finished because

CenterObject has been a candidate for further expansion of clusters at levels one

up to outLevel. That means, we are just going to add objects which are directly den-

sity-reachable from CenterObject to the current clusters at these levels. Conse-

quently, the cluster-level-ids do not have to be changed.

In the other case, if the core-level of CenterObject is larger than the current out-

Level, a new cluster must be started at all levels which are larger than the current

outLevel up to the core-level of CenterObject. Because we have an unfinished

cluster C at outLevel, the cluster-id for outLevel is not changed. If there had been

clusters at larger levels which were completely contained in the cluster C, these

clusters are now all finished because otherwise outLevel would have been larger.

That means that the next cluster within cluster C is started at level outLevel+1.

Consequently, the cluster-id for this level is incremented. This case corresponds to

an empty seeds-list in the execution of the non-hierarchical GDBSCAN algorithm

for the NPred-parameter which is associated with outLevel+1. If CenterObject is

also a core object at even larger levels, the new clusters which are started at these

levels are completely contained in the newly created cluster at level outLevel+1.

Because we adopted a hierarchical labeling scheme for cluster-level-ids, the clus-

ter-ids for these consecutive levels must be set to the first valid cluster-id in the or-

der of all cluster-ids.

182 7 Hierarchical GDBSCAN

At levels larger than the core-level of CenterObject, there exists no current clus-

ter because CenterObject is not a core object at levels larger than its core-level.

Therefore, we set the cluster-level-ids for these levels equal to NOISE.

The call of the method SetOfObjects.changeClId(CenterObject, currentClus-

terIds) sets the cluster-ids of CenterObject to the current cluster-level-ids. Note

that this is just an abbreviation. For smaller levels than outLevel, we do not have to

change the cluster-ids of CenterObject because they are already equal to the cur-

rent cluster-level-ids.

Now it is easy to see that the hierarchical GDBSCAN algorithm actually com-

putes a nested density-based decomposition of a database because we can construct

a flat density-based decomposition for each level i and also use a hierarchical la-

beling scheme for cluster-ids. A density-connected set at level i is given by all ob-

jects which have the same prefix of their cluster-ids. If p and q are density-connect-

ed at a level i, i.e. they belong to the same density-connected set at level i, then p

and q are also density-connected at all smaller levels j (1 ≤ j ≤ i). Therefore, p and

q will share the same prefix of their cluster-ids, i.e. p.clusterIds=[Id1, ..., Idn],

q.clusterIds=[Id’ 1, ..., Id’ n], and Idj = Id’ j ≠ NOISE, for all 1 ≤ j ≤ i. Then, the noise

at level i is simply given by the set of all objects o having the cluster-id NOISE at

level i, i.e. o.clusterIds=[Id1, ..., Idn] and Idi = NOISE. As we have seen, our algo-

rithm assigns the cluster-ids in exactly this way.

We performed several experiments to measure the run-time of the algorithm H-

GDBSCAN. As expected, the run-time of H-GDBSCAN using the parameters

([NPred1, ..., NPredn], MinWeight) is very similar to the run-time of the non-hier-

archical GDBSCAN algorithm using the largest neighborhood, i.e. using the pa-

rameters (NPred1, MinWeight). This is due to the fact that the additional cost for

managing a multiple seeds-list instead of a regular seeds-list is dominated by the

cost of the region queries. Actually, the overall run-time of H-GDBSCAN in all ex-

periments was between 1.3 and 1.5 times the run-time of GDBSCAN.

7.2 Algorithm H-GDBSCAN 183

7.2.2 Ordering the Database with respect to Cluster Structure

A nested density-based decomposition is very useful for cluster analysis. However,

there are some problems considering the number of different levels and their cor-

responding NPred-values. For example, the most important neighborhood predi-

cates are distance-based, and for distance-based neighborhood predicates there are

an infinite number of possible distance values. In such applications, we do not

know the number of different levels needed to reveal the inherent cluster structure

of a data set in advance. Even if we would include a very large number of different

clustering-levels - which requires a lot of secondary memory to store the different

cluster-ids for each point and clustering level - we may miss the “interesting” clus-

tering levels because the “correct” parameters were not included in the parameter

list.

In this section we present a technique to overcome the mentioned problems for

distance-based NPred-neighborhood predicates and a monotonous MinWeight

predicate. The basic idea is to run an algorithm which is very similar to the hierar-

chical algorithm presented in the previous section but which simply produces a

special order of the database with respect to a so called “generating distance”. In-

stead of computing and storing cluster-ids for different clustering-levels, this algo-

rithms stores only two additional values for each object: the core-distance and the

reachability-distance. These notions are formally introduced below.

The ordering with respect to the cluster structure of a data set can be used for a

fast interactive approximation of “correct” or “interesting” clustering-levels be-

cause it allows a fast computation of every clustering level with respect to a smaller

distance than the generating distance. However, we will argue that this is not the

best way to use the cluster-order for the purpose of cluster analysis. Since the clus-

ter-order of a data set contains the information about the inherent clustering struc-

ture of that data set (up to the generating distance), we can use it as a stand-alone

tool which offers good opportunities for an interactive cluster analysis procedure.

184 7 Hierarchical GDBSCAN

In the following, we restrict our considerations to distance-based neighborhood

predicates and use the comparison of the cardinality of a neighborhood set to a

threshold as MinWeight predicate, i.e. we restrict the discussion to the parameter

specialization for DBSCAN as introduced in definition 9. For a better understand-

ing of the following algorithm, we use as parameters a distance ε and a value

MinPts instead of NPred and MinWeight.

The algorithm to create an extended order of a database with respect to the clus-

ter structure is similar to the hierarchical version of GDBSCAN. To explain this

algorithm, we need the notion of a core-distance and a reachability-distance which

correspond directly to the core-level and the reachability-level introduced in the

previous section for H-GDBSCAN.

Definition 19: (core-distance of an object p)

Let p be an object from a database D, let ε be a distance value, let Nε(p) be the

ε-neighborhood of p, and let MinPts be a threshold value for the minimum

weight of Nε(p). Then, the core-distance of p denoted as core-distance(p) is de-

fined as

The core-distance of an object p is simply the smallest distance to an object in

its ε-neighborhood such that p would be a core object if we would use this distance

instead of ε; the core-distance is UNDEFINED if this distance would be larger than

the value of ε.

The intuition behind this notion is the same as for the core-level defined in

definition 17. The difference is only that we do not assume different predefined

levels. Figure 81 illustrates the notion of a core-distance.

core-distance(p)
UNDEFINED if Nε p() MinPts<,

MinPts-distance p() else,



=

7.2 Algorithm H-GDBSCAN 185

Definition 20: (reachability-distance of an object p with respect to an object o)

Let p and o be objects from a database D, let Nε(o) be the ε-neighborhood of p,

and let MinPts be a threshold value for the minimum weight of Nε(o). Then, the

reachability-distance of p with respect to o denoted as

reachability-distance(p, o) is defined as

Again, the intuition behind the notion of a reachability-distance is the same as

for the reachability-level defined in definition 18 except, that we do not assume dif-

ferent predefined levels. Figure 82 illustrates the notion of a reachability-distance.

p
ε

d

Figure 81: Core-distance of an object p

MinWeight(N) iff | N | ≥ 4

core-level(p) = d

core-distance(p) = smallest distance such that p is a core object

UNDEFINED if Nε p() MinPts<,

max core-distance(o), distance(o,p)() else,



=

reachability-distance(p, o) =

186 7 Hierarchical GDBSCAN

As for the reachability-level defined in the previous section, the reachability-

distance of an object p depends on the core object with respect to which it is calcu-

lated. A current value is stored for each object in the execution of our algorithm

and this value may change over time.

Now we can to explain the algorithm, called H-DBSCAN-ORDER, to generate

an order of a data set with respect to the clustering structure. In principle,

H-DBSCAN-ORDER works like H-GDBSCAN using a “generating distance” ε

corresponding to the largest neighborhood predicate NPred1. However, we do not

assign cluster-level-ids but store the objects in the order in which they are pro-

cessed. Also stored in this order are the core-distance and the last reachability-dis-

tance for each object. We will see that this information is sufficient to extract the

clustering level with respect to any distance d which is smaller than the generating

distance ε from this order. Consequently, we do not need any further neighborhood

predicates or distances as input parameter for H-DBSCAN-ORDER.

