
1

1

10. Single-agent Search

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Moving On…

 Two-player adversary search is nice,
but not all interesting problems can be
mapped to games

 Large class of optimization problems
that all have the same search properties

 Find the best search value from the
perspective of a single player

 Single-agent search

9/9/02 3

Applications

 Pathfinding

 Dynamic programming

 Job shop scheduling

 DNA sequence alignment

 Scheduling

 Planning

 Constraint satisfaction

 …

9/9/02 4

Why Alpha-Beta First?

 Many of the performance
enhancements we saw in alpha-beta
translate to single-agent search

 Most originated with alpha-beta, and
were adopted by other classes of
search algorithms



2

9/9/02 5

Application: Pathfinding

 Consider a sample application
 Find a minimal cost path from a start

node to a goal node
 Can move one square horizontally or

vertically, each with a cost of one
 Can be generalized to include diagonals
 Can be generalized to include variable

costs

9/9/02 6

Application

START

GOAL

9/9/02 7

Solution 1

 Trivial solution

 Explore outward from the start node
until reaching the goal node

 Can use iterative deepening to
guarantee minimal cost path
 Try paths of length 1, then 2, etc.

9/9/02 8

START
1

3

1

21

23

2

3

2

4

44

4

3

5

5

5

5

7

6

6

6

6

7 7

77

Solution 1

0

GOAL



3

9/9/02 9

Solution 1

 Note that more than one path can lead
to a node
 Some of these paths are non-optimal

 Note that cycles are possible

 Observation: we need to eliminate
duplicate states!

9/9/02 10

Solution 2

 Trivial observation that searching to
depth 1 is a waste of time since we are
obviously more than 1 away from the
goal

 Add to the search an evaluation
function that estimates the distance to
the goal

 What is a simple estimator of distance?

9/9/02 11

Solution 2

 For pathfinding, a good estimate of distance
to go is the Manhattan distance
 Number of horizontal and vertical moves to the

goal node

 Cost of reaching a node is now two parts:
 Distance already traveled
 Estimate of distance to go

 If the cost of a node exceeds the iterative
deepening threshold, then stop searching that
path

9/9/02 12

Manhattan Distance

START

GOAL

1 + 4 =5



4

9/9/02 13

Pathfinding

START

GOAL

1 + 4 = 5

1 + 4 = 5

2 + 3 = 5

2 + 3 = 5

3 + 2 = 5

2 + 5 = 71 + 6 = 7

3 + 4 = 7

4 + 3 = 7

5 + 2 = 7

4 + 3 = 7

5 + 2 = 7

6 + 1 = 77 + 0 = 7

0 + 5 = 5
9/9/02 14

IDA*

 Iterative deepening A*
 The cost of a node is (using A* terms)

 f = g + h
 g = cost incurred to get to this node
 h = heuristic estimate of getting to goal

 Iterative deepening iterates on a threshold
 Search a node as long as f <= threshold
 Either find a solution (done), or fail, in which case

the threshold is increased and a new search started

9/9/02 15

IDA* (1)

threshold = Eval( s );

done = false;

while( not done ) {

done = IDA*( s, 0, threshold );

if( done == false ) threshold++;

}

9/9/02 16

IDA* (2)
IDA*( state s, int g, threshold t ) {

h = Eval( s );

if( h == 0 ) return( true );

f = g + h;
if( f > threshold ) return( false );

for( i = 1; i <= numchildren; i++ ) {

done = IDA*( s.child[ i ], g + cost( child[ i ] ), t );

if( done == true ) return( true );

}

return( false );
}



5

9/9/02 17

IDA* Comments

 Automatically builds a variable-depth search
 Provably bad lines are cutoff as soon as possible
 When the cutoff occurs depends on the quality of

the evaluation function

 Storage requirements are trivial; just the
recursion stack

 Iteration i+1 repeats all the work of iteration i!
 For some domains you can do better than

iterate by 1
 Use the mimimum f-value seen at a leaf node

during an iteration as the next threshold
9/9/02 18

IDA* Tree

 Depth-first search

 Root’s value = T

 Search nodes <= T

 Search nodes <= T+1

 Repeat until solution

v <= T

v <= T+1

v <= T+2

9/9/02 19

IDA* Comments

 Is IDA* guaranteed to produce an
optimal answer?

 Yes!
 But only if…
 The evaluation function has to be

admissible:
 It must always be a lower bound on the

true solution length

9/9/02 20

Manhattan Distance

 Computes a direct path from a node to
the goal

 Ignores all obstacles, which can only
lengthen the path

 Therefore it is an admissible heuristic



6

9/9/02 21

Monotonicity

 Most admissible heuristics also have
the monotonicity property

 The f values never decrease along a
path if monotonicity holds

 If you have a non-monotonic heuristic,
one can always modify the search to
make the heuristic monotonic…
 How?

9/9/02 22

Examining h

 Simplified cost of a search

 Uniform branching factor b

 Search depth d

 Ignore all other enhancements

 No heuristic:  bd

 Average heuristic value is h: bd-h

 The quality of the heuristic has an enormous
impact on the search efficiency

9/9/02 23

Examining h

 What does it mean to iterate?

 If the first iteration finds an answer, then
h had no error

 If a second iteration is required, then
there is an error of 1 in h

 The number of iterations indicates the
degree of error in h

9/9/02 24

Eliminating Redundant Nodes

 Need to eliminate duplicate nodes

 Trivial optimization for many domains is
to disallow move reversals

 For more sophisticated detection of
redundant nodes, we can use a
transposition table



7

9/9/02 25

Transposition Table

 Store the t and g values in the table, and only
search a transpositon node with the smallest
g, and only once for the current t

 Use table only to indicate which nodes not to
search

 No need to store values, since the search
stops when a solution is found

 All other TT issues (table size, hashing, table
entry replacement) remain the same as for
two-player games

9/9/02 26

Sliding Tile Puzzle

Sam Lloyd’s
creation was the
Rubik’s Cube of
the 1800s.

