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1. INTRODUCTION

The A* search algorithm for single-agent search is of fundamental importance in ar-
tificial intelligence. Improvements to the search efficiency can take the range from general
algorithm enhancements (application independent) to problem-specific heuristics (application
dependent):

• General A* search improvements that are applicable to a wide class of problems. For
example, iterative deepening can be used to reduce storage requirements (Korf 1985).

• General search space properties. Many search domains can be represented as directed
graphs rather than as trees. The removal of duplicate nodes from the search can result
in potentially large savings (Marsland and Reinefeld 1994; Taylor and Korf 1993).

• Branch selection. Given a search tree node with several descendants, search efficiency
can be influenced by the order in which the descendants are considered (Marsland and
Reinefeld 1994). Although the idea of considering the branch most likely to succeed first
is a general principle, the techniques used to make that decision are often application
dependent.

• Symmetry reduction. Many problems have inherent symmetries which can be removed.
Recognizing and eliminating the symmetries can have an enormous impact on the search
space, but it is an application-dependent property.

• Solution databases. In many problems, the states near to the goal nodes can be pre-
computed by a backwards search. In two-player games, such as chess and checkers, the
backwards searches are saved in endgame databases and are used to stop the search early,
improving search efficiency and accuracy (Schaeffer et al. 1992). Recently, in single-agent
search new bidirectional search methods are creating so-called perimeters around that
goal node and using that to improve lower bound cost estimates (Manzini 1995).

• Problem-specific properties. Problem domains may have constraints that can preclude
parts of the search space. For example, although the 15-Puzzle has 16! ≈ 1013 possible
positions, only one half of them can be reached from the goal (a parity test can detect
this (Horowitz and Sahni 1978)).

Completely general, application-independent search enhancements are of great interest
but are rare, while problem-specific tricks are plentiful and usually not of general interest.
More often, an idea is presented that has applicability over a class of problems (has partial
problem independence) but needs problem-specific information (has partial problem depen-
dence). Often, the more problem-specific the search enhancement, the greater the search
savings that are possible.

This paper introduces pattern databases as a new approach for enhancing single-agent
search. Planning involves deciding on a series of subgoals that are directed towards the
solution (Korf 1987). Typically, extensive application-dependent knowledge is required to
make the appropriate subgoal choices. Instead, we adopt a “brute force” approach by taking
a problem and enumerating all possible subgoals (partial solutions) that satisfy some con-
straints. At each state in the search, the program can compare its progress towards achieving
all possible valid subgoals, and make its next decision based on some or all of this informa-
tion. We call the set of subgoals a pattern database, because each subgoal is represented as
a pattern that can be matched to a search state.

In this paper, pattern databases are applied to permutation problems (although, as
shown in Section 6, it generalizes to a wider class of problems). In a permutation problem, we
have a set of operators that convert one permutation into another. We start with an initial
permutation and a specified goal(s). The object is to convert the initial permutation into
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the goal by applying the operators. In optimization problems, the object is to minimize the
number of applications of the operator during the conversion.

The 15-Puzzle, Rubik’s Cube, and other similar combinatorial puzzles are examples of
permutation problems. A human-like approach to solving such problems non-optimally is to
move some of the elements into their correct locations, thereby reducing the complexity of the
remaining problem to be solved. This type of “divide-and-conquer” behavior is commonplace
in human problem solving. A similar approach is also evident in human play in many multi-
player games, for example chess, where the player establishes a plan consisting of a series of
intermediate goals. Although the sequence of goals may be non-optimal, the end result is all
that matters.

We adapt this idea to the problem of finding optimal solution paths in single-agent search
by noting that knowing the minimum distance from a permutation to the nearest other
permutation partially matching the goal is a lower bound on reaching the goal. To define
a pattern database we designate N elements of the goal permutation. Given an arbitrary
initial permutation, the locations of the N designated elements form a pattern in the initial
permutation. The set of all such patterns forms the domain of the database. Given any
permutation, the pattern can be looked up in the pattern database to find the minimal number
of operations required to place these N elements in their correct locations. Essentially, a
pattern database can be viewed as a collection of solutions to subgoals that must be achieved
to solve the problem.

These ideas are illustrated using sliding tile puzzles using iterative-deepening A* (IDA*).
This paper uses the 15-Puzzle because the problem is challenging but it is possible to search
for optimal solutions. The 24-Puzzle (5 × 5) has a much larger search space, making it too
expensive to search for optimal solutions (Korf 1996). Instead, research has concentrated on
“good” non-optimal solutions (for example, real-time search (Korf 1990), linear-space best-
first search (Korf 1993). It is known that determining whether a path of a given length from
an arbitrary position to the goal exists is NP-hard for the general n× n puzzle (Ratner and
Warmuth 1990).

On a standard set of 100 test positions, pattern databases reduce the total number of
nodes searched to solve all the problems by 1038-fold compared to using just the Manhattan
distance heuristic.

2. PUZZLE SPECIFICATION

The 15-Puzzle is illustrated in Figure 1(a). The puzzle consists of a set of 15 labeled

tiles arranged in a 4 × 4 square grid, with one grid location remaining empty. We say the
empty location holds the empty tile. We refer to the tiles by their labels 0 ≤ i ≤ 15, where 0
indicates the empty tile. A move consists of sliding a tile into the empty square. The object
is to reach a goal state in the minimum number of moves.

