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Chapter 1

| ntroduction

This chapter shortly introduces the context of this thesis which contributes to the
field of spatial datamining, especially to the task of automatically grouping objects
of aspatial database into meaningful subclasses. In section 1.1, the connection be-
tween the notions Knowledge Discovery in Databases, (Spatial) Data Mining and
Clustering is elaborated. Section 1.2 describes the goal and gives an outline of this
thesis.



2 1 Introduction

1.1 Knowledge Discovery in Databases, Data Mining
and Clustering

Both, the number of databases and the amount of data stored in a single database
aregrowing rapidly. Thisistrue for amost any type of database such astraditional
(relational) databases, multimedia or spatial databases. Spatia databases are, e.g.,
databases for geo-marketing, traffic control, environmental studiesor sky and earth
observation databases. The accel erated growth of such databases by far exceedsthe
human capacity to analyze the data. For instance, databases on sky objects consist
of billions of entries extracted from images generated by large telescopes. The
NASA Earth Observing System, for example, is projected to generate some 50 GB
of remotely sensed data per hour.

Classical anadysismethods arein general not well suited for finding and present-
ing implicit regularities, patterns, dependencies or clusters in today's databases.
Important reasons for the limited ability of many statistical methods to support
analysis and decision making are the following:

- They do not scale to large data volumes (large number of rows/entries, large
number of columns/dimensions) in terms of computational efficiency.

- They assume stationary data which is not very common for real-life databas-
es. Data may change and derived pattern may become invalid. Then all pat-
terns derived from the data have to be calculated from scratch.

- Modeling in the large requires new types of models that describe pattern in
the data at different scales (e.g. hierarchical).

For these reasons, in the last few years new computational techniques have been
developed in the emerging research fieldKabwledge Discovery in Databases
(KDD). [FPS 96] propose the following definition of KDD:

Knowledge Discovery in Databases is the non-trivial process of identifying valid,
novel, potentially useful, and ultimately understandable patterns in data.
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The KDD process is an interactive and iterative process, involving humerous
stepsincluding preprocessing of the data, applying a data mining algorithm to enu-
merate patterns from it, and the evaluation of the results ([BA 96]), e.g.:

» Creating atarget data set: selecting a subset of the data or focusing on a sub-
set of attributes or data samples on which discovery is to be performed.

» Data reduction: finding useful features to represent the data, e.g., using di-
mensionality reduction or transformation methods to reduce the number of
variables under consideration or to find invariant representations for the data.

» Datamining: searching for patterns of interest in the particular representation
of the data: classification rules or trees, association rules, regression, cluster-
ing, etc.

« Interpretation of results: this step can involve visualization of the extracted
patterns or visualization of the data given the extracted models. Possibly the
user has to return to previous steps in the KDD process if the results are un-
satisfactory.

For asurvey of industrial applications of KDD see [PBK+ 96], and for applications
in science data analysis see [FHS 96].

The core step of the KDD process is the application of a data mining algorithm.
Hence, the notions “KDD” and “data mining” are often used in the same way. Actu-
ally, mostof the research conducted on knowledge discovemgliational as well as
spatial databases is about data mining algorithafs[CHY 96] for a survey on algo-
rithms for knowledge discovery in relational databases, and [KAH 96] for an over-
view on knowledge discovery in spatial databases). The following broad definition of
data mining can be found [RPS 96a]:
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Data mining isastep in the KDD process consisting of applying data analysis al-
gorithms that, under acceptable computational efficiency limitations, produce a
particular enumeration of patterns over the data.

The different data mining algorithms that have been proposed in the literature
can be classified according to the following primary data mining methods
(IMCP 93], [FPS 964]):

 Clustering:identifying a set of categories or clusters to describe the data.

 Classification: learning a function that maps (classifies) a data item into one
of several predefined classes.

* Regression: learning a function that maps a data item to a real-valued predic-
tion variable and the discovery of functional relationships between variables.

» Summarization: finding a compact description for a subset of data.

» Dependency Modeling: finding a model which describes significant depen-
dencies between variables (e.g., learning of belief networks).

» Change and Deviation Detection: discovering the most significant changes in
the data from previously measured or normative values.

Spatial data mining is data mining applied to spatial data, i.e. data for which at
least a distance function between objects is defined. Typically, some attributes
specify a location and possibly an extension in sdrdgnensional space, for ob-
jects such as points, lines or polygons. The objects may additionally have other
non-spatial attributes.

Spatial data is typically stored and managed in spatial database systems (SDBS)
(see [Gue 94] for an overview). Applications of data mining algorithms to spatial
databases are important, e.g., for geo-marketing, traffic control or environmental
studies.
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In [LHO 93], attribute-oriented induction is performed by using (spatial) con-
cept hierarchies to discover relationships between spatial and non-spatia at-
tributes. A spatial concept hierarchy represents a successive merging of neighbor-
ing regions into larger regions. In [NH 94], the clustering algorithm CLARANS,
which groups neighboring objects automatically without a spatial concept hierar-
chy, is combined with attribute-oriented induction on non-spatial attributes.
[KH 95] introduces spatial association rules which describe associations between
objects based on different spatial neighborhood relations. [Ng 96] and [KN 96]
present algorithms to detect properties of clusters using reference maps and the-
matic maps. For instance, a cluster may be explained by the existence of certain
neighboring objects which may “cause” the existence of the cluster. New algo-
rithms for spatial characterization and spatial trend analysis are sketched in
[EKS 97] and elaborated in [EFKS 98]. For spatial characterization, it is important
that class membership of a database object is not only determined by its non-spatial
attributes but also by the attributes of objects in its neighborhood. In spatial trend
analysis, patterns of change of some non-spatial attribute(s) in the neighborhood of
a database object are determined. A more comprehensive overview of spatial data
mining can be found in [KHA 96].

We observe that a lot of work @patial data mining deals with clustering.

Clustering is the task of grouping the objects of a database into meaningful sub-
classes - either as a stand alone task or in combination with some other data mining
algorithms which operate on detected clusters.

Applications of clustering in spatial databases are, e.g., the detection of seismic
faults by grouping the entries of an earthquake catalog [AS 91], the creation of the-
matic maps in geographic information systems by clustering feature spaces
[Ric 83] and detection of clusters of objects in geographic information systems and
to explain them by other objects in their neighborhood ([NH 94] and [KN 96]). An
application to a more abstract “spatial” database is the clustering of a WWW-log
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database to discover groups of similar access patterns for a Web server which may
correspond to different user profiles.

Clustering has been studied in statistics (e.g. [And 73], [Eve 81], [Har 75],
[JD 88], [KR 90]), machine learning (e.g. [CKS 88], [Fis 87], [Fis 95], [FPL 91]),
and recently in the context of KDD (e.g. [EKX 95g], [NH 94], [SEKX 98],
[WYM 97], [XEKS 98] and [ZRL 96]). The reasons for the new database-oriented
clustering methods have already been indicated: The well-known clustering algo-
rithmsfrom statistics such ask-means[Mac 67], k-medoids [KR 90] or SingleLink
Clustering [Sib 73] are too inefficient on large databases and they also assume that
all objects to be clustered can reside in main memory at the same time. Despite
growing main memories, this assumption is not always true for large databases.
Additionally, data mining in real-world database creates new challenges for clus-
tering algorithms. These kinds of databases may be highly dynamic and/or the ob-
jects may be defined by data types other than numeric - properties which are usu-
ally neglected by traditional clustering approaches.

1.2 Outline of thethesis

This thesis contributes to the field of spatial data mining, especially to the task of
clustering, i.e. automatically grouping the objects of a spatial database into mean-
ingful subclasses.

Starting from adensity-based clustering approach for point objects (presented in
[EKSX 96]), we develop a genera method to decompose a database into a set of
cluster-like components. This method is applicable to objects of arbitrary datatype
provided only that thereis (1) abinary (neighborhood) predicate for objects which
issymmetric and reflexive and there is (2) a predicate that allows the user to deter-
mine whether or not a set of objects has a “minimum weight”.
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Our method for density-based decompositions relies on a formal set-theoretic
framework of density-connected sets which generalizes the results of different
clustering methods and similar techniques like region growing agorithms in the
following sense: The results of these techniquesfor grouping objects of a database
can be described as specia cases of density-based decompositions. Thus, they do
have the same underlying formal structure and can be produced by the same algo-
rithmic schema. Furthermore, density-based decompositions have the following
nice propertieswhich areimportant for spatial datamining in real-world databases:

« It is possible to perform incremental updates on density-based decomposi-
tions very efficiently in a dynamic environment of insertions and deletions.

 Hierarchical descriptions of the underlying grouping of objects in a database
are possible by extending the basic algorithmic schema without a significant
loss in performance.

» The algorithmic schema can be supported very efficiently by the query pro-
cessing facilities of a spatial database system.

The theoretical foundations and algorithms concerning these tasks are elaborat-
ed in this thesis which is organized as follows:

After this introduction, related work on database oriented clustering techniques
is reviewed in chapter 2. For that purpose, methods to support efficient query pro-
cessing in spatial database systems are sketched. We also show how to integrate
clustering algorithms with spatial database management systems and present the
most recent clustering techniques from the KDD literature which essentially ex-
ploit clustering properties of spatial index structures.

In chapter 3, a motivation for the generalization of density-based clustering is
presented. After that, the notions “density-connected set” and “density-based de-
composition”, i.e. a generalized density-based clustering, are defined and impor-
tant specializations of these notions are discussed. These specializations include
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density-based clustering, clustering levels produced by the well-known single link
clustering method, results of simple forms of region growing algorithms as well as
new applicationswhich may be appropriate for grouping spatially extended objects
such as polygons in geographic information systems. The task of determining the
parameters for certain specializations of the algorithm is also discussed in this
chapter.

In chapter 4, our algorithmic schema GDBSCAN to compute density-connected
setsisintroduced and some implementation issues are discussed. The performance
is evaluated analytically for the algorithmic schema and experimentally for the
most important specialization of GDBSCAN, i.e. DBSCAN [EKSX 96]. In the ex-
perimental evaluation, the performance of DBSCAN is compared with the perfor-
mance of some newer clustering algorithms proposed in the KDD literature. The
implementation of DBSCAN used for this comparison is based on a particular spa-
tial index structure, the R*-tree. A discussion of different methods to support the
construction of a density-based decomposition concludes this chapter. The most
important technique is a new query type called “multiple neighborhood query”. We
will show that multiple neighborhood queries are applicable to a broad class of spa-
tial data mining algorithms, including GDBSCAN, to speed up the performance of
these algorithms significantly.

In chapter 5, four typical applications of our algorithm are presented in more de-
tail. First, we present a “standard” clustering application for the creation of a land-
use map by clustering 5-dimensional feature vectors extracted from several satel-
lite images. Second, 3-dimensional points on a protein surface are clustered, using
also non-spatial attributes, to extract regions with special properties on the surface
of the protein. Third, a special instance of our algorithm is applied to 2-dimensional
astronomical image data, performing ‘region growing’ to detect celestial sources
from these images. In the last application, GDBSCAN is used to detect influence
regions for the analysis of spatial trends in a geographic information system on Ba-
varia. This application demonstrates how sophisticated neighborhood predicates
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utilizing spatial and non-spatial attributes of the data can be used to detect interest-
ing groups of spatially extended objects such as polygons representing communi-
ties.

In chapter 6, we show that updates on a database affect a density-based decom-
position only in a small neighborhood of inserted or deleted objects. We present
incremental versions of our algorithm for updating a density-based decomposition
on insertions and deletions. A cost model for the performance of Incremental
GDBSCAN is presented and validated by using synthetic data as well asreal data
from a WWW-log database showing that clustering in adynamic environment can
be handled very efficiently.

The basic agorithm GDBSCAN determines only a single level clustering in a
single run of the algorithm. In chapter 7 this basic algorithm is extended such that
hierarchical layers of clusterings can be computed very efficiently. Hierarchical
clusterings can be described easily by “nested” density-based decompositions. The
efficiency ofHierarchical GDBSCAN is due to the fact that the costs for computing
nested or flat density-connected sets are nearly the same. Starting from the hierar-
chical version of GDBSCAN a second algorithm is developed for distance based
neighborhoods. In this algorithm a maximal distatgg is used to produce an or-

dering of the database with respect to its clustering structure. Storing few addition-
al information for each object in this ordering allows a fast computation of every
clustering level with respect to a smaller distance thgn. However, a “cluster-
ordering” of the database can as well be used as a stand-alone tool for cluster anal-
ysis. A visualization of the cluster-ordering reveals the cluster structure of a data
set of arbitrary dimension in a very comprehensible way. Furthermore, the method
is rather insensible to input parameters.

Chapter 8 concludes the thesis with a a short summary and a discussion of future
work.



10

1

Introduction



Chapter 2

Related Work

Thewell-known clustering algorithms have some drawbacks when applied to large
databases. First, they assumethat all objectsto be clustered residein main memory.
Second, these methods are too inefficient when applied to large databases. To over-
come these limitations, new algorithms have been developed which are surveyed
in this chapter. Most of these algorithms (aswell as our own approach) utilize spa-
tial index structures. Therefore, wefirst give a short introduction to efficient query
processing in spatial databases (section 2.1). Then, we survey clustering algo-
rithms and show how to integrate some of them into a database management sys-
tem for the purpose of data mining in large databases (section 2.2). Furthermore,
wediscussrecently introduced methodsto exploit the (pre-)clustering properties of
spatial index structures (section 2.3) to derive clustering information about large
databases. This chapter is a major extension of a similar overview given in
[EKSX 98].
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2.1 Efficient Query Processing in Spatial Databases

Numerous applications, e.g., geographic information systems and CAD systems,

require the management of spatial data. We will use the notion spatial data in a

very broad sense. The space of interest may be an abstraction of areal two- or
three-dimensional space such as a part of the surface of the earth or the geometric
description of a protein as well as a so called high-dimensional “feature space”
where characteristic properties of the objects of an application are represented by
the different values of a high-dimensional feature vector. Basic two-dimensional
data-types, e.g., are points, lines and regions. These notions are easily extended to
the generatl-dimensional case. Although most research on spatial databases is
consideringd-dimensional vector spaces, we will not restrict the nofatial to

this case. We say that a database is a spatial database if at least a distance metric is
defined for the objects of the database, i.e if the space of interest is at least a metric
space.

A spatial database system (SDBS) is a database system offering spatial data-
types in its data model and query language and offering an efficient implementa-
tion of these data-types with their operations and queries [Gue 94]. Typical opera-
tions on these data-types are the calculation of the distance or the intersection. Im-
portant query types are similarity queries, e.g.:

* region queries, obtaining all objects within a specified query region and

» k-nearest neighbor (kNN) queries, obtaining thie objects closest to a speci-
fied query object.

Similarity queries are important building blocks for many spatial data mining al-
gorithms - especially for our approach to ‘generalized clustering’. Therefore, the
underlying SDBS technology, i.e. spatial index structures, to support similarity
queries efficiently, is sketched briefly in the following.
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A trivial implementation of the spatial queries would scan the whole database
and check the query condition on each object. In order to speed up query process-
ing, many spatial index structures have been devel oped to restrict the search to the
relevant part of the space (for a survey see, e.g., [Gue 94] or [Sam 90]). All index
structures are based on the concept of a page, which isthe unit of transfer between
main and secondary memory. Typically, the number of page accessesisused as a
cost measure for database algorithms because the run-time for a page access ex-
ceeds the run-time of a CPU operation by severa orders of magnitude.

Spatial index structures can be roughly classified as organizing the data space
(hashing) or organizing the dataitself (search trees). In the following, we will in-
troduce well-known representatives which are typical for a certain class of index
structures and which are used in the following sections and chapters.

The grid file [NHS 84] has been designed to manage points in some d-dimen-
sional data space, generalizing the idea of one-dimensional hashing. It partitions
the data space into cells using an irregular grid. The split lines extend through the
whole space and their positions are kept in aseparate scale for each dimension. The
d scales define ad-dimensiond array (the directory) containing a pointer to a page
ineach cell. All d-dimensional pointscontained in acell arestored in the respective
page (c.f. figure 1, left). In order to achieve a sufficient storage utilization of the

data pages

NI
R\ \grid&\eﬁ?’rf ./7 data page structure

L]
) [ ]

N T
gridcelll® o |, ®le
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| | | |
k

T T 1
x-scale

Figure 1: [llustration of the grid file



14 2 Related Work

secondary memory, severa cells of the directory may be mapped to the same data
page. Thus, the data space is actually divided according to the data page structure
of thegridfile(c.f. figure 1, right). Region queries can be answered by determining
from the directory the set of grid cellsintersecting the query region. Following the
pointersyields a set of corresponding data pages, and the pointsin these pages are
then examined. A drawback of this method is that the number of grid cells may
grow super-linear in the number of objects N, depending on the distribution of the
objects.

The R-tree [Gut 84] generalizes the one-dimensional B-tree to d-dimensional
data spaces, specifically an R-tree manages d-dimensiona hyper-rectangles in-
stead of one-dimensional numeric keys. An R-tree may organize extended objects
such as polygons using minimum bounding rectangles (MBR) as approximations as
well as point objects as a specia case of rectangles. The leaves store the MBR of
data objects and a pointer to the exact geometry if needed, e.g. for polygons. Inter-
nal nodes store a sequence of pairs consisting of arectangle and apointer to achild
node. These rectangles are the MBRs of all data or directory rectangles stored in
the subtree having the referenced child node asitsroot (c.f. figure 2).

R-tree directory data page structure
] O

[ ]

directory
level 1

[
directo
level ﬁ
data-
Pages 1 D 1

Pt |
o N IR 0)

Figure2: [llustration of the R-tree
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To answer aregion query, the set of rectangles intersecting the query region is
determined recursively starting from the root. In adirectory node, the entriesinter-
secting the query region are determined and then their referenced child nodes are
searched until the data pages are reached.

The MBRsin adirectory node may overlap. They may also cover largefractions
of the data space where no objects are located. Both properties do have a negative
impact on the performance of query processing since additional paths in the tree
must be searched. Especialy the split strategy (choice of split axis and choice of
split value) in case of an overflow of a page has the most significant effect on the
performance of the R-tree. Therefore, different split strategies have been proposed,
for instance the R*-tree [BKSS 90], for minimizing the overlap and coverage of
empty space in the directory of the tree.

The grid file as well as the R-tree and their variants are efficient only for rela-
tively small numbers of dimensions d. The average upper bound for d using these
index structuresis about 8, but the actual value a so depends on the distribution of
the data. The better the data is clustered the more dimensions can be managed ef-
ficiently.

It isaresult of recent research activities ((BBKK 97], [BKK 96]) that basically
none of the known querying and indexing techniques perform well on high-dimen-
sional datafor larger queries - under the assumption of uniformly distributed data.
This due to some unexpected effects in high-dimensional space. For instance, the
sidelength of aquery growsdramatically with increasing dimension for hypercube
range queries which have a constant selectivity (i.e. relative volume). Thus, the
probability of an intersection of the query cube with a directory or data rectangle
in the known index structures approaches 1 with increasing dimension d.

Following theideas of search trees, index structures have been designed recently
which are also efficient for some larger values of d ([BKK 96], [LJF 95]). For in-
stance, the X-tree ([BKK 96]) issimilar to an R*-tree but introduces the concept of
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supernodes, i.e. nodes of variable sizein thedirectory of thetree (seefigure 3). The
basic idea is to avoid computational overhead in the directory while performing
similarity queries. Directory nodes are “merged” into one super(adeally, di-
rectory nodes argot split) if there is a high probability that all parts of the node
have to be searched anyway for most queries.

R-tree X-tree

Figure 3: Comparison of R-treeand X-treestructure

However, this approach will perform better than a linear scan over all data ob-
jects only for values af < 16 on the average - again, depending on the distribution
of the data. These valuesaére still moderate with regard to many applications.

Up to now, the indexing method which performs best for high-dimensional data,
also for values of significantly larger than 16, seems to be the pyramid-technique
proposed recently in [BBK 98]. However, this method is highly specialized to rect-
angular shaped region queries.

The pyramid method consists of two major steps: First, an unconventional py-
ramidal partitioning strategy is applied in order to increase the chance that pages
are not intersected by a query hypercube in a high-dimensional data space (see
figure 4, left). Second, theé-dimensional pointp are transformed to one-dimen-
sionalpyramid values pv, (see figure 4, right) which are then managed by a tradi-

tional one-dimensional index-structure, thétBee. Ad-dimensional rectangular
shaped range query is first transformed into one-dimensional queries selecting pyr-
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amid values. This yields a set of candidates, and a “point in rectangle test” is per-
formed for each candidate to determine the answers to the original query.

traditional partitioning

height h
Ps of poi nt%
Po —
) 4 P>
?83/‘ i P —xﬁ\
S g/ data space and pyramid p;
2 & pyramidtechnique pyramids p;
3" Ta

pyramid value pv, of p:
B .
} Pvp = (i + hy)

where p; is the pyramid in which point p is located
and h, isthe height of p in pyramid p; (0<h, <1)

center of the data space

Figure4: Illustration of the pyramid technique

This approach is primarily intended to be used for hypercube range queries and
for this case outperforms all other query processing methods. However, at this time
it is not obvious how to extend this technique to support other types of queries, e.g.,
nearest neighbor queries.

To support similarity queries in general metric spaces, all of the above methods
are not applicable since in the general case we only have a function to measure the
distance between objects. If the distance function is a metric, so-cettedtrees
(see e.g. [Uhl 91]) can be used for indexing the data. Metric trees only consider rel-
ative distances between objects to organize and partition the search space. The fact
that thetriangle inequality property applies to a metric distance function can be
used to prune the search tree while processing a similarity query. Most of these
structures are, however, static in the sense that they do not allow dynamic inser-
tions and deletions of objects. A recent paper ([CPZ 97]) has introduced a dynamic



18 2 Related Work

metric index structure, the M-tree, which is abalanced tree that can be managed on
the secondary memory.

The leaf nodes of an M-tree store all the database objects. Directory nodes store
so-called routing objects which are selected database objects to guide the search
operations. Associated with each routing object O,, are: apointer to asubtree T(Oy)
of O, acovering radius r(O;) and the distance d(O;, Op) of O to its parent object
O, (seefigure 5, right). All objectsin the subtree of O, arewithinthe distancer(G;)
from Oy, r(O;) > 0. A range query range(Q, r(Q)) starts from the root of the tree
and recursively traverses all paths which cannot be excluded from leading to ob-
jects O; satisfying the condition d(O;, Q) < r(Q). The pruning criterion for exclud-
ing subtrees from the search is depicted in figure 5, left. Obviously, the perfor-
mance of this indexing technique is dependent on the distribution of distances

between the database objects.
Op
d(0p.Q) rOp) |-
o d(Op, parent)

" l \

d(op’or c
rG)
Aoy, 0p|

If d(Op, Q) > r(Q) + r(Oy) then,
for each object O; in T(Oy),
itisd(O;, Q) > r(Q).

Thus, Téor) can be pruned.

Figure5: Illustration of the M-tree

Recently, the VA-file [WSB 98] was developed, an index structure that actually
isnot an index structure. The authors prove in the paper that under the assumption
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of uniformly distributed data, above acertain dimensionality no index structure can
process a nearest neighbor query efficiently. Thus, they suggest to use the sequen-
tial scan which obtains at least the benefits of sequentia rather than random disk I/
O. Clever bit encodings of the data are also devised to make the scan go faster.

The basic idea of the VA-file is to keep two files: a bit-compressed version of
the points and the exact representation of the points. Both files are unsorted, how-
ever, the ordering of the points in the two files is identical. Bit encodings for the
data points are generated by partitioning the space using only a few split linesin
each dimension. Then, apoint is represented by the the grid cell in which it is con-
tained. This requires only a few bits for the coordinate of the cell in each dimen-
sion. Query processing is equivalent to a sequential scan of the compressed file
with some look-ups to the second file whenever this is necessary. In particular a
look-up occurs, if a point cannot be pruned from a search based only on the com-
pressed representation. Note that a VA-file may perform worse than a true spatial
index structure even in high-dimensional spcaceif too many points share the same
bit representation. Thiswill be the case if the dataiis highly skewed and there exist
high-density clusters.

Asthe VA-fileisavery simple structure, there are two major problem associat-
ed with the VA-file: in case of correlations or clusters, many pointsin the database
will share a single compressed representation and therefore, the number of look-
ups will increase dramatically and second, the authors do not even provide arule
of thumb how to determine a good or optimal number of bits to be used for quan-
tization.

Bearing their limitations in mind, spatial index structures and their query meth-
ods can neverthel ess be used to improve the performance of some clustering algo-
rithms. It is also possible to build clustering algorithms “on top” of index(-like)
structures since index structures already perform some kind of pre-clustering of the
data. We will focus on these aspects in our review of clustering and related algo-
rithms in the next two sections.
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2.2 Clustering and Related Algorithms

Several types of clustering algorithms can be distinguished. One well-known dis-
tinction isthat of hierarchical and partitioning clustering algorithms [JD 88]. Hier-
archical clustering methods organize the data into a nested sequence of groups.
These techniques are important for biology, social, and behavioral sciences be-
cause of the need to construct taxonomies. Partitioning clustering methods try to
recover natural groupsin the dataand thus construct only asinglelevel partition of
the data. Single partitions are more important in engineering applications and are
especially appropriate for the efficient representation and compression of large
data sets.

Somehow related to clustering are region growing algorithmswhich are used for
image segmentation of raster images. We will see in the next chapter that the
groups of pixels constructed by region growing agorithms are connected compo-
nents that have the same underlying formal description as density-based clusters.

2.2.1 Hierarchical Clustering Algorithms

Whereas partitioning algorithms obtain asinglelevel clustering, hierarchical algo-
rithms decompose a database D of n objects into several levels of nested partition-
ings (clusterings). The hierarchical decomposition isrepresented by adendrogram,
atreethat iteratively splits D into smaller subsets until each subset consists of only
one object. In such ahierarchy, each node of the tree represents acluster of D. The
dendrogram can either be created from the leaves up to the root (aggl omerative ap-
proach) or from the root down to the leaves (divisive approach) by merging resp.
dividing clusters at each step.

Hierarchical algorithms need only adissimilarity matrix for objects as input. If
asinglelevel, i.e. anatural grouping in the data, is heeded, atermination condition
can be defined indicating when the merge or division process should be terminated.
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One example of abreak condition is a critical distance D,,. |f no distance between
two clusters of Q issmaller than D, then the construction algorithm for the dendro-
gram stops. Alternatively, an appropriate level in the dendrogram can be selected
manually after the creation of the whole tree.

Therearealot of different algorithms producing the same hierarchical structure.
Agglomerative hierarchical clustering algorithms, for instance, basicaly keep

merging the closest pairs of objects to form clusters. They start with the “disjoint

clustering” obtained by placing every object in a unique cluster. In every step the

two “closest” clusters in the current clustering are merged. The most commonly

used hierarchical structures are called “single link”, “complete link”, and “average
link”, differing in principle only in the definition of the dissimilarity measure for
clusters (see figure 6 for an illustration of the single link method):

« single link: smd(X,Y) = D)i(nfDY{distance(x, ¥}
xOX,y
« complete link: sim-cl(X,Y) = Df(UpDY{distance(x,y)}
xOXy
« average link: smal(X,V) = ‘X‘lqux S distance(x, y) 1
xOX,ydyY
distance
A between
- clusters [~ 2
— .8 '9
_ o7
57
— o2 o4 o6 1
— .3 -5
— .1
o 0
1 5 1 2 3 4 5 6 7 8 9

Figure 6: Singlelink clustering of n = 9 objects

1. Throughout this thesis, the expression [X| denotes the number of elementsin X if the argument
Xof |.|isasset.
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Different algorithms, e.g. for the single-link method have been suggested (see
e.g.[Sib 73], [JD 88], [HT 93]). Thesinglelink hierarchy can also be derived from

the minimum spanning tree (MST)? of a set of points (see [Mur 83] for algorithms
constructing the MST and [Rol 73] for an algorithm which transforms the MST
into the single-link hierarchy). However, hierarchical algorithms are in genera
based on the inter-object distances and on finding the nearest neighbors of objects
and clusters. Therefore, the run-time complexity of these clustering algorithmsis

at least O(n2), if al inter-object distances for an object have to be checked to find
its nearest neighbor.

2.2.2 Partitioning Clustering Algorithms

Partitioning algorithms construct a partition of adatabase D of n objects into a set

of k clusters where k may or may not be an input parameter. The objective of apar-
titioning clustering method is to determine a partition of the set of objects into k

groups such that the objects in a cluster are more similar to each other than to ob-

jectsin different clusters. However, there are alot of alternativesto state this prob-

lem moreprecisely, i.e. to state formally what should be considered asacluster and

what should be considered as a “good” partitioning. Global as well as local cluster-
ing criteria are possible. In this section, we present only the basic ideas of the most
common partitioning clustering methods.

Optimization Based Approaches

Optimization based clustering algorithms typically adopt a global clustering crite-
rion. A global clustering criterion represents each cluster by a prototype and as-
signs an object to the cluster represented by the most similar prototype, i.e. to the
prototype that has the smallest distance to the considered object. An iterative con-
trol strategy is used to optimize a notion of clustering quality such as the average

1. The use of the MST to find clustersis not restricted to the single link hierarchy. There are also
partitioning clustering algorithms based on graph theory which use the M ST directly (see the next
section).
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distances or the squared distances of objects to its prototypes. Depending on the
kind of prototypes, we can distinguish so-called k-means, k-modes and k-medoid
clustering agorithms.

For k-means algorithms (see e.g. [Mac 67]) each cluster is represented by a pro-
totype computed as the mean value of al objects belonging to that cluster. They
typically start with aninitial partition of D formed by specifying arbitrary k proto-
types. Then, the following steps are performed iteratively until the clustering crite-
rion cannot be improved:

- Assign each object to the closest prototype.
- For each cluster: recal culate the mean (prototype in the next iteration).

In practice k-means type agorithms converge fast. However, they are designed
for numerical valued d-dimensional feature vectors only, whereas data mining ap-
plications may also consist of categorical valued vectors or objects for which only
adissimilarity measureis given.

The k-modes (see [Hua 97]) al gorithm extends the k-means paradigm to categor-
ical domains. To measure the dissimilarity between two categorical vectors X and
Y, the simple matching dissimilarity [KR 90], i.e. the total number of mismatches
of the valuesin the corresponding attributes of X and Y, isused. Then it is possible
to find a so-called mode for aset Sof categorical vectors, i.e. avector Q that min-
imizes the sum of distances between Q and the elements of S, A mode for categor-
ical values corresponds to the mean for numerical values. Hence, the same algo-
rithmic schema as for k-means can be used to cluster categorical vectors.

In applicationswhere only adissimilarity measure for objectsisdefined, the cal-
culation of amean or amode of acluster is not possible. However, there is another
type of optimizing clustering algorithm for this kind of data sets:

For k-medoid agorithms (see e.g. [KR 90]) each cluster is represented by a pro-
totype which isidentical to one of the objects of the cluster. This object, called the
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medoid of a cluster is generally located near the “center” of the cluster. Likle-
means algorithms aldemodes algorithms typically start by selecting arbitiary
prototypes to form an initial partition. Then, the following steps are performed it-
eratively until the clustering criterion cannot be improved:

- Assign each object to the closest prototype/medoid.
- Select one of the medoids and try to exchange the medoid with a non-medoid
such that the clustering criterion is improved.

Basically,k-medoid algorithms differ only in the search strategy for exchanging
medoids with non-medoids. Obviously, there is a trade-off between the resulting
clustering quality and the run-time kimedoid algorithms. The more exhaustive
the search, the better the clustering criterion can be improved.

The first clustering algorithm used for mining in large spatial databases has been
ak-medoid type algorithm (see [NH 94]). This algorithm calBd\RANS (Clus-
tering Large Applications based on RANdomized Search) is an improved-medoid
algorithm with a randomized and bounded search strategy for exchanging proto-
types. The experiments in [NH 94] show that the algorithm CLARANS is signifi-
cantly more efficient than the well-knovwrmedoid algorithms PAM (Partitioning
Around Medoids) and CLARA (Clustering LARge Applications) presented in
[KR 90] while producing a result of nearly the same clustering quality.

Optimization based clustering algorithms are effective in determining the “cor-
rect” clustering if the clusters are of “convex” shape, similar size and if their num-
berk can be reasonably estimated. However, they may sometimes suffer from the
problem of local minima due to their limited search strategy. Figure 7 depicts an

example of &-means and k-medoid clustering for the samd 8ata set.

1. Note that for d-dimensional numerical vectors assigning objects to the closest prototype yields
apartition that is equivaent to a Voronoi diagram of the prototypes.
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X mean -«— medoid

Figure 7: k-meansand k-medoid (k = 3) clustering for a sample data set

If kisnot known in advance, various parameter values can be tried and for each
of the discovered clusterings ameasure, e.g. the silhouette coefficient [KR 90], in-
dicating the suitability of the number of clusters k can be calculated. Another pos-
sible strategy isto adjust the number of clusters after the main clustering procedure
by merging and splitting existing clusters or by removing small clustersor outliers.
For instance, in the clustering algorithms called ISODATA [BH 64], conditionsfor
splitting and merging clusters can be specified by the user. There exists also an
adaptive k-means type algorithm that does not need k as an input parameter
[Sch 91]. Thisalgorithm startswith aninitia clustering consisting of only one pro-
totype - the mean of the whole data set. Then, the multidimensiona Voronoi dia-
gram for al prototypes of the current clustering is computed and the Voronoi cell
where the largest error occurs is split, i.e. two new clusters/prototypes are inserted
in this region. This procedure is repeated until a user-specified termination condi-
tion is met.

Clustering Based on Graph Theory

Severa kinds of graphs have been used for analyzing multidimensional objects.
These graphs consist of nodeswhich represent the objectsto be clustered and edges
which represent relations between the nodes. In the smplest case, every node is
connected to all the remaining nodes, resulting in the complete graph for adata set.
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The edge weights are the distances between pairs of objects. For the purpose of
clustering, typically a subset of the edges in the complete graph is selected to re-
flect the inherent separation among clusters. One of the best known clustering
methods based on graph theory is Zahn's method which uses the minimum span-

ning tree (MST) of a data set [Zah 71].

Zahn demonstrates how the MST can be used with different notions of an incon-
sistent edge to identify clusters. The basic idea of Zahn's clustering algorithm con-
sists of the following three steps:

- Construct the MST for the set of points.
- Identify inconsistent edges in the MST.
- Remove the inconsistent edges.

