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Abstract

This paper describes the high-performance alpha-beta-based search engine
used in CHINOOK, the World Man-Machine Checkers Champion. Previous
experience in designing a chess program was important in the initial design
of the program. As it evolved, however, numerous application-specific
modifications had to be made for the algorithms to excel at searching
checkers trees. This paper describes the experience of transferring the
technology used to develop a chess program to the creation of a high-
performance checkers program.

1. Introduction

Developing high-performance game-playing programs has been a part of artificial
intelligence research since the dawn of computers. Since the mid-1960s, this effort has
been largely focused on developing a chess program capable of defeating the human world
champion. In 1997, this long sought-after triumph was achieved by the DEEP BLUE team
who edged out World Chess Champion Garry Kasparov in an exhibition match. Although
it is not yet obvious whether the best chess program (DEEP BLUE) is in fact a better player
than the human World Champion, in many people’s mind this is of no relevance;
Kasparov lost and a 50-year quest has come to an end. This was a triumph of engineering
and artificial intelligence research, and a milestone in the history of computing.

Early on in the development of chess-playing programs, the power of the alpha-beta
algorithm was discovered. This simple enhancement to the minimax algorithm allowed one
to potentially reduce the search effort to the square root of the minimax search tree
(Knuth and Moore, 1975). When alpha-beta was enhanced with transposition tables
(Greenblatt, Eastlake, and Crocker, 1967; Slate and Atkin, 1977), it was possible to
search fewer nodes than there are in the so-called minimal tree! With the discovery of a
strong correlation between the search tree size and program performance (Thompson,
1982), much of the computer-chess research effort shifted to increasing the number of
chess positions examined per second.
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Over the last two decades, a variety of activities have come under the banner of
“computer-chess research.” This work can be broken down into the following categories:
1. Computers being used to do research into the mysteries of chess. Many new

secrets of the game have been uncovered (for example, the impressive endgame
database results). Of course, this increases our understanding of chess, but not of
computer science.

2. Computer architecture engineering to build a high-performance (chess positions
examined per second) machine. A good example is the building of special-purpose
VLSI chips for chess (for example, Hsu, 1999). Although building special-purpose
processors is an important topic, it is not clear whether this particular design has
any relevance beyond chess.

3. Massively parallel search algorithms. The algorithms have been applied to parallel
alpha-beta search (for example: Feldmann, 1993), but there is some hope that
these ideas will transfer well to other non-game-playing search-based applications.

4. Sequential search algorithms. This has been the area of greatest activity, resulting
in a plethora of alpha-beta enhancements that can significantly reduce the size of
the search trees. Some of these ideas have been successfully applied to single-
agent search (for example: Korf, 1985; Junghanns and Schaeffer, 2001).

5. Evaluation functions. Clearly, techniques for acquiring expert knowledge and
integrating it into an evaluation function are important topics for artificial
intelligence research. Unfortunately, this area has been largely ignored. Only
recently have we seen some successful attempts at using chess as a testbed for
main-stream artificial intelligence research, such as learning (Baxter, Trigell, and
Weaver, 1998).

6. Chess as a testbed for Al research. Chess is an ideal domain for exploring many
issues in artificial intelligence, such as tutoring systems, knowledge representation,
learning and knowledge acquisition.

Sadly, much of the above research has been focused on chess-specific aspects, and not
general artificial-intelligence research (Donskoy and Schaeffer, 1990). The research has
concentrated on efficient search algorithms (because that is largely understood) and
ignored the knowledge engineering aspects (because that is poorly understood). Hence the
legacy of the enormous effort that has gone into computer chess may be efficient alpha-
beta algorithms, and little else. Although it is easy to criticize some of the chess-related
research, one must always keep in mind that it lead to the DEEP BLUE victory. Perhaps the
greatest lesson learned from the DEEP BLUE experience is how expensive it is — in man-
years, dollars and commitment — to build machines capable of competing with humans.

Now, more than ever, the question has to be asked as to the relevance of the
computer-chess research. Were the research results applicable only to chess? If so, then
the Deep Blue result has no long-term impact. At the very least, the techniques used to
develop a high-performance chess program should be applicable to other games.

This paper describes the search algorithm used in the checkers-playing program
CHINOOK (8x8 draughts). Having previously developed a chess program (PHOENIX:
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Schaeffer, 1986), the obvious question was how easily the research done for chess could
be transferred to checkers, a game with many similar properties. This paper describes
how the technology transfer of search and knowledge went from one game-playing
program to another. Many of the techniques are only briefly described. Detailed
discussions are given for some of the interesting techniques that are either unique to
CHINOOK or were pioneered in the CHINOOK project.

2. Background

The CHINOOK project began in 1989 and within two months we had a program that
was good enough to win the First Computer Olympiad (Levy and Beal, 1989). One year
later, the program was allowed to compete in the U.S. Championship, the biennial event
used to determine the next challenger for the human world championship. Our agreement
with the organizers covered the possibility of CHINOOK winning prize money and
trophies, but there was no mention of what would happen should the program win the
right to play for the world championship. In the seventh round of this event, CHINOOK
became the first program to play a World Champion in a non-exhibition event, drawing
four games with the champion, Dr. Marion Tinsley. The tournament was won by
Tinsley, with an undefeated CHINOOK coming in second (winning five and drawing three
four-game matches). With this result, CHINOOK became the first program in history to earn
the right to play for a human championship.

Marion Tinsley was a remarkable man. He first won the world checkers
championship in 1952, but retired in 1958. He returned to checkers in 1970, winning the
right to challenge for the world championship, only to retire again when the World
Champion (Walter Hellman) became ill. Tinsley returned in 1975 and won the world
championship, which he held until he voluntarily relinquished it in 1991.