We label the locations in the puzzle similarly from 0 to 15. A state1 is a permutation of
〈0 . . . 15〉 mapping locations to tiles. The goal state of the puzzle is the identity permutation
τ as indicated in Figure 1(a).

In any state, a move consists of sliding one of the orthogonally adjacent tiles into the
empty location. However, we prefer to think of a move as swapping the empty tile with one
of its neighbors, and will specify a move by the direction the empty tile moves, with l, r, u, d
corresponding to left, right, up and down respectively. Two states are adjacent in the puzzle

1We avoid the use of the term “position” since it has two intuitive meanings; 1. the location of a tile
and 2. the state of the puzzle.
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Figure 1. (a) The 15-Puzzle Goal State. (b) State p Induced by rrdldruu.

space if one can be obtained from the other in a single move. The distance between two
states is the minimum number of moves required to produce one from the other. The cost

of a state is the distance from the goal to the state. A path P (p, q) from one state (p) to
another (q) is a sequence of moves transforming the first into the second.

The state in Figure 1(b) may be obtained from the goal state by the move sequence
rrdldruu. In permutation notation, this state is

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 0 3 4 9 6 7 8 10 5 11 12 13 14 15

)
.

We will use the more compact notation
〈1 2 0 3 4 9 6 7 8 10 5 11 12 13 14 15〉.

As expected, reversing and inverting the move sequence will return to the goal state, in effect
inducing the inverse permutation (e.g. ddlurull when applied to the state in Figure 1(b)).

3. PATTERN DATABASES

A pattern is the partial specification of a permutation (or state). That is, the tiles
occupying certain locations are unspecified. These unspecified tiles are called blanks. Note
the distinction between blank tiles and the empty tile. In all of the patterns we use in this
paper the empty tile will be specified.

A target pattern is a partial specification of the goal state. A pattern database (PDB)
is the set of all patterns which can be obtained by permutations of a target pattern. Two
target patterns for which we have built databases are shown in Figure 2. We refer to these
databases as the fringe and the corner respectively.

For each pattern in a database, we compute the distance (minimum number of moves)
to the target pattern using retrograde analysis. We refer to this distance as the cost of the

pattern. Note that the distance includes the cost of moving the blank tiles when required to
place the specified tiles, but does not require the blanks to be in any particular order. Since
the specified tiles are in their final locations in the target pattern we have:

Lemma 1. For any state, for any pattern database, the cost of the pattern induced by the
state with respect to the database is a lower bound on the cost of the state.

For example, given an arbitrary 15-Puzzle state, we can map the current locations of
tiles 3, 7, 11, 12, 13, 14, 15, and empty into an index into the fringe database. The database
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Figure 2. The Fringe and Corner Target Patterns.

will tell us the minimum number of moves required to correctly locate these 8 tiles. This is a
lower bound on the remaining search effort. In addition, we could take the current locations
for tiles 8, 9, 10, 12, 13, 14, 15, and empty and look this pattern up in the corner database.
The value from this database is also a lower bound on the search and may be a better bound
(if larger) than that provided by the fringe database.

Other target patterns besides the fringe and corner are possible. Intuitively, these two
are likely to be among the best at providing tight lower bounds for the search. To see this,
consider the work that remains once the tiles have been moved into the target state. For
example, once the fringe pattern has been achieved, all that is left to solve is an 8-Puzzle.
Consider a target pattern similar to the fringe, but including tile 10 instead of 15. Having
reached the target, some of the work just completed must be undone to correctly place the 15;
tiles 10, 11 and 14 are in the way. Our experiments suggest that the best pattern databases
are the ones that reduce the problem to a simpler one whose solution requires little or no
interference with the placing of the target pattern. Both the fringe and corner patterns satisfy
this.

Pattern databases can also be used to determine upper bounds. For example, we com-
puted the fringe database and the “hardest” position requires 61 moves to rearrange the 8
tiles correctly. A global upper bound can be determined by noting that the remaining tiles
form an 8-Puzzle. Since the 8-Puzzle has a maximal distance of 31, this gives an upper
bound of 92 for any instance of the 15-Puzzle (actually the upper bound is 90 since at least
two moves are required to place the empty tile into the upper corner after the other fringe
elements are set)2.

Upper bounds on specific states may be useful in problems where obtaining the optimal
solution path is too expensive, for example in larger sliding tile puzzles. For each pattern
we may store the permutation associated with one optimal move sequence that takes the
current pattern to the target pattern. Then, for any state matching the pattern, applying
that permutation results in a new state with only the subpuzzle consisting of the blanks
remaining to be solved. On the 15-Puzzle, the subpuzzle for the fringe PDB is just the
8-Puzzle, which can be completely pre-computed and stored. Thus, in just two database
lookups we can find an upper bound on any state. For larger problems, we can extend the
idea to recursively find pattern databases for the subpuzzles.

If we do not want to store the permutations, then we can use the PDB to select moves
on a shortest path to the fringe target pattern. Thus, a (non-optimal) path from the initial

2Gasser subsequently used our work to lower the bound to 88 (Gasser 1994). Subsequently, extensive
computations proved that the hardest problem instance has a solution length of 80 (Brüngger et al. 1998).
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state to the goal can be obtained in time proportional to the length of the path, giving rapid
upper bounds. By broadening the search a little, better upper bounds can be obtained for a
little more search cost, essentially using the PDBs as macro-moves.