The resulting connected components are the clusters. The algorithm can be ap-
plied iteratively to these components to identify subclusters. Zahn considers sever-
al criteria for the inconsistency of edges. For example, an edge is inconsistent if its
interpoint distance is significantly larger than the average of interpoint distances of
nearby edges. This notion of inconsistent edges works well in simple situations
where the clusters are well separated and the density within a cluster only varies
smoothly. Special heuristics are needed for more complex situations and a priori
knowledge of the shapes of the clusters is then needed to select the proper heuris-
tics to identify inconsistent edges. Also, the computational costs for constructing
the MST and finding inconsistent edges are very high for large data sets.

Figure 8 depicts the MST of a sample data set of two-dimensional points. The
points are grouped in three clusters and the inconsistent edges are marked.

1. A spanning tree for aset of objects D is a connected graph with no cycles that contains a node
for each object of D. The weight of a treeisthe sum of the edge weightsin the tree. A minimum
spanning tree of D is a spanning tree which has the minimal weight among all other spanning
trees of D.



2.2 Clustering and Related Algorithms 27

P

/ Inconsistent Edges

Figure 8 MST of a sample data set

Distribution-Based Approaches

A popular statistical approach to clustering is based on the notion of a “mixture
density”. Each object is assumed to be drawn from okeinflerlying populations

or clusters. In this approach which is known as “mixture decomposition” or “model
based clustering”, the form and the number of underlying cluster densities are as-
sumed to be known. Although, in principle arbitrary density functions or distribu-
tions are possible, the common practice is to assume a mixture of Gaussian distri-
butions (see e.g. [JD 88], [Sym 81]). The density dfdimensional vectox from

thei-th cluster is assumed to hé; 8) for some unknown vector of paramet@rs

In the so-called classification maximum likelihood procedérand the identify-

ing labelsc; for the n objectsgy, ...,x, are chosen so as to maximize the likelihood

n
L6, (cq, ... Cp)) = |_| fci(xi;e)

i=1

In [BR 93] a solution for a more general model is worked out, additionally al-
lowing the incorporation of noise in the form of a Poisson process. However, even
this model is not applicable if we do not know the number of clusters or if the pro-
cesses generating the data are not Gaussian.
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Another approach to clustering which also assumes a certain distribution of the
data but which does not require the number of clusters to be known in advance is
presented in [ XEK'S 98]. The clustering algorithm DBCLASD (Distribution Based
Clustering of LArge Spatial Databases) assumes that the points inside of a cluster
are randomly distributed which is quite reasonabl e for many applications (see e.g.
[AS91], [BR 96] and [MS 92]). Thisimplies a characteristic probability distribu-
tion of the distance to the nearest neighbors for the points of a cluster. The ago-
rithm DBCL ASD presupposes this distribution and incrementally augmentsan ini-
tial cluster by its neighboring points as long as the nearest neighbor distance set of
theresulting cluster still fits the expected distribution. Thus, if the points inside of
the clusters are almost randomly distributed, DBCLASD is able to detect clusters
of arbitrary shape without requiring any further input parameters such as the num-
ber of clusters. However, incrementally checking an expected distribution implies
an inherent dependency of the discovered clustering from the order in which can-
didates from the database are generated and tested. Therefore, two heuristicsto re-
ducethe effects of this dependency areincorporated in the algorithm: unsuccessful
candidates for the current cluster are not discarded but tried again later; points al-
ready assigned to some cluster may switch to another cluster later.

Density-Based Approaches

Clusters can be viewed as regions in the data space in which the objects are dense,
separated by regions of low object density. The general idea of density-based clus-
tering approaches is to search for regions of high density in the data space. These
regions may have an arbitrary shape and the pointsinside aregion may be arbitrari-
ly distributed.

A common way to find regions of high-density in the dataspaceis based on grid
cell densities (see e.g. [JD 88] for an overview). A histogram is constructed by par-
titioning the data space into a number of non-overlapping regions or cells. Cells
containing arelatively large number of objects are potential cluster centersand the
boundaries between clusters fall in the “valleys” of the histogram. In general there
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aretwo possihilitiesto construct clusters, starting from the potential centers. Inthe
first method, the potential centersaretaken asactual cluster centersand each object
isthen assigned to the cluster with the closest center. In the second method, neigh-
boring cells are merged with the potential centers as long as the density in the
neighboring cellsissimilar enough to the density of the centers. That meansthat in
the second approach, clusters are constructed as connected regions of grid cells.

Obviously, the success of this method depends on the size of the cells which
must be specified by the user. Cells of small volume will give a very “noisy” esti-
mate of the density, whereas large cells tend to overly smooth the density estimate.
Furthermore, the memory and run-time requirements of storing and searching mul-
tidimensional histograms may become very large because the number of cells in a
d-dimensional grid grows exponentially with increasing dimendion

Recently, the density-based clustering technique CLIQUE (CLustering In
QUESst) [AGG+ 98] has been proposed for mining in high-dimensional data spac-
es. This method also relies on a partition of the space into a regular grid. A cluster
is defined as a region, i.e. a set of connected grid cells, that has a higher density of
points than its surrounding region. More important, the method automatically de-
tectssubspaces of the highest dimensionality such that high-density clusters exist
in those subspaces. A subspace is a projection of the input data into a subset of the
attributes. The identification of clusters works in two steps:

1.) Determination of dense units, i.e. cells, in all subspaces of interest.
2.) Determination of connected dense units in all subspaces of interest.

To check each cell in a high-dimensional grid is computationally unfeasible.
Therefore, to determine the dense units in all subspaces a bottom-up procedure is
used, based on the monotonicity property for high-density clusters: if S is a cluster
in ad-dimensional space, then S is also part of a cluster1)-fimensional pro-
jections of this space. The algorithm starts by determining one-dimensional dense
units. Then, having determined (k-1)-dimensional dense units, the carldiiate
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mensional dense units are determined and a pass over the datais made to determine
those candidates which are actually dense. The candidate generation procedure
produces a superset of all k-dimensiona dense units by self-joining the set of
(k-1)-dimensional dense units where thejoin condition requiresthat the units share

the first k-2 dimensions.t

In the second step, clusters are constructed in each subspace where dense units
have been found. A labyrinth-search schema s used to determine regions of con-
nected units, i.e. units that have a common face.

In [EKSX 96] adensity-based clustering method is presented which is not grid-
based. The basic idea for the algorithm DBSCAN (Density Based Spatial Cluster-
ing of Applications with Noise) isthat for each point of a cluster the neighborhood
of agiven radius (€) hasto contain at least a minimum number of points (MinPts),
i.e. thedensity in the neighborhood of pointsin acluster hasto exceed somethresh-
old. A simple heuristic which is effective in many cases to determine the two pa-
rameters (g, MinPts) can be used to support the user in determining these parame-
ters. The algorithm DBSCAN checks the e-neighborhood of each point in the
database. If the e-neighborhood N¢(p) of a point p has more than MinPts points the
region N¢(p) is expanded to acluster by checking the e-neighborhood of al points
in N¢(p). For all points q where N¢(q) contains more than MinPts points, also the

neighbors of g are added to the cluster, and their e-neighborhood is checked in the
next step. This procedureis repeated until no new point can be added to the current
cluster.

Thisalgorithm isbased on the formal notion of acluster asamaximal set of den-
sity-connected points. A point p is density-connected to a point q if there exists a
point o such that both p and q are density-reachable from o (directly or transitive-
ly). A point p is said to be directly density-reachable from o if p liesin the neigh-

1. This bottom-up construction uses the same algorithmic trick as the Apriori agorithm for find-
ing Association Rules presented in [AS 94].
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borhood of o and the neighborhood of o contains at least MinPts points. We will
use this density-based clustering approach as a starting point for our generalization
in the following chapters.

2.2.3 Region Growing

Image Segmentation isatask in the field of Computer Vision which dealswith the
analysis of the spatial content of an image. In particular, it is used to separate re-
gions from the rest of the image in order to recognize them as objects.

Region Growing is an approach to image segmentation in which neighboring
pixels are examined and added to aregion classif no edges are detected. This pro-
cess is iterated for each boundary pixel in the region. Several image properties,
such as alow gradient or a gray-level intensity value can be used in combination
to define the membership of pixelsto aregion (see e.g. [Nie 90]). In generdl, al
pixelswith grey level (or color) 0 are assumed to be the background, while pixels
with color > 0 are assumed to belong to foreground objects. A connected compo-
nent in the image is a maximal collection of uniformly colored pixels such that a
path exists between any pair of pixelsin the component. Two pixels are adjacent if
one pixel liesin one of the eight positions surrounding the other pixel. Each pixel
intheimage will receive alabel; pixelswill have the samelabel if and only if they
belong to the same connected component. All background pixelswill receive ala-
bel of 0.

The definition of a connection between two neighboring pixels depends on the
application. In the most simple form, two pixels are adjacent if and only if their
grey level values areidentical. Another possibility is that two adjacent pixels hav-
ing gray-level values x and y are defined to be connected if the absolute difference
[x - y| is not greater than athreshold (setting the threshold to O reduces this case to
the simple one mentioned above). Other approaches may take into account addi-
tional information about the image or may consider aggregate values such as the
average intensity value in the neighborhood of a pixel.
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2.3 Exploiting the Clustering Properties of Index
Structures

In this section, we show how spatial indexes and similar data structures can be used
to support the clustering of very large databases. These structures organize the data
objects or the data space in a way that objects which are close to each other are
grouped together on a disk page (see section 2.1). Thus, index structures contain
useful information about the distribution of the objects and their clustering struc-
ture. Therefore, index structures can be used to support and speed-up basic opera-
tions in some of the known clustering agorithms. They can be used as a kind of
preprocessing for clustering algorithms or even to build specia clustering algo-
rithms which take advantage of the information stored in the directory of an index.

2.3.1 Query Support for Clustering Algorithms

Different methods to support the performance of clustering techniques have been
proposed in the literature. The techniques discussed in this section rely on the effi-
cient processing of similarity queries (kNN-queries and region queries) when using
spatial index structures.

The time complexity of hierarchical clustering algorithmsis at least O(n?) if all
inter-object distances for an object have to be checked to find its NN. Already
Murtagh [Mur 83] points out that spatial index structures make use of the fact that
finding of NNs is a “local” operation because tRBl of an object can only lie in a
restricted region of the data space. Thus, using n-dimensional hash- or tree-based
index structures for efficient processing\i queries can improve the overall run-
time complexity of agglomerative hierarchical clustering algorithms. If a disk
based index structure, e.g. a grid file or R-Tree, is used instead of a main-memory-
based index structure, these clustering algorithms can also be used for larger data
sets.
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The k-medoid algorithm CLARANS is still too inefficient to be applied to very
large databases because its measured run-time complexity seemsto be of the order
n%. In [EKX 95g] two techniques to integrate CLARANS with an SDBS using a
spatial index structure are proposed. The first is R*-tree based sampling (see sec-
tion 2.3.2), the second is called focusing on relevant clusters which uses a spatial
index structure to reduce the computational costs for comparing the quality of two
clusterings - an operation which is performed in each step of the algorithm. This
technique is described in the following:

Typically, k-medoid algorithms try to improve a current clustering by exchang-
ing one of the medoids of the partition with one non-medoid and then compare the
quality of this “new” clustering with the quality of the “old” one. In CLARANS,
computing the quality of a clustering is the most time consuming step because a
scan through the whole database is performed. However, only objects which be-
longed to the cluster of the exchanged medoid or which will belong to the cluster
of the new medoid contribute to tisbange of quality. Thus, only the objects of
two (out ofk) clusters have to be read from disk. To retrieve exactly the objects of
a given cluster, a region query can be used. This region, a Voronoi cell whose cen-
ter is the medoid of the cluster, can be efficiently constructed by using only the in-
formation about the medoids and the minimum bounding box of all objects in the
database. Assuming the same average size for all clusters, a performancé&/gain of
2 (measured by the number of page accesses) compared to [NH 94] is expected.

Clustering algorithms which groupeighboring objects of the database into
clusters based on a local cluster condition can be formulated so that only a “single
scan”over the database is performed. Each object has to be examined once and its
neighborhood has to be retrieved. If the retrieval of the neighborhood of an object
can be efficiently supported - for instance, if the neighborhood can be expressed by
a region query for which a supporting spatial index structure exisis algorith-
mic schema yields efficient clustering algorithms integrated with SDBMS.
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The algorithmic schema of a single scan clustering algorithm is as follows:

SingleScanClustering(Database DB)
FOR each object o in DB DO
IF o0 is not yet member of some cluster THEN
create a new cluster C;
WHILE neighboring objects satisfy the cluster condition DO
add themto C
ENDWHILE
ENDIF
ENDFOR

Different cluster conditions yield different cluster definitions and algorithms.
For example, the clustering algorithms DBCLASD and DBSCAN are instances of
this type of agorithm.

2.3.2 Index-Based Sampling

To cluster large databases in a limited main memory, one can select a relatively
small number of representatives from the database and apply the clustering algo-
rithm only to these representatives. Thisis a kind of data sampling, a technique
common in cluster analysis [KR 90]. The drawback is that the quality of the clus-
tering will be decreased by considering only a subset of the database and that it de-
pends heavily on the quality of the sample.

Traditional data sampling works only in main memory. In [EKX 95b] a method
of selecting representatives from a spatial database system is proposed. From each
data page of an R*-tree, one or severa representatives are selected. Since the clus-
tering strategy of the R*-tree, which minimizes the overlap between directory rect-
angles, yields awell-distributed set of representatives (see figure 9), the quality of
the clustering will increase only slightly. Thisis confirmed by experimental results
[EKX 95b] which show that the efficiency is improved by a factor of 48 to 158
whereasthe clustering quality decreasesonly by 1.5% to 3.2% when comparing the
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clustering algorithm CLARANS [NH 94] with and without index-based sampling.
In principle, other page based spatial index structures could also be used for this
kind of sampling technique because their page structure usually adapts to the dis-
tribution of the data as well.

Figure 9: Data page structure of an R*-treefor a 2d-point database

2.3.3 Grid clustering

Schikuta [Sch 96] proposes a hierarchical clustering algorithm based on the grid
file (see section 2.1). Points are clustered according to their grid cells in the grid
structure. The algorithm consists of 4 main steps:

« Creation of the grid structure

« Sorting of the grid cells according to cell densities

« Identifying cluster centers

« Recursive traversal and merging of neighboring cells

In the first part, a grid structure is created from all points which completely par-
titions the data space into a set of non-empty disjoint rectangular shaped cells con-
taining the points. Because the grid structure adapts to the distribution of the points
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in the data space, the creation of the grid structure can be seen as a pre-clustering
phase (see figure 10).

Figure 10: Data page structure of a Grid Filefor a 2d-point database [Sch 96]

In the second part, the grid data pages (containing the points from one or more
grid cells, c.f. figure 1) are sorted according to their density, i.e. theratio of the ac-
tual number of points contained in the data page and the spatial volume of the data
page. This sorting is needed for the identification of cluster centersin thethird part.

Part 3 selects the pages with the highest density as cluster centers (obviously a
number of pages may have the same cell density). Step 4 is performed repeatedly
until all cells have been clustered. Starting with cluster centers, neighboring pages
arevisited and merged with the current cluster if they have alower or equal density
than the actual page. Then the neighboring pages of the merged neighbors are vis-
ited recursively until no more merging can be done for the current cluster. Then the
next unclustered page with the highest density is selected. Experiments [Sch 96]
show that this clustering algorithm clearly outperforms hierarchical and partition-
ing methods of the commercia statistical package SPSS.

The Grid clustering approach is not very specific tothegridfile. Infact, it would
be possible to apply a similar procedure to the data pages of other spatial index
structures as well and thus obtain very similar results.
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234 CF-Tree

[ZRL 96] presentsthe clustering method BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) which usesahighly specialized tree-structurefor the
purpose of clustering very large sets of d-dimensional vectors. The advantage of
this structure is that its memory requirements can be adjusted to the main memory
that is available.

BIRCH incrementally computes compact descriptions of subclusters, called
Clustering Features CF that contain the number of points, the linear sum and the
sguare sum of all pointsin the cluster:

The CF-values are sufficient for computing information about subclusters like
centroid, radius and diameter and constitute an efficient storage method since they
summarize information about subclustersinstead of storing al points.

The Clustering Features are organized in a balanced tree with branching factor
B and athreshold T (seefigure 11). A non-leaf node represents a cluster consisting
of al the subclusters represented by its entries. A leaf node has to contain at most
L entries and the diameter of each entry in aleaf hode hasto be lessthan T. Thus,
the parameter T has the most significant influence on the size of the tree.

In the first phase, BIRCH performs alinear scan of all data points and builds a
CF-tree. A point isinserted by inserting the corresponding CF-value into the clos-
est leaf of thetree. If an entry in theleaf can absorb the new point without violating
the threshold condition, then the CF-values for this entry are updated, otherwise a
new entry in the leaf node is created. In this case, if the leaf node contains more
than L entries after insertion, theleaf node and possibly its ancestor nodes are split.
In an optional phase 2 the CF-tree can be further reduced until a desired number of
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‘ CFg:CF6+CF7‘ . ‘ e ‘

|CF6=CFy+CF;+CFo| CF/=CF+CFy| |

‘ CFy ‘ CF, ‘ CF3 ‘4_‘ CF4 ‘ CFs ‘ ‘

Figure11: CF-treestructure

leaf nodes is reached. In phase 3 an arbitrary clustering algorithm such as CLAR-
ANS s used to cluster the leaf nodes of the CF-tree.

The efficiency of BIRCH is similar to the index based sampling (see section
2.3.2) and experiments with synthetic data sets [ZRL 96] indicate that the quality
of the clustering using BIRCH in combination with CLARANS s even higher than
the quality obtained by using CLARANS done.

2.3.5 STING

Wang et a. [WYM 97] propose the STING (STatistical INformation Grid based)
method which relies on a hierarchical division of the data space into rectangular
cells. Each cell at a higher level is partitioned into a fixed number ¢ of cells at the
next lower level. The skeleton of the STING structure is similar to a spatial index
structure - in fact, their default value for c is 4, in which case we have an equiva-
lence for two-dimensional data to the well-known Quadtree structure [Sam 90].
This tree structure is further enhanced with additional statistical information in
each node/cell of thetree (seefigure 12). For each cell the following values are cal-
culated and stored:
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n - the number of objects (points) in the cell.

And for each numerical attribute:

em -the mean of all values in the cell

*s - the standard deviation of all values in the cell

emin -the minimum value in the cell

emax - the maximum value in the cell

e distr - the type of distribution that the attribute values in this cell follow
(enumeration type)

1-st layer n
Martr_1 Mattr_j
Sattr_1 Sattr_j
Mifgtr g MiNgeyr |
. MaXattr_1 MaXqy |
(i-1)-th layer distray 1 diStrgy
i// = I-thlayer

Figure 12: STING structure [WYM 97]

The STING structure can be used to answer efficiently different kinds of region-
oriented queries, e.g., finding maximal connected regions which satisfy a density
condition and possibly additional conditions on the non-spatial attributes of the
points. The algorithm for answering such queries first determines all bottom level
cells which are relevant to the query and then constructs the connected regions of
those relevant cells.

The bottom level cells that are relevant to a query are determined in a top down
manner, starting with an initial layer in the STING structure - typically the root of
the tree. The relevant cells in a specific level are determined by using the statistical
information. Then, the algorithm goes down the hierarchy by one level, consider-
ing only the children of relevant cells at the higher level. This procedure is iterated
until the leaf cells are reached.
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The regions of relevant leaf cells are then constructed by a breadth first search.
For each relevant cell, cells within a certain distance are examined and merged
with the current cell if the average density within the areais greater than aspecified
threshold. Thisisin principle the DBSCAN algorithm [EKSX 96] performed on
cellsinstead of points. Wang et al. prove that the regions returned by STING are
approximations of the clusters discovered by DBSCAN which become identical as
the granularity of the grid approaches zero.

Wang et a. claim that the run-time complexity of STING is O(C), where C is
the number of bottom level cells. Cisassumed to be much smaller than the number
N of all objects which is reasonable for low dimensional data. However, to assure
C << N for high dimensions d, the space cannot be divided along all dimensions:
even if the cells are divided only once in each dimension, then the second layer in

the STING structure would contain aready 24 cells. But if the spaceis not divided
often enough along all dimensions, both the quality of cell-approximations of clus-
ters as well as the run-time for finding them will deteriorate.

2.4 Summary

In this chapter we first gave an overview of spatial indexing methods to support
similarity querieswhich areimportant building blocks for many clustering and oth-
er spatial data mining algorithms. Second, different types of clustering algorithms
were reviewed, and we showed how many of these algorithms - traditional as well
as new ones - can be integrated into a spatial database management system using
the query processing facilities of the SDBS. In the last section, we presented dif-
ferent clustering techniques which exploit the clustering properties of spatial index
structures directly.



Chapter 3

Density-Based Decompositions

In this chapter the basic notions of our work are introduced. First, we give a short
motivation for the generalization of a density-based clustering to a density-based
decomposition (section 3.1.1). Then, we present a set-theoretic definition of densi-
ty-connected sets which characterize generalized density-based clusters
(section 3.1.2). Density-based decompositions are then simply given as classes of
density-connected sets (section 3.2.1). Important specializations of these notions
include some familiar structures from clustering and pattern recognition aswell as
new applications which may be appropriate for grouping extended objects, e.g.
polygons in geographic information systems (section 3.2.2). We also discuss the
determination of parameters which may be required by some specializations and
present a simple but in most cases effective heuristic to determine parameters for
an important specialization of a density-based decomposition (section 3.3).
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3.1 Density-Connected Sets

3.1.1 Motivation

Clustering can be regarded as a basic operation in atwo step procedure for spatial

data mining (cf. figure 13). A first step, implemented by a clustering algorithm,

where we look for implicit spatial structures or clusters or groups of “similar” ob-
jects, for instance, dense groups of expensive houses in a geographic database.
Then, in the second step, the detected structures are further analyzed. We may, for
example, explain the groups of expensive houses detected in the first step by other
features located in their neighborhood, for instance, rivers or lakes.

Detect Clusters Explain Clusters
. —_— —_—
VIR &
R W

Figure 13: Clustering and spatial data mining

In principle, any clustering algorithm could be used for the first step of this task
if it is possible to apply it to the data set under consideration (recall the limitations
of traditional clustering algorithms discussed in the previous chapter). However,
the well-known clustering algorithms are designed for point-like objects, i.e. ob-
jects having no other characteristics - from the viewpoint of the algorithm - than
their position in somé-dimensional vector space, or alternatively, their distances
to other objects in a metric space.
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It isnot obvious how to apply these methods to other kinds of objects, for exam-
ple to spatially extended objects like polygons in a geographic database. Using a
traditiona clustering algorithm, there are in principle two possibilities: First, the
representation of the polygons by distinguished points, for example the centers of
gravity, or second, the definition of a distance measure. For instance, define the
distance between two polygons by the minimum distance between their edges.
However, these methods will often result in avery poor representation of the orig-
inal distribution of the objects in the database, which means that important infor-
mation islost.

In figure 14, an example of the transformation to gravity centers for a set of
polygons is depicted. In the original space we can see three clusters or groups and
some smaller polygons which may be considered as noise. This structure is obvi-
ously not preserved if the polygons are transformed to points.

Transformation to gravity centers

O poor representation

its) ?
Figure 14: Examplefor a generalized clustering problem

Intheideal case, to find cluster-like groups of objectsin a geographic informa-
tion system, we want to takeinto account perhapsthe area of the polygons - maybe
other non-spatial attributes, like average income for polygons representing com-
munities, would be also useful. And, what the example in figure 14 also suggests
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isthat using natural notions of connectedness for polygons like intersects or meets
instead of distance based measures may be more appropriate.

To conclude, our goa isto extend the notion of aclustering to arbitrary (spatial)
objects so that the additional information about the objects given by their (spatial
and non-spatial) attributes can be used directly to reveal and analyze hidden struc-
turesin aspatia database.

3.1.2 Definitionsand Properties

We will use the density-based clustering approach as a starting point for our gen-
erdization:

The key idea of a density-based cluster as presented in [EKSX 96] is that for
most points of a cluster the e-neighborhood for some given € > 0 has to contain at
least a minimum number of points, i.e. the “density” ingimeighborhood of the
points has to exceed some threshold. This idea is illustrated by the sample sets of
2-dimensional points depicted in figure 15. In these very simple examples we see
that clusters have a typical density of points inside which is considerably higher
than outside of the clusters. Furthermore, the density within areas of noise is lower
than the density of the clusters, and clusters may have arbitrary shape, size and
location.

S
3

database 1 database 2 database 3

Figure 15: Sample databases of 2d points
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Theidea of density-based clustersin [EKSX 96] can be generalized in two im-
portant ways. First, we can use any notion of aneighborhood instead of an e-neigh-
borhood if the definition of the neighborhood is based on a binary predicate which
is symmetric and reflexive. Second, instead of simply counting the objects in the
neighborhood of an object we can use other measures to define the “cardinality” of
that neighborhood as well. Figure 16 illustrates the intuition and the goal of the fol-
lowing definitions.

“ &-neighborhoodcontains at least MinPts points’

“distance< ¢” . @ ’ “| Ng | 2 MinPts”

NPred(0,p) — MinWeight(N)
reflexive, symmetric arbitrary predicate

for pairs of objects for sets of objects

Generalized Neighborhood Generalized Minimum Cardinality
Niprea(0) = {p | NPred(o, p)} MinWeight(Nypreq(0))

“NPred-neighborhoodhas at least MinWeight”

Figure 16: Generalization of density-based clusters

Definition 1: (Notation:neighborhood of an object)

Let NPred be a binary predicate dhwhich is reflexive and symmetric, i.e., for
all p, g O D: NPred(p, p), and ifNPred(p, q) thenNPred(q, p).
Then theNPred-neighborhood of an objeot[] D is given as

Nnpred(0) = {0’ O D| NPred(o, 0'}.
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The definition of acluster in [EKSX 96] is restricted to the special case of adis-
tance based neighborhood, i.e., No(0) = {o’ O D| |o - 0’| < €}. A distance based
neighborhood is a natural notion of aneighborhood for point objects, but if cluster-
ing spatially extended objects such as a set of polygons of largely differing sizesit
may be more appropriate to use neighborhood predicates likeintersector meetgo
detect clusters of polygons (cf. figure 14).

Although in many applications the neighborhood predicate will be defined by
using only spatial properties of the objects, the formalismisin no way restricted to
purely spatial neighborhoods. Aswell, we can use non-spatial attributes and com-
bine them with spatial properties of objectsto derive aneighborhood predicate (see
for instance the application to a geographic database in section 5.4).

Another way to take into account the non-spatial attributes of objectsisasakind
of “weight” when calculating the “cardinality” of the neighborhood of an object.
For this purpose, we can define an arbitrary predicate expressing the “minimum
weight” for sets of objects.

Definition 2: (Notation:minimumweight of a set of objects)

Given an arbitrary unary predicd&nWeight for sets of objects from a database
D. We say that a set of objedid] D has minimum weight (with respect to the
predicateMinWeight) if MinWeight(N).

The density threshold conditioMN}(0) | = MinPts in the definition of density-
based clusters is just a special case for the definitionMihd/eight predicate.
There are numerous other possibilities to defiMiraMeight predicate for subsets
Sof a databasB. Simply summing up values of some non-spatial attribute for the
objects inSis another example. If we want to cluster objects represented by poly-
gons and if the size of the objects should be considered to influence the “density”
in the data space, then the area of the polygons could be used as a weight for these
objects. A further possibility is to specify ranges for some non-spatial attribute val-
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ues of the objects, i.e. specifying a selection condition and counting only those ob-

jects which satisfy this selection condition (see e.g. the biology application in

section 5.2). Thus, we can realize the clustering of only a subset of the database D

by attaching aweight of 1 to those objects that satisfy the selection condition and
aweight of 0to all other objects. Note that using non-spatial attributes as aweight

for objects, one can “induce” different densities, even if the objects are equally dis-
tributed in the space of the spatial attributes. Note also, that by means of the
MinWeight predicate the combination of a clustering with a selection on the data-
base can be performed “on the fly” while clustering the database. Under certain cir-
cumstances, this may be more efficient than performing the selection first, because
the algorithm GDBSCAN to compute generalized clusters can use existing spatial
index structures to speed-up the clustering procedure.

We will now define two special properties fotinWeight predicates (for later
use see chapter 6 and chapter 7):

Definition 3: (incrementally evaluabl&lin\\eight, monotonoudlinWeight)

A MinWeight predicate for sets of objects is caliedrementally evaluable if
there is a functionweight: PoObjects) - R and a threshold@ O R such that
weight(N) = z weight({ o}) andMinWeight(N) iff weight(N) > T.

oON
A MinWeight predicate for sets of objects is calfadnotonous if the following
condition holds: ifN; O N, andMinWeight(N,) then alsaviinWeight(N,).

Incrementally evaluabl®linWeight predicates compare theight of a seN of
objects to a threshold and the weight of thé\sesin be evaluated incrementally in
the sense that it is the sum of the weights of the single objects contahedim
Weight predicates having this property are the most impoiantWeight predi-
cates for practical use. For a monotonblisWeight predicate it holds that if a set
N has minimum weight, then every super-sell@fiso has minimum weight. Note
that if the functionweight in the definition of an incrementally evalualén-
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Weight predicate is positive, i.e. weight(N) = 0 for all subsets N of D, the corre-
sponding MinWeight predicate is obviously monotonous. The density threshold
condition | N¢(0) | 2 MinPtsin the definition of density-based clustersisan example
for a definition of a MinWeight predicate which is both, incrementally evaluable
and monotonous.

We can now define density-connected sets, analogously to the definition of den-
sity-based clusters, in a straightforward way (see also [SEKX 98]). First, we ob-
serve that there are two kinds of objects in the “area” of a density-connected set,
objects “inside” ¢ore objects) and objects “on the borderbdrder objects) of a
density-connected set. In general, Nired-neighborhood of a border object may
have a significantly lower weight than tN&red-neighborhood of a core object.
Therefore, to include all objects belonging to the “area” of the same density-con-
nected set, we would have to define the predigVeight in a way, which may
not be characteristic for the respective density-connected set. For instance, if we
use an incrementally evaluabiénWeight predicate, we would have to set the
threshold valud to a relatively low value. This value, however, may then also be
characteristic for objects which do not belong to any cluster - particularly in the
presence of a large amount of noise objects. Core objects and border objects are
illustrated in figure 17 for the 2-dimensional case using a distance based neighbor-
hood and cardinality in the definition of ténWeight predicate.

p p: border object

o ° q: core object
° o

Figure 17: Core objects and border objects

Therefore, we require that for every objpdh a density-connected Sgtthere
must be an objeq in C so thatp is inside of theNPred-neighborhood of} and
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NPred(q) has at least minimum weight. We also require that the objects of the set

C have to be somehow “connected” to each other. This idea is elaborated in the fol-
lowing definitions and illustrated by-@mensional point objects using a distance
based neighborhood for the points and “cardinality of gireighborhoods<
MinPts’ for the MinWeight predicate.

Definition 4: (directly density-reachable)

An objectp is directly density-reachable from an object) with respect tdNPred
andMinWeight in a databasP if

1) p U Nnpred(9) and
2) MinWeight(Nypreq(a)) holds(core object condition).

p directly density-

o © reachable from q
o o Qnotdirectly density-
° o o © rexhablefromp
° o ° o °

Figure 18: Direct density-reachability

The predicatelirectly density-reachable is symmetric for pairs afore objects.
In general, however, it is not symmetric if one core object and one border object
are involved. Figure 18 shows the asymmetric case.

Lemma 1:

If objectp is directly density-reachable from objertvith respect tdNPred and
MinWeight, and alsg is a core object, i.&dinWeight(Nypreq(P)) holds,then alsay
is directly density-reachable from

Proof: Obvious.O
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Definition 5: (density-reachable, > )

An object p is density-reachable from an object g with respect to NPred and
MinWeight in a database D if thereis achain of objects py, ..., Py, P1= Q. Pp =
p such that for al i=1, ..., n-1: p4 isdirectly density-reachable from p; with re-
spect to NPred and MinWeight in D.

If NPred and MinWeight are clear from the context, we will sometimes denote

the fact that p is density-reachable from g in the database D as p >p " 1

Density-reachability is a canonical extension of direct density-reachability. This
relation is transitive but it is not symmetric. Figure 20 depicts the relations of some
sample objects and, in particular, the asymmetric case.

p density- g not density-
reachabiefromq o © reachable from p

Figure 19: Density-reachability

Although not symmetric in general likdirect density-reachability, density-
reachability is symmetric for core objects because a chaindrtmp can be re-
versed if als is a core object. For core objects the density-reachability is also re-
flexive, i.e. a core object is density-reachable from itself.

Lemma2:

(a) density-reachability is transitive

(b) density-reachability is symmetric for core objects
(c) density-reachability is reflexive for core objects

1. The notation p >, q will be used extensively in chapter 6 where we must distinguish a database
before and after an update.
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Proof:

(a) density-reachability is the transitive hull of direct density-reachability.

(b) Let p be density-reachable from g with respect to NPred and MinWeight. Then,
thereisachain of objectspy, ..., P, P1 = 0, P = psuch that for all i=1, ..., n-1: pj4q
is directly density-reachable from p; with respect to NPred and MinWeight. Since
NPred is symmetric and each object p; for j=1, ..., n-1satisfies the core object con-
dition, g is density-reachable from p,.1. By assumption, p is acore object. But then
Pn.1 is density-reachable from p (lemma1). Hence, by transitivity (a), g is density-
reachable from p.

(c) NPred is areflexive predicate, thus, p O Nypreg(P)- Then, if p also satisfies the
core object condition, i.e. MinWeight(Nnpreq(P)) holds, p isdensity-reachablefrom
p by definition. O

Two border objects of the same density-connected set C are possibly not densi-
ty-reachable from each other because the core object condition might not hold for
both of them. However, for adensity-connected set C we require that there must be
acore object in C from which both border objects are density-reachable. Therefore,
we introduce the notion of density-connectivity which covers this relation of bor-
der objects.

Definition 6: (density-connected)

An object p is density-connected to an object q with respect to NPred and Min-
Weight in adatabase D if there exists an object o such that both, p and g are den-
sity-reachable from o with respect to NPred and MinWeight in D.

Density-connectivity (cf. figure 20) is a symmetric relation. For density-reach-
able objects, the relation of density-connectivity is also reflexive. The relation is
not transitive. But if p is density-connected to ¢ via 0, and q is density-connected
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tor viao, then p isdensity-connected tor iff either o, is density-reachable from o,

or 0, is density-reachable from o;.

p and g are density-connected
to each other by o

Figure 20: Density-connectivity

Lemma3:
(a) density-connectivity issymmetric
(b) density-connectivity isreflexive for core objects

Proof:
(a) By definition.
(b) Because a core object o is density-reachable from itself (lemma2 (c)). O

Now, adensity-connected set is defined to be a set of density-connected objects
which is maximal with respect to density-reachability.

