
Feature Learning Using State Differences

Mesut Kirci and Jonathan Schaeffer and Nathan Sturtevant
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

{kirci,nathanst,jonathan}@cs.ualberta.ca

Abstract

The goal of General Game playing (GGP) can be described as
designing computer programs that can play a variety of games
when given a game description. Learning algorithms have
not been an essential part of all successful GGP programs.
This paper presents a feature learning approach, GIFL, for
2-player, alternating move games in GGP using state differ-
ences. The algorithm is simple, robust and improves the qual-
ity of play.

Introduction
Playing games that involve strategies, improves and ex-
ercises intellectual skills. A similar motivation leads re-
searchers to use games as a testbed for Artificial Intelli-
gence. However, researchers have focused on techniques for
playing specific games very well rather than creating more
intelligent programs. This choice gives rise to programs that
can play a specific game very well like Deep Blue (Camp-
bell, Hoane, and Hsu 2002), Chinook (Schaeffer et al. 1996)
and TD-Gammon (Tesauro 1995). However, these programs
cannot play other games. More importantly, most of the
analysis and design is done by the programmer. Thus, these
games have limited value for gaining insights into generally-
applicable AI (Pell 1992).

General Game Playing (GGP), where programs aims to
play more than one type of game, is used as a testbed
for Artificial Intelligence and requires more general intel-
ligence (Genesereth, Love, and Pell 2005). General game
players accept game descriptions as inputs at runtime, an-
alyze them, and then play the games without human inter-
vention. Thus, general game players cannot use algorithms
specific to a particular game and must rely on the intelli-
gence of the program rather than the modifications by the
programmer. Also, general game players should be able to
play different classes of games, such as varying the number
of players, simultaneous or alternating action games, games
with small number of states, and games with large number
of states (Genesereth, Love, and Pell 2005).

Current GGP programs perform search using UCT (Koc-
sis and Szepesvri 2006) or alpha-beta search algorithms.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Programs that use UCT do not need an evaluation func-
tion because they simulate a game until a terminal node
is reached. Cadia Player (Finnsson and Björnsson 2008)
is an example of a program that uses UCT; it has won
the last two GGP competitions. Cadia Player only uses
move-based history heuristics to guide the UCT simulation.
The other approach is alpha-beta pruning with an evalua-
tion function. FluxPlayer (Schiffel and Thielscher 2007) and
Clune Player (Clune 2007) are examples of this type of ap-
proach. Both players create an evaluation function to guide
the search. FluxPlayer’s evaluation function calculates the
degree of truth using fuzzy logic to evaluate leaf and goal
states. Clune player along with UTexas player (Kuhlmann
and Stone 2006) uses automatically extracted features to cal-
culate the evaluation function. These are simple features like
the number of pieces on the board and the number of legal
moves. Clune Player was the winner of the first GGP com-
petition in 2006.

In addition to the approaches mentioned above, a new
learning method has recently appeared (Sharma, Kobti, and
Goodwin 2008). This approach uses Temporal Difference
learning. It learns a domain-independent knowledge base
and uses the knowledge base to guide the UCT search. This
technique has not been tested in competition and the exper-
imental results have shown slight improvements for some
games.

The success of all programs mentioned can be increased
by improving the search. However, domain-independent
knowledge extraction is a very hard problem. The results
of the last two competitions reflect this. UCT, which is less
dependent on knowledge, has been very successful. The ap-
proach described in the paper is called GIFL, Game Inde-
pendent Feature Learning. The algorithm learns useful in-
formation and uses it to do more intelligent search in two
player, alternating move games. It learns features, similar
to the well-known history heuristic, using state differences
in 2-ply game trees. After that, learned features are used to
guide the otherwise random move selection in a UCT sim-
ulation. In short, the algorithm has two parts: learning the
features and using the features in UCT search.

In AI literature feature is described as a subset of state
instantiated with values. The term feature is used differently
in this paper. It is a knowledge chunk consists of a subset of
state as in the general description of the feature and moves.

Therefore, the features of the GIFL are more general than
regular features and include moves. In this paper, the term
feature represents the GIFL features from this point on.