By modifying the fringe PDB slightly, we can also obtain additional lower bounds and
a tighter upper bound. Instead of a single fringe target pattern, we consider the set of nine
targets in which the empty tile is located in one of the upper 3 × 3 locations of the puzzle,
and the specified tiles are the same as in the fringe target pattern. We compute the cost of
solving each state of the 8-Puzzle by searching it in the 15-Puzzle; that is, we allow the tiles
in the fringe targets to be temporarily disturbed in order to solve the 8-Subpuzzle3. This
gives us a tighter upper bound in some cases.

Using this refined fringe PDB, to obtain a tighter lower bound let f be the cost of
reaching a target pattern in this database, and r be the cost of solving the remaining 8-
Puzzle. Consider any other path from the current state to the goal, with cost to a fringe
pattern f ′ and 8-Puzzle cost of r′. Since r is a minimum cost solution of the first 8-Puzzle
subgoal within the 15-Puzzle, then r ≤ f + f ′ + r′, and thus f ′ + r′ ≥ r − f , thus implying
a lower bound of max{f, r − f}. When r > 2f , this gives a better lower bound than f . If
it is feasible to wait until the search reaches at least one state in which the target pattern is
realized, then it is not necessary to store the permutation to use this improved lower bound.
Instead, the result can be backed up in a depth-first search.

4. USING SYMMETRY

A technique that can often significantly reduce the search cost is the elimination of
subtrees by symmetry. The exact symmetries available will be problem specific, just as the
obtaining of lower bounds is. The most commonly seen symmetries are merely reflections of
the object under consideration. The symmetries we use for the 15-Puzzle are more subtle,
because the set of available moves is dependent on the state. For example, if the empty
tile is in a corner we have only two available moves, and for each corner the set of moves is
different. Contrast this with Rubik’s cube where no matter what state the puzzle is in we
have the same set of face rotations available.

Nevertheless, for any square puzzle of side n, we are able to make use of all eight elements
of the dihedral group induced by reflections and rotations of the square in the plane4. We
will let D be the reflection across the main diagonal (0, 15), D′ across the transverse diagonal
(12, 3), H the horizontal reflection and V the vertical reflection. Rotations can be computed
as compositions of these.

We will represent these reflections by the permutations mapping locations induced by
the reflections. Thus, for example, the diagonal reflection is the permutation:

D = 〈0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15〉 .

We remind the reader that permutations in general, and this group in particular, are asso-
ciative but not commutative. We also point out that the four reflections are self-inverses.
Applying these reflections in all possible compositions gives us a set of 8 isomorphic puzzles,
including the original 15-Puzzle (as the identity puzzle). That is, if we apply any of the re-
flections R ∈ {D,D′, H, V } to every state s in the 15-Puzzle, we will generate an isomorphic
puzzle. Each R will induce a distinct remapping of the moves, the locations and the tile
labels of the 15-Puzzle space.

3172 states of the 8-Puzzle have a reduced cost of 2 when such outside moves are allowed.
4For non-square puzzles, fewer transformations would be available.
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4.1. The Mirror Symmetry D

We refer to D as the mirror. It is the simplest of our mappings to understand, because
it has the good fortune to map the 15-Puzzle onto an isomorphic game with the empty cell
in the goal state remaining in the upper left hand corner.

For every path P (τ , p) there is an equal length path P ′(τ , p′) obtained from P by re-
flecting the moves across the main diagonal. P ′ is obtained from P (or vice versa) by the D
induced replacements l ← u, u← l, r ← d, d← r for each move in P . We call P ′ the mirror

path of path P . Figure 3 illustrates the path reflection for the path generating the state p in
Figure 1(b).

D

Figure 3. Path Reflection.

Figure 4 shows how the mirror states of the puzzle are obtained using D for state p
in Figure 1(b). Keeping in mind that compositions are computed from right to left, the
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Figure 4. Computing the Mirror p′ = D ◦ p ◦D.
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composition p ◦ D means that the locations are first permuted by D as in the top of the
figure, then the result is mapped to tiles by p, as indicated in the lower right of Figure 4.
If we now apply D (which is equal to D−1) on the left, the effect is to relabel the tiles to
correspond to the original puzzle, in the sense that the goal states will be identical. In the
lower left of Figure 4 we show the result p′ = D ◦p◦D. Undoing the reflected move sequence
on the left side of Figure 3 will then yield the goal state of the 15 puzzle.

In short, the mapping D◦p◦D applied to all states p in the 15-Puzzle is an automorphism
of the puzzle. The proof is straightforward, but the reader is urged to note that it is critical
that D(0) = 0 in the leftmost multiplication. Otherwise the reflected move sequence, which
as noted depends on the location of the empty tile in each state, would not be valid under
the relabeling of tiles.

We call the state p′ = D ◦ p ◦D the mirror state of state p. Since for every path P (τ , p)
there is an equal length path P ′(τ , p′) and vice versa, it follows that:

Lemma 2. Any upper or lower bound on the cost of a state p or its mirror p′ applies to both
p and p′.