From 1950 to 1992, a period of 42 years, Tinsley amassed the most incredible record
achieved in any competitive game or sport. Over that period, consisting of over 1,000
tournament and match games, Tinsley lost the amazing total of only 3 games. He was
justifiably called the “unbeatable Tinsley”. He was as close to perfection in checkers as
was humanly possible. The checkers federations did not like the idea of a computer
playing for their championship and they refused to sanction the CHINOOK-Tinsley title
match. In protest, Tinsley resigned as Champion in 1991, and then immediately signed an
agreement to play CHINOOK. The checkers federations were thus forced to compromise, so
they created a new title, the World Man-Machine Championship, pitting the best human
(Tinsley) against the best computer program (CHINOOK). The first Man-Machine
Championship was held in London in August 1992, with Tinsley earning a hard fought
victory by a score of four wins to two in the 40-game match. These were the most
Tinsley losses in any event since 1950.

The second World Man-Machine Championship was played in Boston in August
1994. After six games (all draws), Tinsley resigned the match and the title to CHINOOK
citing health concerns. CHINOOK subsequently defended the title twice against
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Grandmaster Don Lafferty. Marion Tinsley died on April 3, 1995, having been diagnosed
with cancer only a week after the aborted 1994 match.

CHINOOK has not lost a game since 1994, and has defeated all comers. Its checkers
rating is almost 200 points higher than that of the second-best player in the world (Ron
King, the human World Champion). With nothing left to prove, the program was retired
in 1997. The Guinness Book of World Records recognizes CHINOOK as the first computer
World Champion.

The CHINOOK story is recounted in the book One Jump Ahead (Schaeffer, 1997).

3. Characterizing the Checkers Search Space

Chess and checkers are remarkably similar games. They both have identifiable
openings, middle games and endgames. Both require subtle positional play with long-
range strategies, yet require razor-sharp tactical awareness. Although checkers is
“simpler” than chess in some sense (fewer piece types, 2 versus 6, and less playable
squares on the board, 32 versus 64), in no way does this diminish the complexity of the
game from the human’s point of view. There are roughly 5x10?° possible piece positions,
a vast search space that is difficult to characterize and understand. '

The average branching factor in the checkers trees built by CHINOOK is a surprisingly
low 2.8: 1.1 in capture positions and 7.8 in non-capture positions (Lu, 1993). In the
search trees generated by CHINOOK, capture positions seem to out-number non-capture
positions by a ratio of 3 to 1.

From the search perspective, the major difference between chess and checkers is the
forced capture rule in checkers: you must play a capture move over a non-capture move.
The consequence is that the number of pieces on the board can quickly reduce. Endgames
are more quickly reached than in chess.

An important aspect of checkers is the notion of zugzwang, being forced to move
when a pass would be much better. In chess, zugzwang positions rarely occur and usually
only in simplified endgames. In checkers, pieces cannot move backwards (unless they
have been promoted to a king). Hence you have two armies that collide; if one side runs
out of safe moves, they lose. Thus, zugzwang is an important part of the game, and
occurs in virtually every search undertaken by CHINOOK. This has implications for the
choice of search extensions/reductions.

4. Searching for the Best Move

CHINOOK uses an alpha-beta-based search, augmented with an assortment of well-
known enhancements that have been effective in chess programs.

' Of the total possible positions, because of the forced-capture rule in checkers, we have estimated that
there are roughly 10" positions that are reachable from the start of the game (Schaeffer and Lake, 1996).
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4.1 Alpha-Beta

CHINOOK uses the NegaScout variant (Reinefeld, 1983; Reinefeld, 1989) of the alpha-
beta search algorithm. Instead of using a full window (alpha=- |, beta=+ ) the program
uses aspiration search (Baudet, 1978; Finkel, Fishburn, and Lawless, 1980), to narrow the
search to a likely range of + 35 points from the expected value of the search (a checker is
worth 100 points). The basic search routine’s structure is very similar to that used in
Phoenix.

A detailed analysis of the efficiency of CHINOOK’s search algorithms can be found in
(Plaat, 1996). CHINOOK does not use MTD(f) (Plaat et al., 1995; Plaat et al., 1996b; Plaat,
1996) only because the invention of this algorithm overlapped with the end of CHINOOK’s
tournament career. Experiments show that for fixed-depth searches, a further 5 percent
reduction in search effort can be saved in CHINOOK when using this algorithm.

4.2 Iterative Deepening

CHINOOK uses iterative deepening (Slate and Atkin, 1977), iterating by two ply at a
time. The cost of extending the search an additional single ply (with search extensions) is
roughly a factor of two. Hence, iterating by two ply means that the cost of an iteration is
comparable to the cost of a single-ply chess iteration. Conveniently, this allowed the time
control code from Phoenix to be reused in CHINOOK virtually without change.?

Before starting the iterative search, the program does a three-ply alpha-beta search
with a full window (alpha = - |, beta =+ ) to get a first impression of how good/bad
each move is. The result of this search might show that one move appears (at least to
three ply) to be significantly better than all the alternatives (35 points). If this is the case,
the iterative deepening search uses modified search windows that allow the program to
know if the best move is still significantly better than all other moves. If this “obvious”
best move retains its status throughout all iterations, the program will cancel the last
iteration in an attempt to play the “obvious” move quickly (a time saving matter, but also
an important issue in man-machine play; humans do not like to be kept waiting for
obvious moves).

The regular search starts at five ply and iterates two ply at a time. The decision to
iterate on odd plies was deliberate, because the program tends to be more optimistic (i.e.,
aggressive) when the leaf node is an odd number of ply from the root.

Most chess programs iterate one ply at a time (Bebe was a notable exception). Simple
math dictates that with a small branching factor, iterating by more than one ply makes
sense. Assume for simplicity that the average branching factor is 4, and that a perfect
alpha-beta search reduces this average to the ideal 4 = 2. The cost of searching d ply will
be O(2%). Iterative deepening one ply at a time will have to incur the costs of the previous
iterations:

iterative deepening overhead = 3 2! + 22+ 23 + 24 + ... + 241 =241,

? Unfortunately, this code also included a bug which cost the program the decisive game in a match with
Grandmaster Don Lafferty in 1991. The bug had been present in the code for several years without
appearing in any of PHOENIX’s games.
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Hence, the cost of iterating is equal to the cost of the last ply. In other words, roughly 50
percent of the search effort is iterative deepening overhead. If, instead, you iterate 2 ply
at a time, then the overhead of iterative deepening reduces to only 25 percent of the
search. At least in the case of CHINOOK, this represents a significant savings.