Features are learned from state differences in 2-ply game
trees. In GGP, a state consists of predicates which are the
facts that are present. We refer to predicates that are re-
quired for a state to be a goal state as terminal predicates
and all predicates in a state as state predicates. The algo-
rithm identifies the terminal predicates first. Starting from
the last move, moves that add terminal predicates to a state,
are combined with the predicates that help the state to get
close to the goal condition. This combination is an offensive
feature. For each offensive feature, a combination of predi-
cates and moves are learned as a defensive feature aiming to
prevent the opponent from using the offensive feature.

After features are learned, features are used in guiding the
random playout process of UCT. During the random play-
out, when a feature’s predicates are present in a state and
the moves associated with the feature are legal, a value is
assigned to that move. After finding all features that are true
in a state, a move is selected using Gibbs Sampling (Casella
and George 1992).

The algorithm has been tested on fourteen different games
and has performed well in most of them. The algorithm out-
performs the standard UCT completely in eight games, does
not effect the results in three games, loses slight advantage to
UCT in 2 games and loses badly to UCT in only one game.

Feature Learning
In general, GIFL works by analyzing a 2-ply game tree start-
ing from the terminal state of a randomly generated game se-
quence and moving backwards toward the next state. GIFL
first learn features from a 2-ply tree where the last move is
made by the player that won the game. An example 2-ply
tree can be seen in Figure 1. This tree has a root state where
the losing side, player 1, makes a move, a middle state where
the winning side, player 2, makes a move, and several leaf
states, one of which is terminal. The algorithm can learn two
types of features, one from the middle state and one from the
root state.

Figure 1: 2-ply game tree at the end of the game sequence

The move made at the middle state, Figure 1-c, can be
considered a good move for player 2 because it leads to a
win. The algorithm learns this move as an offensive-feature
move. However, the offensive-feature move does not always

Figure 2: 2-ply game tree and the features can be learned
from that tree

lead to a win in every state. There are some state facts, con-
ditions that are required to be present to lead to a win when
the move is applied. These facts in a state are called predi-
cates. Required predicates are called offensive-feature pred-
icates. Offensive-feature predicates and offensive-feature
moves are combined to create a general offensive feature.

In addition to an offensive feature, a defensive feature
can also be learned from the same 2-ply game tree. The
algorithm assumes that the losing player made a move at
the root state, Figure 1-a, that allowed the winning player
to use the offensive feature to win the game. However,
there may be other legal moves at the root state such as
Figure 1-b. A move that can prevent the opponent from
using the offensive feature and winning the game is also
considered a good move and learned as a defensive-feature
move. As an offensive-feature move cannot be used at ev-
ery state, the defensive-feature move will not always pre-
vent a loss at every state. There is a minimum set of ad-
ditional state predicates which make the defensive feature
necessary to immediately avoid a loss. These predicates are
called defensive-feature predicates. Defensive-feature pred-
icates and defensive-feature moves are combined to create a
general defensive feature.

An example of a 2-ply game tree where an offensive fea-
ture and a defensive feature is learned is presented in Figure
2. The example is from tictactoe. The tictactoe game is used
in all of the examples in this paper. The predicates with a
“cell” relation are state predicates and show the state of the
game. The first two arguments of the “cell” relation are the
coordinates of the mark and the third argument is the type of
the mark located. The “mark” relation represents the moves.
Also, the first two arguments of the “mark” relation are the
coordinates of the mark that is to be placed and the third ar-
gument is the type of the mark. The features shown consist
of predicates and moves.

The algorithm learns state predicates rather than the state
itself to increase the generality. For instance, the terminal
state in Figure 2 is unique, but the terminal predicates that
make up the state terminal are not. There are different states
that have the same terminal predicates. Therefore, the algo-
rithm finds the terminal predicates of the state and uses them
in place of the terminal state.

The algorithm finds the terminal predicates by removing
the state predicates at the terminal state one by one and
checking whether the state is still terminal or not. If remov-
ing a predicate does not change the status of the state being
terminal, the predicate does not belong to the terminal pred-
icates list. Otherwise the predicate is added to the terminal
predicates. In Figure 3-b, after we remove the first predicate
of (a), the state is not terminal. Therefore, the predicate (cell
1 1 x) is a terminal predicate. In Figure 3-c, the state is still
terminal and (cell 2 1 o) is not a terminal predicate. In the
end, terminal predicates are (cell 1 1 x), (cell 2 2 x) and (cell
3 3 x).