Definition 7: (density-connected set)

A density-connected set C with respect to NPred and MinWeight in D is a non-
empty subset of D satisfying the following conditions:
1) Maximality: For al p, g 0 D: if p JC and q is density-reachable from p
with respect to NPred and MinWeight in D, then also g [IC.
2) Connectivity: For al p, g O C: p is density-connected to q with respect to
NPred and MinWeight in D.
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Note that a density-connected set C with respect to NPred and MinWeight con-
tains at least one core object and has at least minimum weight: since C contains at
least one object p, p must be density-connected to itself via some object o (which
may be equal to p). Thus, at least 0 has to satisfy the core object condition. Conse-
quently, the NPred-Neighborhood of o has to satisfy MinWeight.

The following lemmata are important for validating the correctness of our clus-
tering algorithm. Intuitively, they state the following. Given the parameters NPred
and MinWeight, we can discover a density-connected set in a two-step approach.
First, choose an arbitrary object from the database satisfying the core object condi-
tion asa seed. Second, retrieve all objects that are density-reachable from this seed

obtaining the density-connected set containing the seed.

Lemma4: Let p bean objectin D and MinWeight(Nypreq(P)) = true. Then the set
O={o0 0D | oisdensity-reachable from p with respect to NPred and MinWeight}
isadensity-connected set with respect to NPred and MinWeight.

Proof: 1) O isnot empty: p isacore object by assumption. Therefore p is density-
reachable from p (Lemma 2 (c)). Then pisin O. 2) Maximality: Let q; JO and g,
be density-reachable from g; with respect to NPred and MinWeight. Since g is

density-reachable from p and density-reachability is transitive with respect to
NPred and MinWeight (Lemma 2 (&)), it follows that also g, is density-reachable

from p with respect to NPred and MinWeight. Hence, g, [JO. 3) Connectivity: All

objectsin O are density-connected via the object p. O

Furthermore, a density-connected set C with respect to NPred and MinWeight is
uniquely determined by any of its core objects, i.e. each object in C is density-
reachable from any of the core objects of C and, therefore, a density-connected set

1. Aswewill seein the next chapter, retrieving all objects that are density-reachable from a core
object o isvery simple. Starting with o, iteratively collect all objects that are directly density-
reachable. The directly density-reachable objects are collected by simply retrieving the NPred-
neighborhood of objects.
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C contains exactly the objects which are density-reachable from an arbitrary core
object of C.

Lemma 5: Let C be adensity-connected set with respect to NPred and MinWeight.
Let p beany object in C with MinWeight(Nypreq(P)) = true. Then C equalsthe set
O={o0[D | oisdensity-reachable from p with respect to NPred and MinWeight} .

Proof: 1) O U C by definition of 0.2) CJ O: Letq 0 C. Sinceaso p O C and
Cisadensity-connected set, thereis an object o [1 C such that p and q are density-
connected viao, i.e. both p and g are density-reachable from o. Because both p and
0 are core objects, it follows by symmetry for core objects (lemma 2 (b)) that also
object o is density-reachable from p. With the transitivity of density-reachability
wrt. NPred and MinWeight (lemma2 (a)) it followsthat qis density-reachable from
p.Theng O. O

3.2 Generalized Clustering and Some Specializations

3.2.1 Density-Based Decompositions

A generalized density-based clustering or density-based decomposition DBD of
adatabase D with respect to NPred and MinWeight isthe set of all density-connect-
ed setsin D with respect to specific NPred and MinWeight predicates, i.e. all “clus-
ters” from a density-based decompositiZBD are density-connected sets with re-
gard to thesame parameters NPred andMinWeight. A density-based decomposi-
tion additionally contains a set called tiaése relative to the given clusteriigBD
of D which is simply the set of objectsinnot belonging to any of the clusters of
DBD. We will use the notation “density-based decomposition” and “generalized
density-based clustering” interchangeable and sometimes abbreviate the notions to
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“decomposition”, “generalized clustering” or even shorter “clustering” if the
meaning is clear from the context.

The formal requirements for a density-based decomposition of a daixbase
given in the following definition:

Definition 8: (density-based decomposition)
A density-based decomposition DBD of a databasb with respect tdNPred and
MinWeight is defined by the following conditions:
1)DBD ={S;,....S;N}L k=0
2)S,0...080N=D
3) Foralli <k
S is a density-connected set with respediffsed andMinWeight in D
4) If there existSsuch thaSis a density-connected setbnwith respect
to NPred andMinWeight then there also exists ad k such thaB=5

5YN=D\(5,0...0S).
The seiN is called thenoise with respect to the decompositiDBD and is
denoted bynoisepgp.
A density-based decomposition DBD of a databasb with respect tdNPred and
MinWeight is also denoted &BD(D, MinWeight, NPred).

According to condition 2) the union of the sets in a density-based decomposition
DBD of D is the databad® itself. Condition 3) states that each element of the de-
composition, except one, is a density-connected set with respect to the given “pa-
rameters”’NPred andMinWeight. Condition 4) means thall density-connected
sets inD with respect toNPred andMinWeight must be included in a decomposi-
tion. Condition 4) simply states that the Bk the “rest” of objects which do not
belong to any of the density-connected sets in the decomposition. TNigsgudt
a density-connected set and may also be empty.
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There are other possibilities to define what should be considered as a generalized
clustering based on definition 7 (density-connected set). However, our notion of a
density-based decomposition has the nice property that two clusters or density-
connected sets can at most overlap in objects which are border objectsin both clus-
ters. Thisisthe content of the following lemma. Figure 21 illustrates the overlap of
two clusters using cardinality and MinPts = 4.

., Cluster 2

border point in both clusters

Figure 21: Overlap of two clustersfor MinPts =4

Lemma 6: Let DBD be ageneralized density-based clustering of D with respect to
NPred and MinWeight. If C, C, JDBD and C; # Cy, then for al p JC; n C,it
holdsthat pisnot acore object, i.e. MinWeight(NPred(p)) = false.!

Proof: Since NPred and MinWeight are the same for all clustersin DBD it follows
thatif pd C; n C,would beacore object for C;, then p would also be acore object

for C,. But then, it follows from Lemma5 that C; = C, holds, in contradiction to

the assumption. Hence, p is not a core object. [

In the following subsections we will see that “density-based decomposition” is

a very general notion which covers familiar structures from clustering, pattern rec-

ognition as well as new applications which are appropriate for grouping spatially

extended objects such as polygons in geographic information systems.

1. For an e-neighborhood and cardinality we even get the stronger result that for MinPts < 3 there
is no overlap between clusters. Thisis true because if aborder object o would belong to two dif-
ferent clusters then its e-neighborhood must contain at least 3 objects. Hence, o would be a core
object. But then, the two clusters would not be different.



3.2 Generalized Clustering and Some Specializations 57

We omit the term “with respect tdPred and MinWeight” in the following
whenever it isclear from the context. Asalready indicated, there are different kinds
of objects in a density-based decomposition DBD of a database D: core objects
(satisfying condition 2 of definition 4) or non-core objectstherwise. We refer to
this characteristic of an object as the core object propertgf the object. The non-
core objectsin turn are either border objectgno core object but density-reachable
from another core object, i.e. member of a density-connected set) or noise objects
(not a core object and not density-reachable from other objects, i.e. member of the
set noisgygp).

3.2.2 Specializations

In the foll owing subsections we introduce some specializations of density-based
decompositions for several different types of databases. For this purpose, we only
have to specify the predicate NPredthat defines the neighborhood for objects and
the predicate MinWeightfor the minimum weight of sets of objects. In the next
chapter we will see that all these instances can be detected by the same general al-
gorithmic scheme.

3.2.21 SingleLink Levels

The clusterings which corresponds to levels in the single-link hierarchy (cf.
section 2.2.1) are equivalent to density-based decompositions of the database. A
level in the single-link hierarchy determined by a “critical distanc®,;,, = € is

specified as follows:

* NPred(o, 0) iff | 0- 0’| < Dy
Nnpred(0) = {0" U D| |0 - 0’| < Dy}

e MinWeight(N) =true
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Remember that the distance between two clusters, i.e. sets of points, for the sin-
glelink method isdefined by the minimum distance between two pointsin the clus-
ters. Two clusters are merged at a certain level of the single link hierarchy if their
minimum interpoint distance isless or equd to the distance associated with the re-
spective level. Therefore, the only requirement for our density-connected sets is
that a point g isin the neighborhood of a point p if their distance from each other
is less or equal to the “level distand®y;,,. No special conditions with respect to

the predicatéinWeight are necessary.

As already mentioned, the well-known “single-link effect” can occur if we use
the above definition of a density-connected set. If there is a chain of points between
two clusters where the distance of each point in the chain to the neighboring point
in the chain is less than or equaltg;,, then the two clusters will not be separated.

Figure 22 illustrates a clustering determined by a level in the single link hierarchy.
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Figure 22: Illustration of singlelink level

In this example there is one large cluster. By visual inspection, we might say that
this cluster consists of three different groups of points. However, these groups of
points cannot be separated by the single link method because they are connected
by a line of points having an interpoint distance similar to the distances within the
three subgroups. To describe the subgroups of points as distinct density-connected
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sets, we have to modify the definition of the MinWeight predicate (as in the next
specidization DBSCAN).

Note that the predicate MinWeight could alternatively be defined in the follow-
ing way to specify asinglelink level:

o MinWeight(N) iff | N | = 1 or asMinWeight(N) iff | N | = 2 and every poinp
in the senoisepgp has to be considered as a cluster of its own.

The conditiorMinWeight(N) iff | N | = 1 is equivalent toMinWeight(N) = true’
for neighborhood sefd since a neighborhood set is never empty.

Looking at the second alternative to defineMieWeight predicate for a single
link clustering level, we can easily see that a level in the single link hierarchy is a
very special case of the next specialization of a density-based decomposition.

3.2.2.2 DBSCAN

A density-based clustering as defined for DBSCAN gection 2.2.2: Density-
Based Approaches) is an obvious specialization of a density-based decomposition
since we started our generalization from this instance. A density-based clustering
found by DBSCAN is a density-based decomposition determined by the following
parameter setting:

* NPred(o, 0)iff |o-0'|<¢
Nnpred(0) = Ne(0) ={0" U DJ o - 0’| < €}

o MinWeight(N) iff | N | = MinPts, i.e. thecardinality of N is greater than the
density thresholinPts.

Obviously, if we seMinPts equal to 1 or 2 in this specialization, we have an
equivalence to a level in the single link hierarchy as described in the previous sec-
tion. In general, however, using higher valuesManPts will not be equivalent to
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alevel in the single-link hierarchy but will avoid or at least significantly weaken
thesingle link effects.

Figure 23 illustrates the effect of using MinPts = 4 for the same 2-dimensional
dataset as in figure 22. The value for € is depicted and corresponds to the value
Dpin infigure 22. Thereisachain of points between the different density-connect-
ed sets, but now, these sets are not merged into one single cluster because for the
points within the chain the cardinality of the e-neighborhoods is at most three.
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Figure23: lllustration of DBSCAN result

Our experiments indicate that a value of 2*d (d = dimension of the dataspace)
for MinPts is suitable for many applications. However, if there is a very large
amount of noisein thedata or if the database isnot really aset of objects, i.e. there
are objects having identical spatial attributes (see for instance the application in
section 5.1), we have to choose a larger value for MinPts to separate some of the
meaningful density-connected sets.

3.2.2.3 Density-Based Clustering Using a Grid Partition

In the last chapter we have seen that there are several grid-based approachesto the
clustering problem which consider clusters as regions of connected grid cellswith
a high point density. Clusters which are found by those approaches that define
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“high density” by a (typically user-defined) threshold for the point density can be
described as density-connected sets. There are different specializations of our def-
initions depending on the different procedures for finding connected regions of
grid cells. We will present two of them which are related to clustering techniques
discussed in the previous chapter.

First, the procedure performed by STINSE §ection 2.3.5) for finding connect-

ed regions of bottom level cells in the STING structure is in principle the same as
for DBSCAN, except, that the objects to be clustered are grid cells not points. Let
D be the set of alielevant bottom layer cells in the STING structure andl e,

andf denote the side length of bottom layer cells, the specified density, and a small
constant number set by STING. Then the regions of bottom layer cells found by
STING are density-connected sets with respect to the following predittes
andMinWeight:

* NPred(c, ¢) iff | c-c'|<d,whered = max(l, J;R
Nnpred(€) = {c" 0 D| |c - ¢'| < d}

Ic]
e MinWeight(N) iff € N >f, i.e. the average density within the cell akeis
greater than the density threshald

In the definition of the minimum distanck(see [WYM 97]) usually the side
length of | of the cells is the dominant term. As a result, this distance can only
reach the neighboring cells. Only when the granularity of the bottom layer grid is
very small, the second term may be larger thand this distance could cover a
larger number of cells.

Note that the density-connected sets defined by the above predicates only cover
regions ofrelevant cells in the bottom layer of the STING structure. TheDsef
relevant cells is determined in a top down manner by the STING algorithm before
the construction of connected regions begins. A cell is called relevant if it satisfies
an additional selection condition. If no such condition is specified, i.e. only the
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density condition must be considered, then all cells are “relevant”. In this case, the
above specification of density-connected sets by the predid®resl andMin-
Weight also represents a possible definition of clusters for a grid-based clustering
approach which is not specific to the STING structure.

The STING algorithm selects certain grid cells using a grid directory. However,
we can specify these density-connected sets directly in the set of all bottom layer
cells. We simply have to integrate the selection conditions used by the STING al-
gorithm for finding relevant cells into otNPred andMinWeight predicates. For
this purpose, Ieb now be the set of all bottom layer cells;, andf as before, and
let Sbe a selection condition using the non-spatial attributes of the STING cells
(e.g. distribution type), i.&5(c) holds if the celt satisfies the conditio8. We can
specify the connected regions of STING as density-connected sets in the following
way:

* NPred(c, ¢)iff (S(c) = ) and|c-c’|<d,whered = max(l, JC—TT—[)
Nnpreg(€) = {c’ O D| NPredc, ¢’}

Ic]
e MinWeight(N) iff for all ¢ 0 N: S(c) and & N >f , i.e. the average density
within the cell ared\ is greater than the density threshbéthd the cells sat-

isfy the selection conditio&

There are several other possibilities to define density-connected sets for grid
cells based on point density. Perhaps the most simple version is giveiNByeain
definition which defines neighboring cells by having a common face, and the pred-
icateMinWeight using a density thresholdfor single cells. The neighborhood of
cells can be expressed simply by using the grid indices of the cells: Assume, that
we have a-dimensional grid that partitions the space along a number of split lines
my, ..., My in each dimension. Then each celtan be addressed by a vector

adr)=(cy, ..., ¢g), where I< ¢; < m; for each < d. To connect only cells having

a higher point count thani.e. |c|z f, we have to integrate this condition into the
definition of the neighborhood above - analogous to the integration of a selection
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condition Sin the NPred definition for STING. The formal specification for this
kind of density-based clustersis asfollows: Let D be the set of al cellsin the grid
and let adr(c)=(cy, ..., ¢g) and adr(c’)=(c'y, ..., Cyy) be the addresses of the two cells

candc'.

* NPred(c, ¢)iff (|c|=f = |c'| =f) and there is ainsuch that for afl #i: ¢; = C’;
andci=c'j+1orc=c’-1 Npreg(€) ={c’ OD| NPredc, c")}.

o MinWeight(N) iff |c| = f for allc O N, i.e. the density of each cell within the
areaN is greater than the density threshbld

Note that although there is a universal quantifier in the definition of the predi-
cateMinWeight, we do not have to check the density condition for each element of
a neighborhood séiypyeq(C) to ensure thailinWei ght(Nypreq(€)) holds. From our

neighborhood definition it follows that if one cellin the set Nyp,eq(C) setisfies

the condition |c’| = f, then the condition holds for all cellsin the set.

If the high-density cells are selected in a separate step, before connected regions
are constructed - like, for instance, in the CLIQUE agorithm (see section 2.2.2,
density-based approaches) - the set D is the set of all cells c aready satisfying the
condition |c| = f. Then, the requirement (|c|=f < |c'| =f) and ¢| = f in the last
definition of NPred andMinWeight can be omitted to specify connected regions of
such cells. As a consequence, the definitionVdh\Weight reduces to tfue’.
Figure 24 depicts an example of this kind of grid-based clustering for the same
dataset as in figure 22 and figure 23. The figure shows connected regions of grid
cells using adensity-threshold f = 3 for single cells.
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Figure 24: Illustration of density-based clustering using a grid approach

3.2.2.4 Simple Forms of Region Growing

Having seen the specializations to grid-based clustering approaches, it is easy to
recognize that there are also specializations of density-based decompositions
which are eguivalent to structures found by simple forms of region growing (see
section 2.2.3). The pixelsin an image can be considered as grid cells and the gray-

level intensity values correspond to the point densities for grid cells. The differ-

ence, however, between clustering based on grid cell densities and region growing

is, that for region growing there is not a single density-threshold value to select
“relevant” cells. All pixels except background pixels are relevant, and we have to
distinguish different gray-levels, i.e. different classes of pixels, to form the con-
nected regions. Pixels are only connected if they are adjacent and haseat-
tribute values, e.g. gray-level intensity.

For the formal specification of connected regions of pixels in an image, the de-
gree of similarity required for the attributes of pixels may be expressed by a a value
t O R. The neighborhood of a pixel may then be given by the neighboring pixels in
the image having similar attribute values, and MieWeight predicate may be
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used to excluderegionsin theimagethat contain only background pixels, i.e. pixels
p with gray-level(p) = 0.

Let D bethe set of al pixelsintheimage, t 0 R be athreshold value for thesim-
ilarity of gray-level values, and let (X, yp) be the coordinates of apixel p. Then, a
connected region of pixelsin an image, as produced by a simple region growing
algorithm, is a density-connected set with respect to the following NPred and Min-
Weight predicates:

* NPred(p, p) iff gray-leve(p) =0, gray-leve(p’) = 0, |gray-leve(p) - gray-lev-
el(p)l <t, Ky - Xyl <1and |y, - Y| < 1,i.e the gray-levels of pixelsp and p’
are similar and the pixels are not background pixels and are adjacent.
Nnpred(P) = {p’ O D| NPredp, p’)}

e MinWeight(N) =true

Figure 25 illustrates regions in a raster image which have different gray-level in-
tensities and which can be considered as density-connected sets.

region 2

NPred:
neighboring cell with

the same gray-level

region 1

MinWeight = true
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Figure 25: Illustration of simpleregion growing

3.2.2.5 Clustering polygonal objects

A further specialization of density-connected sets allows the clustering of spatially
extended objects such as polygons. We already mentioned this type of application
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in the motivation for our generalization of density-based clusters (section 3.1.1). A
most simple definition of an NPred and MinWeight predicate for describing clus-
ter-like groups of polygons usesintersection for the neighborhood of polygons and
comparesthe area of the region of connected polygonsto a user-specified threshold
value MinArea. More formally, if D isaset of polygons, then a density-connected
set of polygonsin D is given by the following NPred and MinWeight predicates:

* NPred(p, p) iff intersect$p, p’)
Nnpred(P) = {p’ [l D| NPredp, p)}

o MinWeight(N) iff z area(p) = MinArea
pON
To take into account other non-spatial attributes of polygons, for example at-

tributes used in a geographic information system (see e.g. the application in
section 5.4), we can simply integrate corresponding “selection” conditions into the
definition of theNPred and/or theMinWeight predicates. In the definitions of the
NPred andMinWeight predicates for grid-based clustering and region growing, we
have already seen examples of how to use selection conditions. Integrating such
conditions into the definition of tHePred andMinWeight predicates for polygons

can be accomplished in the same way. Figure 26 illustrates an example for the clus-
tering of polygonal objects using the simplEred andMinWeight predicates as
specified above.
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Figure 26: Illustration of clustering polygonal objects
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3.3 Determining Parameters

GDBSCAN requires a neighborhood predicate NPred and a predicate for the min-
imum weight of sets of objects, MinWeight. Which parameters will be used for a
data set depends on the goal of the application. Though, for some applications it
may be difficult to determine the correct parameters, we want to point out that in
some applications there may be anatural way to provide values without any further
parameter determination, i.e. thereisanatural notion of aneighborhood for the ap-
plication which does not require any further parameter estimation (e.g. intersects
for polygons). In other cases, we may only know the type of neighborhood that we
want to use, for example, adistance based neighborhood for the clustering of point
objects. Parameters may be re-used in different but similar applications, e.g., if the
different datasets are produced by asimilar process. And, we will seein chapter 5
that there are even applications where the appropriate parameter values for GDB-
SCAN can be derived analytically (e.g. section 5.2).

In case of adistance based neighborhood combined with a MinWeight predicate
which compares cardinality to a threshold value, we can use a simple but in most
cases effective heuristic to determine the specific distance and threshol d val ues that
are most suitable for the clustering application. This simple heuristic which is ef-
fective in many cases to determine the parameters € and MinPts for DBSCAN (cf.
section 3.2.2.2) - which isthe most important specialization of GDBSCAN - ispre-
sented in the following subsection.

Heuristic for DBSCAN Using a k-distance Plot

DBSCAN uses a distance based neighborhood “distance less or equ&ldhdn

the comparison of the cardinality of eimeighborhood to a thresholllinPts) for

the MinWeight predicate. Thus, we have to determine appropriate valuesafat
MinPts. The density parameters of the “thinnest”, i.e. least dense, cluster in the da-
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tabase are good candidates for these globa values specifying the lowest density
which is not considered to be noise.

For a given k = 1 we define a function k-distance, mapping each object to the
distance from its k-th nearest neighbor. When sorting the objects of the databasein
descending order of their k-distance values, the plot of this function gives some
hints concerning the density distribution in the database. We call this plot thesort-
ed k-distance plot (see figure 27 for an example).
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Figure 27: Sorted 3-distance plot for sample database 3

If we choose an arbitrary object p, set the parameter € to k-distance(p) and the
parameter MinPtsto k+1, all objects with an equal or smaller k-distance value are
core objects, because there are at least k+1 objects in an e-neighborhood of an ob-
ject pif eisset to k-distance(p). If we can now find athreshold object with the max-
imum k-distance value in the “thinnest” cluster &, we would obtain the desired
parameter values. Therefore, we have to answer the following questions:

1) Which value ok is appropriate?
2) How can we determine a threshold objget
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We will discuss the value k first, assuming it is possible to set the appropriate
valuefor €. The smaller we choose the value for k, the lower are the computational
costs to calculate the k-distance values and the smaller is the corresponding value
for € in genera. But a small change of k for an object p will in general only result
inasmall change of k-distance(p). Furthermore, our experiments indicate that the
k-distance plots for “reasonablek (e.g. 1< k<10 in A space) do not significantly
differ in shape and that also the results of DBSCAN for the corresponding param-
eter pairs (“distancs €”, “cardinality of e-neighborhood k) do not differ very
much. Therefore, the choice of kisnot very crucial for the algorithm. We can even
fix the value for k (with respect to the dimension of the dataspace) eliminating the
parameter involving MinPts for DBSCAN. Considering only the computational
cost, we would like to set k as small as possible. On the other hand, if weset k=1,
the k-distancevalue for an object p will be the distance to the nearest neighbor of
p and the result will be equivalent to a level in the single-link hierarchy (cf.
section 3.2.2.1). To weaken the “single-link effect”, we must choose a value for
k> 1.

We propose to sé&tto 2*dimension - 1. Our experiments indicate that this value
works well for databasd3 where each object occurs only once, i.8 if really a
set of objects. Thus in the following, if not stated otherwis&yill be set to this
value, and the value fdvlinPts will be fixed according to the above strategy
(MinPts=k + 1, e.gMinPts= 4 in 2 space).

To determine, we have to know an object in the “thinnest” cluster of the data-
base with a higk-distance value for that cluster. Figure 27 shows the sortdis3
tance plot for sample database &.(figure 15) which is very typical for databases
where the density of clusters and the density of noise differ significantly. Our ex-
periments indicate that the threshold object is an object near the first “valley” of
the sortedk-distance plot. All objects with a highek-distance value (to the left of
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thethreshold) will then be noise, all other objects (to the right of the threshold) will
be assigned to some cluster (see figure 28 for an illustration).
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Figure 28: Determining € using the sorted 3-distance plot

In general, it is very difficult to detect the first “valley” automatically, but it is
relatively simple for a user to recognize this valley in a graphical representation.
Additionally, if the user can estimate the percentag&noise, a proposal for the
threshold object can be derived, because we know that most of the noise objects
have a highek-distance value than objects of clusters. Tkelistance values of
noise objects are located on the left ofkkdéstance plot, so that we have to select
an object after percent of the sortdddistance plot.

There is in generalrange of values for the parametethat yield the same clus-
tering because not all objects of the “thinnest” cluster need to be core objects. They
will also belong to the cluster if they are only density-reachable. Furthermore, the
e-value may be larger than needed if the clusters are well separated and the density
of noise is clearly lower than the density of the thinnest cluster. Thus, the robust-
ness of the parameter determination, i.e. the width of the range of apprepriate
values, depends on the application. However, in general the width of this range is
wide enough to allow the parameters to be determined in a $edistdnce plot
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for only avery small sample of the whole database (1% - 10%). Figure 29 depicts
the range for € yielding the same clustering for sample database 3 in the sorted 3-
distance plots for 100% and a 10% sample of the database.
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Figure 29: Rangefor € in sorted 3-distance plot yielding the same clustering

Obviously, the shape of the sorted k-distance plot and hence, the effectiveness
of the proposed heuristic depends on the distribution of the k-nearest neighbor dis-
tances. For example, the plot will look more “stairs-like” if the objects are distrib-
uted regularly within clusters of very different densities or the first “valley” will be
less clear if the densities of the clusters differ not much from the density of noise
(which also means that the clusters are not well separated). Then, knowing the ap-
proximate percentage of noise in the data may be helpful.

Figure 30 illustrates the effects of different cluster densities and unclear cluster
borders on th&-distance plot for two example databases uki® The arrows in
the figure point at different @istance values indicating which of the depicted clus-
ters A, B, C or D are density-connected sets if weMisi®ts = 4 and set equal
to the respective 3-distance values.
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Figure 30: Examples of sorted 3-distance plotsfor different data distributions
To conclude, we propose the following interactive approach for determining the
parameters for DBSCAN:
* The user gives a value fhi(default value i% = 2*dimension - 1).

» The system computes and displays kidéstance plot for a small sample of
the database.

* The user selects an object as the threshold object akellitlance value of
this object is used as tlgevalue (if the user can estimate the percentage of
noise, the system can derive a proposal for the threshold object from it).

* MinPtsis set tok+1.
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3.4 Summary

In this chapter, we have seen that the notion of a density-based clustering can be
generalized to cover structures produced by different clustering algorithms, pat-

terns recognized by region growing algorithms as well as “connected” groups of
objects of - in principle - arbitrary data-type satisfying certain conditions, for in-
stance polygons from a geographic information system. Some of these instances
have been discussed in greater detail.

The generalization of a density-based clustering, i.e. a density-based decompo-
sition, was introduced formally as a set of density-connected sets plus a set of out-
liers, called ‘noise’. Density-connected sets have been defined with respect to two
“parameters”: a neighborhood predichifered which has to be symmetric and re-
flexive, and a predicatdinWeight for the minimum weight of neighborhood sets.
These predicates are necessary to define the notions of density-reachability and
density-connectedness which in turn are needed to define the notion of a density-
connected set for objects of arbitrary data-type.

A density-connected set was defined as a set of density-connected objects which
is maximal with respect to density-reachability. Two objgcasmdq from a data-
baseD are density-connected inif there is an objeat in D such thap andq are
both density-reachable froadirectly or transitive). An objegtis called directly
density-reachable from an objerif p is in theNPred-neighborhood of| and this
NPred-neighborhood ofj has minimum weight, i.eMinWeight(Nypreq(a)) holds.

We also discussed in this chapter how to determine additional parameters which
may be required by some specializations. Then a simple but in most cases effective
heuristic was presented to determine these additional parameters for a density-
based clustering as defined for DBSCAN, which is the most important specializa-
tion of a density-based decomposition.



74

3 Density-Based Decompositions



Chapter 4

GDBSCAN: An Algorithm for
Generalized Clustering

In this chapter, the algorithm GDBSCAN to construct density-based decomposi-
tionsisintroduced (section 4.1). Thisis basically an agorithmic schemawhich is
independent from the specific predicates for the neighborhood of objects, and the
minimum weight for sets of objects. We shortly discuss some implementation is-
sues (section 4.2), and present both an analytical and experimental performance
evaluation (section 4.3). After that, we introduce and eval uate some advanced da-
tabase techniques, i.e. neighborhood indices and multiple neighborhood queries, to
support not only our algorithm but also a broader class of spatial data mining ap-
plications of which GDBSCAN isjust a special member (section 4.4).
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4.1 Algorithmic Schema GDBSCAN

To find a density-connected set, GDBSCAN starts with an arbitrary object p and
retrieves all objects density-reachable from p with respect to NPred and Min-
Weight. Density-reachable objects are retrieved by performing successive NPred-
neighborhood queries and checking the minimum weight of the respective results.
If pisacore object, this procedure yields a density-connected set with respect to
NPred and MinWeight (see lemmata 4 and 5). If p is not a core object, no objects
are density-reachable from p and p is assigned to NOISE. This procedure is itera-
tively applied to each object p which has not yet been classified. Thus, a density-
based decomposition and the noise according to definition 8 is detected.

In figure 31, we present a basic version of GDBSCAN omitting details of data
types and generation of additional information about clusters:

GDBSCAN (SetOfObjects, NPred, MinWeight)
/I SetOfObjects is UNCLASSIFIED; Object.Processed = FALSE
Clusterld := nextld(NOISE);
FOR i FROM 1 TO SetOfObjects.size DO
Object := SetOfObjects.get(i);
IF NOT Object.Processed THEN
IF ExpandCluster(SetOfObjects,Object,Clusterld,NPred,MinWeight)
THEN Clusterld := nextld(Clusterld)
END IF
END IF
END FOR;
END; // GDBSCAN

Figure 31: Algorithm GDBSCAN

SetOfObjects is either the whole database or a discovered cluster from a previ-
ousrun. NPred and MinWeight are the global density parameters. The cluster iden-
tifiers are from an ordered and countable data-type (e.g. implemented by Integers)
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where UNCLASSIFIED < NOISE < “other Ids”, and each object will be marked
with a cluster-idObject.Clid. The functiomextld(clusterld) returns the successor
of clusterld in the ordering of the data-type (e.g. implementetti as Id+1). The
functionSetOfObjects.get(i) returns theé-th element oSetOfObjects. In figure 32,
functionExpandCluster constructing a density-connected set for a core object
ject is presented in more detail.

ExpandCluster(SetOfObjects, Object, Clid, NPred, MinWeight):Boolean;
neighbors := SetOfObjects.neighborhood(Object,NPred);
Object.Processed := TRUE;

IF MinWeight(neighbors) THEN // object is a core object
Seeds.init(NPred, MinWeight, Clid);
Seeds.update(neighborhood, Object);

WHILE NOT Seeds.empty() DO
currentObject := Seeds.next();
neighbors := SetOfObjects.neighborhood(currentObject, NPred);
currentObject.Processed := TRUE;
IF MinWeight(neighbors) THEN
Seeds.update(neighbors, currentObject);
END IF; // MinWeight(neighbors)
END WHILE; // seeds.empty()
RETURN True;

ELSE // Object is NOT a core object

SetOfObjects.changeClld(Object,NOISE);
RETURN False;

END IF; // MinWeight(neighbors)

END; // ExpandCluster

Figure 32: Function ExpandCluster

A call of SetOfObjects.neighborhood(Object,NPred) returns theNPred-neigh-
borhood ofObject in SetOfObjects as a set of objectadighbors). If the NPred-
neighborhood oObject has minimum weight, the objects from thiBred-neigh-
borhood are inserted into the S#teds and the functiorExpandCluster succes-
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sively performs NPred-neighborhood queries for each object in Seeds, thus find-
ing all objectsthat are density-reachable from Object, i.e. constructing the density-
connected set that contains the core object Object.

The class Seeds controls the main loop in the function ExpandCluster. The
method Seeds.next() selects the next element from the class Seeds and deletes it
from the class Seeds. The method Seeds.update(neighbos, centerObject) inserts
into the class Seeds all objects from the set neighbors which have not yet been
considered, i.e. which have not aready been found to belong to the current density-
connected set. This method al so callsthe method to change the cluster-id of the ob-
jects to the current clusterld. Figure 33 presents the pseudo-code for the method
Seeds.update.

Seeds::update(neighbors, CenterObject);
SetOfObjects.changeClld(CenterObject,Clid);
FORALL Object FROM neighbors DO

IF NOT Object.Processed THEN
Object.Processed := TRUE;
insert(Object);

END IF; // Object is “new”

IF Object.Clid IN {UNCLASSIFIED, NOISE} THEN
SetOfObjects.changeClid(Object,Clid);

END IF; // Object is UNCLASSIFIED or NOISE

END FORALL,;
END; // Seeds::update

Figure 33: Method Seeds::update()

In thisversion of GDBSCAN it does not matter in which order the elements are
inserted or selected from the class Seeds. We may use for instance a stack or al-
ternatively aqueueto implement the class Seeds without changing the result of the
algorithm. In all cases, the principleideaof thealgorithm, i.e. thekind of procedure
that is performed to construct connected groups of “neighboring” objects, is similar
to the idea of a region growing algorithm. Note, however, that region growing al-
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gorithms are highly specialized to pixels in an image and therefore presuppose a
“grid-based” neighborhood, whereas density-connected sets can be defined for any
data type.

The cluster-id of some objegbswhich are marked d$OISE because they do
not have the minimum weight may be changed later if they are density-reachable
from some other object of the database. This may happen only for border objects
of a cluster. Those objects are then not add&teds because we already know
that an object with a cluster-af NOISE is not a core object, i.e. no other objects
are density-reachable from them.

If two clustersC, andC, are very close to each other, it might happen that some
objectp belongs to botkC; andC,. Thenp must be a border object in both clusters

according to Lemma 6. In this case, objeatill only be assigned to the cluster
discovered first. Except from these rare situations, the result of GDBSCAN is in-
dependent of the order in which the objects of the database are visited due to lem-
mata 4 and 5.

Obviously, the efficiency of the above algorithm depends on the efficiency of
the neighborhood query because such a query is performed exactly once for each
object inSetOfObjects. The performance of GDBSCAN will be discussed in detalil
in section 4.3. There, we will see that neighborhood predicates based on spatial
proximity like distance predicates or intersection can be evaluated very efficiently
by using spatial index structures.

