
Fast Planning with Iterative Macros

Adi Botea

National ICT Australia

Australian National University

Canberra, ACT

adi.botea@nicta.com.au

Martin Müller

Dept. of Computing Science

University of Alberta

Edmonton, Canada

mmueller@cs.ualberta.ca

Jonathan Schaeffer

Dept. of Computing Science

University of Alberta

Edmonton, Canada

jonathan@cs.ualberta.ca

Abstract

Research on macro-operators has a long history
in planning and other search applications. There
has been a revival of interest in this topic, lead-
ing to systems that successfully combine macro-
operators with current state-of-the-art planning ap-
proaches based on heuristic search. However, re-
search is still necessary to make macros become a
standard, widely-used enhancement of search al-
gorithms. This article introduces sequences of
macro-actions, called iterative macros. Iterative
macros exhibit both the potential advantages (e.g.,
travel fast towards goal) and the potential limi-
tations (e.g., utility problem) of classical macros,
only on a much larger scale. A family of tech-
niques are introduced to balance this trade-off in fa-
vor of faster planning. Experiments on a collection
of planning benchmarks show that, when compared
to low-level search and even to search with classi-
cal macro-operators, iterative macros can achieve
an impressive speed-up in search.

1 Introduction

Research on macro-operators has a long history in planning
and other search applications. Recent years have shown a re-
vival of this topic, leading to systems that successfully com-
bine macro-operators with current state-of-the-art planning
approaches based on heuristic search. However, macros have
significant capabilities yet to be exploited. There is a need
to continue the previous efforts on this topic, aiming to reach
a point where macros would be considered to be a standard
performance enhancement (e.g., such as hash tables for fast
detection of duplicate nodes).

In this article, we introduce sequences of macro-actions
called iterative macros. Figure 1 illustrates the differences
between low-level search, search with classical macros, and
search with iterative macros. First, consider low-level search
versus search with classical macros. Macros add the abil-
ity to travel towards a goal with big steps, with few inter-
mediate nodes expanded or evaluated heuristically. How-
ever, macros increase the branching factor, and often also
the processing cost per node. Inappropriate macros guide the
search in a wrong direction, which increases the total search

Figure 1: State expansion with atomic actions (left), atomic
actions + macros (center), and atomic actions + iterative
macros (right). Each short line is an atomic action. Each
curved arrow is a macro-action.

time while solution quality decreases. Addressing this per-
formance trade-off is the key to making macros work.

Iterative macros are macros of macro-actions. They have
similar potential benefits and limitations as classical macros,
only on a much larger scale. Iterative macros progress much
faster down a branch of the search, with exponentially larger
possible savings. On the downside, there can be exponen-
tially more instantiations of iterative macros, with many of
them leading to dead ends. An iterative macro is more expen-
sive to compute, being the sum of instantiating each contained
macro. Tuning the performance trade-off is more challenging
than for classical macros.

The model discussed in this paper extends the approach in
Botea et al. 2005, which offers a framework for generating,
filtering, and using macros at runtime. The contributions of
this paper are:

1. Iterative macros, a runtime combination of macros to
enhance program performance,

2. New techniques to address the performance trade-offs
for iterative macros: algorithms for offline filtering, dy-
namic composition (i.e., instantiating an iterative macro
at runtime), and dynamic filtering (i.e., pruning instanti-
ations of an iterative macro at runtime); and

3. Experiments using standard planning benchmarks that
show orders of magnitude speed up in several standard
domains, when compared to low-level search and even
to a search enhanced with classical macros.

IJCAI07
1828

Section 2 briefly reviews related work on macros. Section
3 introduces the necessary definitions. Section 4 introduces
iterative macros and the algorithms for offline filtering, dy-
namic composition, and dynamic filtering. Experimental re-
sults are given in Section 5. Section 6 contains conclusions
and ideas for future work.

2 Related Work

Related work on macros in planning dates back to the STRIPS

planner [Fikes and Nilsson, 1971]. Subsequent contributions
include off-line filtering of a set of macros [Minton, 1985],
partial ordering of a macro’s steps [Mooney, 1988], and gen-
erating macros able to escape local minima in a heuristic
search space [Iba, 1989]. In a problem representation with
multi-valued variables, McCluskey and Porteous [1997] use
macros to change the assignment of a variable to a given value
in one step.