Figure 3: Finding terminal predicates. (a) is terminal state,
(b) is the state after removing the first predicate, (c) is the
state after removing the second predicate, (d) is the state af-
ter removing the third predicate, (e) is the state after remov-
ing fourth the predicate and (f) is the state after removing
the fifth predicate.

Offensive Feature Learning
After the terminal predicates are found, the learner focuses
on the last 2-ply of the game sequence to discover features.
GIFL learns from 2-ply trees. The terminal state is the leaf
state of the first 2-ply tree that the algorithm investigates.
The leaf state has two conditions: the leaf predicates and the
leaf moves. The aim of the offensive feature is to satisfy leaf
conditions (make leaf predicates true and a leaf move legal
at the leaf state). The leaf predicates for the terminal state
are the terminal predicates and there are no leaf moves for
the terminal state. If the player who made the move at the
middle state won the game, an offensive feature is learned
from the 2-ply game tree under examination because the leaf
predicates are true in the terminal state and there are no leaf
moves. The move which led to a win (and the satisfaction
of the leaf conditions) is considered good and is part of an
offensive feature.

Figure 4: Finding the predicates for an offensive feature. (a)
is the terminal state, (b) is the middle state, (c) is the middle
state after removing the first predicate, (d) is the middle state
after removing the second predicate, (e) is the middle state
after removing the third predicate and (f) is the middle state
after removing the fourth predicate.

A feature consists of two parts: moves and predi-
cates. The offensive-feature predicates are required pred-
icates in the middle state to satisfy the leaf conditions
after the offensive-feature move is made. To find the
offensive-feature predicates, the algorithm removes each
of the middle-state predicates one by one and applies the
offensive-feature move to the reduced middle state. If the
leaf conditions are not satisfied in the resulting leaf state, the
removed predicate from the middle state is necessary for the
offensive feature to be applied successfully and is a part of
the offensive feature. The offensive-feature predicates found
are paired with the offensive-feature move to become an of-
fensive feature. In Figure 4, the move (mark 2 2 x) is the
offensive-feature move that makes the leaf conditions true.
There are no leaf actions in this case and the leaf predicates
are the terminal predicates (cell 1 1 x), (cell 2 2 x) and (cell
3 3 x). In Figure 4-c, the offensive-feature move is legal, but
the leaf conditions are not satisfied after the move is applied
to the state. Therefore, (cell 1 1 x) is an offensive-feature
predicate. However in Figure 4-d, the leaf conditions are
satisfied after the offensive-feature move is applied. There-
fore, (cell 2 1 o) is not an offensive-feature predicate. In the
end, the predicates (cell 1 1 x) and (cell 3 3 x) are found to be
offensive-feature predicates along with the offensive-feature
move (mark 2 2 x).

Defensive Feature Learning
The second type of feature that GIFL looks for is defensive
features. A defensive feature tries to prevent the opponent
from reaching a state at which an offensive feature can be
applied. In the 2-ply tree under examination, the offensive
feature that the defensive feature tries to make useless is the

Figure 5: Finding the defensive-feature moves. (a) is the
middle state, (b) is the root state and (c) are the legal moves
at the root state.

one learned from the middle state. To accomplish this, the
defensive feature either makes the offensive-feature move
illegal or makes the offensive-feature predicates false in the
middle state.

A defensive feature also consists of two parts: predicates
and moves. First, the algorithm looks if there are possible
moves that can be counted as defensive-feature moves. Re-
gardless of which predicates are the defensive-feature pred-
icates, the defensive feature has to make the offensive fea-
ture useless in the middle state. Second, if there are any
defensive-feature moves, then defensive-feature predicates
are looked for.