These facts can be used to great advantage while searching for the cost of a state. In
databases, we need only store information about a state and not its mirror, resulting in a
nearly 50% reduction. (We get slightly less than 50% because some states are self-mirrors,
for example the goal state). This is a new result, showing that the effective search space for
sliding-tile puzzles is half the size previously thought.

4.2. Using the Reflections H ,V and D′

If we apply the horizontal reflection (H = 〈3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12〉) to the
15-Puzzle, we obtain an isomorphic puzzle with goal state having tile 0 in the upper right
hand corner, as illustrated in Figure 5(a). The induced move reflection swaps l with r, leaving
u and d unchanged. However, unlike the D case, we cannot apply H−1 on the left to obtain
an automorphism of the puzzle, since the relabeling of tile 0 would make the reflected moves
invalid.
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Figure 5. (a) Horizontal Goal τ∗ = τ ◦H . (b) Relabeled Goal τ ′′ = Ĥ ◦ τ ◦H . (c) Ĥ ◦ p ◦H .

Instead, we define Ĥ = 〈0 3 2 1 7 6 5 4 11 10 9 8 15 14 13 12〉 which maps the goal state
in Figure 5(a) to the new goal in Figure 5(b). Note that Ĥ = Ĥ−1. It is straightforward to
show that the puzzle Ĥ ◦ p ◦H, ∀p, is isomorphic to the standard puzzle.

The usefulness of this mapping lies in the fact that the new goal τ ′′ requires only 3 moves
(lll) to achieve the standard goal τ . Applying the isomorphism, this means that for any state
p, if we find lower and upper bounds on the cost of state p′′ = Ĥ ◦ p ◦H , L ≤ C(p′′) ≤ U ,
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then C(p) is bounded by L− 3 ≤ C(p) ≤ U + 3. An example of the lower bound being met
is for state q = τ , where C(q) = 0 and C(q′′) = 3. An example of the upper extreme is the
state r obtained from τ ′′ by the move sequence ddd. In this case C(r) = 6 and C(r′′) = 3.
As a final example, consider state s = p′′ = Ĥ ◦p◦H , the state in Figure 5(c), where p is the
position in Figure 1(b). Then C(s) = 7, with the solution path ddrulul. Reflecting s gives
s′′ = Ĥ ◦ s ◦H = p. The cost of p is C(s′′) = 8.

The vertical reflection V is analogous to H , with the same difference in bounds applying.
The reflection D′ moves the empty tile in the goal to the lower right corner, which

requires a minimum of 6 moves to return to the upper right. There are
(
6

3

)
= 20 distinct

minimal paths, each of which yields a candidate permutation for the relabeling D̂′. We will
use this multiplicity of D̂′ in the next section. In any case, letting L and U be lower and
upper bounds on C(p′′′) for p′′′ = D̂′ ◦ p ◦D′, then L− 6 ≤ C(p) ≤ U + 6.

Finally, for any state p, we can also compute the mirror state p′ = D ◦ p ◦D, and then
apply any of the H , V or D′ reflections to obtain further states. Thus, we use all eight
symmetries of the square.

4.3. Applying Symmetry to the Databases

Using the properties of mirror states discussed earlier, it is possible to obtain two lower
bounds from a database, one for p and one for p′. In this case, the mirror of a blank tile
is assumed to be blank5. Notice, however, that due to the symmetry of the fringe target
pattern, the cost of a pattern and its mirror are always equal in the fringe PDB. Using the
other symmetries of the 15-Puzzle, even better lower bounds can be obtained. For any state
p, additional lower bounds on reaching the goal can be obtained by computing each of the
reflected states and looking up the costs in the PDB and subtracting three (for V or H) or
six (for D′).

For D′, the initial reflection carries the empty tile to the lower right corner, requiring six
moves to restore the empty tile to the upper right. The 20 distinct paths of length six yield
several distinct relabeled tile combinations in the PDB, the exact number depending on the
specific PDB in question. Applying each of the resulting D̂′ yields several different lookups
for the reflection D′.

We repeat that for each of the states obtained by reflecting across H,V,D′, the mirror of
the state can also be computed and looked up in the appropriate PDB. None of these mirrors
are effective in the fringe because the fringe target pattern is symmetric with respect to the
mirror.

From the preceding discussion, it might be concluded that the fringe is at a disadvantage
because symmetry means the mirror never yields improved lower bounds. On one hand,
we intuitively expect that the fringe database will yield somewhat tighter lower bounds on
average for a single lookup. The reason is that once the fringe target pattern is achieved, it is
quite unlikely that the specified tiles will be disturbed in completing the rest of the solution.
In fact, as previously mentioned, at most two moves can be saved from any state matching
the fringe target pattern over the corresponding solution restricted to 8-Puzzle moves. On the
other hand, the corner target pattern may be significantly disturbed in order for the solution
to be completed. This argument places some intuitive limits on which target patterns are
likely to be useful. For example, a target pattern in which only alternate tiles are specified
could seemingly be very far from the goal. Such a database would likely yield weak lower
bounds for most states.

5Our program, for reasons of efficiency, does not compute the images of blank tiles, only those actually
in the PDB.
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4.4. Applying Symmetry to Search

So far, our program uses only the mirror states to prune the search tree itself. We
only use the other isomorphisms to obtain additional results from the database, as discussed
above.