One CHINOOK innovation in the use of iterative deepening is the idea of restarting the
search on a so-called “fail low.” CHINOOK’s aspiration search uses a search window that is
+35 points from the result of the previous iteration. Occasionally, the result of the search
falls outside the window. When the search score exceeds the window’s upper bound,
good things are happening so there is no need to be concerned. When the search result
fails to meet the lower bound, then a critical situation has arisen. The program’s
expectations for its “best” move have gone seriously awry. The program does not have a
good assessment of this move, nor any idea whether it is still the best move.

The normal approach in this situation is to continue searching this move until its true
score can be found, and then search the remaining moves looking for something better.
However, this can be time consuming and there is a real danger that the program will be
forced to move because of time constraints before properly resolving the situation.

The CHINOOK solution is to restart the search at ply five on a fail low. With a
transposition table seeded with the results of the previous work, very quickly new moves
will come to the fore. The previous best move has its low score from the previous search,
and the other moves will have a score from a previous iteration.

Experience with this enhancement in CHINOOK is limited, since the program is good
enough that its searches rarely fail low (except at shallow search depths). In the period
1994 to 1996 (ending with CHINOOK’s retirement), CHINOOK played 228 games against
Grandmasters and Masters. In these games, over a total of 2,249 searches (excluding book
moves and forced moves), there were 22 non-trivial fail-low search results (Schaeffer,
2000):

8 A positive score for the program (advantageous position) was lower, but there
was no change in the choice of move played.

7 A positive score for the program was lowered, resulting in a better move being
chosen.

1 Lost position — the result of the search did not matter.

2 The score dropped to a bad negative score, but the re-search failed to change the

move choice. Both games ended up being drawn,

4 The score dropped to a bad negative score (the program will have a bad or losing
position if the move being searched is made). The fail-low enhancement allowed
CHINOOK to find a significantly better move.

The last category is the critical one. In each case the correct move was found within one
second (at search depth 5 of the restarted search) and its correctness verified by the rest
of the search. The quick result is a consequence of the lower score of the formerly best
move; the second best score now comes to the forefront. Had CHINOOK wasted its time re-
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searching the previously “best” move, in at least two of the cases the program may have
moved into a lost position had the search time expired before the problem could be
properly resolved.

4.3 Transposition Table

CHINOOK uses a two-level transposition table (as described in (Breuker, Uiterwijk and
van den Herik, 1996; Breuker 1998)), essentially the same code as used in Phoenix. Each
entry contains information on two positions: the first is for the position with the greatest
search depth that hashes to this location; the second holds the most recent. In effect, the
first entry holds the data of greatest accuracy, while the second entry acts as a temporal
cache. Experiments show that this table structure reduces the search tree size by 5 to 10
percent (a comparable result was observed in PHOENIX).

Each table entry contains the checkers position. This is represented as three 32-bit
vectors (white piece locations, black piece locations, king locations). In contrast, chess
programs map a chess position to a sufficiently large random number (typically 64 bits).
The view is that the time and storage cost of saving an entire position is too expensive. A
checkers position entry requires 16 bytes, 12 for the position and 4 for information such
as the position score, search depth, bound information (upper, lower, exact).

Enhanced Transposition table Cutoffs (ETC) were pioneered in CHINOOK. Consider a
cutoff node N, with move B causing the cut-off, as in Figure 1. In traditional
implementations of alpha-beta with transposition tables, all subsequent searches at this
node will consider only move B, as long as it continues to cause a cutoff. However, what
if move C is legal at node N and it happens to transpose into another part of the search
tree. If C is also capable of causing a cutoff at N, then the program should choose the
move that causes the cutoff with the least amount of search effort.

ETC attempts to maximize the use of information available in the transposition table
(Plaat et al., 1996a; Plaat, 1996). The usual alpha-beta implementation with transposition
tables always takes the transposition table move as the “best” move to play in a position.
However, search information gathered from elsewhere in the tree may affect this
information. If the program blindly plays the same move in the same position,
opportunities for reduced search effort may be missed. In particular, new search results
may be available that suggest a cheaper way of causing a cutoff.

ETC is easily added to an alpha-beta search program. Before searching the “best”
move, ETC plays each move and looks up the resulting position in the transposition
table. If one of these table lookups returns a score sufficient to cause a cutoff, then further
effort at this node is ended. When implementing ETC, it is important to get two things
right: the search depth (the depth of the children is one less than that of the parent) and
the table result (since it is one ply further in the tree, the score may have to be negated
depending on the alpha-beta variant used). Because of the additional cost at an interior
node, ETC should probably not be done within a ply or two of the leaf nodes.
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Figure 1. The left-most cut-off move may not be the cheapest (Plaat ez al., 1996a).

In Camook, ETC results in search trees with 22 percent fewer nodes (17-ply
searches). With ETC enabled at all nodes in the tree, the reduction in nodes searched is
offset by the increased computation per node. However, the biggest transposition savings
occur near the root of the tree. Hence, ETC was disabled for the last two ply of the
search, slightly reducing their effectiveness but substantially reducing their execution
overhead. Also, note that ETC is even more effective in CHINOOK’s parallel search
algorithm.

ETC has also been implemented in chess, with a 28 percent reduction in search tree
size for 8-ply searches (Plaat ef al., 1996; Plaat, 1996).

As a consequence of the deep searches, it is likely that endgame analysis is hindered
by the Graph-History Interaction (GHI) problem. A search tree is really a directed
acyclic graph, which means that there may be two paths that lead to the same position.
The sequence of moves taken to reach that position may influence the assessment of the
position (as, for example, happens in chess if a three-fold repetition occurs). Hence a
transposition-table entry may reflect a score that is implicitly based on the history of
moves that lead to that position. Blindly retrieving a score from the transposition table
may yield an incorrect assessment if the path sequence was different. Unfortunately,
saving the path history of a move is expensive, both in storage and in reducing the
effectiveness of the transposition table.