There may be reasons to apply a post-processing to a clustering obtained by
GDBSCAN. According to definition 8, each set of objects haWtg\Weight is a
density-connected set. In some applications (see for example chapter 5), however,
density-connected sets of this minimum size are too small to be accepted as clus-
ters. Furthermore, GDBSCAN produces clusters and noise. But for some applica-
tions a non-noise class label for each object is required. For this purpose, we can
re-assign each noise object and each object of a rejected cluster to the closest of the
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accepted clusters. This post-processing requires just a simple scan over the whole
database without much computation, in particular no region queries are necessary.
Therefore, such post-processing does not increase the run-time complexity of
GDBSCAN.

Speciaizations of the algorithmic schema GDBSCAN could be defined for all
the parameter specializations introduced in the previous chapter (see section 3.2).
In general, we will specify instances of GDBSCAN simply by introducing the pa-
rameter specializations whenever it is needed. We only name one specialization
explicitly whichisDBSCAN ([EKSX 96]), because thisis the most important spe-
cialization with respect to our applications.

Definition 9: (DBSCAN)

DBSCAN is a specialization of the algorithm GDBSCAN using the parameter
specializations introduced in section 3.2.2.2, i.e.

* NPred: “distance< ¢”
o MinWeight(N): |N | = MinPts.

4.2 Implementation

In this section, we shortly discuss some implementation issues. The algorithm
GDBSCAN from the previous section is an algorithmic schema which needs to be
specialized for different databases/data-types, special neighborhood predicates,
and predicates to determine the minimum weight of neighborhood sets. Therefore,
to provide a flexible, easily extendible and portable implementation of the algorith-
mic schema GDBSCAN, we choose an object-oriented programming approach us-

ing the C++ programming language and the LE@Brary. The code has been de-

1. “Library of Efficient data-types and Algorithms”. For documentation and code see
http://www.mpi-sb.mpg.de/LEDA
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veloped and tested on HP workstations under HP-UX 10.X using g++ 2.7.X, and
on Intel Pentium PCs under Win95/NT using Borland C++ 5.01. The graphical
user-interface needs LEDA, version 3.6, which is available for these (and other)
platforms.

Figure 34 illustrates the main partsinteracting in the generalized clustering proce-
dure using the algorithmic schema GDBSCAN.

DBS | *—> ClusterInfo
// * Center
A Queryprocessor «MBR
Index LI
* NPredQuery * Create Info
* MinWeight * Update Info
* Cursor / Fetch £ 2l2 S
« setClusterld * Options

Figure 34: Software Ar chitecture of GDBSCAN
The major components are:

- a(maybe external) database DBS storing objects of a specific data type, pro-
viding indices and query-processors.

- aClusterlnfo component responsible for further information about the dis-
covered density-connected sets, and for the presentation of results.

- GDBSCAN, the central component for the general clustering procedure.

GDBSCAN interacts with the database to access objects, retrieve neighbor-
hoods and to store the generated information about cluster membership for single
objects. GDBSCAN also interacts with Clusterinfo to provide the information
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needed to generate summary descriptions of density-connected sets, for instance,
centers and minimum bounding boxes in case of d-dimensional data points. Such
additional information about a generalized clustering may also be stored in and re-
trieved from the external database.

The three components roughly correspond to three main classes in our imple-
mentation: GDBSCAN_DBS, CLUSTER_INFO, and GDBSCAN. There is only
one more important class needed to make our agorithm independent from a spe-
cific datatype: GDBSCAN_DATA. Usually the database hasits own internal data
type that is returned by its functions. This data type might contain more informa-
tion than GDBSCAN requires (only a few fields). So another data type is created
for GDBSCAN. Thisdatatype can be aso used to provide, for example, adrawing
function for visualization, an info function to let the user retrieve information on-
line and so on.

To model and to implement the interaction of the basic classes
GDBSCAN_DATA, GDBSCAN_DBS, CLUSTER_INFO, and GDBSCAN, the
following object-oriented concepts and “design patterns” were used (see
[GHJ+ 95] for a detailed catalog of many object-oriented design patterns):

» Abstract Classes/ Templates
Abstract Classes / Templates are used to define the skeleton of an algorithm.
Subclasses have to define the functions specific to the particular application.
This also means that the base classes cannot be instantiated directly but have
to be derived first. The template parameter <DATA>, modeling the objects
which are processed by the algorithm GDBSCAN, is common to all our tem-
plate classes. This allows the same code to operate on different data types.

» Class Adapter
Creates a compatible interface by combining classes using multiple inherit-
ance. In our case this is the interface to a database because the interface pro-
vided by a DBMS itself may be different for different database systems.
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» Object Adapter
Allows to exchange the adaptee at run-time, using a pointer to the adapted
class. This pattern is used to allow classes derived from GDBSCAN_DBS as
well as different CLUSTER_INFO classes to be chosen and exchanged at

run-time.

In the following, the above mentioned classes are shortly described. For this pur-
pose, only the most important public methods and fields are presented.

* GDBSCAN_DATA (abstract class)
The data objects passed to GDBSCAN should be derived from this class. All
fields/methods used by GDBSCAN are defined here. These are

- Objectld to identify objects

- Clusterld to store the cluster membership of an object

- compare(GDBSCAN_DATA) to compare two objects. This function is de-
fined purely virtual making this class abstract. Usuadisnpare should re-
turn zero if the compared data objects occupy the same location in the feature
space. If this case is excluded by the semantics of the specializations, this
function is not needed and can then be redefined to do nothing.

« GDBSCAN_DBS (abstract class/ template <class DATA>)
This class provides the basis for the connection/interface to a database:

- GDBSCAN_cursor() and GDBSCAN_fetch() are methods to enable the algo-
rithm to scan each object of the database.

- GDBSCAN_set_clusterld(DATA, CLUSTER_ID) is a method that sets the
cluster-id of an object of typRATA to an identifier of type&€LUSTER_ID.

- GDBSCAN_MinWeight(DataList) is the method which evaluates the predi-
cateMinWeight for a neighborhood set, given by a list of typsalList.
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- GDBSCAN_SET_Neighborhood() selects the NPred-neighborhood to be
used for the generalized clustering. If the selected neighborhood requires ad-
ditional parameters, methods must also be implemented to determine them;
at least the user must be asked for the values of these parameters.

- GDBSCAN_GET_Neighborhood(DATA, DatalList) is the central method
which implements an NPred-neighborhood. It returns alist (DataList) of all
objects satisfying the neighborhood predicate.

* CLUSTER_INFO (abstract class/ template <class DATA>)
This class can be used to collect additional information about clusters, such as
centers and minimum bounding rectangles, during the scanning process.

- createTemp(newld) is called whenever a new cluster is found to create a new
entry of some sort.

- updateTemp(DATA) is called for each object assigned to a cluster to update
the entry. Online visualization during the scan can be accomplished through
a clusterinfo class that not only updates its internal state by this method, but
also draws a visualization of the object.

- commitTemp() closes the entry. Entries may be saved, for instance in the ex-
ternal database.

* GDBSCAN (template <class DATA>)
This class provides the actual algorithm:

- GDBSCAN(DB, clusterinfo) is the constructor for the class. It takes two argu-
ments and sets the database used by GDBSCAN egbglaad the cluster-
Info equal teclusterinfo. These settings can be changed anytime by using the
following two methods:

GDBSCAN_set_database(DB)
GDBSCAN_set_clusterinfo(clusterinfo).
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- GDBSCAN_doGDBSCAN() scans the whole database for clusters.
- GDBSCAN_expand_cluster(DATA) triesto construct a density-connected set
starting with DATA as first origin of an NPred-neighborhood query.

Figure 35 depicts the graphical user interface of our implementation® and illus-
trates the setting of parameters for GDBSCAN in this environment.

[ GDBSCAN - DEMO___cll rst

Database Edit Clusterinfo Options Window

=[ofx]

Open DB Redraw Rescale ERING | Expand ONCE | _ RESET Ids
Single MBR | Single Center | _ListtiTos Savelnfe |  MinSize | _Map Noise |
R 217 5143
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Select MinWeight, Nei and C
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o = |[EFS Neighborhoog,
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delay om0
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Figure 35: Graphical user interface and parameter setting

1. Thisimplementation of GDBSCAN is available from the author. Request should be made by
sending an e-mail to sander@dbs.i nformatik.uni-muenchen.de.
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4.3 Performance

In this section, we evaluate the performance of GDBSCAN. In section 4.3.1 we
discuss the performance of GDBSCAN with respect to the underlying spatial index
structure. In section 4.3.2 an experimental evaluation and a comparison with the
well-known clustering algorithms CLARANS and BIRCH is presented.

4.3.1 Analytical Evaluation

Therun-time of GDBSCAN obviously isO(n * run-time of aneighborhood query):
n objects are visited and exactly one neighborhood query is performed for each of
them. The number of neighborhood queries cannot be reduced since acluster-id for
each object is required. Thus, the overall run-time depends on the performance of
the neighborhood query. Fortunately, the most interesting neighborhood predicates
are based on spatial proximity - like distance predicates or intersection - which can
be efficiently supported by spatial index structures. For complex objects like poly-
gons, we can perform additional filter-refinement steps. These filters typically use
approximations such as minimum bounding rectanglesto reduce the number of ob-
jects for which an expensive test, e.g. the intersection of polygons, will be per-
formed on the exact and eventually very complex geometry. Such a multi-step fil-
ter-refinement procedure using at least a spatial index structure (see figure 36) is
assumed to be availablein an SDBSfor efficient processing of several types of spa-
tial queries (see e.g. [BKSS 94]).

Additional Filter Steps
) Refinement Step)
candldatas>|]|:> DD

(approximation based)

Figure 36: Multi-step filter-refinement procedure for spatial query processing
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Table 1 lists the run-time complexity of GDBSCAN with respect to the under-
lying spatial index structure.

run-time complexity of: - asingle neighborhood query - the GDBSCAN algorithm
without index o(n) o)
with spatial index O(log n) O(n* log n)
with direct access 0(1) O(n)

Table 1: Run-time complexity of GDBSCAN

Without any index support, to answer a neighborhood query a scan through the
whole database has to be performed. Thus, the run-time of GDBSCAN would be

O(n?). This does not scale well with the size of the database. But if we use atree-

based spatial index like the R*-tree, the run-time is reduced to O (n log n): the

height of an R*-tree is O(log n) for a database of n objects in the worst case. At

least in low-dimensional spaces, a query with a “small” query region has to traverse
only a limited number of paths in the R*-tree. Since nNRted-neighborhoods

are expected to be small compared to the size of the whole database, the average
run-time complexity of a single neighborhood query using such an index structure

is then O(logn). Furthermore, if we have a direct access toNReed-neighbor-

hood, e.qg. if the objects are organized in a grid, the run-time is further reduced to
O(n) because in a grid the complexity of a single neighborhood quédl)s

Techniques to improve the performance of GDBSCAN further by exploiting
special properties of the algorithm are presented in section 4.4. Such techniques are
important, especially for very complex objects where the refinement step of a
neighborhood query is very expensive or in very high-dimensional spaces where
the query performance of all known spatial index structures degenerates.
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4.3.2 Experimental Evaluation

GDBSCAN is implemented in C++ allowing various NPred-neighborhoods and
MinWeight predicatesto be specified. In addition, different index structuresto sup-
port the processing of the NPred-neighborhood queries can be used.

The following experiments were run on HP 735 / 100 workstations. In order to
allow acomparison with CLARANS and BIRCH - which both use a distance based
neighborhood definition - the specialization to DBSCAN (cf. definition 9) is used.
Processing of neighborhood queriesis based on an implementation of the R*-tree
([BK'SS 90]). For an evaluation of other instances of GDBSCAN see the applica-
tionsin chapter 5.

To compare DBSCAN with CLARANS in terms of effectiveness (accuracy),
our three synthetic sample databases are used which are depicted in figure 15.
Since DBSCAN and CLARANS are clustering algorithms of different types, they
have no common quantitative measure of the classification accuracy. Therefore,
we evaluate the accuracy of both algorithms by visual inspection. In sample data-
base 1, there are four ball-shaped clusters of significantly differing sizes. Sample
database 2 contains four clusters of non-convex shape. In sample database 3, there
arefour clusters of different shape and sizewith asmall amount of additional noise.
To show the results of both clustering algorithms, we visualize each cluster by a
different color (grayscale). For the result of CLARANS, we also indicate the clus-
ter centers and the corresponding partition of the data space.

For CLARANS, we provided the correct number of clusters, i.e. we set the pa-
rameter k (number of clusters) to 4 for these sample databases. For DBSCAN, the
parameter € is set, giving a noise percentage of 0% for sample databases 1 and 2,
and 10% for sample database 3, respectively (seethe heuristic described in the pre-
vious section).
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The clusterings discovered by CLARANS are depicted in figure 37, the cluster-
ings discovered by DBSCAN are depicted in figure 38. DBSCAN discovers al
clusters and the noise points (according to definition 8) from all sample databases.
CLARANS, however, splits clustersif they arerelatively large or if they are close
to some other cluster. Furthermore, CLARANS has no explicit notion of noise. In-
stead, all points are assigned to their closest medoid.

database 1 database 2 database 3

Figure 37: Clusterings discovered by CLARANS

cluster:1l

cluster.2 cluster 2

cluster 1
clugter 4 cluster3  cligter 4
SEEduster3
database 1 database 2 database 3

Figure 38: Clusterings discovered by DBSCAN

These examples are rather “hard” kemedoid (andk-means) type clustering al-
gorithms. They are also intended to illustrate some drawbacks of these types of al-
gorithms when applied to data sets containing clusters of non-convex shape and of
largely differing sizes.
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To test the efficiency of DBSCAN and CLARANS, we used the SEQUOIA
2000 benchmark data ([SFGM 93]). The SEQUOIA 2000 benchmark database
uses real data sets that are typical for Earth Science tasks. There are four types of
datain the database: raster data, point data, polygon data and directed graph data.
The point data set contains 62,584 Californian landmarks, extracted from the US
Geological Survey's Geographic Names Information System, together with their
location. The point data set occupies about 2.1 MB. Since the run-time of CLAR-
ANS on the whole data set is very high, we have extracted a series of subsets of the
SEQUOIA 2000 point data set containing from 2% to 20% representatives of the
whole set. The run-time comparison of DBSCAN and CLARANS on these data-
bases is presented in table 2 and depicted in figure 39 (note that in this figure the
log of the run-times is depicted). The results of our experiments show that the run-
time of DBSCAN is almost linear to the number of points. The run-time of CLAR-
ANS, however, is close to quadratic to the number of points. Thus, DBSCAN out-
performs CLARANS by a factor of between 250 and 1,900 which grows with in-
creasing size of the database.

number of points DBSCAN CLARANS

1,252 3 758

2,503 7 3,026
3,910 1 6,845
5,213 16 11,745
6,256 18 18,029
7,820 25 29,826
8,937 28 39,265
10,426 33 60,540
12,512 42 80,638
62,584 233 m”?

Table 2: Comparison of run-time for DBSCAN and CLARANS (in sec.)
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DBSCAN

LOG(run-time)
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Size of database N

Figure 39: run-time comparison with CLARANS

Since we found it rather difficult to set the parameters of BIRCH appropriately
for the SEQUIOA 2000 point data, we used the test data sets DS1, DS2 and DS3
introduced by Zhang et a. ([ZRL 96]) to compare DBSCAN with BIRCH. All
three data sets consist of 100,000 2-dimensional pointswhich arerandomly distrib-
uted within 100 ball-shaped clusters. The data sets differ in the distribution of the
cluster centers and their radii. The cluster centers are placed on a grid on DS1,
placed along a sine curve in DS2, and placed randomly in DS3. The data sets are
depicted in figure 40.

Theimplementation of BIRCH - using CLARANS in phase 3 - was provided by
its authors. The run-time of DBSCAN (seetable) was 1.7, 1.9 and 11.6 times the
run-time of BIRCH on database 1, 2 and 3 respectively which means that also
BIRCH isavery efficient clustering algorithm. Note, however, that in genera the
same restrictions with respect to cluster shapes and/or their size and location apply
to BIRCH as they apply to CLARANS. Furthermore, the clustering features - on
which BIRCH is based - can only be defined in a Euclidean vector space implying
a limited applicability of BIRCH compared to GDBSCAN (and compared to
CLARANS)
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DS1

Figure 40: Data setsfor the performance comparison with BIRCH

data set DBSCAN BIRCH
DS1 82.37 48.48
DS2 79.78 41.01
DS3 520.45 44.21

Table 3: Comparison of run-time for DBSCAN and BIRCH (in sec.)

4.4 Database Support for GDBSCAN

DS2

Neighborhood queries using predicates which are based on spatial proximity are
not only the most important query type for many spatial data mining algorithms but
also the basic query type for exploratory data analysis in spatial databases. To
speed-up the processing of these types of queries, typically, spatial index structures
combined with a multistep filter-refinement procedure are used in an SDBMS (cf.
section 4.3.1). There are however several reasons to consider more sophisticated
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strategies to improve the performance of spatial data mining algorithms, including
the performance of our GDBSCAN algorithm, because spatial databases have the
following characteristics with respect to data mining.

1. Expensive neighborhood queries:

If the spatial objects are fairly complex or if the dimension of the data space
isvery high, retrieving the neighbors of some object using the standard tech-
nique is still very time consuming. Computing, for instance, the intersection
of two complex polygons is an expensive operation that must be performed
for almost all candidatesretrieved in the first filter step using, for example, an
R-tree. Also, retrieving the neighborhood for simple objects like points using
for instance an €-range query may require many page accesses for high-di-
mensional data because the performance of spatial index structures degener-
ates with increasing dimension d of the data space (see chapter 2).

2. Large number of neighborhood queries:
For atypical spatial data mining algorithm, avery large number of neighbor-
hood queries has to be performed to explore the data space. An extreme ex-
ample is our GDBSCAN algorithm which has to perform a neighborhood
query for each object in the database.

3. Sequences of neighborhood queries for objects contained in the database:
Many spatial datamining algorithmsinvestigates the neighborhood of objects
which are already contained in the database (in contrast to “new” objects, i.e.
objects which are located in the same data space as the database objects but
which are not stored in the database). Furthermore, the order in which the ob-
jects are investigated is often determined by a control structure which is sim-
ilar to the control structure of our GDBSCAN algorithm. That means, starting
from some objects, the algorithm repeatedly retrieves the neighborhood of ob-
ject which have been located in the neighborhood of objects which have al-
ready been processed.
This property applies as well to a typicahnual data analysis procedure
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where short response times for similarity queries are also required. Typically,
manual data exploration is started with a similarity query such as a k-nearest
neighbor query for an arbitrary object o, i.e. an object which may not be stored
inthe database. Then, the neighborhood of the starting object o may befurther
explored by searching for other similar objects. Then, however, we will use
theanswersof previous queriesas starting objects. These objectsareall stored
in the database. For example, in an image database where the images are rep-
resented by high-dimensional feature vectors, we may look for a suitable im-
age that must be similar to a given picture.

In the following subsections we discuss strategies to support the performance of
spatial data mining algorithms, including GDBSCAN, in spatial databases where
the above mentioned properties hold. First - if they exist - we can use materialized
neighborhood indices as proposed in [EKS 97]. These neighborhood indices will
speed-up the performance of GDBSCAN significantly for spatial databases con-
taining spatialy extended objects or containing high-dimensional data. Second,
since aneighborhood query must be performed for alarge number of objects of the
database, we can develop and utilize techniques to perform multiple neighborhood
queries. The gain in performance will be alarge factor, in comparison with the use
of single independent neighborhood queries.

4.4.1 Neighborhood Indices

In [EKS 97] a generd approach to spatial data mining based on a small set of da-
tabase primitives for spatial data mining is presented (including some new ago-
rithms for spatial characterization and spatial trend detection). The mativation of
these database primitivesis as follows. First, in spatial databases the explicit loca-
tion and extension of objectsdefineimplicit relations of spatial neighborhood. Sec-
ond, most data mining algorithms for spatial databases will make use of those
neighborhood relationships. The reason is that the main difference between data
mining in relational DBS and in SDBS is that attributes of the neighbors of some
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object of interest may have an influence on the object and therefore have to be con-
sidered as well.

Wewill shortly introduce some of the basic concepts of this approach to see that
the techniques used to support the database primitives for spatial data mining can
also be applied to our generalized clustering approach.

Neighborhood Graphs and Database Primitivesfor Spatial Data Mining

The database primitives for spatial data mining are based on the concepts of neigh-
borhood graphs and neighborhood paths which in turn are defined with respect to
neighborhood rel ations between objects. There are different types of neighborhood
relations which are important for spatial data mining in general: topological, dis-
tance and direction relations. For our purpose it is not necessary to discuss theses
types of relations here (see [EFKS 98] for more details). We will move directly to
the notion of neighborhood graphs and paths.

Definition 10: (neighborhood graph)
L et neighbor be aneighborhood relation and DB be a database of spatial objects.

A neighborhood graph GPE2 = (N, E) is agraph with nodes N = DB and

neighbor

edges E 0N x N where an edge e = (nq, n,) existsiff neighbor(ny,n,) holds.

We assumethe standard operationsfrom relational algebralike selection, union,
inter section and difference to be available for sets of objects and sets of neighbor-
hood paths (e.g. the operation selection(set, predicate) returns the set of al ele-
ments of aset satisfying the predicate predicate). Only the following important op-
erations are briefly described:

» neighbors: Graphs Objectsx Predicates --> Sets_of_objects
The operatiomeighbors(graph, object, predicate) returns the set of all ob-
jects connected tobject in graph satisfying the conditions expressed by the
predicatepredicate.
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» paths: Sets_of_objects --> Sets_of_paths
The operatiompaths(objects) creates all paths of length 1 formed by a single
element obbjects. Typically, this operation is used as a type cast for selected
starting objects which are investigated by using a data mining algorithm.

» extensions: Graphs Sets_of_paths Integerx Predicates -> Sets_of_paths
The operatiorextensions(graph, paths, max, predicate) returns the set of all
paths extending one of the elementgpaths by at mostmax nodes of the
graph. The extended paths must satisfy the predicedécate. The elements
of paths are not contained in the result implying that an empty result indicates
that none of the elements pdths could be extended. This operation can be
implemented as an iterative application of teghbors operation.

The number of neighborhood paths in a neighborhood graph may become very
large. However, for the purpose of KDD, we are mostly interested in paths “leading
away” from the start object. We conjecture that a spatial KDD algorithm using a
set of paths which are crossing the space in arbitrary ways will not produce useful
patterns. The reason is that spatial patterns are most often the effect of some kind
of influence of an object on other objects in its neighborhood. Furthermore, this in-
fluence typically decreases or increases more or less continuously with an increas-
ing or decreasing distance. To create only relevant paths, the arquedbcate
in the operationeeighbors andextensions can be used to select only a subset of all
paths. The definition gfredicate may use spatial as well as non-spatial attributes
of the objects or paths (see [EFKS 98] for the definition of special filter predicates
selecting only “starlike” sets of path, i.e. paths “leadiwgy” from a start object.).

Many different spatial data mining algorithms can be expressed in terms of these
basic notions, because they basically investigate certain neighborhood paths in an
appropriately defined neighborhood graph. This is also true for our generalized
clustering algorithm GDBSCAN (see [EFKS 98] for other examples, including
spatial characterization and spatial trend detection). For these algorithms, the ob-
jects of a spatial database are viewed as the nodes of a neighborhood graph, and the
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relevant edges and paths of the graph are created on demand - given the definition
of the respective neighborhood relation. Therefore, the efficiency of many spatia
data mining a gorithms depends heavily on an efficient processing of theneighbors
operation since the neighbors of many objects have to be investigated in asingle
run of adata mining algorithm.

Neighborhood Indices

There may be two important characteristics for datamining in certain types of spa-
tial databases such as geographic information systems that can justify the materi-
alization of relevant information about the neighborhood relations. These charac-
teristics may hold for aspatial database, in addition to the properties 1. to 3. stated
above (expensive neighborhood queries, large number of neighborhood queries,
and sequences of neighborhood queries for objects contained in the database):

4. Smilar neighborhood graphs for many data mining operations:

Different spatial data mining algorithms may use very similar neighborhood
graphs. Thus, very similar neighbors operations will be performed again and
again. An exampleisto combine spatial trend detection and spatial character-
ization, i.e. first, detect objects which are the center for interesting spatial
trends and then find aspatial characterization for the regions around these ob-
jects (see [EFKS 98] for details). In this case, both algorithms will perform
nearly the same neighbors operations.

5. Rare updates:
Many spatial databases are rather static since there are not many updates on
objects such as geographic maps or proteins.

Theideaof neighborhood indicesisto avoid database accesses to the spatial ob-
jectsthemselves by materializing relevant information about the neighborhoods of
the objects in the database. This approach is similar to the work of [Rot 91] and
[LH 92]. [Rot 91] introduces the concept of spatial join indicesasamaterialization
of aspatial join with the goal of speeding-up spatial query processing. This paper,
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however, does not deal with the questions of efficient implementation of such in-
dices. [LH 92] extends the concept of spatial join indices by associating each pair
of objects with their distance. In its basic form, thisindex requires O(n?) space be-
cause it needs one entry not only for pairs of neighboring objects but for each pair
of objects. Therefore, in [LH 92] ahierarchical version of distance associated join
indicesis proposed. In general, however, we cannot rely on such hierarchiesfor the
purpose of supporting spatial data mining.

We define a neighborhood index for spatially extended objects including infor-
mation about distance, direction and topological relations between objects in the
following way:

Definition 11: (neighborhood index)
Let DB be a set of spatial objects and let ¢ and dist be real numbers. Let D bea
direction predicate and T be atopological predicate. Then the neighborhood in-

dex for DB with maximum distance ¢, denoted by N.°&, is defined as follows:

N."B={(0y, 0, dist,D, T)| |o;-0, < dist Odist<cD(0y,0,) OT(01,0,)}.

A neighborhood index stores information about pairs of objects up to a certain
distance c. The distance dist between any two objects in a neighborhood index
N.PB isless than the maximum distance ¢ which means that a neighborhood index

does not contain information about all pairs of objects.

For storing and retrieving the information contained in a neighborhood index,
usual one-dimensional index structures such as B-trees or Hashing can be used. A
simple implementation of a neighborhood index using a B*-tree on the attribute
Object-1D isillustrated in figure 41. Implementing neighborhood indices for high-
dimensional spatial data by one-dimensional index structures offers alarge speed-
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up in the processing of neighborhood queries - if the neighborhood index is appli-
cable.

Object-1D Neighbor Distance Direction Topology

B+- [} 0, 2.7 southwest digoint
tree

0, 03 0 northwest overlap

Figure41: Sample Implementation of a Neighborhood Index

A neighborhood index N isapplicableto the neighborhood graph G, if the max-
imum distance c of N, is greater than the maximum possible distance between ob-
jects fulfilling the neighborhood relation r, because then all neighbors with respect
to r can be found in this neighborhood index. For many neighborhood relations,
there is an upper bound for the distance between pairs of objects. Clearly, thisis
true for al distance based neighborhoods which may combine spatial proximity
with conditions on non-spatia attributes (recall section 3.2.2 for examples).

Obviously, if two indices Ny and Ny, €4 < C,, are available and applicable, us-
ing N¢; is more efficient because in generd it will be smaller than the index N,.

In figure 42 the agorithm for processing the neighbors operation selecting the
smallest available index is sketched.

Updates of the database, i .. insertions, deletions or modifications of spatial ob-
jects, require updates of the derived neighborhood indices. These updates on a de-
rived neighborhood can be performed easily because the updates on an object are
in general restricted to the neighborhood of this object. Thisrelevant neighborhood
can be retrieved by simply using neighbors operations.
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neighbors (graph G,, object o, predicate pred)

- Index Selection:
Select the smallest available neighborhood index NI applicable to G,.

- Filter Step:
If NI exists, useit and retrieve as candidates c the neighbors of o stored in
NI.
Else, use the ordinary spatial index and retrieve as candidates the set of ob-
jectsc satisfyingor c.

- Refinement Step:
From the set of candidates, return all objects o’ that fulfill o r 0’ aswell as
predo’).

Figure 42: Algorithm neighbors using neighbor hood indices

Performance Evaluation

Obvioudly, if available, a neighborhood index can be used for the GDBSCAN al-
gorithm. Typically, neighborhood indices may be available for spatial databases
such as geographic information systems. Geographic information systems offer
many opportunities for very different kinds of spatial data mining algorithms - all
using neighbors operations - because in general much information for each object
is stored in these databases (objects may have a spatial extension and many non-
spatial attributes). Consequently, we used a geographic information system on Ba-
variato evaluate the performance of neighborhood indices.

To determine the performance gain for GDBSCAN using neighborhood indices,
it is sufficient to measure the speed-up for single neighbors operations. Therefore,
we compared the performance of single neighbors operations with and without a
materialized neighborhood index. Although, the expected speed-up may be theo-
retically obvious, we performed some experiments for the Bavaria database repre-
senting Bavarian communities with one spatial attribute (2-d polygon) and 52 non-
spatial attributes such as average rent or rate of unemployment. The performance
of the neighbors operation (intersects) using a neighborhood index was compared
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with an operation based on ausual multi-step filter-refinement procedure including

an R-tree. The neighborhood index was implemented by using aB*-tree. Figure 43
depicts the results of these experiments.

Speed-up for the filter step of the Speed-up for the refinement step of the
5 neighbors operation using a 30 neighbors operation using a
neighborhood index

neighborhood index

Speed-up factor
Speed-up factor

0 20,000 40,000 60,000 80,000 100,000 0 100 200 300 400 500

Number of objects in the database Average number of vertices for polygonal object

Figure 43: Speed-up for the neighbor s-oper ation using a neighborhood index

Figure 43, on the left, presents the speed-up factor for the filter step in the exe-
cution of the neighbors operation, varying the number N of objectsin the database.
Aswe can see, thisismore or less a constant factor for the 2-dimensional data sets
since the performance of one- and two-dimensional range queries in B+-trees and
R-trees differ in genera only by a factor as depicted. This factor, i.e. the perfor-
mance gain, will increase dramatically with increasing dimension d because the
performance of spatial indices degenerates for high-dimensional data (cf.
section 2.1).

The speed-up factorsfor the refinement step, varying the average number of ver-
tices, i.e. the complexity of the polygons, is depicted in figure 43, on theright. The
speed-up factor for the refinement step obviously increases with increasing com-
plexity of the objects because the evaluation of a neighborhood predicate like in-
tersects is much more expensive using the exact object representation than using
the information stored in a neighborhood index.

To conclude, a large performance gain for databases containing very complex
objects or high-dimensional data can be achieved by using a neighborhood index.
However, the cost for creating a neighborhood index, i.e. materializing the neigh-
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borhoods in a spatial database, are nearly the same as the cost for a single run of
GDBSCAN without a neighborhood index (or any other spatial data mining ago-
rithm looking at the neighborhood of all objects). Therefore, creating a neighbor-
hood index will only pay off if it will be used several times by different algorithms.

If no materialized neighborhood index is available, there are other possibilities
to improve the performance of our algorithm. One such technique, i.e. multiple
neighborhood queries, is presented in the next subsection.

4.4.2 Multiple Neighborhood Queries

The three characteristics of spatial data mining described on page 93 are fulfilled

for our GDBSCAN algorithms, i.e. we have alarge number of sequences of expen-

sive neighborhood queries. The neighborhood queries are expensive, mostly be-

cause for very large databases the processing of a neighborhood query has to be
disk-based. Furthermore, with increasing dimension of the data space, an increas-

ingly large part of thefile containing the data has to be loaded from disk to answer
asingle neighborhood query because the performance of index structures degener-

ates with increasing dimension. Therefore, we introduce a technique called “mul-
tiple neighborhood query” to decrease the run-time of GDBSCAN dramatically.

The basic idea for the application of multiple neighborhood queries is rather
simple. Assume, there are a many neighborhood queries which must be performed
for a specific data mining task. Instead of processing these neighborhood queries
separately, we can design an operation which processes several neighborhood que-
ries simultaneously. As we will see, this operation will reduce the overall run-time
for all neighborhood queries by a large factor. This is due to the fact that the num-
ber of disk accesses is reduced significantly by our technique.

Before we will describe multiple neighborhood queries in detail, we want to
point out that this is an important technique not only for GDBSCAN. In fact, the
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algorithmic scheme GDBSCAN is an instance of an even more general scheme

which covers many algorithms performing spatial data mining tasks. All instances

of this so called ExploreNeighborhoods-scheme” can benefit from an operation
performing multiple neighborhood queries because this scheme can be easily trans-
formed into an equivalent scheme that uses multiple neighborhood queries.

The ExploreNeighborhooescheme for spatial data mining which is based on
the exploration of neighborhoods is depicted in figure 44. The points in the argu-
ment list of some functions indicate additional arguments which may be necessary
for different instances of this algorithmic scheme.

ExploreNeighborhoods(db, startObjects, NPred, ...)
contolList := startObjects;
WHILE ( condition_check(contolList, ...) = TRUE )
object := contolList.choose(...);
proc_1(object, ...);
answers := db.neighborhood(object, NPred);
proc_2(answers, ...);
contolList := ( contolList O filter(answers, ...) ) — {object};
ENDWHILE

Figure 44: Algorithmic scheme ExploreNeighborhoods

Starting from some objects which are passed to the procedure as a parameter
startObjects, the algorithm repeatedly retrieves the neighborhood of objects taken
from the classontolList as long as the functiarondition_check returnsTRUE for
thecontrolList. In the most simple form, the function checks whetoetrolList is
not empty. If the neighborhood of objects should only be investigated up to a cer-
tain “depth”, then an additional parameter for the number of steps that have to be
performed can be used in the functtondition_check. The control structure of the
main loop works as follows: objects are selected frone¢heolList, one at a time,
and a neighborhood query is performed for this object. The procguntaces and
proc_2 perform some processing on the selected object as well as on the answers
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to the neighborhood query that will vary from task to task. Then, the controlList is
updated. Some or all of the answerswhich are not yet processed are simply inserted
into the class controlList. The function filter(answers, ...) removes from the set of
answers at least those objects which have already been in the controlList in previ-
ous states of the algorithm, if there any exists. This must be done to guarantee the
termination of the algorithm.