Figure 82: Reachability-distance of objects p1, p2, p3 with respect to o

MinWeight(N) iff | N | ≥ 4

reachability-level(p1,o)=d1

reachability-level(p2,o)=d2

reachability-level(p, o) = smallest distance such that p is
directly density-reachable from core object o

reachability-level(p3,o)=core-distance(o) o

p2

p3

p1

ε

d1d2

core-distance(o)

7.2 Algorithm H-GDBSCAN 187

Figure 83 illustrates the main loop of the algorithm H-DBSCAN-ORDER. It is

easy to see the similarity to the main loop of H-GDBSCAN. The only difference -

except the more specialized parameter list - is that we open at the beginning a file

OrderedFile for writing and close this file after ending the loop. Each object from

a database SetOfObjects is simply handed over to a procedure ExpandCluster-

Order if the object is not yet processed.

The structure of the procedure ExpandClusterOrder does not differ much from

the function ExpandCluster for simple GDBSCAN (cf. figure 32, chapter 4) or the

function MultipleExpandCluster for H-GDBSCAN (cf. figure 73, above).

First, we perform an ε-range query for the object Object, passed from the main

loop H-GDBSCAN-ORDER, set its reachability-distance to UNDEFINED and de-

termine its core-distance. Then, Object is written to OrderedFile. In the IF-condi-

tion the procedure ExpandClusterOrder checks the core object property for Object.

If Object is not a core object at the generating distance ε, the control is simply re-

turned to the main loop H-GDBSCAN-ORDER which selects the next unproc-

essed object of the database. Otherwise, if Object is a core object at the generating

distance ε, we proceed as if expanding a density-connected set S for this distance ε

in the WHILE-loop of ExpandClusterOrder. However, we store each object select-

Figure 83: Algorithm H-DBSCAN-ORDER

H-DBSCAN-ORDER (SetOfObjects, ε, MinPts, OrderedFile)

OrderedFile.open();

FOR i FROM 1 TO SetOfObjects.size DO

Object := SetOfObjects.get(i);

IF NOT Object.Processed THEN

ExpandClusterOrder(SetOfObjects, Object, ε, MinPts, OrderedFile)

END IF;

END FOR;

OrderedFile.close();

END; // H-DBSCAN-Order

188 7 Hierarchical GDBSCAN

ed from the seeds-list after its core-distance is determined. The reachability-dis-

tance of each object selected from the seeds-list is then already set to a defined val-

ue. Managing the reachability-distances for the objects is handled by the class

OrderSeeds. The pseudo-code for the procedure ExpandClusterOrder is depicted

in figure 84.

Again, as for H-GDBSCAN, the structure of the class OrderSeeds is crucial for

the execution of our algorithm. However, the structure is much simpler than the

structure of the class MultipleSeeds because we do not need to assign correct clus-

Figure 84: Procedure ExpandClusterOrder

ExpandClusterOrder(SetOfObjects, Object, ε, MinPts, OrderedFile);

neighbors := SetOfObjects.neighborhood(Object, ε);

Object.Processed := TRUE;

Object.reachability_distance := UNDEFINED;

Object.setCoreDistance(neighbors, ε, MinPts);

OrderedFile.write(Object);

IF Object.core_distance <> UNDEFINED THEN

OrderSeeds.init();

OrderSeeds.update(neighbors, Object);

WHILE NOT OrderSeeds.empty() DO

currentObject := OrderSeeds.next();

neighbors := SetOfObjects.neighborhood(currentObject, ε);

currentObject.Processed := TRUE;

currentObject.setCoreDistance(neighbors, ε, MinPts);

OrderedFile.write(currentObject);

IF currentObject.core_distance <> UNDEFINED THEN

OrderSeeds.update(neighbors, currentObject);

END IF;

OrderedFile.write(currentObject);

END WHILE;

END IF;

END; // ExpandClusterOrder

7.2 Algorithm H-GDBSCAN 189

ter-level-ids for the objects. The objects contained in OrderSeeds are stored in a

priority-queue, sorted by their reachability-distance. Intuitively, this is similar to a

MultipleSeeds-list in H-GDBSCAN for an infinite number of clustering levels

smaller than the largest level determined by NPred1.

The method OrderSeeds:next() selects the first object from the priority-queue,

i.e. an object having the smallest reachability-distance in the queue. The method

OrderSeeds::update(...) is depicted in figure 85. The method is easy to understand

if we compare it with the method MultipleSeeds::update(...) (cf. figure 80, above).

The pseudo-code for OrderSeeds::update corresponds almost one-to-one to the

“insert”-part of the method MultipleSeeds::update(...). The reachability-distance

for each object in the set neighbors is determined with respect to the center-object.

Objects which are not yet in the priority-queue are simply inserted with their reach-

ability-distance. Objects which are already in the queue are moved further to the

top of the queue if their new reachability-distance is smaller than their previous

reachability-distance. Figure 85 depicts the code for OrderSeeds::update().

Figure 85: Method OrderSeeds::update()

OrderSeeds::update(neighbors, CenterObject);

c_dist := CenterObject.core_distance;

FORALL Object FROM neighbors DO

IF NOT Object.Processed THEN

new_r_dist := max(c_dist, CenterObject.distance(Object));

IF Object.reachability_distance = UNDEFINED THEN

Object.reachability_distance := new_r_dist;

insert(Object, new_r_dist);

ELSE // Object already in OrderSeeds

IF new_r_dist < Object.reachability_distance THEN

Object.reachability_distance := new_r_dist;

decrease(Object, r_dist);

END FORALL;

END; // OrderSeeds::update

190 7 Hierarchical GDBSCAN

Due to its similarity to the algorithm H-GDBSCAN, the run-time of the algo-

rithm H-DBSCAN-ORDER is the same as the run-time for H-GDBSCAN. Ex-

tracting specified clustering levels requires only a single scan over the cluster-or-

dered data set, i.e. it requires O(n) time, and therefore does not change the overall

run-time complexity of the algorithm.

We can extract any density-based clustering from this order with respect to

MinPts and a clustering-distance ε which is smaller than the generating distance d

by simply “scanning” the cluster-ordered data set and assign cluster-level-ids de-

pending on the reachability-distance and the core-distance of the objects. Figure 86

depicts the algorithm ExtractClustering for constructing a single density-based de-

composition with respect to ε and MinPts from the cluster-order of a database.

Modifying this algorithm to extract multiple clustering-levels simultaneously is a

trivial task which is not presented here since it offers no additional insights.

Figure 86: Algorithm ExtractClustering

ExtractClustering (ClusterOrderedObjects, ε, MinPts)

// Precondition: ε ≤ generating distance for ClusterOrderedObjects

ClusterId := NOISE;

FOR i FROM 1 TO ClusterOrderedObjects.size DO

Object := ClusterOrderedObjects.get(i);

IF Object.reachability_distance > ε THEN // also UNDEFINED > ε
IF Object.core_distance ≤ ε THEN

ClusterId := nextId(ClusterId);

Object.clusterId := ClusterId;

ELSE

Object.clusterId := NOISE;

END IF

ELSE // Object.reachability_distance ≤ ε

Object.clusterId := ClusterId;

END IF;

END FOR;

END; // ExtractClustering

7.2 Algorithm H-GDBSCAN 191

To extract a clustering, i.e. to assign cluster-ids to the objects, we first have to

look at the reachability-distance of the current object Object. If the reachability-

distance of Object is larger than the clustering-distance ε, the object is not density-

reachable with respect to ε and MinPts from any of the object which are located

before the current object in the cluster-order. This is obvious because if Object

would have been density-reachable with respect to ε and MinPts from a preceding

object in the order, it would have been inserted into OrderSeeds with a reachabil-

ity-distance of at most ε while generating the cluster-order.