It is also possible to use the mirror transformation in a backwards search, from goal to
the start state. Because of mirrors, there are (usually) two start states, but only one goal
state since the goal is a self-mirror. Holst has shown significant savings using this technique
(Holst 1995). Fewer nodes are searched, although the cost of a search node has increased.

5. EXAMPLE

Table 1 shows the results of looking up a position in the fringe database (position number
79 in the Korf set (Korf 1985), the one with the smallest search tree). The table shows all the
images for the original position (O): horizontal (OH), vertical (OV), and 6 diagonals (OD).
The mirror (M) is also shown for illustrative purposes. Permutations of the mirror (MH, MV
and MD) are not shown since they do not improve the quality of the solution (because of
the fringe’s symmetry). The following code shows how the table entry was generated for the
horizontal permutation:

for( i = 0; i <= 15; i++ )

OH[ H [ i ] ] = Ĥ [ O[ i ] ];

Note that the values in the original position are remapped, and only those values that form
part of the fringe (0, 3, 7, 11, 12, 13, 14, 15) are relevant for interrogating the database. All
other values are irrelevant, and are shown as dashes in the table.

Name Mapped Position PDB Penalty Bound

O 0 1 9 7 11 13 5 3 14 12 4 2 8 6 10 15 38 0 38
OH - - 3 0 - - 14 - - 7 15 13 12 - - 11 29 -3 26
OV - - - 3 - - 12 14 7 - - 15 0 13 - 11 31 -3 28
OD - - - 7 14 11 3 - 13 - - - 12 - 15 0 34 -6 28
OD - - 13 7 14 11 3 - 12 - - - - - 15 0 38 -6 32
OD - - - 7 13 11 3 - 12 14 - - - - 15 0 30 -6 24
OD - - - 11 13 15 7 - 12 - 3 - - - 14 0 38 -6 32
OD - - - 11 13 15 3 - 12 - - - - 7 14 0 36 -6 30
OD - - - 7 13 15 3 - 12 11 - - - - 14 0 34 -6 28

M 0 14 11 - - 7 3 - - - - - 13 12 - 15 38 0 38

Table 1. Position 79 Example.

The most commonly used lower-bound estimator for sliding tile puzzles is the Manhattan
distance. For this position, the Manhattan distance is 28. Looking up the original position
in the fringe database yields a lower bound of 38 (the maximum over all the images exam-
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ined). Table 2 shows the results of looking up all 100 Korf test positions in the fringe and
corner databases. The fringe results in an average improved lower bound of 6.34 over using
Manhattan distance, slightly better than the corner’s value of 5.72. If both databases were
used, the average improvement would be 7.08.

Pattern Improvement over Manhattan Distance
Database +14 +12 +10 +8 +6 +4 +2 0 Average

Fringe 2 4 16 22 24 15 9 8 6.34
Corner 2 4 10 13 32 17 16 6 5.72

Combined 3 8 16 24 25 13 8 3 7.08

Table 2. Benefits of Pattern Databases.

6. EXPERIMENTS

Iterative-deepening A* for the 15-Puzzle was implemented using the Manhattan distance
heuristic estimate (MD), fringe pattern database (FR) and corner pattern database (CO).
The fringe and corner databases were built using retrograde analysis and each contains 16×
15× 14× 13× 12× 11× 10× 9 = 518,918,400 positions, one byte each6. The programs were
written in C and run on a BBN TC2000 at Lawrence Livermore National Laboratory. Each
database took less than one hour of real time to compute. The TC2000 has 128 processors
and 1 GB of RAM. The program would load the databases into shared memory and search
each test position in parallel. An experiment consisted of running the 100 test positions given
by Korf (Korf 1985).

Table 3 shows that the fringe database (FR) reduces the search trees by 346-fold, and the
corner database (CO) is even better with a 437-fold reduction. Since the fringe is symmetric,
it has fewer patterns to look up (9: O, OH, OV and 6 OD) than for the corner (26: O, OH,
OV, 10 OD, M, MH, MV, 10 MD). Thus, the corner’s lower bound is maximized over more
values, generally giving a tighter bound. Detailed results can be found in Appendix A.

Experiment Total Nodes Tree Size % Improvement

MD 36,302,808,031 100.00 1
MD+FR 105,067,478 0.29 346
MD+CO 83,125,633 0.23 437
MD+FC 34,987,894 0.10 1038

Table 3. Results Summary.

Examination of the data produced by the pattern databases showed that for many po-
sitions they produced complimentary results: positions where the corner did poorly often

6Because of the symmetry of the fringe, it requires only half the storage.
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had the fringe doing well, and vice versa. Obviously the program could be modified to take
the maximum over both databases, but since each database is 520 MB this did not seem
practical. Instead, the program was modified to use half of each database. Each pattern
database was broken into 16 parts - one for each square that the blank could be on. If the
4× 4 board is viewed as a checkerboard, then for half of the squares the corresponding fringe
database (F) would be read into memory and for the other half, the corresponding corner
database (C) would be read (as in Figure 6a). Given a position, the patterns for which the
appropriate pattern database is in memory are looked up. For example, Figure 6b shows
the position of an empty square (O) and where it would appear in all the patterns of that
position. The original position (O), its mirror (M), corner diagonal (DO) and corner diagonal
mirror (DM) patterns would be looked up using the corner database, while the fringe vertical
(VO), the fringe vertical mirror (VM), the fringe horizontal (HO) and the fringe horizontal
mirror (HM) patterns would be looked up in the fringe database. When the empty square
moves once, the original position, mirror, fringe DO and fringe DM patterns would be looked
up using the fringe database, while the corner VO, the corner VM, the HO and the corner
HM patterns would be looked up in the corner database. Essentially, this scheme allows us
to use half of each database to achieve the benefits of having both.