9/9/02 27

Experiments

 Korf problem set of 100 positions

 Search 36700

 Search - move reversals     100

 Search + TT (256K)       37

9/9/02 28

A*

 Single-agent search began in the 1960s
with the A* algorithm [2]

 This algorithm dominated AI search for
two decades, but has competition now
from IDA*

 Why teach IDA* first? Easy to explain
once you’ve seen Alpha-Beta



8

9/9/02 29

A*

 Each iteration of IDA* re-searches the
tree over again beginning at the root

 All that overhead can be eliminated…

 … by keeping track of the search
frontier, and only expanding nodes on
the frontier

 A* is a best-first search algorithm

9/9/02 30

Search Frontier

START
1

3

1

21

23

2

3

2

4

44

4

3

5

5

5

5

7

6

6

6

6

7 7

77

0

GOAL

9/9/02 31

A* Data Structure

 OpenList
 List of nodes in the tree that are not yet

fully considered

 Ordered from best to worst f value

 ClosedList
 Nodes that have been fully expanded

 No longer on any optimal path

9/9/02 32

A* Algorithm (1)

 Take best (first) node from OpenList
 Check for solution

 Expand all the children

 Move node to the ClosedList

 As far as we know, done with this node



9

9/9/02 33

A* Algorithm (2)

 Expanding a child
 Check if seen before Open/ClosedList

 If the node has been seen before with the same or better
g value, then reject

 Add to OpenList for consideration

 In effect the lists act as a cache of previously
seen results

 NOTE: the algorithm requires all nodes to be
in these lists, unlike a TT

9/9/02 34

A* (1)
A*( state s ) {

s.g = 0; s.h = Eval( s ); s.f = s.g + s.h; s.parent = null;
done = false;
push s on OpenList
while( OpenList != empty && done == false ) {

pop s from head of OpenList
if( s is a goal node ) { done = true; break; }
foreach( i = i; i <= Children( s ); i++ ) {

Consider( s, s.child[i ] );
}
add s to ClosedList

}
return( done );

}

9/9/02 35

A* (2)
Consider( state from, state to ) {

newg = from.g + Cost( from, to );
if( ( to is in OpenList or ClosedList ) and
    ( to.g <= newg ) ) return;
to.g = newg; to.h = Eval( to );
to.f = to.g + to.h; to.parent = from;
if( to is in ClosedList ) remove to from ClosedList
if( to is not in OpenList ) insert to in OpenList sorted

by f-value
}

9/9/02 36

Example

START

GOAL

A C D E FB

1

5

4

3

6

2



10

9/9/02 37

Example

 Step 1: Initialize
 ( C1, 0 + 5 = 5, null )
 ( )

 Step 2: Expand C1
 ( C2, 1 + 4 = 5, C1 ) (D1, 1 + 4 = 5, C1 )

( B1, 1 + 6 = 7, C1 )
 ( C1, 0 + 5 = 5, null )

9/9/02 38

Example

 Step 3: Expand C2
 ( C3, 2 + 3 = 5, C2 ) ( D1, 1 + 4 = 5, C1 )

( D2, 2 + 3 = 5, C2 ) ( B1, 1 + 6 = 7, C1 )

 ( C1, 0 + 5 = 5, null ) (C2, 1 + 4 = 5, C1 )

 Why isn’t C1 added to the OpenList?

 C1 is found in the ClosedList with a lower
g value

9/9/02 39

Example

 Step 4: Expand C3
 ( D3, 3 + 2 = 5, C3 ) ( D1, 1 + 4 = 5, C1 )

( D2, 2 + 3 = 5, C2 ) ( B1, 1 + 6 = 7, C1 )
( B3, 3 + 4 = 7, C3 )

 ( C1, 0 + 5 = 5, null ) (C2, 1 + 4 = 5, C1 )
( C3, 2 + 3 = 5, C2 )

9/9/02 40

Sorting Open List

 Sort by increasing f value, but what
about ties?

 Break ties based on g value
 Larger g values mean more accurate

information and less heuristic
approximation



11

9/9/02 41

A*

 Does not have the iterative overhead of
IDA*

 Only expands nodes that are shown to
be relevant

 Needs to maintain a history of all nodes
previously searched

 In practice, faster than IDA*, but A* runs
out of memory very quickly!

9/9/02 42

IDA* versus A*

 For many types of problems, IDA* flounders
in the cost of the re-searches, causing many
to prefer A* over IDA*
 Why?

 But… IDA* is handicapped with no storage!
 A* uses a closed list -- in effect a perfect cache of

previously seen states
 IDA* uses almost no storage
 IDA* with a transposition table can be competitive

with A*

9/9/02 43

Which to Choose?

 IDA* is guaranteed to work, albeit
possibly more slowly

 A* is more efficient, but can run out of
memory
 Can also run slower because of cache

effects

 The right choice depends on properties
of your application

9/9/02 44

References

[1] R. Korf. “Best-first Iterative-Deepening: An
Optimal Admissible Tree Search”, Artificial
Intelligence, vol. 27, no.1, pp. 97-109, 1985.

[2] P. Hart, N. Nilsson and B. Raphael. “A
Formal Basis for the Heuristic Determination
of Minimum Cost Paths”, IEEE Trans. Syst.
Sci. Cyber., vol. 4, no. 2, pp. 100-107, 1968.