Several recent contributions successfully integrate macros
with state-of-the-art heuristic search planners such as FF
[Hoffmann and Nebel, 2001]. Vidal [2004] composes macros
at runtime by applying steps of the relaxed plan in the orig-
inal problem. Botea et al. [2005] prune instantiations of
macros based on their similarity with a relaxed plan. Coles
and Smith [2005] generate macros as plateau-escaping se-
quences. Newton et al. [2005] use genetic algorithms to gen-
erate macros. The contributions of Vidal [2004] and Botea
et al. [2005] are the most closely related, since all three ap-
proaches exploit the similarity between a macro and a relaxed
plan.

Application-specific macros have been applied to domains
such as the sliding tile puzzle [Korf, 1985], Rubik’s Cube
[Korf, 1983; Hernádvölgyi, 2001], and Sokoban [Junghanns
and Schaeffer, 2001]. While interesting, a detailed discussion
and comparison of all these approaches is beyond the scope
of this paper.

3 Framework and Basic Definitions

The basic framework of this work is planning as forward
heuristic search. To guide the search, a relaxed plan that ig-
nores all delete effects of actions is computed for each eval-
uated state [Hoffmann and Nebel, 2001]. Search is enhanced
with iterative macros as illustrated in Figure 1 (right) and de-
tailed in Section 4. The strategy for using iterative macros
consists of three steps: (1) extract macro-operators from so-
lutions of training problems, (2) statically filter the set of
macro-operators, and (3) use the selected macro-operators to
compose iterative macros at runtime. Steps 1 and 2 deal only
with classical macro-operators. Only step 3 involves the new
iterative macros. The model of Botea et al. 2005 serves as
a starting point for implementing the first two steps. It pro-
vides a framework for generating, filtering, and using clas-
sical macro-operators at runtime in planning. However, ex-
periments with iterative macros showed that more powerful
filtering capabilities were needed. The new enhanced method
for filtering in step 2 is described in Section 4.1.

The rest of this section contains definitions of concepts
used in the following sections. For simplicity, totally or-
dered macros are assumed (all definitions can be generalized

to partial-order macros). The macro extraction phase builds
macros with partial ordering of the steps. However, to save
computation time, only one possible ordering is selected at
runtime.

Let O be the set of all domain operators and A the set
of all ground actions of a planning problem. A macro-
operator (macro-schema) is a sequence of domain opera-
tors ms[i] ∈ O together with a parameter binding σ: ms =
((ms[1], ms[2], . . . , ms[l]), σ).

Partially instantiating a macro can be defined in two equiv-
alent ways as either (1) replacing some variables with con-
stant objects or (2) replacing some operators with ground
actions. The second definition is more appropriate for this
work, since macros reuse actions from a relaxed plan and
hence action-wise instantiation is needed. A partial instanti-
ation of a macro is mi = ((mi[1], mi[2], . . . , mi[l]), σ), where
(∀i ∈ {1, . . . , l}) : (mi[i] ∈ A ∨ mi[i] ∈ O).

A total macro-instantiation (shorter, macro-instantiation)
has all steps instantiated (∀i : mi[i] ∈ A). Macro-operators
and macro-instantiations are the extreme cases of partial
macro-instantiations. When the distinction is clear from the
context, the term “macro” can refer to any of these.

When instantiating one more step in a partial instantiation
mi, it is important to ensure that the new action is consis-
tent with all the constraints already existing in mi. More
precisely, given a partial instantiation mi, a position i and a
state s from which mi is being built, define the consistency
set Cons(mi, i, s) as containing all actions a ∈ A such that:
(1) a corresponds to the operator on the i-th position of mi,
(2) a does not break the parameter bindings of mi, and (3) if
either i = 1 or the first i−1 steps are instantiated, then adding
a on the i-th position makes this i-step sequence applicable to
s. Only actions from Cons(mi, i, s) can be used to instantiate
the i-th step of mi. Obviously, instantiating a new step can
introduce additional binding constraints. Instantiating steps
in a macro can be done in any order. When step i is instan-
tiated, its bindings have to be consistent with all previously
instantiated steps, including positions larger than i.