Therefore, if the reachability-distance is larger than ε, we look at the core-dis-

tance of Object and start a new cluster if Object is a core object with respect to ε
and MinPts; otherwise, Object is assigned to NOISE. Note that the reachability-

distance of the first object in the cluster-order is always UNDEFINED and that we

assume UNDEFINED to be greater than any real distance ε.

If the reachability-distance of the current object is smaller than ε, we simply as-

sign this object to the current cluster. Obviously the reachability-distance of Object

can only be smaller than ε if Object is density-reachable with respect to ε and

MinPts from a preceding core object o in the cluster-order. Because the procedure

ExpandClusterOrder collects and processes density-reachable objects like the hi-

erarchical GDBSCAN algorithm no object between o and Object in the order can

have a larger reachability-distance than ε. This is true because if o and Object are

density-reachable with respect to ε and MinPts, there is a chain of directly density-

reachable objects between o and Object and all objects in the chain have a reach-

ability-distance smaller than ε. Starting from o, the object in the chain are pro-

cessed by ExpandClusterOrder before any object having a greater reachability-dis-

tance than ε because OrderSeeds iteratively collects directly density-reachable ob-

jects and sort them according to increasing reachability-distance. But then, because

no reachability-distance has been greater than ε, no new cluster has been started

since visiting o by the algorithm ExtractClustering. Consequently, Object will be

assigned to the same cluster as o.

192 7 Hierarchical GDBSCAN

The clustering created from a cluster-ordered data set by ExtractClustering is ex-

actly the same as created by DBSCAN if we set MinPts ≤ 3, i.e. if there are no bor-

der objects (cf. lemma 4 and the belonging footnote on page 56). Otherwise, if bor-

der object exist, some of them may be assigned to NOISE when extracted by the

algorithm ExtractClustering. This happens if they were processed by the algorithm

H-DBSCAN-ORDER before a core object of the corresponding cluster has been

found. We already discussed this case for the GDBSCAN algorithm where these

border object are re-assigned to a cluster when they are found again in the neigh-

borhood of some core object (see page 79). When extracting a clustering from a

cluster-order of a data set we cannot recognize these cases because we do not use

neighborhood queries any more.

To re-assign those objects assigned to NOISE which actually belong to one of

the clusters, we could perform a second pass over the database and look for core

objects in the neighborhood of noise objects. However, our experiments indicate

that such border objects are very rare and that the resulting clustering differs only

very slightly from the clustering produced by DBSCAN when using higher

MinPts-values. Therefore, we can omit a second pass over the database after the

extraction of clustering without much loss of information.

The extraction of a clustering from a cluster-ordered data set can be understood

easily if the problem is represented graphically. For a cluster-order it holds that

each object having a lower reachability-distance than ε belongs to a cluster with re-

spect to ε and MinPts and objects belonging to the same cluster are close to each

other in the cluster-order. Furthermore, each object, except the “first” (i.e. the left-

most) object belonging to a cluster, having a higher reachability-distance than ε is

in general a noise object. In principle, we can “see” such a clustering if we plot the

reachability-distance values for each object in the cluster-order of a data set and

then draw a horizontal line at a reachability-distance of ε. Figure 87 depicts this vi-

sualization of a density-based clustering which can be extracted from a cluster-or-

dered data set.

7.2 Algorithm H-GDBSCAN 193

It is very easy to extract from a cluster-order of a data set not only a “flat” den-

sity-based decomposition but also a nested density-based decomposition with re-

spect to an arbitrary number of levels in a single pass over the ordered data set.

However, if we look at figure 87 more closely, we can see that there is actually no

need to do this for the purpose of data mining. The order of a database with respect

to the clustering structure already contains the clustering information in a very

comprehensible way. Therefore, we argue that the best way to do cluster analysis

in a semi-automatic way is to use the cluster-order of a data set as a stand-alone

tool. A user can see all clusters of all densities directly in a visualization of the clus-

ter-order - up to a minimum density specified by the generating distance d.

Note that the visualization of the cluster-order is independent of the dimension

of the data set. For example, if the objects of a high-dimensional data set would be

distributed similar to the distribution of the 2-dimensional data set depicted in

cluster-order

reachability-
distance

Figure 87: Illustration of clustering level and cluster-order

ε

of the objects

clusters

generating distance d = 10
MinPts = 10

d

194 7 Hierarchical GDBSCAN

figure 87 (i.e. there are three “Gaussian bumps” in the data set), the “reachability-

plot” would also look very similar.

A further advantage of cluster-ordering a data set compared to other clustering

methods is that the reachability-plot is rather insensitive to the input parameters of

the method, i.e. the generating distance d and the value for MinPts. Roughly speak-

ing, the values have just to be “large” enough to yield a good result. The concrete

values are not crucial because there is a large range of possible values for which

we always can see the clustering structure of a data set when looking at the corre-

sponding reachability-plot. Figure 88 shows the effects of different parameter set-

tings on the reachability-plot for the same data set used in figure 87. In the first plot

we used a smaller generating distance d for the second plot we set MinPts to the

smallest possible value. Although, these plots look different from the plot depicted

in figure 87, the overall clustering structure of the data set can be recognized in

these plots as well.

Figure 88: Effects of parameter settings on cluster-order

generating distance d = 5
MinPts = 10

generating distance d = 10
MinPts = 2

d
UNDEFINED

d
UNDEFINED

7.2 Algorithm H-GDBSCAN 195

The influence of the generating distance d on the reachability-plot concerns the

number of clustering-levels which we can see in the reachability-plot. The smaller

we choose the value of d the more objects may have an UNDEFINED reachability-

distance and we may therefore not see clusters of lower density, i.e. clusters where

the core objects are core objects only for distances larger than d.

The optimal value for d is the smallest value so that a density-based decompo-

sition of the database with respect to d and MinPts consists of only one cluster con-

taining almost all points of the database. Then, the information of all clustering lev-

els will be contained in the reachability-plot. However, there is a large range of

values around this optimal value for which the appearance of the reachability-plot

will not change significantly. Therefore, we can use rather simple heuristics to de-

termine the value for d which guarantee only that the distance value will not be too

small. For example, we can use the expected k-nearest-neighbor distance (for k =

MinPts) under the assumption that the objects are randomly distributed, i.e. under

the assumption that there are no clusters. This value can be determined analytically

for a data space DS containing N points. The distance is equal to the radius r of a

d-dimensional hyper-sphere S in DS where S contains exactly k points. Under the

assumption of a random distribution of the points, the following holds for the vol-

ume of S: .

The volume of a d-dimensional hyper-sphere S having a radius r is given as

Where Γ denotes the Gamma-function. The expression can be evalu-

ated easily using the following equations: and .

VolumeDS

N
------------------------- k× VolumeS=

VolumeS r()
πd

Γ d
2
--- 1+()

-------------------- r
d×=

Γ d
2
--- 1+()

Γ 1
2
---() π= xΓ x() Γ x 1+()=

196 7 Hierarchical GDBSCAN

The radius r can be now computed as

This radius may be larger than necessary. However, concerning the efficiency

of the algorithm H-DBSCAN-ORDER with respect to large generating distances

d, recall that using multiple neighborhood queries yields higher speed-up factors

for larger neighborhoods.

The effect of the value for MinPts on the visualization of the cluster-order can

be seen in figure 88. The overall shape of the reachability-plot is very similar for

different MinPts values. However, for lower values the reachability-plot will look

more jagged and higher values for MinPts will significantly smoothen the curve.

Our experiments indicate that we will always get good result using any value be-

tween 10 and 20 for MinPts.

To show that the reachability-plot is very easy to understand, we will finally

present some examples. Figure 89 depicts the reachability-plot for a very high-di-

mensional “real-world” data set. The data set contains 10,000 gray-scale images of

32x32 pixels. Each object is represented by a vector containing the gray-scale val-

ue for each pixel. Thus, the dimension of the vectors is equal to 1,024. The Euclid-

ean distance function was used as similarity measure for these vectors.

r
VolumeDS k× Γ× d

2
--- 1+()

N πd×
---d=

Figure 89: Part of the reachability-plot for a 1,024-d image data set

.