It is easy to see that GDBSCAN obviously is an instance of an ExploreNeigh-
borhoods-algorithm. Also the manual data exploration in a spatial database de-
scribed above (point 3 on page 93) as well as spatial characterization and spatial
trend detection can be subsumed by our ExploreNeighborhoods-scheme. For these
tasks, the loop is additionally controlled by the number of steps (i.e. the length of
the neighborhood path) and the procedures proc_1 and proc_2 perform the actual
analysis of the neighborhoods for the purpose of characterization and trend detec-
tion (for details of these algorithms see [EFK S 98]). Note that even the material-
ization of aspatial neighborhood index (cf. section 4.4.1) can be regarded as a spe-
cia case of the ExploreNeighborhoods-scheme. In this case, the argument
startObjects represents the whole database, proc_1 isempty, i.e. it performs noth-
ing; proc_2 simply inserts the neighborhood set into the neighborhood index, and
the filter function always returns the empty set. Another typical application of an
explore neighborhood schemeisthe classification of aset of objects simultaneous-
ly using ak-nearest neighbor classificator.

Algorithms which follow the ExploreNeighborhoods-scheme can be easily re-
formulated in away that they use multiple neighborhood queriesinstead of asingle
neighborhood query at a time. Figure 45 presents the transformed algorithmic
scheme ExploreNeighborhoodsMultipletising multiple neighborhood queries.
As we can see, the reformulation can be done in a purely syntactical way which
means that a multiple neighborhood query would be very easy to useif thisfeature
would be available, for instance, asabasic operation provided by aspatial database
management system.
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ExploreNeighborhoodsMultiple(db, startObjects, NPred, ...)
contolList := startObjects;
WHILE ( condition_check(contolList, ...) = TRUE )
setOfObjects := contolList.choose_multiple(...);
Il setOfObjects = [objecty, ..., object,,]
proc_1(setOfObjects.first(), ...);
setOfAnswers := db.multiple_neighborhoods(setOfObjects, NPred);
/I setOfAnswers = [answersy, ..., answers,,]
proc_2(setOfAnswers.first(), ...);
contolList := ( contolList O filter(setOfAnswers.first(), ...) ) — {object}
ENDWHILE

Figure 45: Algorithmic scheme ExploreNeighborhoodsMultiple

Obvioudly, the algorithmic scheme ExploreNeighborhoodsMultiple performs
exactly the sametask asthe original ExploreNeighborhoods scheme. The only dif-
ferences are that a set of objectsis selected from the control-list instead of asingle
object and a multiple neighborhood query is performed instead of a single neigh-
borhood query. However, in one execution of the main loop, the algorithm will
only make use of thefirst element of the selected objects and the corresponding set
of answers.

Our transformed algorithmic scheme may seem “odd” because some kind of
buffering for the elements eétOfAnswers must be implemented in the query pro-
cessor of the database - if the run-time should be improved compared to the non-
transformed algorithmic scheme. One may have expected a transformed scheme in
which all neighborhoods for all the selected objects are processed after the execu-
tion of the methodhultiple_neighborhoods and thus no special buffering in the da-
tabase would be necessary. This approach, however, would have two important
disadvantages.

First, there exists no general syntactical transformation for this approach in
which the semantics of the non-transformed algorithm is preserved. The reason is
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that the argument lists of the procedures proc_1, proc_2 and filter are not deter-
mined completely in the scheme ExploreNeighborhoods. The procedures may, for
instance, be dependent on the controlList which is possibly changed in each execu-
tion of the main loop. This dependency can in general not be modeled by purely
syntactical means in a transformed scheme where all selected objects and the cor-
responding answers are processed in one execution of the main loop. On the other
hand, in the transformed scheme that we actually propose, this problem does not
exist. The procedures proc_1, proc_2 and filter must not be changed and they op-
erate under the same pre-conditions as in the non-transformed scheme.

The second advantage of our approach is that a multiple neighborhood query
must only produce acomplete answer to thefirst element in the argument setOfOb-
jects instead of complete answersto all elements of setOfObjects. This alows us
to devise implementations of multiple neighborhood queries which compute the
neighborhoods of selected objectsincrementally. Aswewill see, this may be more
efficient if we consider the overall run-time of the ExploreNeighborhoodsMultiple
algorithm.

So far, we have argued that it is highly desirable to have efficient techniques for
multiple neighborhood queries integrated into a spatial database management sys-
tem. In the following, we describe two strategies for the implementation of multi-

ple-neighborhood operationswhich areintended to reduce the number of disk 1/0.

Thefirst implementation of multiple neighborhood queriesis based on thelinear
scan. This strategy is very simple but most effective in terms of a possible speed-
up. Furthermore, the linear scan is applicable to retrieve the NPred-neighborhood
for arbitrary neighborhood predicates defined on objects having an arbitrary data
type. For instance, if only a dissimilarity distance function (which is not a metric)

1. Under specia assumptions, further improvements may be possible by reducing the number of
main memory operations. For instance, if the neighborhood is distance-based and the distance
function is ametric, we can exploit inter-object distances between the query centers and use the
triangle inequality to possibly reduce the number of distance computations.
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isgiven for aclustering problem, we must use the linear scan to retrieve the neigh-
borhood of an object because there exists no suitable index structure for this type
of application. But even in case of an Euclidean vector space, if the dimension of
the space is very high, it may be most efficient to use a kind of optimized linear
scan such asthe VA-file (cf. chapter 2, section 2.1).

Implementation on top of alinear scan (e.g. the VA-file)

Using the linear scan, the method db.neighborhood(object, NPred) retrieves the
NPred-neighborhood of a single object o from a database db by simply checking
the condition NPred(o, o) for each object 0’ [0 db and returning those objects o’
which fulfil thiscondition asresult. That meansthat each page of the database must
be read from disk. Obviously, we can perform a condition check on more than one
object while performing asingle scan over the database. Therefore, the implemen-
tation of the method db.multiple_neighborhoods(setOfObjects, NPred) just per-
forms asingle scan over the database db and checks the condition NPredo, 0’) for
each object 0 in SetOfObjects and each object 0’ in the database db, returning a set
of neighborhoods asresult. If misthe number of objects contained in setOfObjects
and m answers can be held in main memory at the same time, then the speed-up
factor with respect to disk 1/0 is exactly equal to m for a multiple neighborhood
query compared to m single neighborhood queries.

Implementation on top of atrueindex structure (e.g. the X-tree)

For true index structures, e.g. an X-tree, there are several possibilities to imple-
ment the method db.multiple_neighborhood(object, NPred). Here, weintroduce an
implementation which is very similar to the technique for the linear scan. In fact,
our method will become identical to the method for the linear scan if the perfor-
mance of the index structure degenerates to the performance of the linear scan.

When answering a single neighborhood query for an object o using an X-tree, a
set of data pages which cannot be excluded from the search is determined from the
directory of the tree. These pages are then examined and the answers to the query
are determined. The amount of pages to be read from disk depends on the size of
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the database, the degree of clustering, the dimension of the data space and on the
size of the neighborhood (e.g. the distance in case of arange query).

To answer amultiple neighborhood query for a set of objects O = {0y, ..., O},
we propose the following procedure. First, we determine the data pages to be read
as if answering only a single neighborhood query to determine the neighborhood
of 0,. However, when processing these pages, we do not only collect the answers
in the neighborhood of 0, but also collect answers for the objects o; (i=2, ..., m) if
the pages |oaded for 0, would also be loaded for o;. After thisfirst step, the query
for 0, iscompletely finished and the neighborhoods for all the other objectsare par-
tialy determined. Then, in the next step, we determine the remaining data pages
for the object 0o, i.e. we consider only those data pages relevant for o, which have
not been processed in thefirst step. Again, we determine answers for all remaining
objects and at least the answer-set for o, will be completed. This procedure isre-
peated until the set O is empty, i.e. the neighborhoods for all objectsin O are de-
termined.

This procedure for a multiple neighborhood query may seem to be equivalent to
amore simple non-incremental scheme: determine all data pages which haveto be
read from disk for all objectsin O and collect the complete answer-sets for all ob-
jects oy, ..., O, from these pages in a single pass. The number of data pages which
have to be read from disk is actually the same for both methods if we consider only
one multiple neighborhood query for some objects oy, ..., 0, However, if we con-
sider the overall run-time of ExploreNeighborhoodsMultiple, the incremental com-
putation of the neighborhood sets may be more efficient with respect to disk 1/0.
The reason is that objects which are inserted into the control-list in one execution
of the main loop can be additionally selected for a multiple neighborhood query in
the next execution of the loop.

Assume that in the first execution of the loop the neighbors py, ..., p of 0, are
inserted into the control-list and that these objects are additionally selected at the
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beginning of the second execution. Then, the multiple neighborhood query is exe-
cuted for the set O = {0y, ..., O, P1, ---» Pt Which means that now all data pages
are considered which have not been processed for object 0, and, therefore, haveto
be loaded for object 0,. It isvery likely for an ExploreNeighborhoods-algorithm -
especially for GDBSCAN - that some of these pages must also be considered for
some objectsp; (i =1, ..., k) because the objects contained in an instance of the con-
trol-list are usually not very far away from each other. Then, the answers for the
objects p; are (partially) collected from the current data pages determined by the
object 0,. These pages will not be loaded again when p; becomes the first element
of the selected objects. If we had used the non-incremental evaluation of amultiple
neighborhood query, to find the neighbors of py, ..., p, Wwewould haveto load these

pages again, resulting in an overall higher number of disk I/O.

Note that, furthermore, our implementation of a multiple neighborhood query,
on top of a multi-dimensional index, converges to the method for the linear scan
when the page selectivity decreases, e.g. with increasing dimension of the data
space. In the worst case, the index has no selectivity at all, which means that no
data page can be excluded from a neighborhood-search for a single object. Then,
all pages will be read to compute the neighborhood for the first object o, in O =
{04, ..., 0} and therefore - as for the linear-scan-method - the answers for all ob-
jects 0y, ..., Oy, can a'so be determined completely. This yields the maximum pos-

sible speed-up with respect to disk /O for this case.

Now, it is obvious that in any case our incremental method will load at most as
many data pages as the non-incremental method and thus it will never perform
worse than the non-incremental aternative.

Performance Evaluation

We performed severa experiments to measure the speed-up factors for DBSCAN
with respect to disk 1/0 using multiple neighborhood queries compared to single
neighborhood queries. Figure 46 presents the results: the average run-time for de-



110 4 GDBSCAN: An Algorithm for Generalized Clustering

termining the neighborhood of an object when using a single neighborhood query
compared to multiple neighborhood queries and the corresponding speed-up fac-
tors - for both, the linear scan and the X-tree.

Average I/O time for a range query
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Figure 46: Performance of the multiple-neighbor s operation

The average values for the run-time of a neighborhood query depicted in
figure 46 were determined by using DBSCAN. For this purpose we clustered sev-
era 2-dimensional test databases and sel ected as many objects as possible from the
seed-list of DBSCAN for a multiple neighborhood query. Each database contained
100,000 points. The points were randomly distributed within clusters having asig-
nificantly higher density than the noise which was also randomly distributed out-
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side the clusters. Different numbers of cluster (100 - 300) and different amounts of
noise (10 % - 30%) were used.

We can seein figure 46 that the average I/O time for a multiple range query de-
creases dramatically with increasing size of the range yielding very large speed-up
factors for both the X-tree and the linear scan - up to 50 using the X-tree and up to
850 using the linear scan. These speed-up factors correspond to the average size of
the seeds-list of DBSCAN while clustering our test databases.

There are two interesting points concerning the differences between the X-tree
and the linear scan. First, the speed-up factors for the linear scan are much larger
than the speed-up factors for the X-tree. Second, when using multiple neighbor-
hood queries, the scan outperforms the X-tree with respect to I/O timeif the size of
the neighborhood exceeds a certain value. In our experiments, this point occurred
when the e-neighborhoods contained about 80 objects on the average. These dif-
ferences are for the most part due to the following two facts: firts, in asingle exe-
cution of multiple_neighborhoods(setOfObjects, NPred) the answers for al ob-
jects contained in setOfObjects are completely determined by the linear scan
method while the X-tree - except for the “first” objecs#tOfObjects - generates
only partial answers; second, in two dimensional space the X-tree has a very high
page selectivity for a single range query, i.e. only very limited number of data pag-
es are considered to answer the range query for the “top objessfGfObjects.
However when increasing the dimensabof the data space the page selectivity of
the X-tree will degenerate. That means also that for higher dimensions, the curves
in figure 46 for the X-tree will converge to the curves of the linear scan.

Note that the speed-up of the I/O time using multiple neighborhood queries in-
creases significantly with the size of the neighborhoods. Therefore, multiple neigh-
borhood queries will yield the largest benefit for the hierarchical version of GDB-
SCAN (see chapter 7) where we use large neighborhood queries to generate a
hierarchy of density-based decompositions.
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There are, however, two limits for the speed-up factors which can be obtained
by using multiple neighborhood queries in an ExploreNeighborhoods-algorithm.
Thefirst limit is determined by the average size of the control-list during the exe-
cution of an ExploreNeighborhoodsMultiple-algorithm. Obviously, the speed-up
using a multiple neighborhood query can be at most as large as the number of ob-
jects which are processed collectively. Consequently, the maximum possible
speed-up factor for an ExploreNeighborhoodsMultiple-algorithm is equal to the
average number of objects contained in the control-list during the execution of the
algorithm. The second limit for the speed-up factorsis given by the size of themain
memory needed to hold the answer-sets for all neighborhood queries. That means,
we may not be able to execute the neighborhood queries for all objects contained
inthe control-list simultaneously if their answers would not fit into the main mem-
ory. Inthis case, only asubset of al possible neighborhood querieswill be execut-
ed simultaneously.

4.5 Summary

In this chapter, the algorithmic schema GDBSCAN to construct density-based de-
compositions was introduced. We indicated how GDBSCAN can be implemented
independently from the specific predicates for the neighborhood of objects, and the
minimum weight for sets of objects. Furthermore, a performance evaluation
showed that GDBSCAN isefficient for large databasesif the neighborhood queries
can be supported by spatial access structures.

Weal sointroduced advanced database techniques such as neighborhood indices
and multiple neighborhood queries to speed-up the performance of GDBSCAN by
large factors. Especially, we showed that multiple neighborhood queries can be ap-
plied to all instances of an even more general algorithmic schema called Explore-
Neighborhoods. This schema does not only cover our GDBSCAN algorithm as an
instance but also a broader class of different spatial data mining algorithms.
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Applications

In this chapter, we present four typical applications of GDBSCAN. In thefirst ap-
plication we cluster aspectral space (5d points) created from satelliteimagesin dif-
ferent spectral channelswhich is acommon task in remote sensing image analysis
(section 5.1). The second application comesfrom molecular biology. The pointson
aprotein surface (3d points) are clustered to extract regionswith specia properties.
To find such regions is a subtask for the problem of protein-protein docking
(section 5.2). Thethird application uses astronomical image data (2d points) show-
ing theintensity on the sky at different radio wavelengths. Thetask of clusteringis
to detect celestial sources from these images (section 5.3). The last application is
the detection of spatial trends in a geographic information system. GDBSCAN is
used to cluster 2d polygons creating so-called influence regions which are used as
input for trend detection (section 5.4).
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5.1 Earth Science (5d points)

In thisapplication, we use a 5-dimensional feature space obtained from several sat-
elliteimages of aregion on the surface of the earth covering California. These im-
ages are taken from the raster data of the SEQUOIA 2000 Storage Benchmark
([SFGM 93]). After some preprocessing, five images containing 1,024,000 inten-
sity values (8 bit pixels) for 5 different spectral channels (1 visible, 2 reflected in-
frared, and 2 emitted (thermal) infrared) for the same region were combined. Thus,
each point on the surface, corresponding to an earth surface area of 1,000 sgare
meters, is represented by a 5-dimensional vector, for example.

pl: 222 217 222155 222
p2: 243 240 243 235243

Finding clustersin such feature spacesis a common task in remote sensing digita
image analysis (e.g. [Ric 83]) for the creation of thematic maps in geographic in-
formation systems. The assumption is that feature vectors for points of the same
type of underground on the earth are forming groups in the high-dimensional fea-
ture space (see figure 47 illustrating the case of 2d raster images).
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Figure 47: Relation between 2d image and featur e space
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Mapping a sample of about 50,000 of the 1,024,000 5-dimensional vectorsto 3-
dimensional vectors using the FastMap method ([FL 95]) yields a visualization as
shown in figure 48. This visualization gives an impression of the distribution of
pointsin the feature space indicating that there are in fact clusters.

Figure48: Visualization of the SEQUOIA 2000 raster data

Application 1 has two characteristics which did not exist in the synthetic data-
bases used in the previous chapters. First, the coordinates of points can only bein-
tegers with values between 0 and 255 in each dimension. Second, many of theras-
ter points have exactly the same features, i.e. are represented by the same 5-
dimensional feature vector. Only about 600,000 of the 1,024,000 feature vectors
are different from each other.

We used the speciaization DBSCAN for this application. The parameters were
determined manually. For reasons of efficiency, we computed the sorted 9-dist
graph only for a 1% sample of al pointsand selected 1.42 asthe valuefor €. These
neighborhoods are very small due to the first characteristic of the application, e.g.
for about 15% of the points the distance to the 9th nearest neighbor is 0. To take
into account the second characteristic of the data, we increased the default value
for MinPts, i.e. we set MinPts = 20. To summarize, the following setting was used:

NPred(X,Y) iff | X- Y| <1.42
MinWeight(N) iff | N | =20
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There are severa reasons to apply a post-processing to improve the clustering
result of GDBSCAN. First, GDBSCAN only ensuresthat a cluster contains at | east
MinPts points, but a minimum size of 20 points is too small for this application,
especially because many points have the same coordinates. Therefore, we accepted
only the clusters containing more than 200 points. Thisvalue seems arbitrary but a
minimum size can be chosen reasonably after the size of all clustersisknown. Sec-
ond, GDBSCAN produces clusters and noise. But for this application a non-noise
class label for each raster point is required. Therefore, we reassigned each noise
point and each point of arejected cluster to the closest of the accepted clusters. We
obtained 9 clusters with sizes ranging from 598,863 to 2,016 points.

To visudize the result, each cluster was coded by a different color/grayscale.
Then each 2-dimensional point in theimage of the surface of the earth was colored
according to the identificator of the cluster containing the corresponding 5-dimen-
sional vector. The resulting image is shown in figure 49. A high degree of corre-
spondence between the obtained image and a physical map of Californiacan easily
be seen. A detailed discussion of this correspondence is beyond the scope of this
work.

Figure49: Visualization of the clustering result for the
SEQUOIA 2000 raster data
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5.2 Molecular Biology (3d points)

Proteins are biomolecules consisting of some hundreds to thousands of atoms.
Their mode of operation lies in the interaction with other biomolecules, e.g. pro-
teins, DNA or smaller partner molecules. These interactions are performed by the
so-called docking, i.e. the process of connecting the partner molecul es.

Molecular biologists point out that the geometry of the molecular surfaces at the
interaction site plays an important role along with the physicochemical properties
of the molecules. A necessary condition for protein-protein docking is the comple-
mentarity of the interaction site with respect to surface shape, electrostatic poten-
tial, hydrophobicity, etc. We use the crystallographically determined atom coordi-
nates of proteins and protein complexes from the Brookhaven Protein Data Bank
([BKW+ 77], [PDB 94]) and derive for each protein a surface with some 10,000
equally distributed 3d points. For each point on the protein surface, several geo-
metric and physicochemical features are computed. The solid angle (SA), for ex-
ample, isageometric feature describing the degree of convexity or concavity of the
surface in the neighborhood of the considered point (see [Con 86]).

A database system for protein-protein docking has to process queries for pro-
teins with complementary surfaces. This search is performed at the level of surface
segments, defined as a set of neighboring surface pointswith similar non-spatial at-
tributes, e.g. with similar SA values. The segments should have agood correlation
with the known docking sites of the proteins, i.e. adocking site on a protein surface
should consist of a small number of segments. Therefore, finding a segmentation
of protein surfaces is an important subtask for a protein docking database. We ap-
plied GDBSCAN for this task.

The parameters NPred and MinWeight were determined analytically. We used
MinWeight predicates similar to the one used for the specialization DBSCAN, i.e.
comparing avalue derived from aneighborhood set to a threshold MinPts. The dif-
ference is that we did not use “simple” cardinality of the neighborhood set but we
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simultaneously performed a selection on the SA values. The SA values are normal -

ized in theinterval [0, 1] such that high SA valuesindicate points on a convex sur-

face segment, and low SA values indicate points on a concave surface segment. To

find the convex segments, we used SA values between 0.75 and 1.00; for points on
aconcave surface segment, we used SA val ues between 0.00 and 0.65. The NPred-
neighborhood is distance based. Since the surface points are equally distributed

with a density of 5 points per A2, we calculated the average 5th-nearest-neighbor
distance and used this value of ®6¢ in the definition of theNPred-neighbor-
hood. ConsequentijlinPts was set to 5 in the definition of tiMinWeight predi-
cate. To summarize, the following settings were used:

For convex segments:

NPred(X,Y) iff | X- Y| < 0.6
MinWeight(N) iff | { p 0 N | 0.75< SA(p) < 1.00} |= 5

For concave segments:

NPred(X,Y) iff | X- Y| < 0.6
MinWeight(N) iff | { p O N | 0.00< SA(p) < 0.65} | 5

Note that if we would use the specialization DBSCAN with “simple” cardinali-
ty, only a single cluster containing all points of the protein surface would be found.
In applications with equally distributed points, GDBSCAN can only find reason-
able clusters if th#linWeight predicate is defined appropriate, i.e. khieWeight
predicate must “simulate” regions of different density. We searched for clusters
covering at least 1% of the surface points of the protein. For example, for the pro-
tein 133DA consisting of 5,033 surface points, only clusters with a minimum size
of 50 surface points were accepted. For this protein 8 convex and 4 concave clus-
ters (segments) were found by using the above parameter settings. Figure 50 de-
picts the clustering results of GDBSCAN for this protein. Note that some of the
clusters are hidden in the visualization because only one view angle for the protein
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is depicted. GDBSCAN discovered the most significant convex and concave sur-
face segments of the protein, which can easily be verified by visual inspection.

convex segments concave segments

Figure50: Visualization of the clustering results for protein 133DA

5.3 Astronomy (2d points)®

Surveys of the sky form an integral part of astronomy. Celestial sources detected
inasurvey are typicaly classified by the domain scientists; large surveys will de-
tect many objects and enable statistical studies of the objectsin a given classifica-
tion. Surveys may also revea exotic or anomalous objects or previously unidenti-
fied classes of objects. A typica result of a survey isa 2-dimensiona grid of the
intensity on the sky (though additional dimensions, e.g. frequency or velocity, po-
larization, may also be acquired). The measured intensity is typically the sum of
the emission from discrete sources, diffuse emission (e.g. from the atmosphere, in-
terplanetary medium or interstellar medium), and noise contributed by the survey-
ing instrument itself. Modern surveys are capable of producing thousands of imag-
es of the sky, consuming 10 GB - 1 TB of storage space, and may contain 10° to
105 or more sources (e.g. [BWH 95], [CCG+ 95]).

1. Special thanksto T. Joseph W. Lazio for making the astronomy data available and for his sub-
stantial help in understanding and modeling this application.
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Maximizing the yield from a survey requires an accurate and efficient method
of detecting sources. Thetraditional method of separating the discrete sourcesfrom
the noise and other emissions is to require that the sources exceed a predefined
threshold, e.g. 50, where o is an estimate of the rms intensity in the image (e.g.
[BWH 95]). Recently, alternate methods which utilize the expected statistics of the
intensity ([ZCW 94]) or classifier systems ([WFD 95]) have been applied.

An extreme exampl e of anoisy imageis shown on theleft side of figure 51. The
image shows the intensity, as measured by the Very Large Array (information on
the VLA is available at <URL:http://info.aoc.nrao.edu/doc/vlalhtml/VLAho-
me.shtml>), in a direction towards the Galactic center at a radio wavelength of
4,865 MHz. Theimage is dominated by a celestial source near the center, and the
sidelobes which appear as radial spokes and are produced by the optics of the in-
strument. A second image of the same area at a dightly different wavelength was
also given for this application. Because of its similarity to the first image, it is not
depicted. Theintensity valuesin theimages range from -0.003084 to 0.040023 and
from -0.003952 to 0.040509 respectively.

grayscale representation of oneimage

DECLINATION (42000}

Figure51: Visualization of the astronomy data

We applied GDBSCAN using the same parameter settings for both images. The
neighborhood of araster point (pixel) is defined as a 3x3 array of points (pixels).
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For aregion in the image to be of special interest we require an average intensity
of 0.005 for each pixel in theregion. Thisrequirement isintegrated into the defini-
tion of our MinWeight predicate which compares the total intensity for all 9 pixels
in a neighborhood with athreshold equal to 0.045:

NPred(X,Y) iff | X - Y| < 1.42

MinWeight(N) iff Z intensity(p) = 0.045
pON

The resulting clusterings for both images are given in figure 52. For example,
the brightest celestial source can easily be identified as the cluster in the center.

Figure 52: Clustering resultsfor both astronomy images

For the other clusters, it is not so easy to verify that they are in fact celestial
sources. But thisis atraditional problem with source detection in astronomy. The
only way to confirm aweak source isto detect it again in different images, e.g. if
it can be detected again by looking at it at slightly different frequencies. A source
is required to appear at the same position, maybe with a shift of a pixel or two, at
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all frequencies. Therefore, we extracted only the clusters which are present in both
images. There are 20 of them. The result of this procedure is depicted in figure 53.

cluster present in both images

Figure 53: Potential sourcesin astronomy data

5.4 Geography (2d polygons)!

In the following, we present asimple method - based on GDBSCAN - for detecting

“hot spots” on a geographic map possibly containing spatial trends (see
[EKSX 97]; for a more comprehensive approach to detect spatial trends see
[EFKS 98]). The specialization of GDBSCAN to polygonal data (see chapter 3,

section 3.2.2.5) is used to extract regions of interest from a geographic information
system on Bavaria.

A geographic information system is an information system to manage data rep-
resenting aspects of the surface of the earth together with relevant facilities such as
roads or houses. The Bavaria information system is a database providing spatial
and non-spatial information on Bavaria with its administrative units such as com-
munities, its natural facilities such as the mountains and its infrastructure such as

1. Special thanksto Henning Brockfeld (I nstitute of Economic Geography, University of Munich)
for introducing us into the KDD needs of economic geographers.



5.4  Geography (2d polygons) 123

roads. The database contains the ATKIS 500 data ([Atkis 96]) and the Bavarian
part of the statistical data obtained by the German census of 1987. The implemen-
tation of the information system follows the SAND (Spatial And Non-spatial Da-
tabase) architecture ([AS 91]): the spatial extension of all objects (e.g. polygons
and lines) is stored and manipulated by using an R*-tree, the non-spatia attributes
of the communities (54 different attributes such as the rate of unemployment and
the average income) are managed by a relational database management system.
The Bavaria database may be used, for example, by economic geographers, to dis-
cover different types of knowledge. In the following, we shortly discuss the tasks
of spatial trend detection.

A trend has been defined as atemporal pattern in some time series data such as

network alarms or occurrences of recurrent ilinesses ([BC 96]), e.g. “rising interest

rates”. We define gpatial trend as a pattern of systematic change of one or several

non-spatial attributes in 2D or 3D space.

To discover spatial trends of the economic power, an economic geographer may

proceed as follows. Some non-spatial attribute such as the rate of unemployment is

chosen as an indicator of the economic power. In a first step, areas with a locally

minimal rate of unemployment are determined which are caéiegrs, e.g. the

city of Munich. The theory of central places ([Chr 68]) claims that the attributes of

such centers influence the attributes of their neighborhood to a degree which de-

creases with increasing distance. For example, in general it is easy to commute

from some community to a close by center. This will result in a lower rate of un-

employment in this community. In a second step, the theoretical trend of the rate

of unemployment in the neighborhood of the centers is calculated, e.g.

» when moving away from Munich, the rate of unemployment increases
(confidence 86%)

In a third step, deviations from the theoretical trends are discovered, e.g.
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» when moving away from Munich in south-west direction, then the rate of un-
employment is stable (confidence 97%)

The goal of the fourth step is to explain these deviations. For example, if some
community is relatively far away from a center, but is well connected to it by train,
then the rate of unemployment in this community is not as high as theoretically ex-
pected.

We conjecture that this process of trend detection is relevant not only for eco-
nomic geography but also for a broader class of applications of geographic infor-
mation systems, e.g. for environmental studies. The steps are summarized as fol-
lows and are illustrated by figure 54:

1) discover centers, i.e. local extrema of some non-spatial attribute(s).
2) determine theoretical trend as well as observed trend around the centers.
3) discover deviations of the observed from the theoretical trend.

4) explain deviations by other spatial objects in that area and direction.

SOE LN C

@ center () theoretical trend ) observed trend

. deviation s highways
Figure54: Trend analysisin geographic geogr aphy

GDBSCAN is used to extract density-connected sets of neighboring objects
having a similar value of non-spatial attribute{g)order to define the similarity
on an attribute, we partition its domain into a number of disjoint classes, e.g. “very
high”, “high”, “medium”, “low”, “very low”. A function attribute-class maps at-
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tribute valuesto the respective class values, i.e. attribute-class(X) denotesthe class
of the attribute value X. Values in the same class are considered as similar to each
other. The setswith the highest or lowest attribute value(s) are most interesting and
are called influence regions, i.e. the maximal neighborhood of a center having a
similar value in the non-spatial attribute(s) as the center itself. Then, the resulting
influence region is compared to the circular region representing the theoretical
trend to obtain a possible deviation.

Different methods may be used for this comparison, e.g. difference-based or ap-
proximation-based methods. A difference-based method calculates the difference
of both, the observed influence region and the theoretical circular region, thus re-
turning some region indicating the location of a possible deviation. An approxima-
tion-based method cal culates the optimal approximating ellipsoid of the observed
influence region. If the two main axes of the ellipsoid differ in length significantly,
then the longer oneis returned indicating the direction of adeviation. These meth-
ods areillustrated in figure 55.

Influence Region Approx.-Based Method Diff.-Based Method
Figure 55: Comparison of theoretical and observed trends

GDBSCAN can be used to extract the influence regions from an SDBS by using
the following parameter setting (where we exclude sets of less than 2 objects):

NPred(X, Y) iff intersect(X, Y) O attribute-class(X) = attribute-class(Y)”

MinWeight(N) iff | N |> 2
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Seven centers with respect to a high average income are present in the Bavaria
database. Figure 56 depictstheinfluence regions of these centersin the Bavariada-
tabase with respect to high average income detected by GDBSCAN; some of which
are discussed in the following:

r influenceregion
of Nuremberg

b
SuZE influence region
of Ingolstadt

<L
TRt g
influend&xegion
of Munic

Figure56: Influence regions with respect to aver age income extracted
from the Bavaria database



5.4  Geography (2d polygons) 127

The influence region of Nuremberg is circle-shaped showing no significant de-
viation - in contrast to the influence regions of Nuremberg and Munich.

S

Approximation-Based Method River Danube
Figure57: Explanation of the influence region of Ingolstadt

The influence region of Ingolstadt is elongated, indicating a deviation in west-
east direction caused by the river Danube traversing Ingolstadt in this direction.
Figure 57 shows the approximating ellipsoid and the significantly longer main axis
in west-east direction.

Difference-Based Method Highways
Figure58: Explanation of the influence region of Munich

Theinfluence region of Munich hasfour significant deviationsfrom the theoret-
ical region (NE, SW, S and SE). Figure 58 illustrates the difference between the
observed influence region and the theoretical circular region. These areas coincide
with the highways originating from Munich.
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5.5 Summary

In this chapter we presented severa applications for different parameter special-
izationsof GDBSCAN. First, we presented an application of DBSCAN to a5-dimen-
siona spectral space. To determine the clustersin such a spectral spaceis an impor-
tant task for the creation of, for example, land-use maps. Second, we extracted
concave and convex surface segments on 3-dimensional protein data. In thisapplica-
tion we applied a specialization of GDBSCAN that used a selection condition on
non-spatial attributes in the definition of the MinWeight predicate. In the third appli-
cation we applied GDBSCAN to 2-dimensional astronomical imagesto detect celes-
tial sources. In this application GDBSCAN uses the intensity values of the objects/
pixelsasaweight in the definition of the MinWeight predicate. In thelast application,
we used GDBSCAN to find interesting regions for trend detection in a geographic
information system on Bavaria,, i.e. adatabase of 2-dimensiona polygons aso hav-
ing several non-spatial attributes. A spatial trend was defined as a pattern of system-
atic change of one or several non-spatial attributes in 2d or 3d space. Additionaly,
we discussed how the discovered knowledge can be useful for economic geogra-
phers. The neighborhood predicate NPred for objects was defined by using intersec-
tion and the similarity of non-spatia attribute values.
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| ncremental GDBSCAN

In this chapter we present an incremental version of GDBSCAN (see also
[EK'S+ 98] for a short presentation with respect to the specialization DBSCAN).
After motivating incremental clustering applications (section 6.1), we show that
due to the density-based nature of GDBSCAN the insertion or deletion of an object
affects the current clustering only in the neighborhood of this object (section 6.2).
Thus, efficient algorithms can be given for incremental insertions and deletions to
an existing clustering (section 6.3, 6.4, 6.5) which yield the same result as the ap-
plication of non-incremental GDBSCAN to the whol e updated database. For aper-
formance evaluation, we compare the incremental version of our algorithm with
the specialization to DBSCAN using a 2d spatial database as well asa WWW-log
database (section 6.6). The incremental version of DBSCAN yields significant
speed-up factors compared to non-incremental DBSCAN, even for large numbers
of updates. This demonstrates the efficiency of the proposed algorithm.
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6.1 Motivation

Many companies have recognized the strategic importance of the knowledge hid-
den in their large databases and, therefore, have built data warehouses. A data
warehouse is a collection of data from multiple sources, integrated into a common
repository and extended by summary information (such as aggregate views) for the
purpose of analysis [MQM 97]. When speaking of a data warehousing environ-
ment, we do not anticipate any special architecture but we address an environment
with the following two characteristics:

» Derived information is present for the purpose of analysis.
» The environment is dynamic, i.e. many updates occur.

Typically, a data warehouse is not updated immediately when insertions and de-
letions on the operational databases occur. Updates are collected and applied to the
data warehouse periodically in a batch mode, e.g. each night [MQM 97]. Then, all
patterns derived from the warehouse by data mining algorithms have to be updated
as well. This update must be efficient enough to be finished when the warehouse
has to be available for users again, e.g. the next morning. Due to the very large size
of the databases, it is highly desirable to perform these updates incrementally
([FAAM 97], [Huy 97]).

Maintenance of derived information such as views and summary tables has been
an active area of research [MQM 97], [Huy 97]. The problem of incrementally up-
dating mined patterns after making changes to the database has just recently started
to receive more attention.