There is nothing in CHINOOK to address this problem, mainly because the proposed
solutions in the literature are expensive to implement. A recent algorithm may yield hope
for a practical solution (Breuker, 1998; Breuker et al., 2001).

4.4 Search Extensions

Very early on in the project, it became obvious that humans were capable of searching
to phenomenal depths, much greater than could normally be reached by a computer using
fixed-depth alpha-beta under tournament conditions. For example, in the tenth game of
the 1990 CHINOOK-Tinsley match, on the tenth move of the game, Tinsley revealed that he
could see to the end of the game and that he knew he would win. In that version of
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CHINOOK, it would require a search of over 65 ply to see the forced loss (Schaeffer, 1997).
It is unlikely that Tinsley actually performed a search that deep; it is more probable that
his profound understanding of the game allowed him to use a relatively shallow search to
reach a position that he knew was winning. Clearly, to compete with a player of
Tinsley’s caliber, CHINOOK needed to overcome this problem. This can be done by
appropriate choices of positions for which the search can be extended (or reduced).

Although there is strong documented evidence that appropriately applied search
extensions can improve the quality of the search result for the effort expended, most
designers of high-performance game-playing programs are very careful about what
extensions they use and the context in which they are applied. Search extensions are very
difficult to evaluate. The usual method is to perform self-play simulations, pitting the
program with a search extension modification against one without. Any conclusions
drawn from this experiments have to be seen in the context of similar opponents. Human
players may have a different playing style, leading to lines of play that are not seen in
self-play games.

CHINOOK contains several search extensions that, if the results of self-play experiments
are to be believed, should not be in the program. These extensions are necessary to avoid
problems that seem to occur only in play against humans. For example, some types of
positional sacrifices rarely occur in CHINOOK’s self-play games, but are a favorite strategy
of Tinsley’s. Extending the search under these circumstances appears to be wasted effort,
as judged by self-play, but is critical in human play (and helped CHINOOK to one of its
victories over Tinsley in 1992).

Some of the search extensions used in CHINOOK are as follows:

» Since capture moves are forced, CHINOOK will not evaluate a position with a capture
move pending. Hence capture moves are played out until a non-capture position is
reached for evaluation.

» At anon-capture leaf node, a quick check is done to see if the opponent is threatening
a capture. If so, depending on the seriousness of the threat, the search may be
extended to resolve this problem.

* Ataleafnode, a check for so-called “two-for-one” tactical shots is done (see Section
5.2).

* A checker that has an unobstructed path to becoming a king is called a runaway
checker (analogous to a passed pawn in chess). Consider a position with a white
checker on al and a black checker on h8. It will take a search of 14 ply (7 moves
aside) for both checkers to crown. A human, on seeing this position will start their
search at that point 14 (or more) plies in the future. Using a traditional alpha-beta
search, a large tree is built before any position is reached with both checkers crowned.
Hence, in this type of position most of the search effort is wasted on what the human
considers to be “obvious” play. To help alleviate this problem, once a runaway
checker has advanced at least 2 squares, subsequent advances cause the search to be
extended one ply.
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*  When a checker becomes a king, this can cause a major change in the evaluation
function. The first king for each side automatically causes a search extension.
Subsequent crownings have their search extended only if the program estimates it will
have a major impact on the evaluation of this line.

* Many of CHINOOK’s search extensions are dynamic in that the conditions for
enabling/disabling an extension can change throughout the search (for example, by
depending on the distance of the position value from alpha or beta). Hence on one
iteration, a line might benefit from an extension, but on a subsequent iteration the
conditions may have changed and the extension might not be valid. This can cause
problems in the search, since a line with an extension in a d-ply search, may not get
the extension in a (d+2)-ply search, meaning that that move has only been explored
one additional ply, even though the nominal search depth has been increased by two.
One solution is never to undo a decision to extend the search, but this can cause a lot
of unnecessary searching. The solution used in CHINOOK is to flag (in the transposition
table) all positions that appear on any principal variation. An extension that occurs on
a principal variation line is always extended in subsequent iterations, regardless of
whether the conditions that enabled it change.

* A special type of forced move is a recapture. Here the opponent has captured a man
and the program has to recapture. Any recapture moves that bring the material balance
of the position close to the search window will be extended.

* The game of checkers has lots of forced moves. The singular extensions algorithm
identifies forced moves and extends them an additional ply (Anantharaman, Campbell,
and Hsu, 1988). An initial implementation of this algorithm turned out to be a
disaster. Forced moves occurred so frequently that the search size increased
dramatically. Eventually, a compromise algorithm was developed. The search would
try to identify forced moves, flag them in the transposition table, and then postpone
the decision to do the extension until the next iteration. By postponing the extension
by an iteration, many “one-time” extensions could be filtered from the search. In
effect, a forced-move extension will only be used if it can be demonstrated on
consecutive iterations that it is needed.

* Unexpected “fail highs” can also cause a search extension. If we have a line of play
that is “near” the principal variation where the search score has unexpectedly
exceeded the search window, then this line may be the first indication of a change in
score for the line. Hence, the search is extended one ply.

Many of these extensions are conditional on the search window. For example, a recapture
move that still leaves the program three checkers short of reaching the search window will
not be extended.

CHINOOK also does search reductions. In chess, recursive null moves have turned out to
be a powerful technique for dramatically reducing search effort (Donninger, 1993).
However, this idea fails to work in checkers because of the presence of zugzwang.
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Material is extremely important in checkers (more so than in chess). Hence, unless you
have sufficient compensation for a lost checker, the game is likely to be over quickly.
When CHINOOK comes across a line that is at least one checker down with insufficient
positional compensation, the remaining search depth is cut by one third. Lines where the
one side is down two or more checkers without compensation are cut by one half. In
effect, this is similar in philosophy to the ProbCut algorithm (Buro, 1995). Extensive
experimentation has failed to turn up any non-pathological cases where this heuristic fails.

It is interesting to note that none of the search reduction algorithms in the literature
appears to generalize beyond one game. Each application seems to require its own
technique for reducing the search. Yet many of the techniques used for extending the
search do seem to generalize.