7.2 Algorithm H-GDBSCAN 197

Figure 90 shows further examples of reachability-plots for several data sets hav-

ing different clustering characteristics. For a better comparison of the real distribu-

tion with the cluster-order of the objects, the data sets were synthetically generated

in two dimensions.

(a) clusters without noise

(b) clusters of different shapes and sizes

(d) hierarchical clustering structure

(c) clusters of different densities

Figure 90: Reachability-plots for data sets having different characteristics

198 7 Hierarchical GDBSCAN

7.3 Summary

In this chapter, the notion of a nested density-based decomposition was introduced

which is simply a hierarchy of “flat” density-based decompositions.

We presented the algorithm H-GDBSCAN to compute a nested density-based

decomposition with respect to a monotonous MinWeight predicate and a sequence

of neighborhood predicates NPred1, ..., NPredn where for all i=1, ..., n-1 the con-

dition holds. The run-time of the algorithm H-

GDBSCAN is nearly the same as the run-time of GDBSCAN for computing a

“flat” density-based decomposition with respect to MinWeight and NPred1 be-

cause density-connected sets with respect to smaller neighborhoods are completely

contained in density-connected sets with respect to larger neighborhoods. When

computing a nested density-based decomposition H-GDBSCAN proceeds in prin-

ciple like GDBSCAN. The difference is only that H-GDBSCAN has to obey a cer-

tain order in which objects are processed.

We developed a more specialized version of a hierarchical clustering algorithm

H-DBSCAN-ORDER which is designed for distance-based neighborhood predi-

cates. H-DBSCAN-ORDER does not produce clustering levels explicitly. It just

stores the objects in the order in which H-GDBSCAN would process the objects if

we would use all, i.e. an infinite number of distance values (from 0 up to a gener-

ating distance d) as input parameters. Furthermore, H-DBSCAN-ORDER does not

make any decision with respect to cluster membership (cluster-ids). Instead, it just

stores for each object o the information which would be used by H-GDBSCAN to

assign cluster-ids, i.e. the reachability-distance and the core-distance of o.

From this cluster-order we can extract any clustering level for distance values ε

if ε ≤ d. However, the cluster-oder is also a powerful “stand-alone” tool for cluster

analysis. By visualizing the reachability-distances a user can actually see the clus-

tering structure in a database independent of the dimension of the data space.

NNPredi 1+
p() NNPredi

p()⊆

Chapter 8

Conclusions

In this chapter the achievements of this thesis are shortly summarized and some di-

rections for future research are indicated.

200 8 Conclusions

This thesis presented the following contributions to the field of spatial data mining:

First, we developed the general framework of density-based decompositions to

describe various cluster-like structures, in particular: results produced by different

clustering algorithms, patterns recognized by region growing algorithms as well as

“connected” groups of objects of - in principle - arbitrary data-type satisfying cer-

tain conditions, for instance connected groups of polygons from a geographic in-

formation system. To specify a particular density-based decomposition, simply

two predicates have to be specified: a neighborhood predicate NPred for pairs of

objects which has to be symmetric and reflexive, and a predicate MinWeight for the

minimum weight of sets of objects.

We discussed several instances of a density-based decomposition in detail - espe-

cially the results of different clustering algorithms and presented an algorithmic

schema GDBSCAN to construct density-based decompositions. We indicated how

GDBSCAN is implemented independently from the specific predicates for the

neighborhood of objects, and the minimum weight for sets of objects. Furthermore,

a performance evaluation showed that GDBSCAN can be efficiently applied to

large spatial databases if NPred-neighborhood queries are supported by spatial ac-

cess structures.

We also introduced advanced database techniques such as neighborhood indices

and multiple neighborhood queries to further speed-up the run-time of GDBSCAN

by large factors. Especially, we showed that an even more general algorithmic

schema than GDBSCAN called ExploreNeighborhoods exists which can be trans-

formed by purely syntactical means into an semantically equivalent schema called

MultipleExploreNeighborhoods. This schema can be supported efficiently by the

technique of multiple neighborhood queries and it does not only cover GDBSCAN

as an instance but also a broader class of different spatial data mining algorithms.

In a separate chapter, some applications of GDBSCAN were presented in great-

er detail: first, an application to a 5-dimensional spectral space to create land-use

 201

maps; second, an application to 3-dimensional protein data where we extracted

concave and convex surface segments on proteins; third, an application to 2-di-

mensional astronomical images to detect celestial sources; fourth, an application to

find interesting regions for trend detection in a geographic information system, i.e.

a database of 2-dimensional polygons also having several non-spatial attributes.

These applications demonstrated the use of different types of NPred and Min-

Weight predicates to find clusters or cluster-like groups of objects in databases of

different types.

To our best knowledge, we introduced the first incremental clustering algo-

rithm, based on GDBSCAN, for mining in a dynamic environment, i.e. an environ-

ment where insertions and deletions occur. Due to the density-based nature of a

density-based clustering, the insertion or deletion of an object affects the current

clustering only in a small neighborhood of this object. Thus, efficient algorithms

have been developed for incremental insertions and deletions to a clustering, yield-

ing the same result as the application of GDBSCAN to the whole updated database.

A cost-model and an experimental performance evaluation using a 2d-database as

well as a WWW-log database was conducted to determine the speed-up factors, the

break-even point, and to demonstrate the efficiency of the proposed algorithm .

In the last chapter, the notion of a nested density-based decomposition - which

is simply a hierarchy of “flat” density-based decompositions - was defined. To

compute a nested density-based decomposition with respect to a sequence of

neighborhood predicates NPred1, ..., NPredn we developed the hierarchical algo-

rithm H-GDBSCAN. The run-time of H-GDBSCAN is nearly the same as the run-

time of GDBSCAN for computing a “flat” density-based decomposition with re-

spect to the largest neighborhood because density-connected sets with respect to

smaller neighborhoods are completely contained in density-connected sets with re-

spect to larger neighborhoods. When computing a nested density-based decompo-

sition H-GDBSCAN proceeds in principle like GDBSCAN. The difference is only

that H-GDBSCAN has to obey a certain order in which objects are processed.

202 8 Conclusions

Additionally we developed a more specialized version of the hierarchical clus-

tering algorithm H-GDBSCAN which is designed for distance-based neighbor-

hood predicates. This algorithm called H-DBSCAN-ORDER does not produce

clustering levels explicitly. It just creates an order of the database with respect to

a maximum distance d, and stores in this order the reachability-distance and the

core-distance of each object. From this cluster-order we can then extract any clus-

tering level for distance values ε ≤ d. However, in practice we will not extract any

clustering-levels because the cluster-oder itself is a powerful “stand-alone” tool for

cluster analysis. By visualizing the reachability-distances a user can actually see

the clustering structure in a database independent of the dimension of the data

space.

There are several possibilities for future research. In our opinion, the most impor-

tant tasks arise in connection with the cluster-ordering of a database. We think that,

compared with other clustering methods, the cluster-ordering of a database produc-

es the most useful information with respect to semi-automatic cluster-analysis in

high dimensional spaces. To improve the applicability of the cluster-ordering tech-

nique we see the following opportunities for further research:

• For very high-dimensional spaces there exist no index structures to support

the range queries needed in the algorithm H-DBSCAN-ORDER. That means

that, even if we use multiple neighborhood queries, the run-time of the algo-

rithm H-DBSCAN-ORDER is inherently O(N2). Therefore, it is impossible to

apply it in its current form to a database containing several million object.

Consequently, the most interesting question is whether we can modify the al-

gorithm so that we can trade-off a limited amount of accuracy for a large gain

in efficiency (e.g. by using intelligent sampling techniques).

 203

• More sophisticated visualization techniques for the reachability-plot may be

combined with visualizations of certain attribute values to offer additional in-

sights in the clustering structure of a data set.

• For a more detailed analysis of existing clusters it may be worthwhile to ex-

tract automatically from a cluster-order “traditional” clustering information

such as representatives of clusters (e.g. the local minima of the reachability-

plot), cluster descriptions like the attribute ranges in different dimensions, and

so forth.