For example, in a medical database, one may seek associations between treat-
ments and results. The database is constantly updated and at any given time, the
medical researcher is interested in obtaining the current associations. In a database
containing news articles, for example, patterns of co-occurrence amongst the top-
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icsof articlesmay be of interest. An economic analyst receivesalot of new articles
every day and he would like to find relevant associations based on al current arti-
cles. InaWWW access |og database [MJHS 96], we may want to find and monitor
groups of similar access patterns by clustering the access sequences of different us-
ers. These patterns may change in the course of time because each day new log-
entries are added to the database and old entries (past a user-supplied expiration
date) are deleted. The groups of similar access patterns may correspond to user
groups and/or groups of logically connected Web pages.

Up to now, only afew investigations on the problem of incrementally updating
mined patterns on changes of the database are available. [CHNW 96] and
[FAAM 97] propose efficient methods for incrementally modifying a set of asso-

ciation rules mined from adatabase. [EW 98] introduce generalization algorithms

for incremental summarization in a data warehousing environment.? The task
which we consider in this chapter is the incremental clustering.

The clustering of earthquake epicenters stored in an earthquake catalog, for in-
stance, could be done incrementally. Earthquake epicenters occur along seismical-
ly active faults, and are measured with some errors, so that in the course of timethe
observed earthquake epicenters should be clustered along such seismic faults
[AF 96]. When clustering this type of database incrementally, there are no dele-
tions but only insertions of new earthquake epicenters over time.

1. The task of mining association rules has been introduced by [AS 94]. An association ruleisa
rulel; O 1, wherel; and |, are disioint subsets of aset of items|. For a given database DB of
transactions (i.e. each record contains a set of items bought by some customer in one transaction),
all association rules should be discovered having a support of at least minsupport and a confi-
dence of at least minconfidence in DB. The subsets of | that have at least minsupport in DB are
called frequent sets.

2. Summarization, e.g. by generalization, is another important task of data mining. Attribute-ori-
ented generaization (see [HCC 93]) of arelation is the process of replacing the attribute values
by amore general value - one attribute at atime, until the number of tuples of the relation
becomes | ess than a specified threshold. The more general value is taken from a concept hierar-
chy which istypically available for many attributesin a data warehouse.
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Another important application for incremental clustering may be the clustering
of WWW access log databases. These databases typically contain access log en-
tries following the Common Log Format specified as part of the HTTP protocol
[Luo 95]. Such log entries mainly contain information about the machine, the user,
the access date and time, the Web page accessed, and the access method. Figure 59
depicts some sample log entries from the WWW access log database of the Insti-
tute for Computer Science at the University of Munich.

romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:44:50 +0100] "GET /~lopa/ HTTP/1.0" 200 1364
romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:45:11 +0100] "GET /~lopa/x/ HTTP/1.0" 200 712
fixer.sega.co.jp unknown - [04/Mar/1997:01:58:49 +0100] "GET /dbs/poradahtml HTTP/1.0" 200 1229

scooter.pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] "GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

Figure59: Sample WWW access log entries

In this application, the goal of clustering isto discover groupsor clusters of sim-
ilar access patterns. Access patterns can be described by the sequence of Web pag-
es accessed by a user in asingle session.

A session is constructed from the basic access log database by restructuring the
log entries: all log entries with identical 1P address and user-id within agiven max-
imum time gap are grouped into a session, and redundant entries, i.e. entries with
file name suffixes such as “gif”, “jpeg”, and “jpg” are removed [MJHS 96]. A ses-
sion has the following general structure:

session::= <ip_address, user_id, {url. ., urf]>

Then, the task of discovering groups of similar access pattern can be handled by
clustering the user sessions of a Web log database. A WWW provider may use the
discovered clusters of sessions as follows:
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- The users associated with the sessions of a cluster form some kind of user
group. The topics which are contained in the Web pages accessed by a user
group can be interpreted as a user profile. This kind of information may, for
example, be used to devel op marketing strategies.

- The URLs of the sessions contained in a cluster represent topics which are
“connected by user interests”. This information could be used to reorganize
the local Web structure. For example, URLs contained in a cluster can be
made easily accessible from each other via appropriate new links.

The access patterns may change in the course of time. New entries are inserted
into the WWW access log database each day and they will expire after a certain
time, i.e. they are deleted from the database after a specified period, for instance,
after six months. Assuming a constant daily number of WWW accesses, the num-
bers of insertions and deletions in this type of application are the same for each day.

GDBSCAN is applied to static databases. In a data warehouse, however, the da-
tabases may have frequent updates and thus may be rather dynamic. After inser-
tions and deletions to the database, the clustering discovered by GDBSCAN has to
be updated. Incremental clustering means to consider only the old clusters and the
objects inserted or deleted during the day instead of applying the clustering algo-
rithm to the (very large) updated database.

Due to the density-based nature of GDBSCAN, the insertion or deletion of an
object affects the current clustering only in the neighborhood of this object. In sec-
tion 6.2 we examine which part of an existing clustering is affected by an update
of the database. Then, we present algorithms for incremental updates of a cluster-
ing after insertions (section 6.3) and deletions (section 6.4). It is an important ad-
vantage of our approach that, based on the formal notion of clusters, it can be easily
seen that the incremental algorithm yields the same result as the non-incremental
GDBSCAN algorithm. In section 6.6, we demonstrate the high efficiency of incre-
mental clustering on a spatial database as well as on a WWW access log database.
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6.2 Affected Objects

Let D be adatabase, NPred be a binary neighborhood predicate and let MinWeight
be a predicate for the minimum weight of sets of objects. Recall that we denote by
Nnpred(0) the NPred-neighborhood of an object o. Additionally, we introduce the
notation Nonpreg(0) for an enhanced neighborhood of o, i.e. the set of all objects

which arein the neighborhood of objects o’ which in turn are in the neighborhood
of object o:

Definition 12: (enhanced neighborhood Noypyreg(0) )

Nonpred(0) = {g 0 D | Jo" U Nypreg(0) 0 g U Nypreq(0')}

We want to show that changes to a clustering of a database D are restricted to a
neighborhood of an inserted or deleted object p. Objects contained in Nypyeqg(P) Can
change their core object property, i.e. core objects may become non-core objects
and vice versa. Thisis due to the fact that for al objects p* O Nypreq(p) also the
property p O Nypreg(P') holds. Therefore, insertion or deletion of object p may af-
fect MinWeigh{Nypreq(P’))- Objectsin Nonpred(P) \ Nnpred(P) keep their core ob-
ject property, but non-core objects may change their connection status, i.e. border
objects may become noise objects or vice versa, because their NPredneighbor-
hood may contain objects with a changed core object property. For all objects out-
side of Nonpreg(P) it holdsthat neither these objects themselves nor objectsin their
NPredneighborhood change their core object property. Therefore, the connection
status of these objects is unchanged.

Figure 60 illustrates the possible changes with respect to core object property
and connection status in a sample database of two-dimensional objects using pa-
rameter values for DBSCAN as depicted. In thisfigure, the object a O Nypyeqg(p) is

acore object only if object p is contained in the database. Otherwise, object aisa
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border object. As a consequence, object ¢ [0 Nypreq(@) Will be density-reachable,

depending on the presence of object p. The core object property of object b is not
affected by the insertion or deletion of p.

insert/delete object p
a border object ~ core object
¢ noise object ~ border object

(MinPts = 4, ¢ as depicted)

Figure 60: Changing core object property and connection status

All objects outside Nonpred(P) Keep their core object property and their connec-

tion status. They may, however, change their cluster membership because new
density-connections may be established or removed - in case of an insertion resp.
deletion.

After the insertion of some object p, non-core objects (border objects or noise
objects) in Nypreq(P) may become core objects implying that new density-connec-

tionsmay be established, i.e. chainspy, ..., Py, P1 = I, Py = Swith p;4 directly den-
sity-reachable from p; for two objects r and s may arise which were not density-
reachable from each other before the insertion. Then, one of the p; for i < n must

be contained in Nypred(P)-

When deleting some object p, core objects in Nypyeq(p) may become non-core
objectsimplying that density-connections may be removed, i.e. there may no long-
er beachanpy, ..., Py, P1 = I, Py = SWith p;44 directly density-reachable from p;
for two objects r and s which were density-reachable from each other before the
deletion. Again, one of the p; for i < n must be contained in Nypred(P)-
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Figure 61 illustrates our discussion using asample database of 2d objectsand an
object p to be inserted or to be deleted. Nypreq(0) ={0’ O D| |0 - 0’| <€}, eisas
depicted, and MinWeigh{N) iff | N | = 4. The objects a and b are then density-con-
nected without using one of the elements of Nypreq(P)- Therefore, a and b belong
to the same cluster independently from p. On the other hand, the objects d and ein
D \ Nypreg(P) are only density-connected viac in Nypreg(P) if the object p is con-
tained in the database, so that the cluster membership of d and eis affected by p.

D " Jo_ Affecteds(p)
N

oo o.o;\e

(o) [
oo:o:oo Lo

° o: : : : ...o.o.

0 ©© 600°
°ph ° : °

Figure 61: Affected objectsin a sample database

In general, on an insertion or deletion of an object p, the set of affected objects
i.e. objects which may potentialy change their cluster membership after the up-
date, is the set of objects in Nypreg(p) plus al objects density-reachable from one
of these objectsin D O { p}. The cluster membership of all other objects not in the
set of affected objectwill not change. Thisisthe intuition of the following defini-
tion and lemma. In particular, the lemma states that a cluster or density-connected
set in the database isindependent of an insertion or deletion of an object p if acore
object of the density-connected set is outside the set Affectegh(p). Note that a den-
sity-connected set is uniquely determined by any of its core objects. Therefore, by
definition of Affectegh(p) it followsthat if one core object of a density-connected
set is outside (inside) Affecteg(p), then all core objects of the density-connected
set are outside (inside) the set Affecteg)(p).
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Definition 13: (affected objects)
Let D be a database of objects and p be some object (either in or not in D). We
define the set of objectsin D affected by the insertion or deletion of p as
Affectedp(p) := Nnpred(P) ' {a | o ONypred(P) HA>ppgpy 0}-

Lemma7: Let D beaset of objects and p be some object.
Then [0 o 0 D: o UAffectedp(p) U {q| d>pyp 0} = {d| a>ppygp 0} -

Proof (sketch): 1) O : because D\ {p} OD O {p}.2) O:if q{q|d>pp¢p 0},
then thereis some chain gy, ..., Gy, 01 = 0, 4, = 0, Gi+1 ONnpreg(di) and g; isacore
objectinD U {p} for ali < nand, for al i, it holdsthat ¢ >pp; ) 0. Becauseq; is
acoreobject for al i < nand the density-reachability is symmetric for core objects,
it also holdsthat 0 >ppypy G- If thereexists ani < n such that ; ONypreq(p), then
0i>pngpy PiMplying also 0> ppypy pdueto thetransitivity of density-reachability.
By definition of the set Affectedp(p) it now followsthat o JAffectedp(p) in contrast
to the assumption. Thus, ¢ O Nypreg(p) for al i < nimplying that all the objects
g, i < n, are core objects independent of p and aso g, # p because otherwise

On-1 ONNpred(P)- Thus, the chain qg, ..., g, exists also in the set D \ {p} and then
a{alg>p\(p o} O

Dueto lemma 7, after inserting or deleting an object p, it is sufficient to reapply
GDBSCAN to the set Affectedp(p) in order to update the clustering. For that pur-
pose, however, it is not necessary to retrieve the set first and then apply the clus-
tering algorithm. We simply have to start arestricted version of GDBSCAN which
does not loop over the whole database to start expanding a cluster, but only over
certain “seed’-objects which are all located in the neighborhoopl dhese
“seed”-objects are core objedfter the update operation which are located in the
NPred-neighborhood of a core object I O {p} which in turn is located in
Nnpred(P)- This is the content of the next lemma.
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Lemma 8: Let D beaset of objects. Additionally, let D* := D [ {p} after insertion
of anobject por D” = D \{p} after deletion of pand let c beacoreobjectinD".
C={o|0>p« ¢} isaclusterinD" and C [ Affected(p) = g, q': q ONnprea(d'),
g’ ONnpred(P), € >p0 q, giscoreobject in D" and g’ iscoreobjectinD O {p}.

Proof (sketch): If D" := D 0 {p} or ¢ 0 Nypreq(P), the lemmais obvious by defi-
nition of Affecteg)(p). Therefore, we consider only the case D" =D\ {p} and
¢ U Nnpred(P)-

“=>": C O Affectedp(p) and C # 0. Then, there existe O Nypreq(p) and
€ >ppyp O i-€. there is a chain of directly density-reachable objects dreor.
Now, because& O Nypreg(P) We can construct a chaioroy, . . ., 0,=C,
0;+1 ONnpreg(0)) With the property that there j n such that for alk, j < k< n,
0, [0 Nnpre(P) and for allk, 1< k< j, o, O Nypred(p)- Theng=0; O Nypred(0).1),

4'=0j.1 UNnpred(P), € >pU0;, 0jisacore objectin D" and 0.1 isacoreobjectin D

O{p}.
“<=": obviously, C = {0 | 0 >p« c} is a density-connected set (see lemma 4).

assumptiong is density-reachable from a core objgdh D* andq is density-
reachable from an objeqtONypeq(p) in D O {p}. Then also ¢ and hence al ob-
jectsin C are density-reachable from g’ in D O {p}. Thus, C O Affectegh(p).0)

Dueto lemma 8, the general strategy for updating a clustering would be to start
the GDBSCAN algorithm only with core objects that are in the NPredneighbor-
hood of a(previous) core object in Nypreg(P). However, it isnot necessary to redis-
cover density-connections which are known from the previous clustering and
which are not changed by the update operation. For that purpose, we only need to
look at core objects in the NPredneighborhood of those objects that change their
core object property as aresult of the update. In case of an insertion, these objects
may be connected after the insertion. In case of adeletion, density-connections be-
tween them may be lost. In general, this information can be determined by using

By
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very few region queries. The remaining information needed to adjust the clustering
can be derived from the cluster membership before the update. Definition 14 intro-
duces the formal notions which are necessary to describe this approach. Remem-
ber: objects with a changed core object property are all located in Nypreg(P)-

Definition 14: (seed objects for the update)

Let D be a set of objects and p be an object to be inserted or deleted. Then, we
define the following notions:

UpdSeed,,s = {q | q is a core object in D O {p}, Oq’: g’ is core object in
D O {p} but notin D and g ONypreg(a')}

UpdSeedy ={q|qgisacoreobjectinD\{p}, 0q’: q" is core object in D but

ot in D\ {p} and g ONprea(d)}

We call the objects g 0 UpdSeedseed objects for the update”.

6.3 Insertions

When inserting a new objept new density-connections may be established but
none are removed. In this case, it is sufficient to restrict the application of the clus-
tering procedure to the s&pdSeed,,.. If we have to change the cluster member-
ship for an object fron€ to D, we perform the same change of the cluster mem-
bership for all other objects @. Changing the cluster membership of these objects
does not involve the application of the clustering algorithm but can be handled by
simply storing the information which clusters have been merged.

When inserting an objeptinto the databad®, we can distinguish the following
cases:
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* (1) (Noise)
UpdSeed, s is empty, i.e. there are no “new” core objects after insertigm of
Then,p is a noise object and nothing else is changed.

* (2)(Creation)

UpdSeed, s contains only core objects which did not belong to a cluster before

the insertion op, i.e. they were noise objects or equagbtand a new cluster
containing these noise objects as welp&s created.

* (3) (Absorption)

UpdSeed, s contains core objects which were members of exactly one cluster

C before the insertion. The objgztind possibly some noise objects are ab-
sorbed into clusteC.

* (4) (Merge)

UpdSeed, s contains core objects which were members of several clusters be-

fore the insertion. All these clusters, the objeahd possibly some noise ob-
jects are merged into one cluster.

Figure 62 illustrates the most simple forms of the different cases when inserting

an objectp into a sample database af goints using parameteiPred(o, 0’) iff
|o - 0’| < € (€ as depicted) and MinWeigh{N) iff | N | = 3.

In case one, there are no other objects in the e-neighborhood of the inserted ob-
ject p. Therefore, p will be assigned to noise and nothing else is changed. In case
two, objects p and ¢ are the objects with a changed core object property. But, since
no other core objects are contained in their neighborhood the set UpdSeeg,g con-
tains only these two objects. The points p and ¢ are “new” core objects and there-
fore a new cluster is created, containmgndc as well as, b, ande which were
noise objects before the insertion, but which are now density-reachablp &om
fromc. In case three, after the insertiorppbbjectd changed its core object prop-
erty and objecé is a core object contained in the neighborhood dhe objecp
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Figure 62: The different cases of the insertion algorithm

isalso an object with changed core object property. Hence, the set UpdSeed, , con-
sists of the objectsp, aand d. In this case, the object p and the previous noise object
b are absorbed into the existing cluster. In case four, the inserted point p is a core
object. Points b and ¢ have a changed core object property, and points a and d are
core objectslocated in their neighborhood. These two objects are now density-con-
nected via point p and consequently the two former clusters are merged. Also the
point e isincluded into this new cluster. The point e was a noise object before the
insertion, but is now directly density-reachable from p.

Figure 63 presents a more complicated example of merging clusters when in-
serting an object p. In this example the value for € is as depicted and the threshold
value for the minimum weight (using cardinality) is equal to 6. Then, the inserted
point p is not a core object, but 04, 0,, 03 and 0,4 are core objects after the update.
The previous clustering can be adapted by analyzing only the e-neighborhood of
these objects: cluster A is merged with cluster B and C because 0, and 04 as well
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as 0, and oz are mutual directly density-reachable implying the merge of B and C.

The changing of cluster membership for objectsin case of merging clusters can be
donevery efficiently by simply storing the information about the clustersthat have

been merged. Note that, using cardinality, this kind of “transitive” merging can
only occur if the threshold value is larger than 5, because othgrwiseld be a
core object and then all objectdNg(p) would already be density-reachable from

© objectsfrom cluster A
A objects from cluster B

@ objectsfrom cluster C

Figure 63: “Transitive” merging of clusters A, B, C by the insertion algorithm

6.4 Deletions

As opposed to an insertion, when deleting an olpjedénsity-connections may be
removed, but no new connections are established. The difficult case for deletion
occurs when the clusté€ of p is no longer density-connected via (previous) core
objects inNypreq(P) after deletingp. In this case, we do not know in general how
many objects we have to check before it can be determined witetiees to be

split or not. In most cases, however, this set of objects is very small because the
split of a cluster is not very frequent and in general a non-split situation will be de-
tected in a small neighborhood of the deleted olgedn actual split is obviously

the most expensive operation of incremental clustering.
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When deleting an object p from the database D, we can distinguish the following
Cases:

* (1) (Removal)
UpdSeedpg is empty, i.e. there are no core objects in the neighborhood of ob-
jects that may have lost their core object property after the deletoibén
p is deleted fronD and eventually other objectsMyp,eq(P) change from a
former clustecC to noise. If this happens, the clustis completely removed
because the@ cannot have core objects outsideNgf, eq(P)-

* (2) (simple Reduction)
All objects in UpdSeedpg are directly density-reachable from each other.
Thenp s deleted fronD and some objects Mypreq(p) May become noise.

* (3) (potential Split)
The objects ifJpdSeedp arenot directly density-reachable from each other.
These objects belonged to exactly one cluSteefore the deletion @f. Now
we have to check whether or not these objects are density-connected by other
objects in the former clust&. Depending on the existence of such density-
connections, we can distinguists@lit and anon-split situation. Note that
these situations may occur simultaneously.

Figure 64 illustrates the different cases when delgiifrgm a sample database
of 2d points using parameteidPred(o, 0') iff [0 - 0’| < € (¢ as depicted) and
MinWeigh{N) iff | N | = 3.

Caseoneisinverseto the examplefor acreation of anew cluster (seefigure 62).
The point p is deleted and as a consequence the point c looses its core object prop-
erty. There are no further core objects in the neighborhood of p and c. Therefore
the remaining points a and b will become noise. Analogously, the second case is
inverseto an absorption. When del eting p, also point d changesits core object prop-
erty. In this example, the points b and ¢ are assigned to noise because they are no
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Figure 64: The different cases of the deletion algorithm

longer density-connected to any core object of the cluster. Case three is the most
difficult situation. If p isdeleted, the pointsa, b, and c loose their core object prop-
erty and the points d, e, and f are core objects located in their neighborhood. That
means, that the set UpdSeedpq contains the three objects, d, e, and f. However,
these three objects are not directly density-connected. Therefore, we must try to
find a density-connection between them. In the example, we can easily see that
pointsd and e are still density-connected to each other, but f isnot density-connect-
ed to any of these two points. The cluster has to be split into two parts. One con-
taining the object f, the other containing the objectsd and e. Thisis done by a pro-
cedure similar to GDBSCAN (see section4.1). However, the main loop
corresponding to GDBSCAN has only to consider the three pointsd, e, and f, i.e. a
function corresponding to ExpandCluster constructs density-connected sets, start-
ing only from one of these objects.
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The implementation of both, the incremental insertion and the incremental de-
letion is discussed in greater detail in the next section.

6.5 Implementation

Although, we have distinguished different cases for insertions and deletions, the
implementation of all these cases can be roughly described by the following single
sequence of steps:

1. Detect objects with a changed core object property.

2. Collect the core objects in the NPred-neighborhood of those objects detected
instep 1.

3. (Try to) connect the core objects collected in step 2.

In step one and two simply the set UpdSeed, s resp. UpdSeedp is constructed.

Trying to connect the different core objects from UpdSeed is more or less simple
in case of aninsertion, and may fail in case of adeletionif acluster isactually split.

For an efficient implementation of incremental insertions and incremental dele-
tions, we have to keep the number of NPred-neighborhood queries needed for the
update of the clustering as small as possible.

In general, step one requires one NPred-neighborhood query for the inserted or
deleted object p plus an additional NPred-neighborhood query for each object q
contained in this neighborhood of p to determine which of those objects g have
changed their core object property. Then, step two requires additional NPred-
neighborhood queries for al those objects that actually changed their core object
property to collect the relevant core objects for the set UpdSeed. However, when
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using incrementally evaluable MinWeight predicates which are most frequently
used for clustering, the sets UpdSeed, ,s and UpdSeedp can be computed very fast.

Incrementally evaluable MinWeight predicates (cf. definition 3) compare the
weight of aset of objectsN to athreshold, i.e. MinWeight(N) iff weight(N) = T. Fur-
thermore, the weight of the set N can be evaluated incrementaly, i.e

weight(N) = z weight({o}).
oON

If using an incrementally evaluable MinWeight predicate, we store for each ob-
ject in the database the weight of its NPred-neighborhood and the number of ob-
jects contained in this neighborhood, when initially clustering the database. Then,
we only have to perform a single NPred-neighborhood query for the object p to be
inserted or deleted to detect all objects g’ with achanged core object property. Such
objects can be determined by simply analyzing the new weights for the objectsin
the neighborhood of p, because an object q O Nypreqg(P) has a changed core object

property if

- incaseof inserting p:

weightyored(Nnpred(d)) < T and weightyored(Nipred(d)) + weight{p}) =2 T
- incase of deleting p:

weightyored(Nnpred(d)) = T and weightyored(Nnpred(@) — weight{p}) < T.

Inthe second step, we haveto determineall core objects o O Nypyeg(q’) for those
objects q’ satisfying the above condition (if there are any). Since after step one the
NPredneighborhood of p isstill in main memory, we check this set for neighbors
of q' first and perform an additional NPredneighborhood query only if we know
that there are more objects in the neighborhood of g’ than already contained in
Nnpred(P)- After step two, we have to update the stored sum of weights and the
stored number of objects for the neighborhood of the retrieved objects.
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The above strategy isamajor performance improvement for incrementally eval-
uable MinWeight predicates because objects with a changed core object property
after an update (different from the inserted or deleted object p) are not very fre-
guent (see section 6.6). Since thisfact can aready be detected in the NPred-neigh-
borhood of p, alot of NPred-neighborhood queries can be saved in step one and
two.

Step three, i.e. trying to connect the core objectsin the set UpdSeed, requires a
different number of NPred-neighborhood queries depending on the situation. In
fact, when inserting an object p into the database, no additional NPred-neighbor-
hood query isnecessary. All new density-connections can be detected in the neigh-
borhoods which have aready been retrieved in step one and two.

To achieve that no further accesses to objects of the database are necessary to
change cluster membership - even in the case of merging clusters - we introduce
equivalence classes of cluster-identifiers. Each equivalence class of cluster-identi-
fiersrepresentsthe identifiersfor asingle density-connected set. A merge situation
isthen characterized by a set UpdSeed, .5 containing objects having cluster-identi-
fiers from different equivalence classes. In the beginning, each equivalence class
contains exactly one cluster-identifier corresponding to the density-connected sets
intheinitial clustering. Then, if amerge situation occurs, i.e. if wefind core objects
with cluster-identifiersfrom different equival ence classes, for example Aand B, we
simply unite these classes, and thus get a new equivalence class C replacing the
classes A and B.

Unlike an incremental insertion, which is avery efficient operation in any case,
an incremental deletion requires additional NPred-neighborhood queries to be per-
formed in step three if a “potential split” occurs. If a “potential split” occurs, then
the clustering procedure must also consider objects outside thigpdSdedyy.
However, it can stop in case of a non-split situation as soon as the objects from the
setUpdSeedp are density-connected to each other.
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The procedure to detect density-connections between the objects in UpdSeedpy
is implemented by a function which is similar to ExpandCluster in the algorithm
GDBSCAN (see figure 32). To reduce the number of NPred-neighborhood queries
in case of a “potential split”, however, we perform a kind of “breadth first search”.
The main difference is that the candidates for further expansion of a current densi-
ty-connected set are explicitly managed in a queue. Furthermore, the expansion
starts in parallel from each object containetpuSeedp. This is more efficient

than for instance a depth-first search, due to the following reasons:

» In a non-split situation, which is more frequent than a split, we stop as soon
as all members dfpdSeedp are found to be density-connected to each oth-
er. The breadth-first search implies that the shortest density-connections, i.e.
consisting of a minimum number of objects and thus requiring the minimum
number of region queries, are detected first.

» A split situation is in general the more expensive case because the parts of the
cluster to be split actually have to be discovered. The algorithm stops when all
but the last part have been visited. Usually, a cluster is split only into two parts
and one of them is relatively small. Using breadth-first search, we can save
manyNPred-neighborhood queries on the average because then we only have
to visit the smaller part of the cluster and a small percentage of the larger one.

The procedure for handling a potential split uses a new cluster-identifier for each
part that is expanded. Because we do not want to undo this labeling of objects in
case of a non-split situation, we simply insert the new cluster-identifier(s) into the
existing equivalence class representing the cluster under consideration. On the oth-
er hand, if a part is actually separated from the current cluster, a new equivalence
class is created, containing only the new cluster-identifier.

Obviously, from time to time, we have to reorganize the cluster-identifiers for
the whole database. This must be done after the occurrence of many split and
merge situations in order to keep the computational overhead for managing the
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equivalence classes of cluster-identifiers small. Such a reorganization, however,
requires only asingle scan over the database, and the split aswell as the merge sit-
uations are the most rare cases when inserting or deleting an object more or less
randomly.

6.6 Performance Evaluation

In this section, we evaluate the efficiency of Incremental GDBSCAN versus
GDBSCAN. Aswewill see, surprisingly few NPred-neighborhood queries haveto
be performed on the average if we can use all the above features of our implemen-
tation, especially for incrementally evaluable MinWeight predicates. For this pur-
pose, the specialization to DBSCAN, i.e. a distance based neighborhood and car-
dinality for the weight of sets of objects, is used. This yields an incrementally
evaluable MinWeight predicate.

We present an experimental evaluation using a 2d spatial database as well as a
WWW access log database. For this purpose, we implemented both algorithmsin
C++ based on implementations of the R* -tree (for the 2D spatial database) and the
M-tree (for the WWW log database) respectively. Furthermore, an analytical com-
parison of both agorithms is presented and the speed-up factors are derived for
typical parameter vaues depending on the database size and the number of up-
dates.

For the first set of experiments, we used a synthetic database of 1,000,000 2d
pointswith k=40 clusters of similar sizes. 21.7% of all pointsare noise, uniformly
distributed outside of the clusters, and all other points are uniformly distributed in-
side the clusters with asignificantly higher density than the noise. In this database,
the goal of clustering is to discover groups of neighboring objects. A typical rea
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world application for this type of database is clustering earthquake epicenters
stored in an earthquake catal og (cf. section 6.1).

In thistype of application, there are only insertions. The Euclidean distance was
used as distance function and an R*-tree as an index structure. Theradiuse for the
neighborhood of objects was set to 4.48 and the threshold value MinPts for the
minimum weight was set to 30. Note that the MinPts value had to be rather large
to avoid 'single link effects’ (see the discussion in section 3.2.2.2). This is due to
the high percentage of noise. We performed experiments on several other synthetic
2d databases with varying from 100,000 to 1,000,000yarying from 7 to 40 and
with the noise percentage varying from 10% up to 20%. Since we always obtained
similar results, we restrict the discussion to the above database.

For the second set of experiments, we used a WWW access log database of the
Institute for Computer Science at the University of Munich. This database contains
1,400,000 entries. All log entries with identical IP address and user-id within a time
gap of one hour were grouped intsession andredundant entries, i.e. entries with
file name suffixes such as “gif”, “jpeg”, and “jpg” were removed. This preprocess-
ing yielded about 69,000 sessions.

Entries are deleted from the WWW access log database after six months. As-
suming a constant daily number of WWW accesses, there are 50% of insertions and
50% of deletions in this type of application. Note that this is the largest value for
incremental deletions to be expected in real-world applications, because a higher
value would mean that the database size converges to zero in the course of time.

We used the following distance function for pairs of URL kstands, from the
WWW sessions:

_ S0 8, =[5y n sy

dist(s;, s,) 5,05,
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Thedomain of dististheinterval [0. . 1], dist(s,s) = 0 and dist is symmetric and

fulfills the triangle inequality?, i.e. dist isametric function. Therefore, we can use
an M-tree to index the database and to support the performance of e-range queries.
In our application, the radius € for the neighborhood of objects was set to 0.4 and
the threshold value MinPts for the minimum weight was set to 2. Thus, the cluster-
ing corresponds to a “single link leveEf(section 3.2.2.1).

The functiondist is very simple because it does not take into account any kind
of ordering in the sequence of Web pages accessed by a user in a single session.
For practical applications, it may be worthwhile to develop other distance func-
tions which may for instance use the hierarchy of the directories to define the de-
gree of similarity between two URL lists.

In the following, we compare the performance of IncrementalDBSCAN versus
DBSCAN. Typically, the number of page accesses is used as a cost measure for da-
tabase algorithms because the 1/0 time heavily dominates CPU time. In both algo-
rithms, region queries are the only operations requiring page accesses. Since the

lab b —|an b\+\de—\bn g ladd-land

1. To prove the condition , wefirst show that it

a0 d bOd = JaOd
e ladbl=lanbl |bOc-lbnd _ |[a0c/—la  |adc —|c|
holdsif b= a0 cfor .l N - .
oldsif b= al cforanyaandc b b d G G
_2ab0d-la+|d_2@add-(aldc+lanc)_|alc-lan c\z\aDc\—\an C‘.Wenow

ladd a0 c| a0 | ladc
show that for any other set b the left-hand side of the inequality will only be larger. For this pur-

lan b\+ _lbn c\>\aDc\—\an d
a0 b| lbOd ™~ a0 ¢

will be decreased for any set b which is not equal toa O ¢: Assume aand c are

pose, we rewrite the inequality to 1 — and show that the sum

lan b\+ lbnc
[a0bl  |bOc]

given. Then defineb’ = a O c. Now any set b can be constructed by inserting into b’ all objects

from b which are not already contained in b’ (yielding anew set b™"), and then subtracting all
objects from b which do not belong to b (yielding the set b). Inthefirst step, |a n b’ and

|b’ n | donot change; a0 b'| and |b’ O ¢| can only become larger. Consequently, the sum will
decrease. The objects subtracted from b” in the second step must now be contained either in a or
inc. Butthenagain, |a n b”| and |[b” n ¢| canonly become smadler; a0 b"| and |b” O ¢| donot

change because b” 0 a 0 ¢ holds after the insertions. Therefore, the sum will further decrease. O
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number of page accesses of asingleregion query isthe samefor DBSCAN and for
Incremental DBSCAN, we only have to compare the number of region queries.
Thus, we use the number of region queries as the cost measure for our comparison.
Note that we are not interested in the absolute performance of the two algorithms
but only in their relative performance, i.e. in the speed-up factor as defined below.
To validate this approach, we performed a set of experiments on our test databases
and found that the experimental speed-up factor alwayswasslightly larger than the
analytically derived speed-up factor (experimental value about 1.6 times the ex-
pected valuein all experiments).

DBSCAN performs exactly one region query for each of the n objects of the da-
tabase (see algorithm in figure 32), i.e. the cost of DBSCAN for clustering n ob-
jects denoted by Costpggean(n) is

Costpggean( = n

The number of region queries performed by Incremental DBSCAN depends on
the application and, therefore, it must be determined experimentally. In genera, a
deletion affects more objects than an insertion. Thus, weintroduce two parameters
lins 8Nd r 4 denoting the average number of region queries for an incremental in-
sertion resp. deletion. Let fj,, and fyy denote the percentage of insertions resp. de-
letions in the number of all incremental updates. Then, the cost of the incremental
version of DBSCAN for performing m incremental updates denoted by
Cost)nerementaiDBscan (M) is asfollows:

COStIncrementalDBSCAN(m) = mx (fins *Tins + fdel x rdel)

Table 4 lists the parameters of our performance evaluation and the values ob-
tained for the 2d spatial database aswell as for the WWW-log database. To deter-
mine the average values (rj,sand I'4e). the whole databases were incrementally in-
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serted and deleted, although fyy (percentage of deletions) isequal to zero for the 2-
dimensional spatial database.

Value for Vauefor
Parameter Meaning 2d spatial | WWW-log
database database

n number of database objects 1,000,000 69,000
m number of (incremental) updates varying varying
lins average number of region queries for an 158 11
incremental insertion
Ide average number of region queriesfor an 6.9 6.6
incremental deletion
fael relative frequency of deletionsin the number 0 0.5
of all updates
fins relative frequency of insertions in the number 10 0.5

of al updates (1- fyg)

Table 4: Parameter s of the performance evaluation

Now, we can calculate the speed-up factor of Incremental DBSCAN versus
DBSCAN. We define the speed-up factor as the ratio of the cost of DBSCAN (ap-
plied to the database after all insertions and deletions) and the cost of m calls of In-
cremental DBSCAN (once for each of the insertions resp. deletions), i.e.:

Costpgscan(n * fing X m—fgg x m)

SpeedupFactor =
COS‘ ncremental DBSCAN(m)

_ (n+ fins>< m_fdel x m)

m x (fins x rins+ fdel x rdel)

Figure 65 and figure 66 depict the speed-up factors depending on the size n of
the database for several values of updates m. For relatively small numbers of daily
updates, e.g. m= 1,000 and n = 1,000,000, we obtain speed-up factors of 633 for
the 2d spatial database and 260 for the WWW-log database. Even for rather large
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numbers of daily updates, e.g. m = 25,000 and n = 1,000,000, IncrementalDB-
SCAN vyields speed-up factors of 26 for the 2d spatial database and 10 for the
WWW-log database.