Finally, let γ(s, a1 . . . ak) be the state obtained by apply-
ing the action sequence a1 . . . ak to state s. For the empty
sequence ε, γ(s, ε) = s. If ∃i ≤ k such that ai cannot be
applied to γ(s, a1 . . . ai−1), then γ(s, a1 . . . ak) is undefined.

4 Iterative Macros

This section describes a technique for speeding up planning
using iterative macros. Section 4.1 presents a method for stat-
ically filtering a set of macro-operators to identify candidates
that can be composed to form iterative macros. Section 4.2
focuses on integrating iterative macros into a search algo-
rithm. Methods that effectively address the challenging tasks
of instantiation and pruning are described.

4.1 Static Filtering

The model introduced by Botea et al. [2005] was imple-
mented and enhanced. Botea et al. analyze solutions to a
set of test problem instances to extract a potentially useful set
of macro-operators. The macros are then ranked by favoring
those that 1) appear frequently in solutions, and 2) signifi-
cantly reduce the search effort required for each application.

IJCAI07
1829

Two important limitations of this ranking model are that it ig-
nores the interactions of macros when used together, and that
it provides no automatic way to decide the number of selected
macros.

Our enhancement first selects the top K macros (where K
is a parameter) returned by the original procedure and then
tries to filter this down to a subset that solves the training set
most efficiently in terms of expanded nodes. Since enumer-
ating all subsets of a set with K elements is exponentially
hard, we use an approximation method whose complexity is
only linear in K . For each i from 1 to K , the training set is
solved with macro mi in use. Macros are reordered accord-
ing to the search effort. More precisely, mi is better than mj

if Ni < Nj , where Nl is the total effort (expanded nodes)
to solve the training set using macro ml. Ties are broken ac-
cording to the original ranking.

Based on the new ordering, the training set is solved using
the top i macros, 1 ≤ i ≤ K . Assume N is the total number
of nodes expanded to solve the training set with no macros in
use, NT

i the total effort to solve the training set with the top i
macros, and

b = arg min
1≤i≤K

NT
i .

If NT
b < N , then the learning procedure returns the top b

macros. Otherwise, no macros are learned for that domain.
In the experiments described in Section 5, small training

instances are used, to keep the learning time low. K is set
to 5, since the number of useful macros in those domains is
typically less than 5. For larger domains, where more macros
could be beneficial, a larger value of K might produce better
results at the price of longer training time.

4.2 Iterative Macros in Search

Integrating iterative macros into a search algorithm raises two
major challenges: instantiation and pruning. In the most gen-
eral case, the total number of iterative macros applicable to a
state is in the order of BD, where B is the number of clas-
sical macro instantiations applicable to a state, and D is the
number of macros contained in an iterative macro. Each in-
stantiation can be expensive to compute, since its cost is the
total cost of instantiating all the contained macros.

If instantiation and pruning were performed separately, a
large effort could be spent on building elements that would
be rejected later. Therefore a combined algorithm tries, for
a given state, to build only one iterative macro which shows
promise to take the search closer to a goal state. The guid-
ance in building this iterative macro is given by the relaxed
plan of the state being expanded. Building a macro instan-
tiation is founded on two simple, yet powerful ideas. First,
when deciding how to instantiate a given step, heuristics are
used to select an action that will allow a large number of re-
laxed steps to be subsequently inserted. Second, for the steps
not filled with relaxed plan actions, other actions are used that
preserve the correctness and the variable bindings of the iter-
ative macro. This completion is an important feature of the
algorithm, since a relaxed plan often misses steps that have to
be part of the unrelaxed solution.

Figure 2 shows the procedure for building an iterative
macro in pseudo-code. It takes as input a global list of macro-

ComposeIterativeMacro(MS, s, RP)
U ← ∅; itm← empty sequence;
while (true)

for (each ms ∈ MS)
mi← Instantiate(ms, γ(s, itm), RP \ U);
if (instantiating mi succeeded)

U ← U ∪ [mi ∩ RP]; // mark used steps
itm← itm + mi; // concatenate
break; // restart outer loop

if (no iteration of last for loop instantiated a macro)
return itm;

Figure 2: Composing an iterative macro at runtime.