The algorithm tries all legal moves at the root of the 2-
ply tree that is under investigation. If the offensive fea-
ture learned at the middle state cannot be used at the re-
sulting middle state after making a move, that move is con-
sidered as a possible defensive-feature move. However, if
no possible defensive-feature moves can be found at the
present root state, the algorithm backtracks two ply in the
game tree leaving the leaf state and the leaf conditions un-
changed. The game sequence that GIFL learns from is cre-
ated by random simulation, therefore some of the moves
made by the players may not be related to the terminal pred-
icates and can be considered unimportant. For instance,
in the breakthrough game, the goal condition is related to
only one predicate. However, there are over 10 moves on
average at any step. Therefore, some moves may not af-
fect the outcome of the game. The learner backtracks the
2-ply tree to find a defensive-feature move until either the
offensive feature learned cannot be applied to the middle
state (in which case the learning stops due to the lack of
a defensive feature) or possible defensive-feature moves are
found. To make the offensive feature useless at the mid-
dle state, either the offensive-feature move should be illegal
or some of the offensive-feature predicates must be made
false. The offensive-feature predicates are present at the root
state and there is no possibility of making them false at the
middle state. Therefore, the defensive-feature move should
make the offensive-feature move illegal. The legal moves
are listed at Figure 5-c. If all moves are applied one by one,
it can be seen that the move (mark 2 2 o) is the only one that
makes the offensive-feature move illegal at the middle state.
Therefore the move (mark 2 2 o) is the defensive-feature
move.

After finding some possible defensive-feature moves, the
algorithm finds the defensive-feature predicates. Defensive-
feature predicates are the predicates that would require the
player to use a defensive feature. Therefore, defensive-
feature predicates are required by the opponent to use the
offensive feature at the middle state. Only moves that pre-
vent the opponent from doing that are the possible defensive-
feature moves. Therefore, the algorithm finds a set of
defensive-feature predicates for each legal move except the
possible defensive-feature moves in the root state. This pro-
cess is the same as finding the offensive-feature predicates.
A set of conditions must be satisfied at the next state after
making a move. The conditions are leaf predicates and leaf
moves when the learning is about offensive-feature predi-
cates. The conditions are predicates and moves of the offen-
sive feature when the learning is about a defensive feature.
All legal moves except defensive-feature moves should al-
low the offensive feature to be applied.

After a set of defensive-feature predicates are found for
each legal move (except the defensive-feature moves), the
predicates for the defensive feature are the intersection of
these sets because there may be some other requirements
for each specific move. However, the intersection eliminates
specific predicates for each different move which are not
part of the defensive feature. For instance, assume that there
are six legal moves at the root state of the 2-ply game tree
under examination and two of the legal moves are possible
defensive-feature moves. A set of defensive-feature predi-
cates is found for each of the remaining four legal moves.
Each of them may contain predicates that are required for
the move to be legal at the state, but all of the four moves
allow the offensive feature to be applied at the middle state.
Therefore, the move specific predicates are not needed since
regardless of which move is taken the result is the same. The
intersection of the four sets of defensive-feature predicates
eliminates the move-specific predicates and makes the de-
fensive feature more general.

The predicates found and the possible defensive-feature
moves make a defensive feature. In case there are no pos-
sible defensive-feature moves that can be found (even af-
ter backtracking) or no defensive-feature predicates can be
found, the learning stops and another training run begins.

Backtracking the 2-ply Tree
In a 2-ply game tree, both offensive and defensive features
can be found. The algorithm investigates higher levels in the
game sequence to find more features. The highest level of
state investigated in the game sequence is the root state of
the 2-ply game tree in which the last feature is learned. That
state becomes the leaf state of the next 2-ply game tree be-
cause the algorithm only learns from the states that are on
the path that leads to the terminal state. The middle state
and the root state are one and two higher level states, re-
spectively. To learn an offensive feature, the move made in
the middle state should contribute to the leaf predicates of
the new leaf state. However, due to the randomly gener-
ated game sequence, the program checks whether the move
contributes to the leaf predicates or not. A backtracking pro-
cess similar to the one in the defensive feature learning can

Figure 6: Finding the new 2-ply tree for further learning. (a)
is the previous leaf state, (b) is the previous middle state, (c)
is the previous root state, (d) is the new leaf state, (e) is the
new middle state and (f) is the new root state.

be done if the new middle state contains all of the new leaf
predicates. The backtracking is done by going higher up in
the game sequence until the new middle state does not have
all of the new leaf predicates. The new root state is assigned
to the one higher state of the new middle state regardless of
its suitability to defensive learning. An example of finding
the new 2-ply tree in tictactoe is presented in Figure 6.

In the example, the root state becomes the new leaf state
of the new 2-ply tree. Also, the state at Figure 6-e is the mid-
dle state since not all of the new leaf predicates are present
in that state. Therefore, the move made to reach the leaf
state have some contributions and an offensive feature can
be learned.