How effective are the search extensions? This is a difficult question to answer. A self-
play experiment was run where two versions of CHINOOK each had one minute to play
each move in a game. The program using search extensions averaged a nominal 17-ply
search; the program without extensions averaged 23 ply. As well, the program with
extensions defeated the program without extensions by a score of 55-45. This is a
surprising result: search extensions cost an amazing six plies of search! Despite the small
score improvement (as judged by the self-play results), we believe that the extensions are
mandatory. A 17-ply search is deep enough to capture most of the subtleties in a position
(and more than enough to beat all but the elite players in the world). Occasionally you
need a very deep search to handle deep, forcing lines of play. The search extensions are
catered to these type of positions. In practice, this has allowed CHINOOK to produce
principal variations that are well over 30 ply in tournament play.

5. Precomputed Databases

Most of the computing resources used to develop CHINOOK have been invested in
precomputing large databases of information that can be used at runtime. The three
databases are the opening book (used to aid in the selection of the opening moves of a
game), the tactical database (used to help identify tactical problems at leaf nodes in a
search), and the endgame database (storing perfect information about all positions with 8
or fewer pieces on the board).

5.1. Opening Database

Checkers openings are selected randomly before the start of the game. Since many
common lines of play are popular, in the 1930s the “three move ballot” was adopted.
This meant that the first three moves (plies) of the game were randomly selected, and
then two games were played against an opponent (switching colors between games). As a
result, a serious tournament player must study all 144 openings. Some of the openings are
lopsided, with one side starting off with a huge advantage. Failure to know the openings
analysis for the weak-side positions can quickly prove to be fatal.

Most game-playing programs select their initial moves of the game from a
precalculated database of moves. In many games (such as chess and checkers), there is a
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vast literature on the openings, identifying the best moves and the known traps. In chess,
not knowing the openings can result in the selection of a weak move resulting in an
inferior position. In checkers, not knowing the openings can lead to a quick loss.
Numerous traps have been identified in the opening, often requiring searches of 30 ply or
deeper to see the difficulty. It is important to know of these pitfalls, since in many cases
it is difficult to spot them under the real-time constraints of a game.’

Our initial attempt to build an opening book consisted of developing a version of
CHINOOK that learned through self-analysis which moves were good and bad. Copies of the
program would use idle machine cycles to expand dynamically the analysis of key
opening lines. After several months, the effort was discontinued. The learning rate was
too slow and not focused enough to discover the important features of the openings.

In frustration, we resorted to the tried-and-true method — entering lines from opening
books into a database. Over a period of several months, a hand-generated book of over
5,000 positions was created. Each position was verified with a 15-ply (plus extensions)
search. The program’s evaluation of the position was compared with the human’s
assessment and if there was a major discrepancy, that position would be reported for
further examination. A handful of errors were found in the literature.

Unfortunately, our opening book proved insufficient. As the 1992 CHNOOK-Tinsley
match showed, it was relatively easy for Tinsley to get the program out of its book onto
its own resources. This strategy resulted in a key win for Tinsley. The match also
revealed that 15-ply searches were not enough. CHINOOK played a verified book move, and
ended up getting into a difficult position that was eventually lost. Further analysis
showed that at least a 19-ply search was needed to uncover the problem. The conclusion
was that we needed greater coverage of the openings, and each position had to be verified
to a greater depth.

You are not going to beat Marion Tinsley by playing well-known lines of play. Your
only chance is to disable his encyclopedic memory. The solution is to prepare so-called
cooks, prepared analysis that deviates into uncharted waters.* Once you get a player
using their analytic resources, it increases the chance that they will make an error. Against
Tinsley, this is the only hope to play for a win.

In 1994, the three book problems — coverage, verification, and cooks — were
addressed. We acquired a copy of Martin Bryant’s opening book for his commercial
program COLOSSUS. Martin is a strong player, and had been collecting opening analysis for
years. This represented a >5-fold increase in our collection of positions. Each position

* For example, in the 1990 U.S. Championship, CHINOOK lost a game to Karl Albrecht after falling in to
the well-known Dunne’s Win. In this position, the obvious move leads to a loss, which is difficult for a
computer to search deep enough to find given the time constraints. After losing the game, the opening
book was repaired to avoid Dunne’s Win and variations on the same idea. Four months later, in the 1990
CHINOOK-Tinsley match, Tinsley deliberately played for a position where there was a chance for
CHINOOK to fall into a variation of Dunne’s Win. He was sorely disappointed when the program
immediately played the right move and avoided the trap (Schaeffer, 1997).

* Note that “cook” has a different meaning in chess. It usually refers to a composed problem that has a
flawed solution.
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was analyzed to 21 ply looking for errors (although as we began to run out of time before
the 1994 match, some searches were reduced to 19 ply).

The verification process was instrumented to look for cooks. If in a position P, a
move M1 was suggested by the literature, the search would do a wide-window search of
MI (to get its exact value). All other moves would be searched with a narrow window to
see if they returned a score that was comparable to or better than M1. If so, then they
were re-searched with a wider window to get their exact score. If a move M2 has a score
that was “significantly” different from M1, then this position was flagged for additional
processing. In addition, moves that appeared comparable in value to those on the main
lines of play were also flagged for additional processing.

The verification process resulted in hundreds of corrections to the published
literature. Amazingly, the analysis called into question some of the popular main lines of
play. The new moves in these lines are now hidden in CHINOOK’s opening database,
waiting for some unsuspecting opponent to stumble into these lines.

When CHINOOK started out in 1989, it had few book moves and as a result played
many outlandish opening moves (many of which turned out to be good). Unfortunately,
there were enough errors in our opening play that we had to enlarge the opening book and
force the program to play standard book lines. Since one loss against a Tinsley could cost
you a match, by 1994 we had built a huge verified book. This forced the program to play
tried-and-true human moves, but stifled its creativity.

In 1996, with no Tinsley’s looming on the horizon, we turned off using the opening
book when playing the strong side of an opening. The results were immediate; CHINOOK
played more interesting checkers and won more games. Our only regret is that we did not
do this years earlier.