Instantiate(ms, s, RS)
for (each a ∈ Cons(ms, 1, s))

mi← Matching(a, ms, s, RS);
if (|mi ∩ RS| ≥ threshold)

fill remaining gaps in mi;
if (all steps of mi are instantiated)

return mi;
return failure;

Figure 3: Instantiating one macro-action.

schemas (MS), a current search state (s), and the relaxed plan
computed for that state (RP). Each iteration of the main loop
tries to append one more macro to the iterative macro. The
inner loop iterates through the global list of macro-schemas.
As soon as instantiating such a macro-schema succeeds, the
algorithm greedily commits to adding it to the iterative macro
and a new iteration of the outer loop starts. This procedure
automatically determines the length of an iterative macro (the
number of contained macros).

In the code, U is the set of all relaxed plan steps already
inserted in the iterative macro. During subsequent iterations,
the used relaxed steps will be ignored when the matching of
a macro instantiation with a relaxed plan is computed. Intu-
itively, the Matching procedure tries to maximize the number
of relaxed steps used in a macro-instantiation. More formal
details on matching are provided later.

Figure 3 presents the Instantiate procedure that instantiates
one macro-action as part of an iterative macro. The input pa-
rameters are a macro-schema (ms), a search state (s), and a
set of relaxed steps (i.e., the original relaxed plan minus the
already used steps). The main loop iterates through all ac-
tions that could be used as the first step of the macro ms (i.e.,
are applicable to s and are instantiations of the first macro’s
operator).

For each action a ∈ Cons(ms, 1, s), the method
Matching(a, ms, s, RS) creates a partial instantiation of ms
with first step a, followed by zero or more steps instantiated
with elements from RS, and zero or more uninstantiated steps
(see Figure 4 and a discussion later). If the number of relaxed
steps is below a given threshold, the corresponding partial in-
stantiation is abandoned. Otherwise, an attempt is made to
fill the remaining gaps (uninstantiated steps) with any consis-
tent actions. As soon as a complete instantiation is built, the
method returns without considering any other possible out-

IJCAI07
1830

Matching(a, ms, s, RS)
mi← ms; // create local partial instantiation
mi[1]← a;
for (i = 2 to length(ms))

if (Cons(mi, i, s) ∩ RS = ∅)
continue; // leave mi[i] uninstantiated

for (each rp ∈ Cons(mi, i, s) ∩ RS)
undo the instantiation of mi[i], if any;
mi[i]← rp;
count how many subsequent positions j

can be filled with elements from Cons(mi, j, s) ∩ RS;
select the element rp with the highest count value;
undo the instantiation of mi[i];
mi[i]← rp;

return mi;

Figure 4: Matching a macro instantiation with a relaxed plan.

comes. For simplicity, the pseudo-code skips the details of
how the threshold is computed. An effective heuristic is to
set the threshold to the largest matching encountered when
the ms macro-schema is used as a parameter, regardless of
the values of the other parameters a, s and RS.

The matching attempts to use as many elements from RS
as possible in a macro instantiation. An exact computation
of the maximal value can be expensive, since it might require
enumerating many possible instantiations of ms applicable to
a state. Instead, the greedy procedure presented in Figure 4
tries, at step i, 2 ≤ i ≤ length(ms), to commit to using a re-
laxed step rp for instantiating mi[i]. If no such step exists (i.e.,
RS∩Cons(mi, i, s) = ∅), then mi[i] is left uninstantiated. Oth-
erwise, an element from RS∩Cons(mi, i, s) is selected using a
heuristic test (see the pseudo-code for details). In practice, the
number of consistent actions quickly decreases as new steps
are instantiated, since each new step can introduce additional
binding constraints.

5 Experimental Results

Classic and iterative macros were implemented on top of FF
[Hoffmann and Nebel, 2001]. FF 3.4 handles both STRIPS
and ADL domains, but not numeric variables, axioms, or tem-
poral planning.

This research was tested on a large set of benchmarks
from previous international planning competitions. Both
STRIPS (Satellite, Blocksworld, Rovers, Depots, Zeno
Travel, DriverLog, Freecell, Pipesworld No Tankage Non-
temporal, Pipesworld Tankage Nontemporal) and ADL
(Promela Dining Philosophers, Promela Optical Telegraph,
Airport, Power Supply Restoration Middle Compiled—PSR)
representations were used.