• Incrementally managing a cluster-order when updates on the database occur

is a further interesting challenge. Although, we have developed techniques to

incrementally update a “flat” density-based decomposition it is not obvious

how these ideas can be extended to a density-based cluster-ordering of a data

set.

204 8 Conclusions

References 205

References

[AF 96] Allard D. and Fraley C.:”Non Parametric Maximum Likelihood

Estimation of Features in Spatial Point Process Using Voronoi

Tessellation”, Journal of the American Statistical Association, to

appear in December 1997. [Available at

http://www.stat.washington.edu/tech.reports/tr293R.ps].

[AGG+ 98] Agrawal R., Gehrke J., Gunopulos D., Raghavan P.: “ Automatic

Subspace Clustering of High Dimensional Data for Data Mining

Applications”, Proc. ACM SIGMOD’98 International Conference

on Management of Data, Seattle, Washington, 1998, pp. 94-105

[And 73] Anderberg M. R.: “Cluster Analysis for Applications,” Academic

Press, 1973.

[AS 91] Aref W.G., and Samet H.: “Optimization Strategies for Spatial Query

Processing”, Proc. 17th Int. Conf. on Very Large Data Bases,

Barcelona, Spain, 1991, pp. 81-90.

[AS 94] Agrawal R., Srikant R.: “Fast Algorithms for Mining Association

Rules”, Proc. 20th Int. Conf. on Very Large Data Bases, Santiago,

Chile, 1994, pp. 487-499.

[Atkis 96] ATKIS 500. 1996. Bavarian State Bureau of Topography and

Geodasy, CD-Rom.

206 References

[BA 96] Brachmann R. and Anand T., 1996: “The Process of Knowledge

Discovery in Databases: A Human Centered Approach”, in:

Advances in Knowledge Discovery and Data Mining, AAAI Press,

Menlo Park, pp.37-58.

[BBK 98] Berchtold S., Böhm C., Kriegel H.-P.: “The Pyramid-Technique:

Towards Breaking the Curse of Dimensionality”, Proc. ACM

SIGMOD’98 Int. Conf. on Management of Data, Seattle,

Washington, 1998, pp. 142-153.

[BBKK 97] Berchtold S., Böhm C., Keim D., Kriegel H.-P.: “A Cost Model For

Nearest Neighbor Search in High-Dimensional Data Space”, ACM

PODS Symposium on Principles of Database Systems, Tucson,

Arizona, 1997.

[BC 96] Berndt D. J., and Clifford J.: “Finding Patterns in Time Series: A

Dynamic Programming Approach”, in Fayyad U., Piatetsky-Shapiro

G., Smyth P., Uthurusamy R. (eds.): Advances in Knowledge

Discovery and Data Mining, AAAI Press / The MIT Press, 1996, pp.

229 - 248.

[BH 64] Ball G. H., Hall D. J.: “Some fundamental concepts and synthesis

procedures for pattern recognition preprocessors”. International

Conference on Microwaves, Circuit Theory, and Information

Theory, Tokio, 1964.

[BKK 96] Berchthold S., Keim D., Kriegel H.-P.: “The X-Tree: An Index

Structure for High-Dimensional Data”, 22nd Conf. on Very Large

Databases, Bombay, India, 1996, pp. 28-39.

[BKSS 90] Beckmann N., Kriegel H.-P., Schneider R., Seeger B.: “The R*-tree:

An Efficient and Robust Access Method for Points and Rectangles”,

Proc. ACM SIGMOD Int. Conf. on Management of Data, Atlantic

City, NJ, ACM Press, New York, 1990, pp. 322-331.

References 207

[BKSS 94] Brinkhoff, T., Kriegel, H.-P., Schneider, R., Seeger B.: “Efficient

Multi-Step Processing of Spatial Joins”, Proc. ACM SIGMOD Int.

Conf. on Management of Data, Minneapolis, MN, ACM Press, New

York, 1994, pp.197-208.

[BKW+ 77] Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Brice M.

D., Rodgers J. R., Kennard O., Shimanovichi T., Tasumi M.: “The

Protein Data Bank: a Computer-based Archival File for

Macromolecular Structures”. Journal of Molecular Biology 112,

1977, pp. 535 - 542.

[BR 93] Banfield J. D., Raftery A. E.: “Model-Based Gaussian and Non-

Gaussian Clustering”, Biometrics 49, 1993, pp. 803-821.

[BR 96] Byers S. and Raftery A. E.: “Nearest Neighbor Clutter Removal for

Estimating Features in Spatial Point Processes”, Technical Report

No. 305, Department of Statistics, University of Washington.

[Available at http://www.stat.washington.edu/tech.reports/tr295.ps].

[BWH 95] Becker, R.H., White, R.L., and Helfand, D.J.: “The FIRST Survey:

Faint Images of the Radio Sky at Twenty Centimeters”, Astrophys. J.

450:559, 1995.

[CCG+ 95] Condon, J.J., Cotton, W.D., Greisen, E.W., Yin, Q.F., Perley, R.A.,

and Broderick, J.: “The NRAO VLA Sky Survey. I. Goals, Methods,

and First Results”, 1995,

URL: http://www.cv.nrao.edu/~jcondon/nvss.html

[CHNW 96] Cheung D. W., Han J., Ng V. T., Wong Y.: “Maintenance of

Discovered Association Rules in Large Databases: An Incremental

Technique”, Proc. 12th Int. Conf. on Data Engineering, New

Orleans, USA, 1996, pp. 106-114.

208 References

[CHY 96] Chen M.-S., Han J. and Yu P. S.: “Data Mining: An Overview from

Database Perspective”, IEEE Transactions on Knowledge and Data

Engineering, Vol. 8, No. 6, December 1996, IEEE Computer Society

Press, Los Alamitos, California, pp. 866-883.

[CKS 88] Cheeseman P., Kelllu J., Self M., Stutz J., Taylor W. and Freeman D.:

“AUTOCLASS: a Bayesian classification System,” Proc. of the 5th

Int. Conf. on Machine Learning, Ann Arbor, 1988, MI: Morgan

Kaufmann, pp 54-64.

[Con 86] Connolly M.L.: “Measurement of protein surface shape by solid

angles”, Journal of Molecular Graphics, 4(1), 1986, pp. 3 - 6.

[CPZ 97] Ciaccia P., Patella M., Zezula P.: “M-tree: An Efficient Access

Method for Similarity Search in Metric Spaces”, Proc. 23rd Int.

Conf. on Very Large Data Bases, Athens, Greece, 1997, pp. 426-435.

[Chr 68] Christaller W.: “Central Places in Southern Germany”, (in German),

Wissenschaftliche Buchgesellschaft, 1968.

[EFKS 98] Ester M., Frommelt A., Kriegel H.-P., Sander J.: “Algorithms for

Characterization and Trend Detection in Spatial Databases”, will

appear in: Proc. 4th Int. Conf. on Knowledge Discovery and Data

Mining, New York, 1998.

[EKS 97] Ester M., Kriegel H.-P., Sander J.: “Spatial Data Mining: A

Database Approach”, Proc. 5th Int. Symp. on Large Spatial

Databases, Berlin, Germany, 1997, pp. 47-66.

[EKS+ 98] Ester M., Kriegel H.-P., Sander J., Wimmer M. Xu X.: “Incremental

Clustering for Mining in a Data Warehousing Environment”, will

appear in: Proc. 24th Int. Conf. on Very Large Databases, New York,

1998.

[EKSX 98] Ester M., Kriegel H.-P., Sander J., Xu X.: “Clustering for Mining in

Large Spatial Databases”. Themenheft Data Mining, KI-Zeitschrift,

1/98, ScienTec Publishing, Bad Ems, 1998.

References 209

[EKSX 97] Ester M., Kriegel H.-P., Sander J., Xu X.: “Density-Connected Sets

and their Application for Trend Detection in Spatial Databases”.

Proc. 3nd Int. Conf. on Knowledge Discovery and Data Mining.

Newport Beach, California, AAAI Press, Menlo Park, California,

1997.