The pseudecode for feature learning process is presented
in Figures 7 and 8. The function trainPlayer is the main
learning function. A game sequence is generated using ran-
dom move selection at each call and GIFL learns features
from that game sequence up to the level limit specified by
the third parameter. The function createFeatureUsingState-
Facts finds the feature predicates for both offensive and de-
fensive features. The predicates and moves that the features
use are the parameters of this function because the neces-
sary predicates are found from whether or not leaf state of
the 2-ply tree can be reachable from root state.

Implementation Details
The game description language allows flexibility when writ-
ing a game. Therefore, there are some implementation de-
tails that need to be addressed to deal with different game
descriptions.

First, the algorithm runs a number of simulations using
random move selection and analyzes the game type before
starting to learn features. In some games, a goal condition
does not depend on the predicates that are true in a state

and there may not be terminal predicates. Checkers is an
example of this type of game. At the terminal state, the goal
condition only depends on previously captured pieces which
are not present. In other games, there are terminal predicates
present in the terminal state. Identifying the type of game
is important because if the game type is the one with no
terminal predicates, then the terminal predicates become all
of the state predicates.

Second, after offensive-feature predicates are found using
the algorithm in Figure 8, the possible features are checked
by creating a new state. This state consists of only the
offensive-feature predicates. The offensive-feature move is
applied and if the resulting state satisfies the leaf conditions,
the feature is added to the feature list. However, remov-
ing predicates one by one may result some of the offensive-
feature predicates missing and the feature cannot satisfy the
leaf conditions. This type feature is rejected. For instance,
suppose that there are three stones consecutively placed ver-
tically in Connect4. If the stone in the middle is removed
and a stone is placed in that column, the game description
dictates that a stone is placed on top of every stone that has
an empty space on top. Therefore, the empty place in the
middle is replaced even though it is not supposed to be. This
will result in the stone in the middle not being a part of the
offensive-feature predicates even though it should be. To
solve this problem, GIFL uses another method to find the
offensive-feature predicates. If there are leaf predicates that
are present in middle state and not present in the offensive-
feature predicates, they are added to the offensive-feature
predicates. The resulting possible feature is also checked if
it is useful or not. If it is useful, it is added to the feature
base.

Using Features
Features are used to guide the random simulation in a UCT
search. The program checks each state during a simulation
to see if a feature can be applied or not. If the predicates
of a feature is matched in a state then the moves associated
with that feature are given a value. After all of the applica-
ble features are found, the program selects a move accord-
ing to probabilities calculated by Gibbs Sampling. This will
bias toward the random simulation with the expectation of
achieving a more accurate result instead of doing pure ran-
dom simulation.

If features are used in a random playout, all available
moves are assumed to have no value. The value of a move
can be changed if a feature with the that move can be ap-
plied in a state. Features are stored in a hash map with the
first predicate of the feature predicates as the key. A state is
converted to a predicate list and each predicate is used to ac-
cess the possible feature matches. If there are any matches in
the feature map for a certain predicate, for each of the possi-
ble features, the rest of the feature’s predicates are searched
in the state. A feature is matched when all of the feature
predicates are present in the state and the feature move is
legal. Then, the value of the move is set according to the
formula 100 ∗Clevel−1 where C is the constant between 0-1
and the level is the level of the 2-ply tree (where the level of
the terminal state is 0) at which the feature is learned. This

formula ensures that the features found close to the terminal
state of the training game sequence will have greater value
than the features found in higher levels because the lower
level features lead to a win in fewer moves.

After all of the possible features are matched, the move
is selected according to the Gibbs Sampling except if there
are any level 1 feature moves. A level 1 feature may mean
a situation of immediate win or loss because the level 1 fea-
ture is learned from the 2-ply tree with the terminal state as
the leaf state. Therefore, the move selection is done from
the set of moves with value 100, if there are any. If there are
no level 1 features matched, then a probability is calculated
for each possible move according to the Gibbs Sampling.
The move is selected according to the probabilities calcu-
lated. The Gibbs Sampling provides a good exploration-
exploitation balance to the move selection. Even though
higher valued feature leads to a win in fewer moves, the
outcome depends on opponent respond. Therefore, other
possible moves are explored. This exploration-exploitation
problem is very common in Reinforcement Learning and the
Gibbs Sampling is one f the techniques which are used to
tackle it.

