
1

Pattern Databases

Robert Holte
Computing Science Dept.

University of Alberta
November 4, 2004

What is a Pattern Database ?

• PDB = a heuristic stored as a lookup table
• Invented by Culberson and Schaeffer (1994)

• created by “abstracting” the state space

• Key properties:
– guaranteed to be a lower bound
– guaranteed to be “consistent”
– the bigger the better (as a general rule)

Success Story #1
Joe Culberson & Jonathan Schaeffer (1994).

– 15-puzzle (1013 states).
– 2 hand-crafted patterns (“fringe” (FR) and “corner” (CO))

– Each PDB contains >500 million entries
– Used symmetries to compress and enhance the use of

the PDBs
– Used in conjunction with Manhattan Distance (MD)

Reduction in size of search tree:
– MD = 346 * max(MD,FR)
– MD = 437 * max(MD,CO)
– MD = 1038 * max(MD, dovetail(FR,CO)) + tricks

Success Story #2
Rich Korf (1997)

– Rubik’s Cube (1019 states).

– 3 hand-crafted patterns, all used together (max)
– Each PDB contains over 42 million entries
– took 1 hour to build all the PDBs

Results:
– First time random instances had been solved optimally
– Hardest (solution length 18) took 17 days
– Best known MD-like heuristic would have taken a

century

2

Example: 8-puzzle

876

543

21

Domain = blank 1 2 3 4 5 6 7 8

181,440 states

“Patterns”
created by domain abstraction

876

543

21

This abstraction
produces
9 patterns

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

corresponding patternoriginal state

Pattern Space
goal pattern

Pattern Database

Pattern

Distance to goal 0 1 1 2 2 2

Pattern

Distance to goal 3 3 4

3

Calculating h(s)

Given a state in the original problem

Compute the corresponding pattern

Look up the abstract distance-to-goal

276
53
418

2

Domain Abstraction

876

543

21

876

30,240 patternsDomain = blank 1 2 3 4 5 6 7 8
Abstract = blank 6 7 8

Fundamental Questions

How to invent effective heuristics ?

How to use memory to speed up search ?

Create a simplified version of your problem.
Use the exact distances in the simplified version
 as heuristic estimates in the original.

Precompute all distances-to-goal in the simplified
version of the problem and store them in a
lookup table (pattern database).

8-puzzle: A* vs. PDB size

no

de
s

ex
pa

nd
ed

 (
A

*)

pattern database size (# of abstract states)

4

Automatic Creation of
Domain Abstractions

• Easy to enumerate all possible domain
abstractions

• They form a lattice, e.g.

is “more abstract” than the domain abstraction
above

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Efficiency

Time for the preprocessing to create a PDB
is usually negligible compared to the time
to solve one problem-instance with no
heuristic.

Memory is the limiting factor.

Making the Best Use of Memory

• Compress an individual Pattern Database
– Lossless compression
– Lossy compression must maintain admissibility
– Allows you to

• use a PDB bigger than will fit in memory
• use multiple PDBs instead of just one

• Merge two PDBs into one the same size
– Culberson & Schaeffer’s dovetailing
– Jonathan’s new idea

Compression Results

• 16-disk 4-peg TOH, PDB based on 14 disks
– No compression: 256Megs memory, 14.3 secs
– lossless compression: 256k memory, 23.8 secs
– Lossy compression: 96Megs, 15.9 secs

• 15-puzzle, additive PDB triple (7-7-1)
– No compression: 537Megs memory, 0.069 secs
– Lossy compression, two PDB triples
 537Megs memory, 0.021 secs

5

Max’ing Multiple Heuristics

• Given heuristics h1 and h2 define
 h(s) = max (h1(s), h2(s))

• Preserves key properties:
– lower bound
– consistency

Question

• Given a fixed amount of memory, M,
which gives the best heuristic ?

– 1 pattern database (PDB) of size M
– max’ing 2 PDBs of size M/2
– max’ing 3 PDBs of size M/3
– etc.