F C F

F F

FF

F F

C

CC

C C

CC

M VM

DMHM

HO

DO

O

VO

Figure 6. a) 15-Puzzle as a Checkerboard. b) Looking up a Position.

Using half of the corner and fringe databases (FC) without any other enhancements
results in the tree size being reduced by 1038-fold. Using FC gives an almost 2.5-fold im-
provement over just using the corner database. In other words, the union of the two databases
(FC) is better than the sum of using them individually. Detailed results can be found in the
Appendix A.

We also experimented with using upper bounds. IDA* starts with a lower bound on the
optimal answer and repeatedly iterates, increasing the bound, until the answer is reached.
Upper bounds, if effective, can therefore only prevent the last iteration from having to be
being done. If the upper bound is too high, then there are no savings. If the upper bound is
correct, then the last iteration can be eliminated since the lower bound will have been proven
to be equal to the upper bound. In our experiments, this condition only occurred in 3 of the
100 problems, and did not significantly influence the final performance numbers. Although
upper bounds were not effective in our application, they still may be useful as estimates of
the amount of search effort remaining.

The linear conflicts heuristic (LC) is a recently proposed improvement to the Manhattan
distance heuristic (Hansson, Meyer and Yung 1992). It improves the Manhattan distance
measure by recognizing when two tiles in the same row/column will conflict with each other
moving into their correct position (a linear conflict). Linear conflicts alone reduce the Man-
hattan distance search trees by 9.7-fold. Using pattern databases, our best LC results were
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only 7% better than our best MD results, implying most of the benefits of linear conflicts are
captured in the pattern databases.

In Table 4, the 100 positions have been sorted into groups of 20 based on the number of
nodes required to solve the MD tree. We used two metrics to compare performance: AVG is
the average of the individual search reductions computed as (

∑
N

i=1
MDi/PDBi)/N and TTL

is the ratio of the total tree sizes computed as
∑

N

i=1
MDi/

∑
N

i=1
PDBi. The results show

that the 20 easiest problems benefit by a factor of 240 TTL (521 for AVG) using databases,
while the 20 hardest problems benefit by a factor of 1,179 (2,499 for AVG). This suggests
that the improvements are limited only by the small problems, whose solution trees become
close to the minimal search tree.

Problems AVG TTL

01-20 521 240
21-40 581 315
41-60 1360 476
61-80 1502 737

81-100 2499 1179

Overall 1293 1038

Table 4. Results Grouped by Size of Search Tree.

Obviously, the enhancements presented in this paper increase the cost of evaluating
a node in the search tree. The question arises whether the additional work done by the
node evaluation is outweighed by the reduction in search tree size. Our implementation
of the program is simple and regenerates patterns at each node (as many as 26), rather
than maintaining all the information incrementally. Further, the program uses the maximum
number of patterns for computing a bound. The diagonal patterns contribute the least to the
bound (since they have 6 subtracted from their bounds) and eliminating them will more than
double the speed of the program, while only increasing the tree by a small percent. Even
without these enhancements the program runs roughly 6 times faster in real time compared
to MD, while it runs roughly 1.5 times faster than LC. However, using FC by itself, with only
the original and mirror position queried in the pattern database, results in a larger search
tree, but the program runs 12 times faster than MD in real time. There is a trade-off here:
increased cost per node versus better lower bound. We have not done experiments to find
which combination minimizes execution time. In addition, other search enhancements (such
as transposition tables or solution databases) can be used to further reduce tree size, again
affecting the tree size / execution time ratio. Our experiments show that further reductions
can be achieved; using transposition tables and solution databases with pattern databases
resulted in an average 1775-fold reduction in tree size for the 15-Puzzle (Culberson and
Schaeffer 1994).

Our experiments used the entire fringe and corner databases to maximize the amount of
information available to the search. Clearly, space/time trade-offs are possible. Gasser has
subsequently taken part of our fringe database (the 4 central squares) and built a 15-Puzzle
searcher that searches efficiently with less memory/disk requirements (Gasser 1994).



14 Computational Intelligence

7. FURTHER RESEARCH

Pattern databases are an effective means for significantly reducing the size of search trees
in the 15-Puzzle. By using lower bounds on the cost of solving sub-problems, a heuristic that
is significantly more effective than the Manhattan distance is obtained. The large reduction
in search tree size does not give an equivalent reduction in the execution time required to solve
the problem. This is largely due to the simplicity of the Manhattan distance heuristic, since
it is inexpensive to compute. For other problems where a more computationally expensive
lower bound is required, the relative efficiency of the pattern databases at run-time will
improve.