[EKSX 96] Ester M., Kriegel H.-P., Sander J., Xu X.: “A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with

Noise”. Proc. 2nd Int. Conf. on Knowledge Discovery and Data

Mining. Portland, Oregon, AAAI Press, Menlo Park, California,

1996, pp. 226-231.

[EKX 95a] Ester M., Kriegel H.-P., Xu X.: “Knowledge Discovery in Large

Spatial Databases: Focusing Techniques for Efficient Class

Identification”, Proc. 4th Int. Symp. on Large Spatial Databases,

Portland, ME, 1995, in: Lecture Notes in Computer Science, Vol.

951, Springer, 1995, pp.67-82.

[EKX 95b] Ester, M., Kriegel, H.-P., Xu, X.: “A Database Interface for

Clustering in Large Spatial Databases”, Proc. 1st Int. Conf. on

Knowledge Discovery and Data Mining, Montreal, Canada, AAAI

Press, Menlo Park, California, 1995.

[Eve 81] Everitt B.: “Cluster Analysis,” London: Heinemann, 1981.

[EW 98] Ester M., Wittmann R.: “Incremental Generalization for Mining in a

Data Warehousing Environment”, Proc. 6th Int. Conf. on Extending

Database Technology, Valencia, Spain, 1998, in: Lecture Notes in

Computer Science, Vol. 1377, Springer, 1998, pp. 135-152.

[FHS 96] Fayyad, U. M., Haussler D. and Stolorz Z. 1996: “KDD for Science

Data Analysis: Issues and Examples”, Proc. 2nd Int. Conf. on

Knowledge Discovery and Data Mining. Portland, Oregon, AAAI

Press, Menlo Park, California, 1996, pp. 50 -56.

210 References

[FAAM 97] Feldman R., Aumann Y., Amir A., Mannila H.: “Efficient

Algorithms for Discovering Frequent Sets in Incremental

Databases”, Proc. ACM SIGMOD Workshop on Research Issues on

Data Mining and Knowledge Discovery, Tucson, AZ, 1997, pp. 59-

66.

[Fis 87] Fisher D. H.: “Knowledge Acquisition via Incremental Conceptual

Clustering,” Machine Learning 2(2), 1987, pp 139-172.

[Fis 95] Fisher D. H.: “Iterative Optimization And Simplification Of

Hierarchical Clusterings,” Proc. 1st Int. Conf. on Knowledge

Discovery & Data Mining, Montreal, Canada, 1995, pp.

[FL 95] Faloutsos C., and Lin K.: “FastMap: A Fast Algorithm for Indexing,

Data-Mining and Visualization of Traditional and Multimedia

Datasets”. Proc. ACM SIGMOD Int. Conf. on Management of Data.

San Jose, CA, 1995, pp. 1 - 25.

[FPL 91] Fisher D. H., Pazzani M. J. and Langley P.: “Concept Formation:

Knowledge and Experience in Unsupervised Learning,” Morgan

Kaufmann Publishers, 1991.

[FPS 96] Fayyad, U. M., .J., Piatetsky-Shapiro, G., Smyth, P. 1996: “From

Data Mining to Knowledge Discovery: An Overview”, in: Advances

in Knowledge Discovery and Data Mining, AAAI Press, Menlo

Park, pp.1-34.

[FPS 96a] Fayyad, U. M., .J., Piatetsky-Shapiro, G., Smyth, P. 1996: “ to

Knowledge Discovery and Data Mining: Towards a Unifying

Framework”, Proc. 2nd Int. Conf. on Knowledge Discovery and

Data Mining. Portland, Oregon, AAAI Press, Menlo Park,

California, pp. 82 -88.

[GHJ+ 95] Gamma E., Helm R., Johnson R., Vlissides J.: “Design Patterns:

elements of reusable object-oriented software”, Addison Wesley

Publishing Company, 1995.

References 211

[Gue 94] Gueting R. H.: “An Introduction to Spatial Database Systems”, in:

The VLDB Journal, Vol. 3, No. 4, October 1994, pp.357-399.

[Gut 84] Guttman A.: “R-trees: A Dynamic Index Structure for Spatial

Searching“, Proc. ACM SIGMOD Int. Conf. on Management of

Data, 1984, pp. 47-54.

[Har 75] Hartigan J. A.: “Clustering Algorithms,” John Wiley & Sons, 1975.

[HCC 93] Han J., Cai Y., Cercone N.: “Data-driven Discovery of Quantitative

Rules in Relational Databases”, IEEE Transactions on Knowledge

and Data Engineering, Vol. 5, No. 1, 1993, pp. 29-40.

[HT 93] Hattori K., and Torii Y.: “Effective algorithms for the nearest

neighbor method in the clustering problem”. Pattern Recognition,

1993, Vol 26, No. 5, pp. 741-746.

[Hua 97] Huang, Z.: “A Fast Clustering Algorithm to Cluster Very Large

Categorical Data Sets in Data Mining”. In Proceedings of SIGMOD

Workshop on Research Issues on Data Mining and Knowledge

Discovery, Tech. Report 97-07, UBC, Dept. of CS, 1997.

[Huy 97] Huyn N.: “Multiple-View Self-Maintenance in Data Warehousing

Environments”, Proc. 23rd Int. Conf. on Very Large Data Bases,

Athens, Greece, 1997, pp. 26-35.

[JD 88] Jain A. K. and Dubes R. C.: “Algorithms for Clustering Data,”

Prentice-Hall, Inc., 1988.

[KAH 96] Koperski K., Adhikary J. and Han J.: “Spatial Data Mining:

Progress and Challenges”, SIGMOD’96 Workshop on Research

Issues on Data Mining and Knowledge Discovery (DMKD’96),

Montreal, Canada, June 1996, Technical Report 96-08, University of

British Columbia, Vancouver, Canada.

212 References

[KH 95] Koperski K., Han J.: “Discovery of Spatial Association Rules in

Geographic Information Databases”, Proc. 4th Int. Symp. on Large

Spatial Databases, Portland, ME, 1995, pp. 47-66.

[KHA 96] Koperski K., Adhikary J., Han J.: “Knowledge Discovery in Spatial

Databases: Progress and Challenges”, Proc. SIGMOD Workshop

on Research Issues in Data Mining and Knowledge Discovery,

Technical Report 96-08, University of British Columbia, Vancouver,

Canada, 1996.

[KN 96] Knorr E.M. and Ng R.T.: “Finding Aggregate Proximity

Relationships and Commonalities in Spatial Data Mining,” IEEE

trans. on knowledge and data engineering, vol. 8, no. 6, Dec. 1996,

pp 884-897.

[KR 90] Kaufman L., Rousseeuw P. J.: “Finding Groups in Data: An

Introduction to Cluster Analysis”, John Wiley & Sons, 1990.

[LH 92] Lu W., Han J.: “Distance-Associated Join Indices for Spatial Range

Search”, Proc. 8th Int. Conf. on Data Engineering, Phoenix, AZ,

1992, pp. 284-292.

[LHO 93] Lu W., Han J., Ooi B. C.: “Discovery of General Knowledge in

Large Spatial Databases”, Proc. Far East Workshop on Geographic

Information Systems, Singapore, 1993, pp. 275-289.

[LJF 95] Lin K., Jagadish H. V., Faloutsos C.: “ The TV-Tree: An Index

Structure for High-Dimensional Data”, VLDB Journal, Vol 3, 1995,

pp. 517-542.

[Luo 95] Luotonen A.: “The common log file format”,

http://www.w3.org/pub/WWW/, 1995.

[Mac 67] MacQueen, J.: “Some Methods for Classification and Analysis of

Multivariate Observations”, 5th Berkeley Symp. Math. Statist.

Prob., Volume 1, pp.281-297.

References 213

[MCP 93] Matheus C. J., Chan P. K., Piatetsky-Shapiro G.: “Systems for

Knowledge Discovery in Databases”, IEEE Trans, on Knowledge

and Data Engineering, Vol. 5, No. 6, 1993, pp. 903-913.