In addition, a probability of using features for each player
is introduced as a part of an opponent modeling technique.
If the player who has learned the features assumes that the
opponent has the same knowledge, the weaknesses of the
opponent may not be exploited. Therefore, a lower proba-
bility of using the features is given to the opponent. This
ensures that the opponent does not benefit from the informa-
tion it does not have.

The pseudecode for how to use the features in UCT search
is presented in Figure 9.

Experiments
The experiments were prepared using the game definitions
presented at the Stanford GGP repository and game def-
initions used in the GGP competition 2008. The games
that are used in the 2008 competition are named arbitrarily
like game1, game2, etc. All games are 2-player, alternating
move and prefect information. Also, in some games being
first player or second player may be advantageous. There-
fore, experiments are conducted so that this does not effect
the results.

The player that uses the features to guide the random sim-
ulation is compared against a UCT player with random sim-
ulation and is called as the learning player. Therefore, the
only difference between the learning player and the non-
learning player is that learning player uses the learned fea-
tures to guide the random simulation phase during the UCT
search.

The number of simulations per move is limited due to time
constraints and same for both players. This shows the effec-
tiveness of the learned information without worrying about
the computation time needed to match the features. Further-
more, the probability of using features in random simula-
tion is introduced so that the learning player can exploit the
fact that the opponent does not have the same knowledge.
Learning player uses the features all the time and the oppo-

Games from Stanford GGP repository and 2008 GGP Competition
name-n. of simulations-n. of games learning-uct win percentage
(2008 competition) game2-1000-20 193-7 97.0 %
knightthrough-1000-20 184-16 92.0 %
(2008 competition) game1-1000-20 170-30 85.0 %
breakthrough-1000-20 165-35 82.5 %
checkers-150-20 156-44 78.0 %
connect4-1000-100 115-85 57.5 %
chess-25-40 102-84 56.0 %
(2008 competition) game5-1000-40 111-94 55.0 %
pentago-1000-100 100-100 50.0 %
quarto-1000-100 98-102 49.0 %
(2008 competition) game6-1000-100 96-104 48.0 %
(2008 competition) game3-1000-100 91-109 45.0 %
checkersbarrelnokings-1000-100 61-139 30.0 %
(2008 competition) game4-1000-40 100-100 -

Table 1: Effectiveness of using GIFL

nent uses features only half of the time during the random
simulation phase of the UCT.

The number of training runs is limited to 500 unless spec-
ified otherwise. The learning time may vary between 100
training runs per minute in breakthrough and 20 training
runs per minute in checkers. The level of 2-ply tree in which
the learning is occurring is limited to 3. This reduces the
number of the features and the time spend in random simu-
lations. The number of tests run is specified with the name
of the game in the table below. It varies from game to game
due to the time constraints. Although the number of games
played is low for some games, it should be noted that the
effectiveness of the learned information is clear when the
learning player wins decisively as both sides. Games with
close results are usually tested with more games.

The results are promising as shown in the Table 1. The
number of test games and the number of simulations per
move are shown with the name of the game. Of the 14 games
that the player is tested on, the learning player defeats the
non-learning player in 8 of the games. The knowledge does
not affect the results in 3 games. In 2 games, the learning
player loses by a small margin. Using knowledge has a poor
result in only one game, checkersbarrelnokings. It should be
noted that the games in which the learning does not affect
the results are not very interesting: the first player always
wins in Pentago, all games are tied in Game5 and all games
end in less then 10 moves in Quarto.

Although the checkesbarrelnokings game is similar to the
original checkers at which learning player has a clear ad-
vantage, the learning player loses badly. Due to the lack of
kings and forced jumps in the checkersbarrelnokins game,
the number of legal moves per step is low. Therefore, the
non-learning player does less unnecessary exploration. This
may be the cause of losing advantage of the learning player
against non-learning player.

As it can be seen in the Table 1, the learned features are
clearly effective. However, in actual game play the computa-
tion time is also a factor. To measure the difference in num-
ber of simulations per move, another experiment has been
performed with fixed time, 30 seconds per move. The re-
sults show that in half of the games, the computation time is
not a big factor, but in 5 games the learning player can only
make 1/3 of the simulations that regular UCT can make.