Pattern databases are more expensive to compute than other lower bounds, but they are
pre-computed in a pre-search phase. For the puzzle environments considered, the amortized
cost over all possible searches is negligible. (This is also the case for solution databases.) Korf
has successfully applied our methods to finding optimal solutions for instances of Rubik’s
Cube (Korf 1997). For other problems such as the Traveling Salesman, the application of
pattern databases will be limited since each problem is from a different space. One can
imagine, however, that given a map of North America, there might be a need for being
able to supply quickly good approximations to tours of a subset of the cities. In such an
environment it may be possible to use pre-computed databases of partial results to more
quickly obtain good upper bound approximations.

This work can be extended to the 24-Puzzle. For the 15-Puzzle, the pattern database
places 8 of the 16 tiles. Using comparable storage for the 24-Puzzle, the database will only be
able to contain 6 of the 25 tiles. Because of the complexity of this problem, it is too expensive
to search for optimal solutions (although Korf has used our pattern databases to optimally
solve a few problems (Korf 1996)). Instead, the effort has been in finding approximate
solutions quickly (Korf 1990). The database information can be used to increase the accuracy
of any heuristic estimate. The larger the puzzle, the more effective become the patterns. For
example, the cost of placing 6 tiles on one side of the board may have little effect on the cost
of placing the mirror of the 6 tiles on the other side of the board. Thus the maximum value
from the pattern database of the patterns will decrease slowly. This suggests that a two-level
heuristic estimate may be an effective real-time search strategy: given two states with the
same pattern database maximum value, search the one with the smallest sum (or average)
of the individual database pattern values. This will concentrate effort on lines which are
making a greater contribution to the overall solution of the problem.

With the 8-Puzzle trivially solvable and any 15-Puzzle instance being solvable with a
relatively small search, there may be ways to combine these results to help obtain good
bounds on the solution lengths for the 24-Puzzle. For example, the 24-Puzzle can be viewed
as being composed of several overlapping 15- or 8-Puzzles. A function would have to be
developed that allowed the results of these overlapping problems to be combined.

Although pattern databases have only been applied to the 15-Puzzle, the idea in principle
is applicable to other single-agent search domains (e.g. Korf’s work on Rubik’s Cube). By
constructing a (possibly large) database of solutions to subproblems, improvements in search
efficiency are possible.

To illustrate its generality, this work has been applied to the checkers-playing program
Chinook (Schaeffer 1997). In the alpha-beta search algorithm, the search should only stop
in so-called quiescent (quiet) positions. In checkers, the most common tactical combination
is a “2 for 1”: allow a man to be captured to get a double capture in return. An analysis
of search trees showed that 50% of these combinations occurred in a specific region of the
board. A pattern database was built that enumerated all the piece/square placings that could
be part of this type of combination. For each legal placing, an off-line search was done to
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verify that the combination worked. During a game, a potential leaf node position is mapped
into a pattern that is used as an index into a database to determine whether the tactical
combination is present or not. If so, the search is extended to see the consequences. The
program knows it is winning a checker; it must search a bit deeper to see if the opponent has
any resources after the checker is lost (for example, has a return “2 for 1”). With the sliding
tile puzzles, pattern databases were used to curtail search; here they are used to extend
search. The addition of this database has been a major addition to Chinook.
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APPENDIX A.

This appendix compares the tree size when using the Manhattan Distance (MD) in
conjunction with the fringe pattern database (FR), corner pattern database (CO), and using
both the fringe and corner on alternate squares (FC). The 100 positions are taken from (Korf
1985).
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# MD MD+FR % MD+CO % MD+FC %

1 276361933 50773 0.02 306806 0.11 36243 0.01
2 15300442 395581 2.59 106795 0.70 104602 0.68
3 565994203 1928333 0.34 4380373 0.77 1136069 0.20
4 62643179 78073 0.12 199322 0.32 52596 0.08
5 11020325 407978 3.70 246838 2.24 187116 1.70
6 32201660 178027 0.55 150849 0.47 65161 0.20
7 387138094 1115121 0.29 1971150 0.51 754182 0.19
8 39118937 125578 0.32 117455 0.30 70313 0.18
9 1650696 10982 0.67 8010 0.49 5376 0.33