[MJHS 96] Mombasher B., Jain N., Han E.-H., Srivastava J.: “Web Mining:

Pattern Discovery from World Wide Web Transactions”, Technical

Report 96-050, University of Minnesota, 1996.

[MQM 97] Mumick I. S., Quass D., Mumick B. S.: “Maintenance of Data

Cubes and Summary Tables in a Warehouse”, Proc. ACM SIGMOD

Int. Conf. on Management of Data, 1997, pp. 100-111.

[MS 92] Muise R. and Smith C.: “Nonparametric minefield detection and

localization”, Technical Report CSS-TM-591-91, Naval Surface

Warfare Center, Coastal Systems Station.

[Mur 83] Murtagh F.: “A Survey of Recent Advances in Hierarchical

Clustering Algorithms”, The Computer Journal 26(4), 1983, pp.354-

359.

[Ng 96] Ng R. T.: “Spatial Data Mining: Discovering Knowledge of Clusters

from Maps”, Proc. SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery, Technical Report 96-08,

University of British Columbia, Vancouver, Canada, 1996.

[NH 94] Ng R. T., Han J.: “Efficient and Effective Clustering Methods for

Spatial Data Mining”, Proc. 20th Int. Conf. on Very Large Data

Bases, Santiago, Chile, Morgan Kaufmann Publishers, San

Francisco, California, 1994, pp. 144-155.

[NHS 84] Nievergelt, J., Hinterberger, H., and Sevcik, K. C. 1984: “The Grid

file: An Adaptable, Symmetric Multikey File Structure”, ACM Trans.

Database Systems 9(1), pp.38-71.

[Nie 90] Niemann H. 1990: “Pattern Analysis and Understanding”. Springer-

Verlag, Berlin.

214 References

[PBK+ 96] Piatetsky-Shapiro G., Brachman R., Khabaza T., Kloesgen W. and

Simoudis E., 1996: “An Overview of Issues in Developing Industrial

Data Mining and Knowledge Discovery Applications”, Proc. 2nd Int.

Conf. on Knowledge Discovery and Data Mining. Portland, Oregon,

AAAI Press, Menlo Park, California, 1996, pp. 89 -95.

[PDB 94] Protein Data Bank, “Quarterly Newsletter 70”. Brookhaven National

Laboratory, Upton, NY, 1994.

[Ric 83] Richards A.J. 1983. “Remote Sensing Digital Image Analysis. An

Introduction”. Berlin: Springer Verlag.

[Rol 73] Rohlf F. J.: “Hierarchical clustering using the minimum spanning

tree”, The Computer Journal 16, No. 1, 1973, pp. 93-95.

[Rot 91] Rotem D.: “Spatial Join Indices”, Proc. 7th Int. Conf. on Data

Engineering, Kobe, Japan, 1991, pp. 500-509.

[Sam 90] Samet H.: “The Design and Analysis of Spatial Data Structures”,

Addison Wesley Publishing Company, 1990.

[Sch 91] Schreiber T.: “ A Voronoi Diagram Based Adaptive K-Means-Type

Clustering Algorithm for Multidimensional Weighted Data”. In:

Bieri H., Noltemeier H. (eds.): “Computational Geometry Methods,

Algorithms and Applications”, Int. Workshop on Comp. Geometry

CG’91, Lecture Notes in Computer Science 553, Springer, 1991, pp.

265-275.

[Sch 96] Schikuta, E.: “Grid clustering: An efficient hierarchical clustering

method for very large data sets”, In Proc. 13th Int. Conf. on Pattern

Recognition, Vol 2, IEEE Computer Society Press, Los Alamitos,

California, pp. 101-105.

References 215

[SEKX 98] Sander J., Ester M., Kriegel H.-P., Xu X. 1998: “Density-Based

Clustering in Spatial Databases: The Algorithm GDBSCAN and its

Applications”, will appear in: Data Mining and Knowledge

Discovery, An International Journal, Kluwer Academic Publishers,

Norwell, MA, 1998.

[SFGM 93] Stonebraker M., Frew J., Gardels K., and Meredith J.: “The

SEQUOIA 2000 Storage Benchmark”. Proc. ACM SIGMOD Int.

Conf. on Management of Data. Washington, DC, 1993, pp. 2 - 11.

[Sib 73] Sibson R.: “SLINK: an optimally efficient algorithm for the single-

link cluster method”.The Computer Journal 16(1), 1973, pp.30-34.

[Sym 81] Symons M.: “Clustering criteria and multivariate normal mixtures”,

Biometrics 37, 1981, pp. 35-43.

[Uhl 91] Uhlmann J.K.: “Satisfying general proximity/similarity queries with

metric trees”, Inf. Proc. Lett., Vol. 40, No. 4, 1991, pp. 175-179.

[WFD 95] Weir, N., Fayyad, U.M., and Djorgovski, S.: “Automated Star/

Galaxy Classification for Digitized POSS-II”, Astron. J. 109: 2401,

1995.

[WSB 98] Weber R., Schek H.-J., Blott S.: “A Quantitative Analysis and

Performance Study for Similarity-Search Methods in High-

Dimensional Spaces”, Proc. 24th Int. Conf. on Very Large Data

Bases, New York, USA, Morgan Kaufmann Publishers, San

Francisco, California, 1998.

[WYM 97] Wang W., Yang J., Muntz R.: “STING: A Statistical Information

Grid Approach to Spatial Data Mining”, Proc. 23th Int. Conf. on

Very Large Data Bases, Athens, Greece, Morgan Kaufmann

Publishers, San Francisco, California, 1997, pp. 186-195.

216 References

[XEKS 98] Xu, X., Ester, M., Kriegel, H.-P., and Sander J.: “A Nonparametric

Clustering Algorithm for Knowledge Discovery in Large Spatial

Databases”, will appear in Proc. IEEE Int. Conf. on Data

Engineering, Orlando, Florida, 1998, IEEE Computer Society Press,

Los Alamitos, California.

[Zah 71] Zahn C.T.: “Graph-Theoretical Methods for Detecting and

Describing Gestalt Clusters”, IEEE Transactions on Computers,

Vol. C-20, No. 1, 1971.

[ZCW 94] Zepka, A.F., Cordes, J.M., and Wasserman, I.: “Signal Detection

Amid Noise with Known Statistics”, Astrophys. J. 427: 438, 1994.

[ZRL 96] Zhang T., Ramakrishnan R., Linvy M.: “BIRCH: An Efficient Data

Clustering Method for Very Large Databases”. Proc. ACM

SIGMOD Int. Conf. on Management of Data, ACM Press, New

York, 1996, pp.103-114.

 217

Index

A
Absorption into a cluster 140
Affected objects................................ 137
Application

astronomy 119
geography 122
protein data 117
raster data.................................... 114
Web- log database 133

Association rules 131

B
Bavaria information system.............. 122
BIRCH.. 37, 91

C
Cases for deletions............................ 143
Cases for insertions........................... 140
Celestial sources 119
CF-tree.. 37
Changing reachability-level.............. 177
CLARANS 24, 90
CLIQUE 29, 63
Clustering extended objects................ 65
Clustering Features............................. 37
Clustering-level 164
Cluster-order

generating distance 196
visualization................................ 197

Core-distance 184

Core-level ... 174
Cost-Model for IncrementalDBSCAN152
Creation of a cluster 140

D
Data mining

defintion ... 4
methods .. 4
spatial data mining 4, 42

Data warehouse 130
Database primitives forspatial data mining
95
DBCLASD ... 28
DBSCAN................................ 30, 59, 80
Density-based clustering 28
Density-based decomposition 55
Density-connected set 52
Density-connectivity 51
Density-reachable............................... 50
Directly density-reachable.................. 49
Distance function for sessions.......... 150
Distance-based neighborhood 46
Distribution-based clustering 27

E
Economic geography........................ 123
ExpandCluster 77
ExpandClusterOrder......................... 188
ExploreNeighborhoods..................... 103
ExploreNeighborhoodsMultiple....... 104
ExtractClustering.............................. 190

G
GDBSCAN

algorithmic schema 76
implementation............................. 80
run-time complexity 87

