
1

1

3. Adversary Search

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Definitions - Nodes

 Root node
 State (position) which is to be searched

 Terminal node
 A node which has a fixed application-dependent

value (e.g., win, loss, draw)

 Leaf node
 A node which has been assigned a heuristic value
 A heuristic is an “educated guess” to a

approximate a terminal value

 Interior node
 Nodes whose value is a function of the successors

9/9/02 3

Definitions - Tree

 Search depth
 Number of state transitions (moves) from the root

of the search to the current state (position)

 Branching factor
 Average number of successor nodes (moves)

 Tree/DAG
 Most search trees are really DAGS

 A node can have 1 parent (tree) or possibly more
than 1 (DAG)

9/9/02 4

Adversary Search

 Two (or more) opponents, each trying to
maximize their expectations

 Player 1 is called Max
 Obtain the maximum result
 Minimize that of the opponent

 Player 2 is called Min
 Obtain the minimum result
 Maximize that of the opponent

2

9/9/02 5

Minimax Search

7 8 9 3

5 2 3 9

8 4 1 7

Maximize

Minimize

Maximize8 9 5 9 8 7

8 5 7

8

9/9/02 6

Minimax Search
Call: result = MiniMax(s, depth, MAX);

int MiniMax(state s, int depth, int type) {
if(terminal node || depth == 0) return(Evaluate(s));
if(type == MAX) {

for(score = -∞, child = 1; child <= NumbSuccessors(s); child++) {
 value = MiniMax(Successor(s, child), depth-1, MIN);
 if(value > score) score = value;
}

}
else {

for(score = +∞, child = 1; child <= NumbSuccessors(s); child++) {
 value = MiniMax(Successor(s, child), depth-1, MAX);
 if(value < score) score = value;
}

}
return(score);

}

9/9/02 7

Minimax Analysis

 Assume a fixed branching factor and a
fixed depth

 Search complexity is bd

 Can we do better?

9/9/02 8

Observation

 Some nodes in the search can be
proven to be irrelevent to the outcome
of the search

≥ 5

≤ 3

3
X

5
Cut-off!

3

9/9/02 9

Alpha-Beta Algorithm

7 8 9 3

5 2 3 9

8 4 1 7

Maximize

Minimize

Maximize8 9 5 8

8 5 8

8

= 8
≥ 7

≤ 8

≥ 9

X

= 8

≥ 8

≥ 5
= 5

≤ 5

X ≥ 8
= 8

≤ 8

X

= 8

9/9/02 10

Alpha-Beta Algorithm

 Maintain two bounds:
 Alpha (α): a lower bound on best that the

player to move can achive
 Beta (β): an upper bound on what the

opponent can achieve

 Search, maintaining α and β

 Whenever α ≥ β, further search at this
node is irrelevent

9/9/02 11

NegaMax Formulation

 Minimax formulation was awkward
because the search alternated between
MINs and MAXs

 The NegaMax formulation allows only a
MAX to be used [1]

 When descending, negate and switch
bounds

 When ascending, negate return value

9/9/02 12

Alpha-Beta Algorithm

Call: result = AlphaBeta(s, depth, -∞, +∞);

int AlphaBeta(state s, int depth, int alpha, int beta) {
if(terminal node || depth == 0) return(Evaluate(s));
score = -∞;
for(child = 1; child <= NumbSuccessors(s); child++) {

value = -AlphaBeta(Successor(s, child),
depth-1, -beta, -alpha);

if(value > score) score = value;
if(score > alpha) alpha = score;
if(score >= beta) break;

}
return(score);

}

4

9/9/02 13

Alpha-Beta Example

 << Done on white board >>

 Note the principal variation
 Path from root to leaf node of best play by

each side

 Note the values returned
 Regular: with respect to the root player
 NegaMax: with respect to whose “turn” it is

9/9/02 14

Warning!

 Alpha-beta is only a few lines of
pseudo-code, but it is tricky!

 A bug can remain hidden for a long time

 You may only see a problem when a
bad value min’s and max’s its way to
the root, and the probability of this
happening can be small!

9/9/02 15

Analysis

 What is the best case for Alpha-Beta?

 Consider two case:

≥ 5

≤ 3

3
X

5

≥ 5

≤ 95

9 39
?

9/9/02 16

Successor Ordering

 Alpha-beta’s performance depends on
getting cut-offs as quickly as possible

 At a node where a cut-off is possible,
ideally want to search (one of the) best
move(s) first, and cut-off immediately

5

9/9/02 17

Alpha-Beta Node Types

 Define two node types (6 are possible [2])

 ALL -- all successors of a node must be
considered

 CUT -- a cut-off can occur; one or more
successors or a node must be
considered

9/9/02 18

Minimal Alpha-beta Tree

 But… this requires an oracle!

all

all

cutall cut…

cutall cut…

cut cut…

all

cut cut…

all

cut cut…

9/9/02 19

Alpha-Beta Analysis

 Assume a fixed branching factor and a
fixed depth

 Best case: bd/2 + bd/2 - 1 [1]

 Approximate as bd/2

 Impact?
 Minimax: 109 = 1,000,000,000
 Alpha-beta: 105 + 104 = 110,000

9/9/02 20

Alpha-Beta Analysis

 But… best-case analysis depends on
choosing the best move first at cut
nodes (not always possible)

 The worst case? No cut-offs, and
Alpha-Beta degrades to Minimax

 Exercise: can you construct a tree
where no Alpha-Beta cut-offs occur?

6

9/9/02 21

Isn’t This Good Enough?

 No!

 Ken Thompson showed that search
depth was strongly correlated with
performance in chess [3]

 Searching one move (or one ply)
deeper made a huge difference in
performance

9/9/02 22

Performance! Performance!

 Improve Alpha-Beta to guarantee near
best-case results

 Improve the heuristic evaluation
function to improve the predictive
capabilities of the search

 Use parallelism to increase the search
depth

9/9/02 23

Improvements

 Using storage
 Cycle detection

 Off-line and on-line computed values

 Exploratory searches

 Successor ordering

 Playing with the search windows

 Playing with the search depth

9/9/02 24

References
[1] D. Knuth and R. Moore. “An Analysis of Alpha-Beta

Pruning”, Artificial Intelligence, vol. 6, no. 4, pp. 293-
326, 1975.

[2] A. Reinefeld and T.A. Marsland. “A Quantitative
Analysis of Minimax Window Search”, IJCAI, pp. 951-
954, 1987.

[3] K. Thompson. “Computer Chess Strength”,
Advances in Computer Chess 3, M. Clarke (ed.), pp.
55-56, 1982.