100 -
90
80 number of
5 70 updates (m)
2 - 1,000
& 60 - 5,000
S 50 1 10,000
e
& 307 —— 100,000
20 ~
10 A -]
R e e —
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Figure 65: Speed-up factorsfor 2d spatial databases
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Figure 66: Speed-up factorsfor the Web-log database
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When setting the speed-up factor to 1.0, we obtain the number of updates (de-
noted by MaxUpdates) up to which the multiple application of theincremental ver-
sion of DBSCAN for each update is more efficient than the single application of
DBSCAN to the whole updated database.

Figure 67 depictsthe values of MaxUpdates depending on n for fyy valuesup to
0.5 which is the maximum value to be expected in most applications. This figure
was derived by setting ri,g to 1.34 and r g to 6.75. These values are computed as
the average over al test databases - 2d and Web-log. Note that - in contrast to the
significant differences of other characteristics of the two applications - the differ-
ences of thevaluesfor rj,sand r 4y arerather small, indicating that the average val-
ues are arealistic choice for many applications. The MaxUpdates val ues obtained
are much larger than the actual numbers of daily updates in most real databases.
For databases without deletions (that is, fgy = 0), MaxUpdates is approximately
3*n, i.e. the cost for 3* n updates on a database of n objects using Incremen-
talDBSCAN isthe same as the cost of DBSCAN on the updated database contain-
ing4 * nobjects. Evenintheworst case of fyy = 0.5, MaxUpdates s approximately

0.25* n. These results clearly emphasize the relevance of incremental clustering.
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Figure 67: MaxUpdates for different relative frequencies of deletions
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6.7 Summary

Data warehouses provide a lot of opportunities for performing data mining tasks
such as classification and clustering. Typically, updates are collected and applied
to the data warehouse periodically in abatch mode, e.g. during the night. Then, al
patterns derived from the warehouse by some data mining a gorithm haveto be up-
dated as well.

In this chapter, we introduced the first incremental clustering algorithm - based
on GDBSCAN - for mining in adatawarehousing environment. Dueto the density-
based nature of GDBSCAN, the insertion or deletion of an object affects the cur-
rent clustering only in a small neighborhood of this object. Thus, efficient ago-
rithms have been presented for incremental insertions and deletionsto a clustering,
yielding the same result as the application of GDBSCAN to the whole updated da-
tabase.

A performance evaluation of Incremental DBSCAN versus DBSCAN using a
spatial database aswell asa WWW-log database was presented, demonstrating the
efficiency of the proposed algorithm (at least for incrementally evaluable Min-
Weight predicates). For relatively small numbers of daily updates, e.g. 1,000 up-
dates in a database of 1,000,000 objects, Incremental DBSCAN yields speed-up
factors of several hundred. Even for rather large numbers of daily updates, e.g.
25,000 updates in a database of 1,000,000 objects, we obtain speed-up factors of
more than 10.



Chapter 7

Hierarchical GDBSCAN

Inthischapter, wewill introduce the notion of ahierarchical density-based decom-

position or hierarchical clustering. A hierarchical clustering, formally described as

anested density-based decomposition, is simply a hierarchy of “flat” density-based
decompositions (section 7.1). We present two different versions of a modified
GDBSCAN algorithm to compute nested density-based decompositions. The first
is a general version to construct all clustering levels of a nested density-based de-
composition with respect to a given sequence of parameters (section 7.2). The sec-
ond algorithm is a more specialized version for distance-based neighborhood pred-
icates (section 7.1). The advantage of the second algorithm is that we do not
produce clustering levels explicitly. We just createoeder of the database with
respect to a maximum distangeand store very few additional information. This
cluster-order can be used for the construction of arbitrary clustering levels with re-
spect to distance values less tham as a “stand-alone” tool for analyzing the clus-
tering structure of data sets having an arbitrary dimension.
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7.1 Nested Density-Based Decompositions

7.1.1 Motivation

So far, we have only considered “flat” density-based decompositions or cluster-
ings. That means that we have partitioned the database into a set of density-con-
nected sets and a set containing noise objects. There are, however, data mining ap-
plications where hierarchical clustering information about the data is more useful
than a simple partitioning. This is especially the case if an application has one of
the following properties:

» The clustering structure of a dataset is best represented by a hierarchical struc-
ture, for instance, a dendrogram as produced by hierarchical clustering algo-
rithms (f. chapter 2, section 2.2.1). That means, hierarchical layers of
clusters are a “natural” representation of the data set, and therefore are an im-
portant property of the data which we may want to detect by a data mining al-
gorithm. Several clustering levels may be considered as being correct. Then,
a clustering level can be selected for further investigation depending on the
granularity of the analysis.

» Hierarchical clustering information about the data allows us to select the
“best” clustering level after the clustering process. That means that a hierar-
chical clustering procedure is less sensitive to a correct parameter determina-
tion. Different layers of clusterings correspond to different parameter settings,
and thus the “correct” or “best” clustering parameters can be determined after
the clustering process. The additional information which is available for a hi-
erarchical clustering structure allows us also to use other criteria for selecting
the appropriate clustering than the density parameters, for instance, the num-
ber and the sizes of the clusters.
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It may not be appropriate to use a single parameter setting for the whole data
set. To describe the clusters present in different regions of the data space cor-
rectly, it may be necessary to select clusters from different levels in the hier-
archy. That means, we can choose different parameters for different regions
of the data space.

Figure 68 and figure 69 illustrate two different data sets where hierarchical clus-
tering information is more instructive than a simple flat density-based decomposi-

tion.

Figure 68 gives an example of a two-dimensional data set with an inherently ho-
mogeneous hierarchical clustering structure. One can easily see that there are rea-
sonable clusters present at distinct levels which are defined by different density-
parameters. Clusters at different density levels are exemplified on the right side of

the figure.

level 2

Ievel

Figure 68: Example of a hierarchical clustering structure
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Figure 69 gives an example where different density parameters can be used for
different regions of the data space to describe the clustering structure. In this ex-
ample, it is not possible to detect the clusters A, B, C;, C,, and C3 simultaneously
using the same density parameters. A flat density-based decomposition could only
consist of the clusters A, B, and C, or C,, C,, and C3. In the second case, the objects

from A and B would be noise.

Figure 69: Example of clusterswith respect to different density parameters

These properties of the above examples could be easily detected in an appropri-
ate hierarchical representation of the clustering structures, i.e. a hierarchical den-
sity-based decomposition of the database. A hierarchical density-based decompo-
sition or hierarchical clustering can be described as a nested density-based
decomposition which isformally introduced in the next section.

7.1.2 Definitionsand Properties

A nested density-based decomposition is a hierarchyflzt™ density-based de-
compositions as defined in chapter 3, definition 8. However, to construct a hierar-
chy of density-based decompositions, further assumptions with respect to the den-



7.1 Nested Density-Based Decompositions 161

sity parameters are required, i.e. we need a sequence of density parameters
specifying density-connected sets of increasing density.

For this purpose, we need alist of neighborhood predicates [NPredy, ..., NPred,]
which must be ordered in the sense that for al p O D the condition

Nypr ed. 1(p) O NNPredi(p) holds. Furthermore, we have to assume a monoto-

nous MinWeight predicate, i.e. if Ny O N, and MinWeight(N;) then aso Min-
Weight(N,) (cf. definition 3, chapter 3). Then, if we combine the list of neighbor-

hood predicates with a monotonous MinWeight predicate, we obtain a sequence of
density parameters[(MinWeight, NPred,), ..., (MinWeight, NPred,,)] specifyingin-
creasing density values for density-connected sets. For these density parameters,

we can prove that density-connected sets with respect to a “higher” density are
completely contained in density-connected sets with respect to a “lower” density.
This is the content of the following lemma.

Lemma9: LetD be a database of objects,MihWeight be a monotonous predicate
for the minimum weight of sets of objects, andNEted; andNPred, be two neigh-
borhood predicates such that forgalll D: NNPredz(p) ad NNPredl(p) .

If DCS, is a density-connected set with respediffoed,; andMinWeight, DCS, is

a density-connected set with respediRyed, andMinWeight, andp is a core ob-
jectinDCS; andDCS,. ThenDCS, I DCS;

Proof: Leto 0 DCS,. Then, by lemma 5 is density-reachable fropwith respect
to NPred, andMinWeight in D. By definition, there is a chain of objegts ..., pp,
pP1=p, P,=0 such that for ali=1, ...,n—1: p;;1 is directly density-reachable from

with respect to\Pred, andMinWeight in D. That means that for a1, ...,n-1:

P+ U NNPredz(pi) andMinWeight(NNPredz(pi)) holds. Since, by assumption,

NNPredz(q) d NNPredl(q) holds for allq O D, and theMinWeight predicate is
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monotonous, it followsthat p; , 4 U Nyp, edl(pi) and MinWeight(Nyp, edl(pi))
isalso setisfied for al i=1, ..., n-1. That means, o is aso density-reachable from p
with respect to NPred; and MinWeight in D. But then, again by lemmaJ5, it holds
that o 0 DCS;.

Figure 70 illustrates the content of lemma9 using our DBSCAN specialization
and two-dimensional point objects. The neighborhood predicates are defined by
using two different distances €, and €, as depicted, and the threshold value MinPts

is set to 3. The e-neighborhoods setisfy the condition that for al p O D:
Naz(p) ad Nsl(p) , and the MinWeight predicate, i.e. comparing the cardinality of
aneighborhood to a threshold, is obviously monotonous. In this example, we can

easily recognize the set inclusion of density-connected sets satisfying the precon-
ditionsof lemma 9, i.e. C; and C, are density-connected sets with respect to €, and

C is a density-connected set with respect to €; completely containing the sets Cq
and C2.

MinPts=3

Figure 70: Illustration of lemma 9

We can now define a nested density-based decomposition recursively as a tree
consisting of “simple” density-based decompositions. The previous lemma guar-
antees that this tree actually represents the intelméeatchical partitioning of a
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data set which isinduced by the set-inclusion of density-connected sets satisfying
the preconditions of lemma 9.

Definition 15: (nested density-based decomposition)
Let D be adatabase of objects, let MinWeight be a monotonous predicate for the
minimum weight of sets of objects, and let [NPredy, ..., NPred,], n= 1, bease-
guence of neighborhood predicates such that for all p 0 D and for all
1 S | < n_l NNPI’edi +1(p) I:l NNPredl(p) .
A nested density-based decomposition of a database D with respect to
NPredy, ..., NPred,, and MinWeight denoted as

NDBD(D, MinWeight, [NPred, ..., NPred,]])

isarooted tree defined by the following conditions:
The empty treeis defined to be a nested density-based decomposition.
NDBD(D, MinWeight, [NPred;, ..., NPred,]) is equal to the empty tree if
[NPredy, ..., NPred,] is the empty sequence. Otherwise, the root of thetreeisa
density-based decomposition DBD(D, MinWeight, NPred,) ={S,, . . ., §; N} of
D with respect to NPred, and MinWeight, and the subtrees of this root are the
nested density-based decompositions

NDBD(S;, MinWeight, [NPred,, ..., NPred,]),

NDBD(S,, MinWeight, [NPred,, ..., NPred,]).

Figure 71 illustrates definition 15, i.e. the tree structure of a nested density-
based decomposition.
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NDBD(D, MinWeight, [NPred, ..., NPred,]):
DBD(D, MinWeight, NPred;)
={S, ... SN}

DBD(S;, MinWeight, NPred,) DBD(S,, MinWeight, NPred,)
={Su1, - - Swes N} ={Sa - Sae i Nt

oo

Figure 71: Structure of a nested density-based decomposition

If NDBD(D, MinWeight, [NPred,, ..., NPred,]) is a nested density-based de-

composition of D, then n is called the height of the decompositiontree. A level i in
a nested density-connected set corresponds to a density-based decomposition of
the database D with respect to the specific parameters NPred; and MinWeight used

at height i of the tree. Therefore, we define a clustering-level of a nested density-
based decomposition asthe set of al density-connected setsin the tree with respect
to the same parameters used at level i; the noise of a clustering-level is defined to
be the union of all noise sets N from the root down to the respective leve i.

Definition 16: (clustering-level of a nested density-based decomposition)

Let NC=NDBD(D, MinWeight, [NPredy, ..., NPred,]) be anested density-based
decomposition of D, let Ny, ..., Ny be sets of noise contained in the density-based

decompositions from the root down to the level i-1.
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Furthermore, let DBD(S!, MinWeight, NPred)={S", . . ., Stn;; N4, ...,
DBD(Y, MinWeight, NPredi)={S}, . . ., Sji N'} be the nodes at level i of the
tree NC. Then, the clustering-level i of NC, is defined as:

clustering-level(NC, i) = {S,, ...,S¢; N}

such that
{S . S¢={S" ... Sy} O .. O{Sy ..., Iy}, and
N=N;O..0ON,ONDO...ON.

Lemma 10: Let NC=NDBD(D, MinWeight, [NPred, ..., NPred,]) be anested den-
sity-based decomposition of D. Then, a clustering-level clustering-level(NC, i) =
{S1, ... S N} of NCis a (“simple”) density-based decomposition of the database
with respect tdNPred; andMinWeight.

Proof (sketch): To prove the lemma, we show that the conditions 1) to 5) of
definition 8 hold for the clustering level.

1) clustering-level(NC, i) = {S;, ..., S N}, k = 0: by definition.
2)S,0...0S0N=D: Obviously,S; 0 ...0 S ONDD. Leto 0 D. Object

o is either a core object at leviel.e.o is a core object with respectred; and
MinWeight or o is not a core object at leviellf o is core object at levéltheno is

also a core object at all levgls i becauseNp oy 1(o) ONyppreg (0)  and the
|+ I

predicateMinWeight is monotonous. Then, there must be a path in the tree of the
nested density-based decomposit® from the root down to levelsuch thab

is always contained in one of the density-connected sets of the density-based de-
compositions associated with a node in the tree. But thismgontained in one of

the sets,, ...,S,. In the other case, ifis not a core object at leviekthere is a small-

est levelj < i such thab is not a core object at levillf j < i, theno is contained

in one of the noise sets of leyell, and therefore is also contained in the st

If j =i theno is either contained in one of the density-connectedSsets i <k,
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or ois contained in one of the noise sets of level i depending on whether o is den-
sity-reachable or not. Thus, inal caseso 0 S; O . .. O § O N, which means that
DOS O...0SON.

3) For all i < k: § isadensity-connected set with respect to NPred; and MinWeight
in D by definition.

4) If there exists Ssuch that Sis a density-connected set in D with respect

to NPred; and MinWeight then there also existsani < kand S= S;: Let She aden-
sity-connected set in D with respect to NPred; and MinWeight. Let o O Sbe acore
object in S. Then, as aready shown for condition 2), o is also a core object at al
levelsj < i and thus o must be contained in one of the sets §, 1 < i < k. However,
then by lemma5 it followsthat S= S.

5 N=D\ (S, O...08): by condition 2) and the obvious fact that noise objects
arenot density-reachable,i.e. Nn (5 0...08)=0.0

For the reasonsindicated in section 7.1.1, we may be interested in several clus-
tering levels of a nested density-based decomposition of a database D. In general,
however, clustering levels are meaningful only if we have acertain type of aneigh-
borhood predicate which can be specialized such that different specializationsrep-
resent the different clustering levels.

The most important type of neighborhood for this purpose is a distance-based
neighborhood, i.e. NPred(o, 0') iff | 0 - 0’| < €, where different values of €, for in-
stance €1 = ... 2 €, correspond to different clustering levels. Another type of a
neighborhood predicate which may be adapted for the specification of clustering
levelsis a neighborhood predicate combining a spatial neighborhood with a non-
spatial selection condition S, i.e. NPredo, o) iff spatiakneighborgo, 0’) and S(0)
and S(0’). Then, different clustering levels can be induced by different selection
conditions S, ..., §, becoming more and more restrictive, eg. S;=A(N),

SEAUNT AYN), ..., S7AN) O... DALN).
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7.2 Algorithm H-GDBSCAN

In the following section, we will see that a nested density-based decomposition,

and hence al clustering levels, can be computed in asimilar way and, most impor-

tant, in nearly the same time as the computation of a “simple” or “flat” density-
based decomposition. This is due to the fact that “smaller” density-connected sets
which are contained in a larger density-connectedtéenma 9) can be comput-

ed without much extra cost while computing the larger density-connected set.

The most expensive part of the construction of a density-connected set is the re-
trieval of theNPred-neighborhood for all objects from the databases, especially
with respect to the number of I/O operations (see chapter 4, section 4.3). However,
only a small amount of additional computations is needed to determine a neighbor-

hood NNPredz(p) for an objecp if NNPredz(p) d NNPredl(p) and the neigh-
borhood NNPredl(p) is already available. This is true because we just have to scan
the “larger” neighborhood\lNPredl(p) to find all objects located in the neighbor-

hood NNPredz(p), instead of consulting the database again.

To make use of this fact, we have to modify our GDBSCAN algorithm in such
a way that only a database access for the “largest” neighborhood is necessary when
constructing several clustering levels simultaneously. That means, we only want to
perform neighborhood queries for tN€red;-neighborhood from an ordered se-

quence [NPredy, ...,NPred,] of neighborhood predicates.

We present two different versions of a modified GDBSCAN algorithm. The first
is a general version to construct all clustering levels of a nested density-based de-
composition with respect tdPredy, ..., NPred,, andMinWeight. The second is a
more specialized version only for distance-based neighborhood predicates. The ad-
vantage of the second algorithm is that we do not produce all clustering levels for
a set of given distances, ...,€, explicitly. We just create aorder of the database
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enhanced with additional information using the largest distance ;. Then, we can

easily extract from this order al clustering levels corresponding to arbitrary dis-

tances €, assuming only that € < €.

7.2.1 Multiple Clustering Levels

To detect multiple clustering levelsin a single pass over the database, it is pos-

sible to use an algorithm which is very similar to GDBSCAN. However, our ago-

rithm must process several “parameters” at the same time which forces us to obey

a specific order of objects in the function which expands clusters. In the following,

we present the algorithm to construct hierarchical layers of clusters in more detail.

The main loop H-GDBSCAN is nearly the same as GDBSC#&NiQure 31).
The difference consists only in passing the additional paramitee,, ...

NPred,, to the functiorMultipleExpandCluster. Otherwise, it works as if using sim-

ple GDBSCAN for the largestPred-neighborhood\Pred; (see figure 72).

H-GDBSCAN (SetOfObjects, [NPredy, ..., NPred,], MinWeight)
/I SetOfObjects is UNCLASSIFIED; Object.Processed = FALSE
Clusterld; ; := nextld(NOISE);

FOR i FROM 1 TO SetOfObjects.size DO
Object := SetOfObjects.get(i);
IF NOT Object.Processed THEN
IF MultipleExpandCluster(SetOfObjects,Object,Clusterld, 4,
[NPredy, ..., NPred,],MinWeight)
THEN Clusterld| ; := nextld(Clusterld, 1)
END IF;
END IF;
END FOR,;
END; // H-GDBSCAN

Figure 72: Algorithm H-GDBSCAN
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Also the structure of the function MultipleExpandCluster (see figure 73) does
not differ much from the function ExpandCluster for non-hierarchical GDBSCAN
(cf. figure 32, chapter 4). Only the additional parameters NPredy, ..., NPred, are
passed to the class MultipleSeeds instead of passing a single neighborhood predi-
cate to the more simple class Seeds.

MultipleExpandCluster(SetOfObjects, Object,

Clid, [NPredy, ..., NPred,], MinWeight):Boolean;
neighbors := SetOfObjects.neighborhood(Object,NPred,);
Object.Processed := TRUE;

IF MinWeight(neighbors) THEN // core object at level NPred,
MultipleSeeds.init(Clld, [NPred;, ..., NPred,], MinWeight);
MultipleSeeds.update(neighbors, Object);

WHILE NOT MultipleSeeds.empty() DO
currentObject := MultipleSeeds.next();
neighbors := SetOfObjects.neighborhood(currentObject, NPred,);
currentObject.Processed := TRUE;
IF MinWeight(neighbors) THEN
MultipleSeeds.update(neighbors, currentObject);
END IF; // MinWeight(neighbors)
END WHILE; // NOT MultipleSeeds.empty()
RETURN True;

ELSE // NOT a core object at level NPred; (and NPred,, ..., NPred,)
SetOfObjects.changeClld(Object, [NOISE, ..., NOISE]);

RETURN False;

END IF; // MinWeight(neighbors)

END; // MultipleExpandCluster

Figure 73: Function MultipleExpandCluster

The outer IF-condition in the function MultipleExpandCluster checks the core
object property for Object, passed from H-GDBSCAN. If Object is not a core ob-
ject at clustering-level 1 (defined with respect to the “largest” neighborhood pred-
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icate NPred,), then the object can @ so not be acore object at all the other clustering
levels given by NPred,, ..., NPred,, because the MinWeight predicate is assumed
to be monotonous. Then, the control is returned to the main loop H-GDBSCAN
which selects the next unprocessed object of the database. Otherwise, if Object is
acore object at clustering-level 1, then a density-connected set Sat level 1isex-
panded in the WHILE-loop of the function MultipleExpandCluster. At the same
time, all density-connected sets with respect to smaller neighborhood predicates
NPreds,, ..., NPred,, - which are completely contained in S(cf. lemma9) - are con-
structed as well. The control of this non-trivial task is completely deferred to the
class MultipleSeeds which has to analyze the neighborhood of a current object for
all neighborhood predicates NPredy, ..., NPred,, to determine the correct order in
which objects are investigated, and to assign correct cluster-ids for the objects at
al clustering-levels. The implementation of the class Seeds for GDBSCAN was
very simple, i.e. we could use for instance a stack or a queue. Now, the structure of
the class MultipleSeeds is more complicated. In the following, we will illustrate
this structure step by step.

We can think of MultipleSeeds asalist of lists, enhanced with additional infor-
mation. The structure of the multiple seeds-list isillustrated in figure 74.

ii outLevel

clustering-level: |-|1 L|2 Lln
lists: i i

current cluster-ld: Idq Ido Id,
neighborhood: NPred; NPreds NPredp,

minimum weight: MinWeight

Figure 74: Structure of MultipleSeeds
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Each list in MultipleSeeds corresponds to one of the neighborhood predicatesin
the parameter-list of H-GDBSCAN. Roughly speaking, an object o isinserted into
thelist L;if i isthelargest level such that oiscontained in the NPred;-neighborhood
of acurrentObject and currentObject has been a core object with respect to NPred;.
A pointer outLevel indicates the list, i.e. the clustering-level, from which the last
currentObject has been taken out by the operation Multiple Seeds.next(). Associat-
ed with each clustering-level is a current cluster-id for that clustering-level. The
cluster-ids of objects are assigned on the basis of these “cluster-level-ids”.

We adopt a hierarchical labeling scheme for cluster-ids of objects matching the
tree structure of a nested density-based decomposition. A cluster-id for aroobject
is now not a simple data type, but an array of cluster-ids storing one id for each
clustering-level, i.eo.clusterld = [Idy, ..., Id,]. If Integers are used for the single
ids, and we represent noise by the number 0, a complex cluster-id forambjagt
have for instance the following entries: [2, 1, 4, 0, 0]. The meaning is lteddngs
to cluster 2 at level 1, araalso belongs at level 2 to the cluster 1 within cluster 2
of level 1, and so oro(is a noise object at level 4 and level 5 in this example). In
general, all objects which belong to the same density-connected set at a certain
clustering-level share the same prefix of their cluster-ids, i.earfdo’ belong to
the same density-connected set at clustering-level i and o.clusterld=[Idy, ..., 1d],
and o’.clusterld=[Id’ 4, ..., Id’']] then it holdsthat Id=Id’ 4, ..., Id;=Id’;.

We will now look at the methods of the class MultipleSeeds in greater detail.
Themost simpleoneistheinitialization of anew instance when anew density-con-
nected set at the first clustering-level has to be expanded. A call of the method
MultipleSeeds.init(Clid, [NPredy, ..., NPred,], MinWeight) results in a multiple
seeds-list asillustrated in figure 75. All sub-lists are empty, and all but the current
cluster-id for thefirst clustering-level, i.e. L4, are set to NOISE; outLevelpointsto

thefirst list L.
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MultipleSeeds after init(Clid, [NPredq, ..., NPred], MinWeight):
outL evel

Ly Lo Ln

s
0 0O [

Clld NOISE NOISE
NPredl NPred2 NPredn

minimum weight: MinWeight
Figure 75: Method MultipleSeeds::init()

In the course of execution, objects are inserted into MultipleSeeds by the meth-
od MultipleSeeds.update resulting in a state of the multiple seeds-list in which
some of the sub-lists contain objects, and some sub-lists may be empty (see
figure 76, left, for an illustration). The intuitive meaning of such a state can be de-
scribed as follows. An object o which is contained in the list L; is a candidate for
further expansion of all current density-connected setsat all levelsj <i. Thereason
for thisis that o has been inserted into the list L; only because o has been in the
NPred;-neighborhood of another object p which has been a core object at level i,
(which was also the largest i such that p has been a core object). But then, it holds
that p has also been acore object at all levelsj <i and o was contained also in these

NPred;-neighborhoods, because if j < i then NNPredi(p) O Nnpr eolj(p) .

In such an arbitrary state of the MultipleSeeds, the next object from the set of
candidates for further expansion has to be selected. We already indicated that be-
cause of expanding density-connected sets for al given clustering-levels smulta-
neously, we always have to obey a specific order for the selection of candidates.
Obviously, we must always select the next elements from MultipleSeeds such that
density-connected sets with respect to smaller neighborhoods are finished first.
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More precisely: Assume, there are two current density-connected sets § and §
with respect to neighborhoods NPred; resp. NPred;, where j <i. Then, the cluster
§ must be completely contained in the cluster §. Therefore, in such an incomplete
state, we must select as candidates for further expansion of the cluster q those ob-
jectsfirst which are also candidates for the cluster § before considering other can-
didates for §. For an arbitrary number of clustering-levels this means that we must

select the next object from the set of candidates for the unfinished density-connect-

ed sets with respect to the smallest neighborhood. Consequently, we have to select

an object from that sub-list of MultipleSeeds having the largest or “deepest” clus-
tering-level which is not empty. This is performed by the methudtiple-
Seeds.next(), depicted in figure 76, which also deletes this object from the multi-
ple seeds-list.

ii outLevel
MultipleSeeds::next() : OBJECT

i := largest clustering-level
such that L is not empty;

Ly
| | | | |
Lo DT
[] ] [ outLevel :=i;
nextObject := Lt evel-choose();
Idy  ldy

delete(nextObject, Loy evel):

n RETURN nextObject;
NPredl NPred2 NPredn END // next()

minimum weight: MinWeight

Figure 76: Method MultipleSeeds::next()

The methodMultipleSeeds.update(neighbors, currentObject) has to accom-
plish three important tasks. First, the objects contained in a cueighbors set
must be correctly inserted into the sub-listd/aftipleSeeds. Second, a cluster-id
must be assigned to the objects, and third, the current cluster-level-ids of the class
MultipleSeeds must be correctly incremented. We will consider these tasks one af-
ter another. However, before we can understand the update of a multiple seeds-list,
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we have to be familiar with the concepts otaré-level” and a ‘teachability-lev-
el” for objects.

Definition 17: (core-level of an object p)
Let p be an object from a databa3glet [NPred,, ...,NPred,] be a list of neigh-
borhood predicates such thijp, o l(p) O Nypreg (P foralli=1, ...,n-1,
I+ 1

and letMinWeight be a monotonous predicate for the minimum weight of ob-
jects. Then, theore level of p denoted asore-level(p) is defined as

H UNDEFINED, if MinWeight(Nypy eq (P) = FALSE

core-level(p) = O
gmax{1<j<n | MinWeight(Nyp,eq (P)}, else
g ]

Figure 77 illustrates the core-level of an objeand aviinWeight predicate de-
fined asMinWeight(N) iff | N | = 4.

core-level(p) = largest level index such thais a core object

core-level (p)=i

MinWeight(N) iff [N[>4 & %% bob -

Figure 77: Core-level of an object p
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Intuitively, the core-level of an object pisthelargest level index i in asequence
of levels represented by our list of neighborhood predicates [NPred, ..., NPred,]

at which pisacore object. In other words, if core-level(p) =i then it holds that the

condition MinWeight(Nyp, g (P)) istruefor all NPred; suchthat 1<j <i, and the
i

conditionisfalsefori <j < n. Note that the “largest” level index corresponds to the
“smallest” neighborhood aroun

In a call of the methoMultipleSeeds.update(neighbors, currentObject), the
core-level of the objeaurrentObject can be determined easily because the argu-
mentneighbors contains thé&Pred;-neighborhood ofurrentObject which in turn

contains alNPred, -neighborhoods for the larger clustering-leviets, ...,n.

The concept of aeachability-level is more closely related to the actual order in
which the objects are examined by the algorithm H-GDBSCAN. Therefore, we de-
fine the reachability-level of an objeptwith respect to another objectfrom
which p is density-reachable. There may be more than one abjectwhich the
reachability-level op is defined.

Definition 18: (reachability-level of an object p with respect to an object o)
Let p ando be objects from a databalSe let [NPredy, ..., NPred,] be a list of

neighborhood predicates such thatNyp,eq 1(p) ONnpreg(®  for all
|+ |

i=1, ...,n-1, and letMinWeight be a monotonous predicate for the minimum
weight of objects. Then, threachability level of p with respect to o denoted as
reachability-level (p, o) is defined as
reachability-level (p, 0) =
) B UNDEFINED, if MinWeight(Nypeq (0)) = FALSE

=0
B max{1<j<n | Mi nWeight(NNPredj(o)) OpO NNPredj(O)}, else
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The reachability-level of p with respect to o is the smallest neighborhood at
which pisacandidate for further expansion of a density-connected set. More pre-
cisely, the reachability-level of object p with respect to o isthe largest level index
i in a sequence of levels represented by our list of neighborhood predicates
[NPredy, ..., NPred,] at which p is directly density-reachable from the core object
0. Notethat thisrequires o to be acore object. Therefore, the reachability-level can-
not be larger than the core-level of o.

Figure 78 illustrates the reachability-level of objects pl, p2, and p3 with respect
to an object o for a sequence of neighborhood predicates [NPred, ..., NPred,] as
depicted and a MinWeight predicate defined as MinWeight(N) iff | N | = 4.

reachability-level (p, o) = largest level index such that pis
directly density-reachable from core object o

A —
reachability-level (p1,0)=1 NPred; ** )
reachability-level (p2,0)=2 S & NPreds o
reachability-level (p3,0)=2 {,Ng;;a;i,; .

2e -
MinWeight(N) iff [N | = 4 o ° ,‘F’lf

\J

Figure 78: Reachability-level of objects p1, p2, p3 with respect to o

The object o isa core object only in level one and level two, object pl isfound
in NPred;-neighborhood of o, p2 is found in the NPred,-neighborhood of o, and

p3 is found in the NPreds-neighborhood of o. Then, the reachability-level of p2

with respect to o is equal to 2. But also the reachability-level of p3 with respect to
oisequal to 2 (and not equal to 3) because p3 is directly density-reachable from o



7.2  Algorithm H-GDBSCAN 177

only with respect to NPred; and MinWeight if i < 2. The reachability-level of pl
with respect to o is equal to 1 because pl isnot contained in the NPred, -neighbor-

hood of o for clustering-levelsi which are larger than 1.

In our algorithm, we will use an attribute reachability-level for each object p. In
the beginning, we set p.reachability-level to reachability-level (p, o) for an object o
which is not a core object at clustering-level one, i.e. we the reachability-level to
UNDEFINED. Consequently, the reachability-level of objectsis only defined for
objects which are contained in the multiple seeds-list because if they are inserted
into MultipleSeeds they must be at least density-reachable from a core object at
level one.

For our algorithm, the reachability-level of an object p determines the position
of p inthe multiple seeds-list which means that p.reachability-level may change as
long as p isamember of the multiple seeds-list. The object p has always to be con-
tained in that sub-list of MultipleSeeds which is associated with the largest reach-
ability-level of p. Aswe can easily see, this requirement is a necessary pre-condi-
tion for the method MultipleSeeds.next() to select the next element correctly.
However, thisimplies that the reachability-level of an object p which is already a
member of the multiple-seeds list has to be changed if p becomes again directly
density-reachable from another core object at alarger clustering-level.

Figure 79 depicts an example for a changing reachability-level of an object pin
the course of execution of the algorithm. Le ol be the first object selected for an
expansion of clusters. Then, the reachability-level of p with respect to ol (at time
t) isegual to two because 0l isacore object at levelsone and two and p is contained
in the NPred,-neighborhood of 01. Assume that the next object selected by the
method MultipleSeeds.next() is object 0,. Now, at timet+ 1, the object p isdirectly
density-reachable from o, at level three and therefore, the reachability-level of p at

timet+1ischanged to three.
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currentObject = ol MultipleSeeds.next() = 02
reachability-level (p,01)=2 currentObject = 02
A XN A reachability-level (p,02)=3
RS T -
L .
NPred4 ‘o - : B o
:0le [ N o L
o i o o o

Ll Ll

MinWeight(N) iff | N | = 4

Figure 79: Changing reachability-level of an object p

Now, we can explain the method MultipleSeeds.update which is called by the
function MultipleExpandCluster. The a gorithm for the update of a multiple seeds-
list is depicted in figure 80. As already indicated, it consists of the three parts “in-
crementing cluster-level-ids”, “insertion of yet unprocessed objects”, and “assign-
ment of correct cluster-ids to each object”. To see that our algorithm is correct, we

have to look at these different parts in more detail.