To succeed, CHINOOK required an enormous commitment to opening preparation. In
the past, few chess programmers devoted much attention to the opening, short of
incorporating lots of published human analysis and previously played games in their
databases. Today, most commercial programs make a considerable effort in opening book
preparation, usually by hiring a strong chess player to work on the book. To maximize
one’s chances against the best chess players, opening preparation is essential to success.
The DEeeP BLUE team did extensive work in this area, although it did not appear to reap
benefits in their Kasparov matches.

5.2 Tactical Tables

Most game-playing programs attempt to make sure that heuristic evaluations are only
done for quiescent positions. Usually the criteria used for defining a quiescent position
are based on some simple tactical analysis. In chess, for example, a quiescence search is
done to determine whether the leaf node being evaluated contains any hidden tactics that
might radically change the material balance. In a typical chess program, the quiescent
searches dominate the cost of the search. It is critical to know whether your heuristics for
identifying quiescence are working in practice.
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With the aid of Stef Keetman’s 10x10 checkers program, TRUUS, an analysis tool was
written to identify the positional features of tactical oversights that occurred at leaf
nodes. Basically, if the material balance of a leaf position differed from the result obtained
from a shallow (3-ply) search, then our program could identify the tactical features that
led to the win/loss of material. Several thousand positions were analyzed, and the
resulting patterns (if any) were logged to a file. This data was then manually inspected.
Analysis of the data showed that one type of tactical combination accounted for almost
50 percent of the positions flagged (two additional patterns accounted for another 25
percent of the combinations).

Consider the checkers position in Figure 2. White to move has a “two-for-one”: White
moves d2-c3, forcing b4xd2 and clxe3xg5, winning a checker. For this combination of
moves to work, several conditions must be in place: there must be White pieces on cl and
d2; there must be Black pieces on b4 and f4; and squares c3, €3, and g5 must be empty
(indicated by “---” in the diagram). But that is not enough. Once White wins the piece, we
must also make sure that Black cannot immediately recapture it. For example, there
cannot be a Black piece on h6 (“x“ meaning “not” in the figure); otherwise, Black could
regain the lost piece with h6xf4. Similarly, Black should not have a recapture with f6xh4.
A number of conditions must hold for this capture to be possible (shown by the line from
e7 to h4). The absence of any of those conditions negates the possible recapture. These
conditions include square h4 being empty, square f6 being occupied by a Black piece, and
square e7 being occupied.

Figure 2. The conditions needed for a two-for-one to work (Schaeffer, 1997).

Translating this information into code was difficult, and it was quickly abandoned in
favor of a more brute-force approach: enumerate all possible patterns and pre-compute
the search results. The squares involved in this pattern require consideration of 24 of the
32 squares on the board. By generalizing some of the features, a table of roughly
8,000,000 entries was constructed. Each entry corresponded to a class of positions. A
program set up a representative position from each of these classes and did a search to see
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if the tactical combination was present or not. Each table entry contained one bit
indicating whether for that class of positions it was possible to initiate a two-for-one
combination to win a checker or not. We call this precomputed result a tactics table.’

Before a leaf node is evaluated, the tactics table is consulted. The contents of the
relevant squares are mapped to a unique index in the tactics table. If the table entry bit
indicates a winning combination, the search is extended to play out the combination.
CHINOOK knows it 1s winning at least a checker, however it needs to evaluate the position
at the end of the combination. It is possible that the win of the checker(s) could be
obtained at the expense of positional considerations. Alternatively, having won the
checker, the resulting position may now contain a combination for the opponent to regain
the checker.

The tactics table had some pleasant surprises for us. First, one would predict that
CHINOOK could now solve some checkers problems (find the right move) with a shallower
search depth. On our internal test set, several problems were indeed solved at an earlier
iteration than before. Second, since these two-for-ones extended the search, one would
expect that on average the program would build larger search trees. Surprisingly, the
program ran faster. Why? Without the tactics table, the two-for-one combinations were
occurring so frequently that they caused search inefficiencies in the iterative deepening
(for some nodes, the depth D-1 best move no longer was best at depth D). With the
tactics table, CHINOOK found things earlier in the search and ended up avoiding doing a lot
of wasteful work.

5.3 Endgame Database

Very early on in the CHINOOK project, it was realized that, unlike in chess, endgame
databases would be a powerful search enhancement. In chess, endgames with 5 or fewer
pieces have been constructed, and a few 6-piece endgames (they are prohibitively large to
store). In practice, these databases rarely influence the result of a game since most games
are decided well before a simplified endgame is reached. Checkers, however, has the forced
capture rule. Consequently, many of the pieces can quickly come off the board, resulting
in endgames in major lines of play within the first 20 moves (40 ply) of a game.

Over the span of five years, we undertook an extensive effort to compute all positions
with eight or fewer pieces on the board: 444 billion (4.44x10'") positions (Lake, Lu, and
Schaeffer, 1994). This was an exhausting effort, requiring the coordination of over 200
computers from around the world. For the 1992 Tinsley match, CHINOOK had access to all
the seven-piece databases and a small subset of the eight-piece positions (roughly 42
billion positions). For the 1994 match, the most important part of the eight-piece
database, the four pieces versus four pieces subset, was completed (111 billion
positions).

The databases have been compressed into roughly six gigabytes of data, designed for
easy runtime decompression (Lake er al., 1994). Since the databases are accessed

* This is an instance of a pattern database (Culberson and Schaeffer, 1998).
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frequently in the search, a surprising consequence is that CHINOOK is I/O bound, as
compared to most other game-playing programs which are compute-bound.

The databases improve the program in two significant ways. First, whenever a
database position is encountered, CHINOOK can use the exact value for the position (win,
loss, draw) from the database (no error), instead of using a heuristic evaluation function
(which has error). Second, further search beyond a database node in the tree is
unnecessary, allowing large portions of the search tree to be eliminated. The combined
effect is a smaller search tree that produces a more accurate result.