1 large pattern database

s
ϕ

h(s)

2 half-size pattern databases

s
ϕ2

ϕ1

h2(s)h1(s)

max

6

Many small pattern databases

s
ϕn

ϕ1

max

…

hn(s)h1(s) …

 Rubik’s Cube

 5,329,8292 53,222,400

Nodes Generated

61,465,5411106,444,800

 3,096,9194 26,611,200
 2,639,9696 17,740,800
 2,654,6898 13,305,600

nPDB Size

 Summary

 23.286Rubik’s Cube

 2.38515-puzzle (additive)

8

 21+
 9
 9
 10
 10

Best n

 8.599-pancake
 3.76(8,4)-Topspin (3 ops)

 20.89(8,4)-Topspin (8 ops)
185.5(3x4)-puzzle

 1.6 to 25.124-puzzle (additive)

 3.85(3x3)-puzzle
RatioState Space

RATIO =
#nodes generated using one PDB of size M
#nodes generated using n PDBs of size M/n

 Rubik’s Cube CPU Time

1.00
9.87
13.43
14.31
12.09

Time Ratio

 1.00
 11.53
 19.85
 23.28
 23.15

Nodes Ratio

6
4
2

1

8
#PDBs

time/node is 1.67x higher using six PDBs

7

Techniques for
Reducing the Overhead of

Multiple PDB lookup

Early Stopping

IDA* depth bound = 7
g(s) = 3
⇒ Stop doing PDB lookups as
 soon as h > 4 is found.

Might result in extra IDA* iterations

PDB1(s) = 5 ⇒ next bound is 8
PDB2(s) = 7 ⇒ next bound is 10

Consistency-based Bounding

PDB1(A) = 1
PDB2(A) = 7

A

B
Because of consistency:

PDB1(B) ≤ 2
PDB2(B) ≥ 6

⇒ No need to consult PDB1

Experimental Results

• 15-puzzle, five additive PDBs (7-7-1)
– Naïve: 0.15 secs
– Early Stopping: 0.10 secs

• Rubik’s Cube, six non-additive PDBs
– Naïve: 27.125 secs
– Early Stopping: 8.955 secs
– Early Stopping and Bounding: 8.836 secs

8

Why Does Max’ing
Speed Up Search ?

Static Distribution
of Heuristic Values

max of 5 small PDBs.

1 large PDB.
2.38x nodes generated

Runtime Distribution
of Heuristic Values Saving Space

• If h1 and h2 are stored as pattern
databases, max(h1(s),h2(s)) requires
twice as much space as just one of them.

• How can we get the benefits of max
without using any extra space ?
– “dovetail” two PDBs
– use smaller PDBs to define max

9

• Given 2 PDBs for a state space construct
a hybrid containing some entries from
each of them, so that the total number of
entries is the same as in one of the
originals.

• The hope: almost as good as max, but
only half the memory.

Dovetailing Dovetailing based on the blank
use

PDB
1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

1

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

use
PDB

2

Any “colouring” is possible

use
?

use
?use

?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

use
?

• Dovetailing requires a rule that maps each
state, s, to one of the PDBs. Use that PDB
to compute h(s).

• Any rule will work, but they won’t all give
the same performance.

• Intuitively, strict alternation between PDBs
expected to be almost as good as max.

Dovetailing – selection rule

10

Dovetailing compared to Max’ing

4 max failures
17 dovetail failures

Experimental Results

• Culberson & Schaeffer 1994:
– Dovetailing two PDBs reduced #nodes

generated by a factor of 1.5 compared to
using either PDB alone

• Holte & Newton (unpublished):
– Dovetailing halved #nodes generated on

average

Example of Max Failing

8,13216,3125,581TOTAL
8201,8391,19720

2,4355,480 19
2,0563,6222,67918
9491,994 17
8161,3481,04516
400801 15
31453044014
124269 13
96188 14212
53110 11
4378 5910
1636 9
101719 8

max(h1,h2)h2h1Depth Bound How to generalize
 Dovetailing

 to any abstractions of any
space

11

Multiple Lookups in One
Pattern Database

Example

743

816

52

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank 1

goalstate

876

543

21

distance ?

Standard PDB lookup

1

abstract goalabstract state

1

4

Second lookup, same PDB

1

abstract goalabstract state

1

6

12

Relevance ?

1 1
6

Why is this lookup

relevant to the original state ?