10 198758703 3041796 1.53 1266145 0.64 919680 0.46
11 150346072 898237 0.60 784647 0.52 405740 0.27
12 546344 9302 1.70 6562 1.20 3623 0.66
13 11861705 27251 0.23 29470 0.25 8284 0.07
14 1369596778 236249 0.02 185530 0.01 96880 0.01
15 543598067 1483214 0.27 2723255 0.50 534876 0.10
16 17984051 101034 0.56 19760 0.11 21477 0.12
17 607399560 1150412 0.19 2027647 0.33 613740 0.10
18 23711067 19750 0.08 106787 0.45 11095 0.05
19 1280495 17566 1.37 13353 1.04 6579 0.51
20 17954870 182273 1.02 165988 0.92 102741 0.57
21 257064810 655745 0.26 1009255 0.39 371882 0.14
22 750745755 2759305 0.37 1544033 0.21 748119 0.10
23 15971319 133065 0.83 42319 0.26 30445 0.19
24 42693209 998053 2.34 84271 0.20 94728 0.22
25 100734844 135828 0.13 358614 0.36 88543 0.09
26 226668645 911934 0.40 820333 0.36 450264 0.20
27 306123421 546652 0.18 146288 0.05 75511 0.02
28 5934442 3972 0.07 38331 0.65 3345 0.06
29 117076111 148946 0.13 166939 0.14 85889 0.07
30 2196593 3859 0.18 9262 0.42 3031 0.14
31 2351811 1252 0.05 10336 0.44 1219 0.05
32 661041936 10694675 1.62 4344085 0.66 3966538 0.60
33 480637867 1432634 0.30 1011703 0.21 496454 0.10
34 20671552 210345 1.02 148608 0.72 77218 0.37
35 47506056 37026 0.08 12315 0.03 5028 0.01
36 59802602 154986 0.26 164233 0.27 71238 0.12
37 280078791 393629 0.14 1363809 0.49 290466 0.10
38 24492852 53780 0.22 225209 0.92 38011 0.16
39 19355806 377262 1.95 28001 0.14 36323 0.19
40 63276188 268950 0.43 260678 0.41 129719 0.21
41 51501544 854252 1.66 197439 0.38 133814 0.26
42 877823 2520 0.29 13190 1.50 2563 0.29
43 41124767 294807 0.72 1528992 3.72 242465 0.59
44 95733125 129796 0.14 114815 0.12 75611 0.08
45 6158733 28222 0.46 49786 0.81 20047 0.33
46 22119320 72910 0.33 76328 0.35 31892 0.14
47 1411294 4474 0.32 1339 0.09 963 0.07
48 1905023 73887 3.88 23701 1.24 20010 1.05
49 1809933698 1591321 0.09 1668463 0.09 760504 0.04
50 63036422 490882 0.78 323861 0.51 246627 0.39
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# MD MD+FR % MD+CO % MD+FC %

51 26622863 221716 0.83 182202 0.68 102211 0.38
52 377141881 1879450 0.50 408995 0.11 307787 0.08
53 465225698 2832184 0.61 921751 0.20 476433 0.10
54 220374385 322076 0.15 261314 0.12 156892 0.07
55 927212 4983 0.54 2299 0.25 2012 0.22
56 1199487996 1197142 0.10 770455 0.06 478569 0.04
57 8841527 15255 0.17 51285 0.58 12098 0.14
58 12955404 249942 1.93 31142 0.24 30184 0.23
59 1207520464 1267614 0.10 248605 0.02 214422 0.02
60 3337690331 25938931 0.78 10464802 0.31 6086900 0.18
61 7096850 26086 0.37 49094 0.69 16820 0.24
62 23540413 81056 0.34 223550 0.95 40979 0.17
63 995472712 4133859 0.42 1004241 0.10 779656 0.08
64 260054152 329876 0.13 688083 0.26 249683 0.10
65 18997681 58339 0.31 54227 0.29 26226 0.14
66 1957191378 1710785 0.09 10487203 0.54 1367159 0.07
67 252783878 875080 0.35 180294 0.07 164340 0.07
68 64367799 92981 0.14 127960 0.20 30420 0.05
69 109562359 115228 0.11 46234 0.04 33540 0.03
70 151042571 1041280 0.69 202868 0.13 192382 0.13
71 8885972 6846 0.08 10697 0.12 4435 0.05
72 1031641140 147908 0.01 666232 0.06 128658 0.01
73 3222276 49076 1.52 15688 0.49 13507 0.42
74 1897728 88116 4.64 43205 2.28 35911 1.89
75 42772589 620859 1.45 86401 0.20 79080 0.18
76 126638417 1134130 0.90 456423 0.36 293955 0.23
77 18918269 249209 1.32 144519 0.76 85067 0.45
78 10907150 261047 2.39 44874 0.41 43256 0.40
79 540860 3735 0.69 5303 0.98 2367 0.44
80 132945856 1646046 1.24 851437 0.64 624092 0.47
81 9982569 21073 0.21 25176 0.25 12974 0.13
82 5506801123 2824992 0.05 3375958 0.06 1207363 0.02
83 65533432 39329 0.06 33115 0.05 18707 0.03
84 106074303 171367 0.16 240396 0.23 90085 0.08
85 2725456 9865 0.36 5816 0.21 4246 0.16
86 2304426 51492 2.23 20750 0.90 18547 0.80
87 64926494 43384 0.07 150305 0.23 36177 0.06
88 6320047980 12046043 0.19 15206418 0.24 4631654 0.07
89 166571021 1665455 1.00 527385 0.32 480785 0.29
90 7171137 55353 0.77 15858 0.22 12142 0.17
91 602886858 1667211 0.28 1871184 0.31 891789 0.15
92 1101072541 2424245 0.22 1086972 0.10 834259 0.08
93 1599909 5027 0.31 5999 0.37 2634 0.16
94 1337340 56874 4.25 48559 3.63 30078 2.25
95 7115967 141359 1.99 25225 0.35 27227 0.38
96 12808564 147710 1.15 29885 0.23 33187 0.26
97 1002927 9272 0.92 3235 0.32 3209 0.32
98 183526883 435601 0.24 161259 0.09 108344 0.06
99 83477694 435365 0.52 264761 0.32 154128 0.18

100 67880056 1293127 1.91 692716 1.02 576478 0.85

Ttl 36302808031 105067478 0.29 83125633 0.23 34987894 0.10

Ttl Reduction 346 436 1038

Avg Reduction 581 606 1293