An example of the power of deep search and databases is game 37 of the 1992 Tinsley
match. On the fifth move of the game, CHINOOK was able to search deep enough to back
up a draw score to the root of the search! This kind of prowess has been seen many times
subsequently, prompting speculation on how much work would be required to “solve”
the game of checkers (Schaeffer and Lake, 1996).

As of the time of this writing (September 2001), a portion of the 9-piece databases
have been computed. The five-pieces versus four-pieces subset of the database is roughly
five times larger than the complete 8-piece database (roughly 2x10'? positions). This
computation will take a year to complete. With current technology, it is possible to
compute the five-piece versus five-piece subset of the 10-piece database (roughly
8.5x10'* positions).

A small amount of work has been done building a program to solve checkers. This
work began in 2001 with the hope of putting it into production use in 2002. In the
interim, every endgame database that is computed simplifies the task of building the proof
tree.

6. Evaluation Function

Building an evaluation function for a game that was not understood by the
programming team was a challenge. In chess, a reasonable evaluation function can be built
by studying the numerous articles and theses that have been written on constructing a
chess program. They provide a model that can be incrementally improved as deficiencies
in the program’s play are identified. Unfortunately, there is a paucity of literature on
constructing a checkers evaluation function.

Our original source for information on the design of a checkers evaluation function
was that used in Samuel’s program (Samuel, 1959; 1967). It is interesting to note that
many of the evaluation function terms were designed to recognize tactical patterns that
could not be discovered given the shallow search depths of his program. With a program
searching over 20 ply, like CHINOOK, these terms were not needed. Hence, the Samuel
model was of limited benefit for CHINOOK.

The initial foray at a checkers evaluation function was based on chess experience.
Many of the terms were borrowed from chess, and used as if this was a chess program.
For example, the program valued controlling space, something that is a popular heuristic
in chess. In checkers, space is important, but in the opening of the game a space advantage
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is often a disadvantage! Too much space means that your pieces may be too far advanced
and vulnerable to attack. So much for a chess-players evaluation function.

With the help of Normal Treloar, a checkers expert, we spent three years designing an
evaluation function. The result was a linear combination of roughly 25 major evaluation
terms, each with different weights for the phases of the game (opening, early middle game,
late middle game, endgame). By 1991, we had a strong checkers-playing program, but it
was unclear whether the ability was due to deep searches alone, or a combination of
search and knowledge.

One interesting evaluation function data point occurred in early 1992. Dissatisfied
with CHINOOK’s positional play, Norman proposed a more elaborate mobility calculation;
one that would be considerably more expensive to compute. Having been reared on the
Thompson correlation between program speed and performance, we were initially
reluctant to adopt the changes. Once it was implemented, we discovered that the new
evaluation function cost the program roughly a factor of two in speed (one ply). In the
chess world, this once would have been considered too big a sacrifice (and still may be for
some programmers). Nevertheless, the improvements in evaluation quality more than
offset the loss in speed. These changes were critical to CHINOOK’s future successes.

From 1992 to 1994, the evaluation function structure remained largely unchanged. The
lessons learned in building a chess program were invaluable here, especially as it
concerned the design for testing and the handling of exceptional conditions. This is an
important consideration that can save much grief. Sadly, the lessons learned from the
PHOENIX experience were not fully appreciated in the early days of the CHINOOK project,
and this was responsible for a number of painful losses.

A serious problem that had to be overcome in the program is the mixing of different
evaluation scores in the search. As a result of the forced capture rule in checkers, games
can make the transition from the opening to the endgame rather quickly. A single search
near the start of the game can mix evaluations from the opening, middle game, endgame
and database positions. This poses a problem, since it requires each game phase to have
its evaluation function results calibrated with the others. In other words, if one phase’s
evaluations are more optimistic or pessimistic than the others, it will significantly skew
the program’s play. To compensate for this effect the evaluation function score was
scaled by the number of pieces on the board. The reasoning was that the more pieces on
the board, the more complicated the game was and the higher the probability that deep
search would be to the program’s benefit. This was a major enhancement to the program.

The evaluation function was tuned by hand over a period of four years. Attempts at
using tools to automate this process failed (Schaeffer, 1997). Subsequently, experiments
with temporal difference learning have shown convincing results, indicating that it would
be possible for CHINOOK to learn a strong set of feature weights solely from self-play
games (Schaeffer, Hlynka and Jussila, 2001).

CHINOOK is unique in that the program needs to access endgame databases throughout
an entire game. However, mixing accurate evaluations (database lookups) with heuristic
evaluations (evaluation function) can result in poor play. In particular, scoring a draw as a
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0 (equality), as is done in most game-playing programs, is a mistake. The program needs
to be able to differentiate between “strong” draws (positions where there is a high
probability that the opponent will make a mistake) and weak draws (ones where the
opponent plays on hoping for the computer to err). Since CHINOOK often declares the final
(drawn) result of a game within 15 moves of the start, it is important that the program
continue to play to maximize its chances of inducing a mistake. Given a fallible opponent,
draw scores need to reflect not only the fact that they lead to a draw, but also the
probability of winning (chances of an opponent making an error).

Various schemes were tried to solve this problem. They involved assigning a non-zero
score to a drawn position, a score that attempted to reflect the chances for opponent
error. Some of the schemes that we experimented with include (1) using expert-specified
heuristics (too hard to obtain and code), (2) using the evaluation function to score the
drawn position (easy to implement but too simple an assessment of future chances), (3)
trying to correlate properties of the search tree with difficulty (for example, selecting the
move that maximizes the number of forced opponent moves), and (4) identifying forced
moves (with respect to the database) that were not identified as such by the evaluation
function (Levy, 1991). Although all these ideas hold some promise, in practice they did
not seem to yield the desired results.

CHINOOK now allows database draw positions found in the search to be assigned
positive and negative scores, corresponding to the notion of strong and weak draw. Unlike
most programs, CHINOOK will select a drawing line over a non-drawing line if it perceives
there is a better chance of winning. When CHINOOK comes across a drawn database
position, it does a depth-limited search with the databases turned off. By turning off the
databases, we can use the result of a search using the heuristic evaluation function to score
this position. So, for example, if a database drawn position leads to a position up a
checker, this assessment can be used to score the draw. Clearly, if the program is up a
checker, even though the position is drawn — assuming perfect play — there is a real
chance that the opponent will find this line difficult to draw.

