
1

1

3. Adversary Search

Jonathan Schaeffer

jonathan@cs.ualberta.ca

www.cs.ualberta.ca/~jonathan

9/9/02 2

Definitions - Nodes

 Root node
 State (position) which is to be searched

 Terminal node
 A node which has a fixed application-dependent

value (e.g., win, loss, draw)

 Leaf node
 A node which has been assigned a heuristic value
 A heuristic is an “educated guess” to a

approximate a terminal value

 Interior node
 Nodes whose value is a function of the successors
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Definitions - Tree

 Search depth
 Number of state transitions (moves) from the root

of the search to the current state (position)

 Branching factor
 Average number of successor nodes (moves)

 Tree/DAG
 Most search trees are really DAGS

 A node can have 1 parent (tree) or possibly more
than 1 (DAG)
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Adversary Search

 Two (or more) opponents, each trying to
maximize their expectations

 Player 1 is called Max
 Obtain the maximum result
 Minimize that of the opponent

 Player 2 is called Min
 Obtain the minimum result
 Maximize that of the opponent
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Minimax Search
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Minimax Search
Call: result = MiniMax( s, depth, MAX );

int MiniMax( state s, int depth, int type ) {
if( terminal node || depth == 0 ) return( Evaluate( s ) );
if( type == MAX ) {

for( score = -∞, child = 1; child <= NumbSuccessors( s ); child++ ) {
     value = MiniMax( Successor( s, child ), depth-1, MIN );
     if( value > score ) score = value;
}

}
else {

for( score = +∞, child = 1; child <= NumbSuccessors( s ); child++ ) {
     value = MiniMax( Successor( s, child ), depth-1, MAX );
     if( value < score ) score = value;
}

}
return( score );

}
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Minimax Analysis

 Assume a fixed branching factor and a
fixed depth

 Search complexity is bd

 Can we do better?
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Observation

 Some nodes in the search can be
proven to be irrelevent to the outcome
of the search
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Alpha-Beta Algorithm
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Alpha-Beta Algorithm

 Maintain two bounds:
 Alpha (α): a lower bound on best that the

player to move can achive
 Beta (β): an upper bound on what the

opponent can achieve

 Search, maintaining α and β

 Whenever α ≥ β, further search at this
node is irrelevent
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NegaMax Formulation

 Minimax formulation was awkward
because the search alternated between
MINs and MAXs

 The NegaMax formulation allows only a
MAX to be used [1]

 When descending, negate and switch
bounds

 When ascending, negate return value
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Alpha-Beta Algorithm

Call: result = AlphaBeta( s, depth, -∞, +∞);

int AlphaBeta( state s, int depth, int alpha, int beta ) {
if( terminal node || depth == 0 ) return( Evaluate( s ) ); 
score = -∞;
for( child = 1; child <= NumbSuccessors( s ); child++ ) {

value = -AlphaBeta( Successor( s, child ),
depth-1, -beta, -alpha );

if( value > score ) score = value;
if( score > alpha ) alpha = score;
if( score >= beta ) break;

}
return( score );

}
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Alpha-Beta Example

 << Done on white board >>

 Note the principal variation
 Path from root to leaf node of best play by

each side

 Note the values returned
 Regular: with respect to the root player
 NegaMax: with respect to whose “turn” it is
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Warning!

 Alpha-beta is only a few lines of
pseudo-code, but it is tricky!

 A bug can remain hidden for a long time

 You may only see a problem when a
bad value min’s and max’s its way to
the root, and the probability of this
happening can be small!
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Analysis

 What is the best case for Alpha-Beta?

 Consider two case:
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Successor Ordering

 Alpha-beta’s performance depends on
getting cut-offs as quickly as possible

 At a node where a cut-off is possible,
ideally want to search (one of the) best
move(s) first, and cut-off immediately



5

9/9/02 17

Alpha-Beta Node Types

 Define two node types (6 are possible [2])

 ALL -- all successors of a node must be
considered

 CUT -- a cut-off can occur; one or more
successors or a node must be
considered
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Minimal Alpha-beta Tree

 But… this requires an oracle!

all

all

cutall cut…

cutall cut…

cut cut…

all

cut cut…

all

cut cut…

9/9/02 19

Alpha-Beta Analysis

 Assume a fixed branching factor and a
fixed depth

 Best case: bd/2 + bd/2 - 1 [1]

 Approximate as bd/2

 Impact?
 Minimax: 109 = 1,000,000,000
 Alpha-beta: 105 + 104 =           110,000
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Alpha-Beta Analysis

 But… best-case analysis depends on
choosing the best move first at cut
nodes (not always possible)

 The worst case?  No cut-offs, and
Alpha-Beta degrades to Minimax

 Exercise: can you construct a tree
where no Alpha-Beta cut-offs occur?
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Isn’t This Good Enough?

 No!

 Ken Thompson showed that search
depth was strongly correlated with
performance in chess [3]

 Searching one move (or one ply)
deeper made a huge difference in
performance
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Performance! Performance!

 Improve Alpha-Beta to guarantee near
best-case results

 Improve the heuristic evaluation
function to improve the predictive
capabilities of the search

 Use parallelism to increase the search
depth
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Improvements

 Using storage
 Cycle detection

 Off-line and on-line computed values

 Exploratory searches

 Successor ordering

 Playing with the search windows

 Playing with the search depth
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