Experiments were run on a 3.2GHz machine, with a CPU
limit of 5 minutes and a memory limit of 1GB for each prob-
lem instance. Planning with iterative macros, planning with
classical macros, and planning with no macros were com-
pared. To plan with classical macros, the length of an iter-
ative macro was limited to one macro instantiation. Results
are shown for 11 of the 13 domains. In the two remaining
domains, PSR and Pipes Tankage, no macros were learned,
since their performance on the training set was worse than

low-level search (see Section 4.1 for details).

Figure 5 shows the number of expanded nodes in each do-
main on a logarithmic scale for each of no macros, classical
macros and iterative macros. Note that some lines are miss-
ing a data point—this represents a problem instance that was
not solved by that planner.

When analyzing the expanded nodes performance, the
tested application domains can roughly be split into two cat-
egories. In the first category of eight benchmarks (all 11, less
DriverLog, Freecell and Pipesworld), planning with macros is
much better than low-level search. Iterative macros are better
than classical macros, with the notable exception of Philoso-
phers, where both kinds of macros perform similarly. In this
application domain, classical macros are enough to achieve
impressive savings, and there is little room for further im-
provement. In Zeno Travel, the savings in the search tree
size come at the price of a relatively large increase in solution
length. See Figure 6 and a discussion later. When compar-
ing iterative macros vs classical macros, in domains Satellite,
Blocksworld, Rovers, Depots, and Airport a reduction in the
number of expanded nodes by at least an order of magnitude
is seen for the hard problem instances.

In the second category, the benefits of macros are more
limited. In DriverLog, macros are usually faster, but there
are a few exceptions such as data point 7 on the horizon-
tal axis, where classical macros fail and iterative macros are
much slower than low-level search. In Freecell, classical
macros and iterative macros have similar performance in all
instances. For many Freecell problems, planning with macros
is similar to planning with no macros. When differences are
encountered, the savings are more frequent and much larger
as compared to cases where macros are slower than low-level
search. Finally, in Pipesworld No Tankage the performance
of macros compared to low-level search varies significantly
in both directions. Iterative macros are faster than classical
macros, but the latter solve one more problem. No clear con-
clusion is drawn for this domain. Further analysis of these
three domains is left as future work.

Macros often lead to solving more problems than low-level
search. Given a domain, assume Pim, Pcm and P are the
numbers of problems solved with iterative macros, classical
macros, and no macros respectively. For our data sets and
time constraints, the value of (Pim −P, Pcm−P) is (1, 1) in
Satellite, (3, 2) in Blocksworld, (37, 34) in Optical, (36, 36)
in Philosophers, (5, 5) in Zeno Travel, (3, 2) in DriverLog,
and (1, 1) in Freecell, and (0, 1) in Pipesworld.

Figure 6 illustrates how macros affect the quality of so-
lutions and the cost per node in search. Each chart has 11
two-point clusters, one for each domain. First, consider the
top chart. Given a problem instance, assume Lim, Lcm, and
L are the lengths of solutions when iterative macros, classical
macros, and no macros are used respectively, Rim = Lim/L
and Rcm = Lcm/L. The leftmost data point of a cluster
shows the average, minimum, and maximum value of Rim
over the problem set of the corresponding domain. The right-
most data point shows similar statistics for Rcm. Macros
slightly improve the average solution length in Freecell and
leave it unchanged in Optical and Philosophers. In all do-
mains but Zeno Travel, the average overhead is at most 20%

IJCAI07
1831

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

Satellite

Iterative Macros
Regular Macros

No Macros

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

Blocksworld

Iterative Macros
Regular Macros

No Macros

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

Rovers

Iterative Macros
Regular Macros

No Macros

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40 45 50

Promela Optical Telegraph

Iterative Macros
Regular Macros

No Macros
 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35 40 45 50

Promela Dining Philosophers

Iterative Macros
Regular Macros

No Macros

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

Depots

Iterative Macros
Regular Macros

No Macros

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

Airport

Iterative Macros
Regular Macros

No Macros

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40

Zeno Travel

Iterative Macros
Regular Macros

No Macros

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16 18 20

DriverLog

Iterative Macros
Regular Macros

No Macros

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80

Freecell

Iterative Macros
Regular Macros

No Macros

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35 40

Pipesworld Nontemporal No Tankage

Iterative Macros
Regular Macros

No Macros

Figure 5: Search effort as expanded nodes. Problem sets are ordered so that the “No Macros” curve is monotonically increasing.

for iterative macros and at most 12% for classical macros.