Graph clustering 25
Grid clustering.................................... 35
Grid file .. 13
Grid-based clustering 63

H
H-DBSCAN-ORDER....................... 187

218 Index

H-GDBSCAN................................... 168
Hierarchical cluster-ids..................... 171
Hierarchical clustering........................ 20

average link 21
complete link 21
single link 21

Hierarchical clustering layers 158

I
Index-based sampling......................... 34

K
KDD

defintion.. 2
steps .. 3

k-distance plot 68
k-means clustering.............................. 23
k-medoid clustering 23
k-modes clustering.............................. 23
k-nearest neighbor queries.................. 12
Knowledge Discovery in Databases. See
KDD

M
Merge of clusters 140
Metric trees... 17
Minimum spanning tree...................... 26
MinWeight predicate 46

incrementally evaluable................ 47
monotonous 47

M-tree ... 18, 151
Multiple neighborhood queries......... 102

implementation 107
MultipleExpandCluster..................... 169
MultipleSeeds 170

initialization................................ 171
selection of next object 173
structure 170
update ... 178

Multi-step query processing 86

N
Neighborhood graph........................... 95
Neighborhood index 98

Neighborhood relations 95
Neighbors operation 100
Nested density-based decomposition 163
NPred-neighborhood 45

O
OrderSeeds 189

update ... 189
Overlap of clusters 56

P
Partitioning clustering 22

density-based................................ 28
distribution-based 27
k-means .. 23
k-medoid....................................... 23
k-modes .. 23

Potential split of a cluster 143
Pyramid technique.............................. 16

R
R*-tree.. 15
Reachability-distance 185
Reachability-level............................. 175
Reachability-plot 194
Region growing 31, 64
Region queries.................................... 12
Removal of a cluster......................... 143
R-tree.. 14

S
Seeds... 78
Seeds for an update 139
Segmentation of protein surfaces 117
Simple reduction of a cluster............ 143
Single scan clustering......................... 34
Single-link effect 58
Single-Link level 57
Solid angle.. 117
Spatial data ... 12
Spatial database system...................... 12
Spatial index structures 13
Spatial trends 123

approximation based method 125

 219

difference-based method 125
influence regions 125

STING .. 38, 61

T
Thematic maps.................................. 114
Triangle inequality............................ 151

V
VA-file.. 18

W
Web access patterns.......................... 132
Web session 132
WWW access log databases 132

X
X-tree .. 15

Z
Zahn’s clustering method 26

220 Index

 221

List of Definitions

1 (Notation: neighborhood of an object) ... 45
2 (Notation: minimum weight of a set of objects) 46
3 (incrementally evaluable MinWeight, monotonous MinWeight) 47
4 (directly density-reachable) ... 49
5 (density-reachable, >D) ... 50
6 (density-connected) .. 51
7 (density-connected set) .. 52
8 (density-based decomposition) .. 55
9 (DBSCAN) ... 80

10 (neighborhood graph) ... 95
11 (neighborhood index) ... 98
12 (enhanced neighborhood N2NPred(o)) ... 134
13 (affected objects) .. 137
14 (seed objects for the update) .. 139
15 (nested density-based decomposition) ... 163
16 (clustering-level of a nested density-based decomposition) 164
17 (core-level of an object p) .. 174
18 (reachability-level of an object p with respect to an object o) 175
19 (core-distance of an object p) ... 184
20 (reachability-distance of an object p with respect to an object o) 185

222 List of Definitions

 223

List of Figures

1 Illustration of the grid file .. 13
2 Illustration of the R-tree... 14
3 Comparison of R-tree and X-tree structure.. 16
4 Illustration of the pyramid technique ... 17
5 Illustration of the M-tree .. 18
6 Single link clustering of n = 9 objects ... 21
7 k-means and k-medoid (k = 3) clustering for a sample data set 25
8 MST of a sample data set... 27
9 Data page structure of an R*-tree for a 2d-point database..................... 35

10 Data page structure of a Grid File for a 2d-point database [Sch 96] 36
11 CF-tree structure .. 38
12 STING structure [WYM 97] .. 39
13 Clustering and spatial data mining... 42
14 Example for a generalized clustering problem 43
15 Sample databases of 2d points ... 44
16 Generalization of density-based clusters ... 45
17 Core objects and border objects ... 48
18 Direct density-reachability... 49
19 Density-reachability ... 50
20 Density-connectivity .. 52
21 Overlap of two clusters for MinPts = 4.. 56
22 Illustration of single link level ... 58
23 Illustration of DBSCAN result... 60
24 Illustration of density-based clustering using a grid approach 64
25 Illustration of simple region growing .. 65
26 Illustration of clustering polygonal objects.. 66
27 Sorted 3-distance plot for sample database 3... 68

224 List of Figures

28 Determining ε using the sorted 3-distance plot...................................... 70
29 Range for ε in sorted 3-distance plot yielding the same clustering 71
30 Examples of sorted 3-distance plots for different data distributions 72
31 Algorithm GDBSCAN... 76
32 Function ExpandCluster... 77
33 Method Seeds::update() ... 78
34 Software Architecture of GDBSCAN.. 81
35 Graphical user interface and parameter setting...................................... 85
36 Multi-step filter-refinement procedure for spatial query processing 86
37 Clusterings discovered by CLARANS .. 89
38 Clusterings discovered by DBSCAN... 89
39 run-time comparison with CLARANS .. 91
40 Data sets for the performance comparison with BIRCH 92
41 Sample Implementation of a Neighborhood Index 99
42 Algorithm neighbors using neighborhood indices 100
43 Speed-up for the neighbors-operation using a neighborhood index 101
44 Algorithmic scheme ExploreNeighborhoods....................................... 103
45 Algorithmic scheme ExploreNeighborhoodsMultiple 105
46 Performance of the multiple-neighbors operation 110
47 Relation between 2d image and feature space 114
48 Visualization of the SEQUOIA 2000 raster data 115
49 Visualization of the clustering result for SEQUOIA 2000 raster data. 116
50 Visualization of the clustering results for protein 133DA 119
51 Visualization of the astronomy data .. 120
52 Clustering results for both astronomy images 121
53 Potential sources in astronomy data... 122
54 Trend analysis in geographic geography ... 124
55 Comparison of theoretical and observed trends................................... 125
56 Influence regions with respect to average income 126
57 Explanation of the influence region of Ingolstadt 127
58 Explanation of the influence region of Munich 127
59 : Sample WWW access log entries .. 132
60 Changing core object property and connection status 135
61 Affected objects in a sample database .. 136
62 The different cases of the insertion algorithm 141
63 “Transitive” merging of clusters A, B, C by the insertion algorithm .. 142
64 The different cases of the deletion algorithm 144
65 Speed-up factors for 2d spatial databases .. 154
66 Speed-up factors for the Web-log database ... 154
67 MaxUpdates for different relative frequencies of deletions 155

 225

68 Example of a hierarchical clustering structure..................................... 159
69 Example of clusters with respect to different density parameters 160
70 Illustration of lemma 9... 162
71 Structure of a nested density-based decomposition 164
72 Algorithm H-GDBSCAN... 168
73 Function MultipleExpandCluster... 169
74 Structure of MultipleSeeds .. 170
75 Method MultipleSeeds::init()... 172
76 Method MultipleSeeds::next() ... 173
77 Core-level of an object p.. 174
78 Reachability-level of objects p1, p2, p3 with respect to o 176
79 Changing reachability-level of an object p .. 178
80 Method MultipleSeeds::update() ... 179
81 Core-distance of an object p .. 185
82 Reachability-distance of objects p1, p2, p3 with respect to o.............. 186
83 Algorithm H-DBSCAN-ORDER... 187
84 Procedure ExpandClusterOrder ... 188
85 Method OrderSeeds::update() .. 189
86 Algorithm ExtractClustering.. 190
87 Illustration of clustering level and cluster-order 193
88 Effects of parameter settings on cluster-order 194
89 Part of the reachability-plot for a 1,024-d image data set.................... 196
90 Reachability-plots for data sets having different characteristics 197

226 List of Figures