Assigning a non-zero score for a draw can introduce some subtleties in the search
result. What if a drawing line returns a score of —50, while a non-drawing line returns a
score of —20. Clearly, alpha-beta will prefer the higher score of —20. But is this correct?
The —20 may lead to a dangerous position, but the —50 leads to a draw. Hence the score of
the drawing line must be “high” enough that it is preferred over weaker, non-drawing
lines. One possibility is to make all draws with negative scores a zero. In this case all
weak draws will have the same score (0), and the choice of move will essentially be
random. It is better to have a small range of negative draw scores, allowing the program to
use alpha-beta to maximize the draw score, allowing it to choose the “best” of the weak
draws.

One has to be careful about the interpretation of positive draw scores. Consider a
provable draw that returns a draw score of winning a checker. Should this line be
preferred over a line that does not win a checker, but is not a provable draw? Since the
draw score is only an estimate of the draw difficulty (being a heuristic score, it could have
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a large error), in CHINOOK we lower the positive scores by a factor of two to reflect our
uncertainty. Also, we impose a maximum on the size of the draw score, to prevent moves
with high draw scores being preferred over moves with serious winning chances.

It is difficult to quantify the significance of the draw-differentiation enhancement. One
could play a series of self-play matches to determine if the draw code is beneficial. For
example, CHINOOK with the eight-piece databases and draw-differentiation code could play
a match against CHINOOK with the four-piece databases and no draw-differentiation code.
This interesting experiment has not been performed. Instead, we offer some empirical
evidence. In the 1996 US Championship, CHINOOK won 8 of the 26 games in which it
announced a draw. We can contrast this with the 1990 U.S. Championship where
CHINoOK did not differentiate between draws. Here only 3 of 23 drawn games were won.

7. Assessing Search and Knowledge

For tournament play in 1996, CHINOOK’s hardware consisted of a Silicon Graphics
4D/480 computer (8 processors) with 380 megabytes of RAM (used mainly for caching
endgame database results). The maximum search depth reached in a game was 51 ply. The
program averaged completing a nominal search depth between 19 and 21 ply of iterative
deepening search. The search extensions meant that the median position for which an
evaluation was done was 25 ply into the search.

With access to a 64-processor SGI Origin 3000 computer with 32 gigabytes of RAM,
CHINOOK can search to a nominal iterative-deepening search depth of 23 to 25 ply (under
tournament conditions). This is achieved using the APHID library for parallel alpha-beta
search, that has been used to parallelize chess, checkers and Othello programs
(Brockington and Schaeffer, 2000). We have no experience playing tournament games on
this hardware.

Figure 3 shows the value of an additional iteration (two ply) of search. The figure
shows the results of a 20-game match between CHINOOK searching to depth d versus a
version searching to depth d-2 (Junghanns and Schaeffer, 1997) — no opening book, six-
piece databases, no search extensions. As can be seen, as the search depth increases, the
advantage of additional search effort decreases. Adding the missing enhancements will
only further level the match results. Although the program can always benefit in some
small way from additional search, it appears as if diminishing returns are taking over.
Hence, there is little incentive to work on further enhancing the program’s speed.
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Figure 4 assesses the quality of the evaluation function. The graph plots the
percentage of searches where a one-ply deeper search causes a move change as a function
of search depth.® While deeper searching continues to result in move changes (even as
often as 14 percent of the time at 17 ply), this is misleading. The other lines in the graph
show how often a move change results in a significant change in the position’s
assessment, measured in terms of the value of a checker (100 points). As can be seen,
after seven ply is reached, the program rarely changes its move choice and assessment of
the position significantly. This is compelling evidence to suggest that the program has a
very strong evaluation function.

® Usually CHINOOK increments its search depth by two ply at a time. For compatibility with the other
games studied in Junghanns and Schaeffer (1997), this graph shows the results of a single-ply increment.
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Figure 4. Move Changes From d to (d+1) Ply (Junghanns and Schaeffer, 1997).

If you think about what CHINOOK can do (search over 20 ply deep, strong evaluation
function, large opening book, access all the eight-piece endgame positions), maybe it is
not a surprise that a computer is finally the World Champion in checkers. However, the
more interesting observation is why did it take so long. The CHINOOK technology would
appear to be so overwhelming, that the real surprise is how long the humans were able to
withstand the technological onslaught. This is a testament to Tinsley’s amazing abilities.

8. Conclusions

Since chess and checkers are similar in many ways, it is interesting to ask the
question: how much of the experience in programming chess can be applied to a different
game, checkers? After all, this is a test of the generality of the work done in chess.

In summary, experience with chess provided a suite of techniques that one could
consider for checkers. Some of the techniques were obviously applicable, some required
extensive evaluation before deciding to accept/reject them, while others were clearly
inapplicable. Making these decisions was the easy part of designing the search. The hard
part, as always, was the application-dependent tuning that goes on to find the “right”
combination of features. There is no claim that what we did in CHINOOK is the “best” —
indeed someone could improve upon our work — but it met our perceived needs.

When tackling a new search domain, whether single-agent or two-player, there are a
plethora of search enhancements available in the literature. The program developer should
characterize the search space to be searched, identify its key properties, and choose a
selection of enhancements that offer the most promise for benefiting the search algorithm.
Ultimately, the choice has to be empirically demonstrated. One thing that is usually
unsaid in a project such as this is the countless number of hours that goes into finding the
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combination of features that seems to perform best. This is a thankless task which
consumes enormous intellectual and computational resources. Literally hundreds of
thousands of hours of computer time went into developing CHINOOK, not to mention the
thousands of man-hours.

Although the basic ideas can be transferred, there are still many application-dependent
enhancements that can have a significant impact on the search effort. That so much
application-dependent tuning is required to achieve high performance does not bode well
for the expectations from generic black-box search engines (e.g. Multigame (Romein,
2000)). In part, this work helps identify the components where application-dependent
knowledge can have a significant impact on performance.
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