743
816
52

Two Key Properties

1 1
6

(1) Distances are Symmetric

(2) Distances are tile-independent
2 2

6

Experimental Results

• 16-disk, 4-peg TOH, PDB of 14 disks
– Normal: 72.61 secs
– Only the second lookup: 3.31 secs
– Both lookups: 1.61 secs

• 15-puzzle, additive PDB (8-7)
– Normal: 0.034 secs
– Only the second lookup: 0.076 secs
– Both lookups: 0.022 secs

Additive Pattern Databases

13

Adding instead of Max’ing

• Under some circumstances it is possible
to add the values from two PDBs instead
of just max’ing them and still have an
admissible heuristic.

• This is advantageous because
 h1(s) + h2(s) ≥ max(h1(s), h2(s))

Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance
looks at each tile individually, counts how
many moves it is away from its goal
position, and adds up these numbers.

32

1

21

3

goal state s

MD(s) = 2 + 1 + 2 = 5

M.D. as Additive PDBs (1)

1

1
 ϕ1(s)

ϕ1(x)= x if x = 1
blank otherwise

 ϕ1(goal)
MD(s) = PDB1[ϕ1(s)]
 + PDB2[ϕ2(s)]
 + PDB3[ϕ3(s)]

PDB1[ϕ1(s)] = 2

In General…

Partition the tiles in groups, G1, G2, … Gk

 x if x ∈ Gi

blank otherwise
ϕi(x)=

14

Korf & Felner’s Method

Partition the tiles in groups, G1, G2, … Gk

ϕi(x)=
 x if x ∈ Gi
blank if x = blank
 otherwise

Moves of cost zero

What’s the Difference ?

24
1

24
1

4
21

24
1

24
1

the blank cannot
reach this position
without disturbing

tile 1 or tile 2.

Hierarchical Search

On-demand distance calculation

• To build a PDB you must calculate all
abstract distances-to-goal.

• Only a tiny fraction of them are needed
to solve any individual problem.

• If you only intend to use the PDB to
solve a few problems, calculate PDB
entries only as you need them.

Hierarchical Search

15

Calculate Distance by
Searching at the Abstract Level

Replace this line:
 h(s) = PDB[φ(s)]

by
 h(s) = search(φ(s), φ(goal))

(recursive) call to a search algorithm to compute
abstract distance to goal for state s

Hierarchical Search

Original space, S

Abstract space, φ1(S)

φ1

Abstract space, φ2(φ1(S))

φ2

15-puzzle Results (1)

• Felner’s 7-7-1 additive PDB:
– takes 80 minutes to build (4,800 secs)
– Solves problems in 0.058 secs (on average)

• Felner’s 8-7 additive PDB
– Takes 7 hours to build (25,200 secs)
– Solves problems in 0.028 secs

15-puzzle Results (2)

Hierarchical IDA*, 1 Gigabyte limit
– Using the same abstraction for all problems,

solving takes 242 secs (on average), or 207
secs if the cache is not cleared between
problems

– Max’ing over Corner & Fringe abstractions,
solving takes 150 secs (on average)

– Using a customized abstraction for each
problem, solving takes 74 secs (on average)

16

Thesis topics abound ! General Dovetailing

 A Partial-Order on
Domain Abstractions

• Easy to enumerate all possible domain
abstractions

• and to define a partial-order on them, e.g.

is “more abstract” than the domain abstraction
above.

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Lattice of domain abstractions

17

The “LCA” of 2 Abstractions

 LCA = least-abstract common abstraction

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

blank 1 2 3 4 5 6 7 8
blank

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

General Dovetailing

• Given PDB1 and PDB2 defined by ϕ1 and ϕ2
• Find a common abstraction ϕ of ϕ1 and ϕ2

• Because it is a common abstraction there
exist ϕ1 and ϕ2 such that ϕ1 ϕ1 = ϕ2 ϕ2 = ϕ

• For every pattern, p, defined by ϕ, set
SELECT[p] = ϕ1 or ϕ2

• Keep every entry (pk,h) from PDBi for which
SELECT[ϕi(pk)]=i.

• Given state s, lookup SELECT[ϕ(s)](s)