Games from Stanford GGP repository and 2008 GGP Competition
name n. of simulations (learner/uct)
(2008 competition) game2 46 %
knightthrough 93 %
(2008 competition) game1 104 %
breakthrough 79 %
checkers 36 %
connect4 20 %
chess 74 %
(2008 competition) game5 32 %
pentago 156 %
quarto 34 %
(2008 competition) game6 58 %
(2008 competition) game3 99 %
checkersbarrelnokings 38 %
(2008 competition) game4 47 %

Table 2: Computational cost of using GIFL

However, the quality of game does not suffer as much. The
two games in which using features hurt most are Connect4
and Checkers. In 30 seconds fixed time settings, the learn-
ing player still wins 60% percent of time in Checkers and the
learning player only loses 55% percent of time in Connect4
with only 1/5 of simulations that regular UCT makes.

Table 2 shows the number of simulations that the learning
player can make when given the same amount of time as
regular UCT. The number is expressed as a percentage of
the UCT result. For example, in Connect 4, learning slows
the program down by a factor of 5 – to 20% the speed of
UCT. Note that in two games learning had the pleasant side
effect of speeding up the calculations as a result of finding
early wins in the simulation phase instead of lengthening the
games with random moves.

Conclusion
The learning algorithm learns predicate-move combinations
and uses them to guide random UCT simulation. The con-
cepts are simple and domain independent which is essential
for GGP algorithms. Including the 2008 GGP competition,
learning algorithms have not been an essential part of a suc-
cessful GGP program because domain-independent learning
is a very hard problem. However, this paper presents a sim-
ple but effective method that shows very promising results
in some of the games that are frequently used in GGP com-
petitions.

The algorithm shows promising results in GGP, but the
learning concepts are heavily depended on the terminal con-
ditions. If the goal conditions of a game is too specific, the
features may not be encountered frequently. Thus, GIFL
may not be effective. For instance, the terminal conditions of
chess has many variations depending on the position, num-
ber and type of pieces. GIFL learns one of these variations
at each step of the algorithm. The occurrence of that spe-
cific terminal position during a simulation is necessary for
the learned feature to be effective. However, most of the
GGP games in which GIFL is successful, have less number
of different possible terminal conditions. In conclusion, the
effectiveness of GIFL depends on how many variations ter-
minal conditions of a game can have.

In addition, the computation time problem when using
features is important for the future. The primary focus of

GIFL is the effectiveness of the features, therefore time has
not been spent to develop more efficient ways of feature
matching and feature pruning. Some of the learned features
may not be effective and can be removed. This will help with
the computation time problem. Also, it should be mentioned
that the effectiveness of the features is not proportional to the
number of simulations as it is shown in the experiments with
Connect4.

The algorithm has room for improvements. First, the fea-
tures can be used as a part of an evaluation function. A min-
imax approach can be tried with this evaluation function in-
stead of the UCT search.

Second, the algorithm can only learn features from a game
sequence if the player that wins the game makes the last
move. The learning algorithm cannot be applied to games
when the losing side makes the last moves. Lose Checkers
is an example of these types of games. The players aim to
lose all the pieces instead of trying to capture them. This
problem may be solved by changing the leaf of the 2-ply
tree where the learning occurs.

In addition, the frequency of features seen in the learn-
ing process can be included when the values for the feature
moves are calculated. Right now, all of the features have the
same importance.

References
Campbell, M.; Hoane, J.; and Hsu, F. 2002. Deep blue.
Artif. Intell. 134(1-2):57–83.
Casella, G., and George, E. I. 1992. Explaining the gibbs
sampler. The American Statistician 46(3):167–174.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In AAAI, 1134–1139.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to general game playing. In AAAI, 259–264.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the aaai competition. AI Mag-
azine 26(2):62–72.
Kocsis, L., and Szepesvri, C. 2006. Bandit based monte-
carlo planning. ECML 282–293.
Kuhlmann, G., and Stone, P. 2006. Automatic heuristic
construction in a complete general game player. In AAAI.
Pell, B. 1992. METAGAME: a new challenge for games
and learning. Technical Report UCAM-CL-TR-276, Uni-
versity of Cambridge, Computer Laboratory.
Schaeffer, J.; Lake, R.; Lu, P.; and Bryant, M. 1996. CHI-
NOOK: The world man-machine checkers champion. AI
Magazine 17(1):21–29.
Schiffel, S., and Thielscher, M. 2007. Automatic Con-
struction of a Heuristic Search Function for General Game
Playing.
Sharma, S.; Kobti, Z.; and Goodwin, S. 2008. Knowl-
edge generation for improving simulations in uct for gen-
eral game playing. In AI 2008: Advances in Artificial In-
telligence. 49–55.
Tesauro, G. 1995. Temporal difference learning and td-
gammon. Commun. ACM 38(3):58–68.