Theinsertion of the objects from the seeighbors into the multiple seed-list is
controlled by two variablesDbject.processed and Object.reachability_level.
‘Object.processed = TRUE' holds only if a neighborhood query has already been
performed foiObject - either because it has been the first object considered for ex-
panding a new density-connected set at level one or because it has been selected
for further expansion of a cluster by the methadtipleSeeds.next(), i.e. it has al-
ready been a member of the multiple seeds-list. Obviously, these objects must not
be inserted into the multiple seeds-list (again). There@gct is considered for
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MultipleSeeds::update(neighbors, CenterObject);

c_level := core_level(CenterObject);
IF c_level > outLevel THEN
currentClusterlds[outLevel + 1] = nextld(currentClusterlds[outLevel + 1]);
FOR i := outLevel + 2 TO max_level DO
IFi<c_level THEN Increment
currentClusterlds[i] = nextld(NOISE); cluster-level-ids
IF c_level <i < max_level THEN
currentClusterlds[i] = NOISE;
END FOR,;
SetOfObjects.changeClld(CenterObject, currentClusterlds);

FORALL Object FROM neighbors DO
previous_r_level := Object.reachability_level;
new_r_level := reachability_level(Object, CenterObject, c_level);
IF NOT Object.Processed THEN

IF previous_r_level = UNDEFINED THEN Insert
Object.reachability_level := new_r_level;
insert(Object, Lpew r_level):

ELSE
IF new_r_level > previous_r_level THEN

Object.reachability_level := new_r_level;
delete(Object, Lprevious_r level):
insert(Object, Lnew_r_|eve|);

FOR i := previous_r_level+1 TO max_level DO
IF i< new_r_level THEN AsS gn
Object.Clids[i] := currentClusterlds]i]; cluster-ids
IF new_r_level <i<max_level THEN
Object.Cllds[i] := NOISE;

m

ND; // MultipleSeeds::update

Figure 80: Method MultipleSeeds::update()
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insertion only if Object.processed = FALSE holds. This condition, however, does
not exclude that Object may already be a member of MultipleSeeds which can be
decided by looking at the variable Object.reachability_level.

If Object.reachability_level = UNDEFINED, it holds that Object is not yet a
member of the multiple seeds-list, because, in any case, if an object isinserted into
MultipleSeeds, its reachability-level will be set to a defined value. For those ob-
jects, we simple compute the new reachability-level ‘nelevel’ with respect to
the current core object (CenterObject), and insert Object into the sub-list of Multi-
pleSeeds which is associated with new_r_level. In the other case, i.e.
if Object.reachability_level has a value different from UNDEFINED, then Object
must have been directly density-reachable from a previously selected core object,
and hence, has been inserted into the multiple seeds-list. Because it also holds that
Object.processed = FALSE, Object must still be a member of MultipleSeeds. In
this case, we check if the new reachability-level of Object islarger than the previ-
ous reachability-level. If yes, the reachability-level of Object must be changed to
the new reachability-level and Object must be moved to the corresponding sub-list
for that new reachability-level.

The assignment of cluster-ids for objectsis made on the basis of the reachabili-
ty-level, i.e. it is based on the direct density-reachability from the current core ob-
ject. However, new cluster-ids are only assigned for levels greater than the previ-
ous reachability-level of an object (we assume that UNDEFINED is the smallest
reachability-level). For levels which are smaller than or equa to the previous
reachability-level, a cluster-id has already been set or it is UNDEFINED. Such
cluster-idswhich are already set will not change because we are still expanding the
same density-connected set at these levels. Only if the reachability-level of an ob-
ject increases, we have to assign the current cluster-level-ids from the previous
reachability-level up to the new reachability-level. That is necessary because Ob-
ject has become directly density-reachable from the core object CenterObject at
larger clustering-levels, and therefore belongsto the current clusters at these larger
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level. For clustering-levels that are even larger than the new reachability-level of
Object, the cluster-id has to be set to NOISE because Object is not yet density-
reachable from a core object at these levels. Obviously, this assignment of cluster-
ids for objectsis only correct if the cluster-level-ids are correct.

The setting for the cluster-level-idsis controlled by the core-level of the current
core object (CenterObject). However, nothing is changed if the core-level of the
CenterObject is smaller than the current outLevel, i.e. smaller than the level from
which CenterObject was selected. In this case, CenterObject has been density-
reachable from another core object at level one up to outLevel and its cluster-ids
areaready set correctly. Furthermore, no current cluster has been finished because
CenterObject has been a candidate for further expansion of clusters at levels one
up to outLevel. That means, we are just going to add objectswhich are directly den-
sity-reachable from CenterObject to the current clusters at these levels. Conse-
quently, the cluster-level-ids do not have to be changed.

In the other case, if the core-level of CenterObiject islarger than the current out-
Level, anew cluster must be started at all levels which are larger than the current
outLevel up to the core-level of CenterObject. Because we have an unfinished
cluster C at outLevel, the cluster-id for outLevel is not changed. If there had been
clusters at larger levels which were completely contained in the cluster C, these
clusters are now al finished because otherwise outLevel would have been larger.
That means that the next cluster within cluster C is started at level outLevel+1.
Consequently, the cluster-id for thislevel isincremented. This case corresponds to
an empty seeds-list in the execution of the non-hierarchical GDBSCAN algorithm
for the NPred-parameter which is associated with outLevel+1. If CenterObject is
also acore object at even larger levels, the new clusters which are started at these
levels are completely contained in the newly created cluster at level outLevel+1.
Because we adopted a hierarchical labeling scheme for cluster-level-ids, the clus-
ter-idsfor these consecutive levels must be set to the first valid cluster-id in the or-
der of al cluster-ids.
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At levelslarger than the core-level of CenterObject, there exists no current clus-
ter because CenterObject is not a core object at levels larger than its core-level.
Therefore, we set the cluster-level-ids for these levels equal to NOISE.

The call of the method SetOfObjects.changeClid(CenterObject, currentClus-
terlds) sets the cluster-ids of CenterObject to the current cluster-level-ids. Note
that thisisjust an abbreviation. For smaller levelsthan outLevel, we do not have to
change the cluster-ids of CenterObject because they are already equal to the cur-
rent cluster-level-ids.

Now it is easy to see that the hierarchical GDBSCAN algorithm actually com-
putes anested density-based decomposition of a database because we can construct
aflat density-based decomposition for each level i and aso use a hierarchical la-
beling scheme for cluster-ids. A density-connected set at level i isgiven by all ob-
jectswhich have the same prefix of their cluster-ids. If p and g are density-connect-
ed at alevel i, i.e. they belong to the same density-connected set at level i, then p
and q are also density-connected at all smaller levelsj (1<) <i). Therefore, p and
g will share the same prefix of their cluster-ids, i.e. p.clusterlds=[Id, ..., Id,],
g.clusterlds=[Id’y, ..., Id' ], and Id; = Id"; # NOISE, for all 1 <j <i. Then, the noise
at level i issimply given by the set of all objects o having the cluster-id NOISE at
level i, i.e. o.clusterlds{ldy, ..., Id,] and Id; = NOISE. Aswe have seen, our ago-

rithm assigns the cluster-ids in exactly this way.

We performed several experiments to measure the run-time of the algorithm H-
GDBSCAN. As expected, the run-time of H-GDBSCAN using the parameters
([NPred,, ..., NPred,], MinWeighj is very similar to the run-time of the non-hier-
archical GDBSCAN algorithm using the largest neighborhood, i.e. using the pa-
rameters (NPred;, MinWeigh). This is due to the fact that the additional cost for
managing a multiple seeds-list instead of a regular seeds-list is dominated by the
cost of the region queries. Actualy, the overall run-time of H-GDBSCAN inall ex-
periments was between 1.3 and 1.5 times the run-time of GDBSCAN.
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7.2.2 Ordering the Database with respect to Cluster Structure

A nested density-based decomposition isvery useful for cluster analysis. However,

there are some problems considering the number of different levels and their cor-
responding NPred-values. For example, the most important neighborhood predi-

cates are distance-based, and for distance-based neighborhood predicates there are

an infinite number of possible distance values. In such applications, we do not

know the number of different levels needed to reveal the inherent cluster structure

of adataset in advance. Even if we would include avery large number of different
clustering-levels - which requires alot of secondary memory to store the different
cluster-ids for each point and clustering level - we may miss the “interesting” clus-
tering levels because the “correct” parameters were not included in the parameter
list.

In this section we present a technique to overcome the mentioned problems for
distance-basedNPred-neighborhood predicates and a monotonMisWeight
predicate. The basic idea is to run an algorithm which is very similar to the hierar-
chical algorithm presented in the previous section but which simply produces a
special order of the database with respect to a so called “generating distance”. In-
stead of computing and storing cluster-ids for different clustering-levels, this algo-
rithms stores only two additional values for each object: the core-distance and the
reachability-distance. These notions are formally introduced below.

The ordering with respect to the cluster structure of a data set can be used for a
fast interactive approximation of “correct” or “interesting” clustering-levels be-
cause it allows a fast computatioreséry clustering level with respect to a smaller
distance than the generating distance. However, we will argue that this is not the
best way to use the cluster-order for the purpose of cluster analysis. Since the clus-
ter-order of a data set contains the information about the inherent clustering struc-
ture of that data set (up to the generating distance), we can use it as a stand-alone
tool which offers good opportunities for an interactive cluster analysis procedure.
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In the following, we restrict our considerations to distance-based neighborhood
predicates and use the comparison of the cardinality of a neighborhood set to a
threshold as MinWeight predicate, i.e. we restrict the discussion to the parameter
specidization for DBSCAN asintroduced in definition 9. For a better understand-
ing of the following algorithm, we use as parameters a distance € and a value
MinPts instead of NPred and MinWeight.

The algorithm to create an extended order of adatabase with respect to the clus-
ter structure is similar to the hierarchical version of GDBSCAN. To explain this
algorithm, we need the notion of a core-distance and areachability-distance which
correspond directly to the core-level and the reachability-level introduced in the
previous section for H-GDBSCAN.

Definition 19: (core-distance of an object p)

Let p be an object from a database D, let € be a distance value, let N¢(p) be the
e-neighborhood of p, and let MinPts be a threshold value for the minimum
weight of N¢(p). Then, the core-distance of p denoted as core-distance(p) is de-
fined as

) 0 . )
core-distance(p) =  ©NPEFINED if [N(p)| < MinPts

U MinPts-distance(p), €lse

The core-distance of an object p is simply the smallest distance to an object in
its e-neighborhood such that p would be acore object if we would use this distance
instead of €; the core-distanceis UNDEFINED if this distance would be larger than
thevalue of €.

The intuition behind this notion is the same as for the core-level defined in
definition 17. The difference is only that we do not assume different predefined
levels. Figure 81 illustrates the notion of a core-distance.
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core-distance(p) = smallest distance such that p is a core object

core-level(p) =d

MinWeight(N) iff | N | > 4

Figure 81: Core-distance of an object p

Definition 20: (reachability-distance of an object p with respect to an object 0)
Let p and o be objects from a database D, let N¢(0) be the e-neighborhood of p,
and let MinPts be athreshold value for the minimum weight of N¢(0). Then, the

reachability-distance of p with respect to o denoted as
reachability-distance(p, 0) is defined as

reachability-distance(p, o) =

B H UNDEFINED, if [N¢(p)| < MinPts
O max(core-distance(o), distance(o,p)), else

Again, the intuition behind the notion of a reachability-distance is the same as
for thereachability-level defined in definition 18 except, that we do not assume dif-
ferent predefined levels. Figure 82 illustrates the notion of areachability-distance.
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reachability-level (p, 0) = smallest distance such thaits
directly density-reachable from core object

reachability-level (p1,0)=d;
reachability-level (p2,0)=d, :
reachability-level (p3,0)=core-distance)) :

MinWeight(N) iff | N |> 4

Figure 82: Reachability-distance of objectspl, p2, p3 with respect to o

As for the reachability-level defined in the previous section, the reachability-
distance of an object p depends on the core object with respect to which it is calcu-
lated. A current value is stored for each object in the execution of our algorithm
and this value may change over time.

Now we can to explain the agorithm, called H-DBSCAN-ORDER, to generate
an order of a data set with respect to the clustering structure. In principle,

H-DBSCAN-ORDER works like H-GDBSCAN using a “generating distarece”

corresponding to the largest neighborhood predisBted;. However, we do not

assign cluster-level-ids but store the objects in the order in which they are pro-

cessed. Also stored in this order are the core-distance and the last reachability-dis-

tance for each object. We will see that this information is sufficient to extract the

clustering level with respect to any distaoghich is smaller than the generating

distancee from this order. Consequently, we do not need any further neighborhood

predicates or distances as input parameter for H-DBSCAN-ORDER.
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Figure 83 illustrates the main loop of the agorithm H-DBSCAN-ORDER. It is
easy to see the similarity to the main loop of H-GDBSCAN. The only difference -
except the more specialized parameter list - is that we open at the beginning afile
OrderedFile for writing and close this file after ending the loop. Each object from
a database SetOfObjects is simply handed over to a procedure ExpandCluster-
Order if the object is not yet processed.

H-DBSCAN-ORDER (SetOfObjects, €, MinPts, OrderedFile)

OrderedFile.open();

FOR i FROM 1 TO SetOfObjects.size DO

Object := SetOfObjects.get(i);

IF NOT Object.Processed THEN
ExpandClusterOrder(SetOfObjects, Object, €, MinPts, OrderedFile)
END IF;

END FOR,;

OrderedFile.close();

END; // H-DBSCAN-Order

Figure 83: Algorithm H-DBSCAN-ORDER

The structure of the procedure ExpandClusterOrder does not differ much from
the function ExpandCluster for ssimple GDBSCAN (cf. figure 32, chapter 4) or the
function MultipleExpandCluster for H-GDBSCAN (cf. figure 73, above).

First, we perform an e-range query for the object Object, passed from the main
loop H-GDBSCAN-ORDER, set itsreachability-distance to UNDEFINED and de-
termine its core-distance. Then, Object is written to OrderedFile. In the IF-condi-
tion the procedure ExpandClusterOrder checks the core object property for Object.
If Object is not a core object at the generating distance €, the control is simply re-
turned to the main loop H-GDBSCAN-ORDER which selects the next unproc-
essed object of the database. Otherwise, if Object is acore object at the generating
distance €, we proceed as if expanding a density-connected set Sfor thisdistance €
in the WHILE-loop of ExpandClusterOrder. However, we store each object select-
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ed from the seeds-list after its core-distance is determined. The reachability-dis-
tance of each object selected from the seeds-list isthen already set to adefined val-
ue. Managing the reachability-distances for the objects is handled by the class
OrderSeeds. The pseudo-code for the procedure ExpandClusterOrder is depicted
in figure 84.

ExpandClusterOrder(SetOfObjects, Object, €, MinPts, OrderedFile);
neighbors := SetOfObjects.neighborhood(Object, €);
Object.Processed := TRUE;

Object.reachability_distance := UNDEFINED;
Object.setCoreDistance(neighbors, €, MinPts);
OrderedFile.write(Object);
IF Object.core_distance <> UNDEFINED THEN
OrderSeeds.init();
OrderSeeds.update(neighbors, Object);
WHILE NOT OrderSeeds.empty() DO
currentObject := OrderSeeds.next();
neighbors := SetOfObjects.neighborhood(currentObject, €);
currentObject.Processed := TRUE;
currentObject.setCoreDistance(neighbors, €, MinPts);
OrderedFile.write(currentObject);
IF currentObject.core_distance <> UNDEFINED THEN
OrderSeeds.update(neighbors, currentObject);
END IF;
OrderedFile.write(currentObject);
END WHILE;
END IF;
END; // ExpandClusterOrder

Figure 84: Procedur e ExpandCluster Or der

Again, asfor H-GDBSCAN, the structure of the class OrderSeeds iscrucia for
the execution of our agorithm. However, the structure is much simpler than the
structure of the class MultipleSeeds because we do not need to assign correct clus-
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ter-level-ids for the objects. The objects contained in OrderSeeds are stored in a
priority-queue, sorted by their reachability-distance. Intuitively, thisissimilar to a
MultipleSeeds-list in H-GDBSCAN for an infinite number of clustering levels
smaller than the largest level determined by NPred,.

The method OrderSeeds:next() selects the first object from the priority-queue,
i.e. an object having the smallest reachability-distance in the queue. The method
OrderSeeds::update(...) isdepicted in figure 85. The method is easy to understand
if we compare it with the method MultipleSeeds::update(...) (cf. figure 80, above).
The pseudo-code for OrderSeeds::update corresponds almost one-to-one to the
“insert”-part of the methodultipleSeeds::update(...). The reachability-distance
for each object in the set neighbors is determined with respect to the center-object.
Objects which are not yet in the priority-queue are simply inserted with their reach-
ability-distance. Objects which are already in the queue are moved further to the
top of the queue if their new reachability-distance is smaller than their previous
reachability-distance. Figure 85 depicts the cod®fderSeeds::update().

OrderSeeds::update(neighbors, CenterObject);
c_dist := CenterObject.core_distance;
FORALL Object FROM neighbors DO
IF NOT Object.Processed THEN
new_r_dist := max(c_dist, CenterObject.distance(Object));
IF Object.reachability_distance = UNDEFINED THEN
Object.reachability_distance := new_r_dist;
insert(Object, new_r_dist);
ELSE // Object already in OrderSeeds
IF new_r_dist < Object.reachability_distance THEN
Object.reachability_distance := new_r_dist;
decrease(Object, r_dist);
END FORALL;
END; // OrderSeeds::update

Figure 85: Method Order Seeds:: update()
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Due to its similarity to the algorithm H-GDBSCAN, the run-time of the ago-
rithm H-DBSCAN-ORDER is the same as the run-time for H-GDBSCAN. Ex-
tracting specified clustering levels requires only a single scan over the cluster-or-
dered data set, i.e. it requires O(n) time, and therefore does not change the overall
run-time complexity of the algorithm.

We can extract any density-based clustering from this order with respect to
MinPts and a clustering-distance € which is smaller than the generating distanced
by simply “scanning” the cluster-ordered data set and assign cluster-level-ids de-
pending on the reachability-distance and the core-distance of the objects. Figure 86
depicts the algorithrxtractClustering for constructing a single density-based de-
composition with respect to and MinPts from the cluster-order of a database.
Modifying this algorithm to extract multiple clustering-levels simultaneously is a
trivial task which is not presented here since it offers no additional insights.

ExtractClustering (ClusterOrderedObjects, €, MinPts)
// Precondition: € < generating distance for ClusterOrderedObjects
Clusterld := NOISE;
FOR i FROM 1 TO ClusterOrderedObjects.size DO
Object := ClusterOrderedObjects.get(i);
IF Object.reachability_distance > & THEN /I also UNDEFINED > ¢
IF Object.core_distance < € THEN
Clusterld := nextld(Clusterld);
Object.clusterld := Clusterld;
ELSE
Object.clusterld := NOISE;
END IF
ELSE // Object.reachability_distance < ¢
Object.clusterld := Clusterld;
END IF;
END FOR;
END; // ExtractClustering

Figure 86: Algorithm ExtractClustering
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To extract a clustering, i.e. to assign cluster-ids to the objects, we first have to
look at the reachability-distance of the current object Object. If the reachability-
distance of Object islarger than the clustering-distance €, the object is not density-
reachable with respect to € and MinPts from any of the object which are located
before the current object in the cluster-order. This is obvious because if Object
would have been density-reachable with respect to € and MinPts from a preceding
object in the order, it would have been inserted into OrderSeeds with a reachabil-
ity-distance of at most € while generating the cluster-order.

Therefore, if the reachability-distance is larger than €, we look at the core-dis-
tance of Object and start a new cluster if Object is a core object with respect to €
and MinPts; otherwise, Object is assigned to NOISE. Note that the reachability-
distance of thefirst object in the cluster-order is aways UNDEFINED and that we
assume UNDEFINED to be greater than any real distance €.

If the reachability-distance of the current object is smaller than €, we simply as-
sign this object to the current cluster. Obviously the reachability-distance of Object
can only be smaller than € if Object is density-reachable with respect to € and
MinPts from a preceding core object o in the cluster-order. Because the procedure
ExpandClusterOrder collects and processes density-reachable objects like the hi-
erarchical GDBSCAN algorithm no object between o and Object in the order can
have alarger reachability-distance than €. Thisis true because if 0 and Object are
density-reachable with respect to € and MinPts, thereis achain of directly density-
reachable objects between o and Object and all objects in the chain have areach-
ability-distance smaller than €. Starting from o, the object in the chain are pro-
cessed by ExpandClusterOrder before any object having agreater reachability-dis-
tance than € because OrderSeeds iteratively collects directly density-reachable ob-
jects and sort them according to increasing reachability-distance. But then, because
no reachability-distance has been greater than €, no new cluster has been started
since visiting o by the algorithm ExtractClustering. Consequently, Object will be
assigned to the same cluster as o.
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Theclustering created from acluster-ordered data set by ExtractClustering isex-
actly the same as created by DBSCAN if we set MinPts< 3, i.e. if there are no bor-
der objects (cf. lemma 4 and the belonging footnote on page 56). Otherwise, if bor-
der object exist, some of them may be assigned to NOISE when extracted by the
algorithm ExtractClustering. This happensif they were processed by the algorithm
H-DBSCAN-ORDER before a core object of the corresponding cluster has been
found. We aready discussed this case for the GDBSCAN a gorithm where these
border object are re-assigned to a cluster when they are found again in the neigh-
borhood of some core object (see page 79). When extracting a clustering from a
cluster-order of a data set we cannot recognize these cases because we do not use
neighborhood queries any more.

To re-assign those objects assigned to NOISE which actually belong to one of
the clusters, we could perform a second pass over the database and look for core
objects in the neighborhood of noise objects. However, our experiments indicate
that such border objects are very rare and that the resulting clustering differs only
very dightly from the clustering produced by DBSCAN when using higher
MinPts-values. Therefore, we can omit a second pass over the database after the
extraction of clustering without much loss of information.

The extraction of a clustering from acluster-ordered data set can be understood
easily if the problem is represented graphically. For a cluster-order it holds that
each object having alower reachability-distance than € belongsto a cluster with re-
spect to € and MinPts and objects belonging to the same cluster are close to each
other in the cluster-order. Furthermore, each object, except the “first” (i.e. the left-
most) object belonging to a cluster, having a higher reachability-distanceithan
in general a noise object. In principle, we can “see” such a clustering if we plot the
reachability-distance values for each object in the cluster-order of a data set and
then draw a horizontal line at a reachability-distanae Bfgure 87 depicts this vi-
sualization of a density-based clustering which can be extracted from a cluster-or-
dered data set.
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generating distancg= 10
MinPts = 10

Figure87: Illustration of clustering level and cluster-order

It is very easy to extract from a cluster-order of a data set not only a “flat” den-
sity-based decomposition but also a nested density-based decomposition with re-
spect to an arbitrary number of levels in a single pass over the ordered data set.
However, if we look at figure 87 more closely, we can see that there is actually no
need to do this for the purpose of data mining. The order of a database with respect
to the clustering structure already contains the clustering information in a very
comprehensible way. Therefore, we argue that the best way to do cluster analysis
in a semi-automatic way is to use the cluster-order of a data set as a stand-alone
tool. A user casee all clusters of all densities directly in a visualization of the clus-
ter-order - up to a minimum density specified by the generating distance

Note that the visualization of the cluster-order is independent of the dimension
of the data set. For example, if the objects of a high-dimensional data set would be
distributed similar to the distribution of the 2-dimensional data set depicted in
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figure 87 (i.e. there are three “Gaussian bumps” in the data set), the “reachability-
plot” would also look very similar.

A further advantage of cluster-ordering a data set compared to other clustering
methods is that the reachability-plot is rather insensitive to the input parameters of
the method, i.e. the generating distadead the value favlinPts. Roughly speak-
ing, the values have just to be “large” enough to yield a good result. The concrete
values are not crucial because there is a large range of possible values for which
we always can see the clustering structure of a data set when looking at the corre-
sponding reachability-plot. Figure 88 shows the effects of different parameter set-
tings on the reachability-plot for the same data set used in figure 87. In the first plot
we used a smaller generating distadder the second plot we sktinPts to the
smallest possible value. Although, these plots look different from the plot depicted
in figure 87, the overall clustering structure of the data set can be recognized in

these plots as well.

A generating distanced = 5
UNDEFINE(I?:_ MinPts = 10

A generating distance d = 10
UNDEFINED.. MinPts = 2

>

Figure 88: Effects of parameter settingson cluster-order
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The influence of the generating distance d on the reachability-plot concerns the
number of clustering-levels which we can see in the reachability-plot. The smaller
we choose the value of d the more objects may have an UNDEFINED reachability-
distance and we may therefore not see clusters of lower density, i.e. clusters where
the core objects are core objects only for distances larger than d.

The optimal value for d is the smallest value so that a density-based decompo-
sition of the database with respect to d and MinPts consists of only one cluster con-
taining amost all points of the database. Then, theinformation of all clustering lev-
els will be contained in the reachability-plot. However, there is a large range of
values around this optimal value for which the appearance of the reachability-plot
will not change significantly. Therefore, we can use rather simple heuristics to de-
termine the value for d which guarantee only that the distance value will not be too
small. For example, we can use the expected k-nearest-neighbor distance (for k =
MinPts) under the assumption that the objects are randomly distributed, i.e. under
the assumption that there are no clusters. This value can be determined analytically
for a data space DS containing N points. The distance is equal to the radiusr of a
d-dimensional hyper-sphere Sin DS where S contains exactly k points. Under the
assumption of arandom distribution of the points, the following holds for the vol-

umeof S .
Vol umep g

N xk = VqumeS

The volume of a d-dimensiona hyper-sphere Shaving aradiusr isgiven as

|

Volume, = ———Xxr
' rdey

Where " denotes the Gamma-function. The expression r(g + 1) canbeevau-

ated easily using the following equations: F(%) =mand xF(x) = F(x+1).
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Theradius r can be now computed as

Volumep g * k % l‘(g+ 1)
r=g
N

This radius may be larger than necessary. However, concerning the efficiency
of the algorithm H-DBSCAN-ORDER with respect to large generating distances
d, recall that using multiple neighborhood queries yields higher speed-up factors

for larger neighborhoods.

The effect of the value for MinPts on the visualization of the cluster-order can
be seen in figure 88. The overall shape of the reachability-plot is very similar for
different MinPts values. However, for lower values the reachability-plot will 1ook
more jagged and higher values for MinPts will significantly smoothen the curve.
Our experiments indicate that we will always get good result using any value be-
tween 10 and 20 for MinPts.

To show that the reachability-plot is very easy to understand, we will finaly
present some examples. Figure 89 depicts the reachability-plot for a very high-di-
mensional “real-world” data set. The data set contains 10,000 gray-scale images of
32x32 pixels. Each object is represented by a vector containing the gray-scale val-
ue for each pixel. Thus, the dimension of the vectors is equal to 1,024. The Euclid-
ean distance function was used as similarity measure for these vectors.

| l
1
.Zl

)
0

Figure 89: Part of thereachability-plot for a 1,024-d image data set
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Figure 90 shows further examples of reachability-plotsfor several data sets hav-
ing different clustering characteristics. For abetter comparison of thereal distribu-
tion with the cluster-order of the objects, the data sets were synthetically generated

in two dimensions.

(a) clusters without noise

(b) clusters of different shapes and sizes

(c) clusters of different densities

(d) hierarchical clustering structure

Figure 90: Reachability-plotsfor data sets having different characteristics
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7.3 Summary

In this chapter, the notion of anested density-based decomposition was introduced
which is simply a hierarchy of “flat” density-based decompositions.

We presented the algorithm H-GDBSCAN to compute a nested density-based
decomposition with respect to a monotonblieWeight predicate and a sequence
of neighborhood predicat&Pred,, ..., NPred, where for alli=1, ...,n-1 the con-

dition NNPredi+l(p) d NNPredi(p) holds. The run-time of the algorithm H-

GDBSCAN is nearly the same as the run-time of GDBSCAN for computing a
“flat” density-based decomposition with respectMinWeight and NPred; be-

cause density-connected sets with respect to smaller neighborhoods are completely
contained in density-connected sets with respect to larger neighborhoods. When
computing a nested density-based decomposition H-GDBSCAN proceeds in prin-
ciple like GDBSCAN. The difference is only that H-GDBSCAN has to obey a cer-
tainorder in which objects are processed.

We developed a more specialized version of a hierarchical clustering algorithm
H-DBSCAN-ORDER which is designed for distance-based neighborhood predi-
cates. H-DBSCAN-ORDER does not produce clustering levels explicitly. It just
stores the objects in theder in which H-GDBSCANwould process the objects if
we would use all, i.e. an infinite number of distance values (from 0 up to a gener-
ating distancel) as input parameters. Furthermore, H-DBSCAN-ORDER does not
make any decision with respect to cluster membership (cluster-ids). Instead, it just
stores for each objeotthe information whiclwould be used by H-GDBSCAN to
assign cluster-ids, i.e. the reachability-distance and the core-distamce of

From this cluster-order we can extract any clustering level for distance galues
if € <d. However, the cluster-oder is also a powerful “stand-alone” tool for cluster
analysis. By visualizing the reachability-distances a user can aciemtlye clus-
tering structure in a database independent of the dimension of the data space.



Chapter 8

Conclusions

In this chapter the achievements of thisthesis are shortly summarized and somedi-
rections for future research are indicated.
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Thisthesis presented the following contributionsto thefield of spatial datamining:

First, we devel oped the general framework of density-based decompositions to
describe various cluster-like structures, in particular: results produced by different
clustering algorithms, patterns recognized by region growing algorithmsaswell as
“connected” groups of objects of - in principle - arbitrary data-type satisfying cer-
tain conditions, for instance connected groups of polygons from a geographic in-
formation system. To specify a particular density-based decomposition, simply
two predicates have to be specified: a neighborhood predi@atel for pairs of
objects which has to be symmetric and reflexive, and a predicatgeight for the
minimum weight of sets of objects.

We discussed several instances of a density-based decomposition in detail - espe-
cially the results of different clustering algorithms and presented an algorithmic
schema GDBSCAN to construct density-based decompositions. We indicated how
GDBSCAN is implemented independently from the specific predicates for the
neighborhood of objects, and the minimum weight for sets of objects. Furthermore,
a performance evaluation showed that GDBSCAN can be efficiently applied to
large spatial databased\NPred-neighborhood queries are supported by spatial ac-
cess structures.

We also introduced advanced database techniques such as neighborhood indices
and multiple neighborhood queries to further speed-up the run-time of GDBSCAN
by large factors. Especially, we showed that an even more general algorithmic
schema than GDBSCAN call&kploreNeighborhoods exists which can be trans-
formed by purely syntactical means into an semantically equivalent schema called
MultipleExploreNeighborhoods. This schema can be supported efficiently by the
technique of multiple neighborhood queries and it does not only cover GDBSCAN
as an instance but also a broader class of different spatial data mining algorithms.

In a separate chapter, some applications of GDBSCAN were presented in great-
er detail: first, an application to a 5-dimensional spectral space to create land-use
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maps, second, an application to 3-dimensional protein data where we extracted
concave and convex surface segments on proteins; third, an application to 2-di-
mensional astronomical imagesto detect celestial sources; fourth, an application to
find interesting regions for trend detection in a geographic information system, i.e.
a database of 2-dimensional polygons also having several non-spatial attributes.
These applications demonstrated the use of different types of NPred and Min-
Weight predicates to find clusters or cluster-like groups of objects in databases of
different types.

To our best knowledge, we introduced the first incremental clustering algo-
rithm, based on GDBSCAN, for mining in adynamic environment, i.e. an environ-
ment where insertions and deletions occur. Due to the density-based nature of a
density-based clustering, the insertion or deletion of an object affects the current
clustering only in a small neighborhood of this object. Thus, efficient algorithms
have been devel oped for incremental insertions and deletionsto aclustering, yield-
ing the same result as the application of GDBSCAN to the whole updated database.
A cost-model and an experimental performance evaluation using a 2d-database as
well asaWWW-log database was conducted to determine the speed-up factors, the
break-even point, and to demonstrate the efficiency of the proposed algorithm .

In the last chapter, the notion of a nested density-based decomposition - which
is simply a hierarchy of “flat” density-based decompositions - was defined. To
compute a nested density-based decomposition with respect to a sequence of
neighborhood predicatédPred,, ..., NPred,, we developed the hierarchical algo-
rithm H-GDBSCAN. The run-time of H-GDBSCAN is nearly the same as the run-
time of GDBSCAN for computing a “flat” density-based decomposition with re-
spect to the largest neighborhood because density-connected sets with respect to
smaller neighborhoods are completely contained in density-connected sets with re-
spect to larger neighborhoods. When computing a nested density-based decompo-
sition H-GDBSCAN proceeds in principle like GDBSCAN. The difference is only
that H-GDBSCAN has to obey a certairder in which objects are processed.
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Additionally we developed a more specialized version of the hierarchical clus-
tering agorithm H-GDBSCAN which is designed for distance-based neighbor-
hood predicates. This agorithm called H-DBSCAN-ORDER does not produce
clustering levels explicitly. It just creates an order of the database with respect to
a maximum distance d, and stores in this order the reachability-distance and the
core-distance of each object. From this cluster-order we can then extract any clus-
tering level for distance values € < d. However, in practice we will not extract any
clustering-levels because the cluster-oder itself is a powerful “stand-alone” tool for
cluster analysis. By visualizing the reachability-distances a user can ashgally
the clustering structure in a database independent of the dimension of the data
space.

There are several possibilities foture research. In our opinion, the most impor-

tant tasks arise in connection with the cluster-ordering of a database. We think that,
compared with other clustering methods, the cluster-ordering of a database produc-
es the most useful information with respect to semi-automatic cluster-analysis in
high dimensional spaces. To improve the applicability of the cluster-ordering tech-
nigue we see the following opportunities for further research:

» For very high-dimensional spaces there exist no index structures to support
the range queries needed in the algorithm H-DBSCAN-ORDER. That means
that, even if we use multiple neighborhood queries, the run-time of the algo-
rithm H-DBSCAN-ORDER is inherenti@(N?). Therefore, it is impossible to
apply it in its current form to a database containing several million object.
Consequently, the most interesting question is whether we can modify the al-
gorithm so that we can trade-off a limited amount of accuracy for a large gain
in efficiency (e.g. by using intelligent sampling techniques).
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» More sophisticated visualization techniques for the reachability-plot may be
combined with visualizations of certain attribute values to offer additional in-
sights in the clustering structure of a data set.

» For a more detailed analysis of existing clusters it may be worthwhile to ex-
tract automatically from a cluster-order “traditional” clustering information
such as representatives of clusters (e.g. the local minima of the reachability-
plot), cluster descriptions like the attribute ranges in different dimensions, and
so forth.

* Incrementally managing a cluster-order when updates on the database occur
is a further interesting challenge. Although, we have developed techniques to
incrementally update a “flat” density-based decomposition it is not obvious
how these ideas can be extended to a density-based cluster-ordering of a data
set.
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8 Conclusions
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