trainPlayer(currentState, knowledgeBase, levelLimit)
1 stateList← generate a game sequence
2 terminalPredicates← find the terminal predicates
3 /* the 2-ply tree used in learning */
4 state leaf = stateList(terminal)
5 state middle = stateList(terminal-1)
6 state root = stateList(terminal-2)
7 leafPredicates = terminalPredicates
8 while (level <= levelLimit)
9 /* OFFENSIVE FEATURE DISCOVERY */
10 middleAction← action made to reach leaf
11 createFeatureUsingStateFacts(middle,middlePredicates,
12 leafPredicates,leafAction,middleAction,winner,
13 rootPredicates,rootAction)
14 if feature is useful
15 add to knowledge base
16 else
17 createFeatureUsingTerminalPredicates(middle,
18 middlePredicates,leafPredicates,middleAction,winner)
19 if feature is useful
20 add to knowledge base
21 /* DEFENSIVE FEATURE DISCOVERY */
22 vector possibleRootActions
23 do
24 createFeatureUsingLegalActions(root,
25 possibleRootActions,leafPredicates,
26 leafAction,middlePredicates,middleAction,loser)
27 if possibleRootActions.size() == 0
28 middle = middle - 2
29 root = root - 2
30 if (not contains(getStateVector(middle),
31 middlePredicates))
32 ||
33 canPreventReachLeaf(middle,
34 middleAction,leafPredicates,
35 leafAction,winner)
36 stop learning
37 while(possibleRootActions.size() == 0)
38 for all moves except possibleRootActions
39 /* find necessary predicates */
40 createFeatureUsingStateFacts(
41 root,possibleRootPredicates[i],
42 middlePredicates,middleAction,
43 possibleWrongAction,loser,
44 leafPredicates,leafAction)
45 rootPredicates← intersection(possibleRootPredicates)
46 add to knowledge base
47 /* FIND NEXT LEAF, MIDDLE, ROOT, */
48 do
49 leaf = root
50 middle = middle - 2
51 root = root - 2
52 while(contains(getStateVector(middle),
53 middlePredicates))
54 leafPredicates = rootPredicates
55 leafAction = rootAction
56 /* clear middle, root predicates and actions */
57 level++
58 end while

Figure 7: The learning algorithm.

createFeatureUsingStateFacts(state middle,
vector middlePredicates, vector leafPredicates,
leafAction, action, player,
vector rootPredicates, rootAction)

1 temp = middle
2 middleStateVector← predicates of middle
3 for all predicates in temp
4 remove one by one,
5 new state is reducedTemp
6 if isLegal(reducedTemp,action)
7 reducedTemp.performMove(action)
8 stateVector← predicates of reducedTemp
9 if (not contains(getStateVector(middle),
10 middlePredicates))
11 ||
12 canPreventReachLeaf(middle,
13 middleAction,leafPredicates,
14 leafAction,winner)
15 middlePredicates.add(predicate)
16 else
17 middlePredicates.add(predicate)

Figure 8: The function to find feature predicates.

DoMonteCarloSimulation(state currentState)
1 if features are not used
2 do random move selection
3 if features are used
4 vector statePredicates← predicates of state
5 for each predicate in the statePredicates
6 features = knowledbase[predicate];
7 for each feature in features
8 if contains(statePredicates,feature(predicates))
9 if isLegal(feature(move))
10 moveValues[feature(move)] = 100 ∗ Clevel−1

11 if there are moves with value 100
12 select move between them
13 else
14 gibbsSampling(probabilities,moveValues)
15 selectMove(probabilities)

Figure 9: The algorithm to use the features in the UCT
search.