The bottom chart in Figure 6 presents similar statistics for

the cost per node C = search time
expanded nodes

instead of solution

length L. To include a problem instance into the statistics, it
has to be solved by both the corresponding type of macros and
the low-level search within a time larger than 0.05 seconds.
We included the time threshold for better accuracy of the
statistics. There always is a small noise in the reported CPU
time and, if the total time is in the same order as the noise, the
cost per node measurement becomes unreliable. No statistics
could be collected for Philosophers (both kinds of macros)

and for Blocksworld (iterative macros), where macros solve
problems very fast.

Processing a node in low-level search includes computing
a relaxed plan and checking whether that node has been vis-
ited before. Macros add the overhead of their instantiation.
Even if much smaller than the expanded nodes savings shown
in Figure 5, the overhead can be surprisingly high. Profiling
tests have shown that the main bottleneck in the current im-
plementation of macros is attempting to fill gaps in a partial
instantiation (Figure 3, line 5). Fortunately, this step can be
implemented much more efficiently. When looking for a con-
sistent action to fill a gap, the corresponding operator schema

IJCAI07
1832

 0.125

 0.25

 0.5

 1

 2

 4

 8

 1 2 3 4 5 6 7 8 9 10 11

So
lu

tio
n

le
ng

th
 r

at
io

Iterative Macros vs No Macros
Classical Macros vs No Macros

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 1 2 3 4 5 6 7 8 9 10 11

C
os

t p
er

 n
od

e
ra

tio

Iterative Macros vs No Macros
Classical Macros vs No Macros

Figure 6: Effects of macros on solution quality (top) and cost
per node in search (bottom). The two-point clusters corre-
spond in order to (1) Satellite, (2) Optical, (3) Philosophers,
(4) Rovers, (5) Depots, (6) Airport, (7) Blocksworld, (8) Zeno
Travel, (9) DriverLog, (10) Freecell, and (11) Pipesworld.

is known from the structure of the macro. Often, the values
of all variables are already set by the previously instantiated
steps. This would be enough to determine the corresponding
instantiated action. However, to the best of our knowledge,
no mapping from an operator together with a list of instanti-
ated arguments to the resulting ground action is available in
FF at search time. Instead, our current implementation gen-
erates states along a macro instantiation and calls FF’s move
generator when a gap has to be filled. If an applicable action
exists that is consistent with the current partial instantiation,
it is used to instantiate the given step in the macro.

6 Conclusion

This paper describes how macros of macro-actions, called it-
erative macros, can be used to speed up domain independent
planning. Techniques for static filtering, dynamic composi-
tion and pruning of iterative macros have been introduced to
turn the trade-off between the benefits and the limitations of
iterative macros in favor of the former. Experiments in several
standard benchmarks demonstrate impressive savings that it-
erative macros can achieve as compared to low-level search

and even to a search enhanced with classical macros. Worst-
case behavior and solution quality remain acceptable.

Future work includes faster processing per node when
searching with macros. Another avenue of research is to in-
vestigate how iterative macros and relaxed plans interact with
each other, and how macros can be used to improve the ac-
curacy of the heuristic state evaluation. Based on macros’
success in classical planning, research should be done on us-
ing macros in areas such as temporal planning and planning
with uncertainty.

References

[Botea et al., 2005] A. Botea, M. Müller, and J. Schaeffer.
Learning Partial-Order Macros From Solutions. In ICAPS-
05, pages 231–240, 2005.

[Coles and Smith, 2005] A. Coles and A. Smith. On the In-
ference and Management of Macro-Actions in Forward-
Chaining Planning. In UK Planning and Scheduling SIG,
2005.

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. STRIPS:
A New Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence, 5(2):189–208,
1971.

[Hernádvölgyi, 2001] I. Hernádvölgyi. Searching for
Macro-operators with Automatically Generated Heuris-
tics. In Canadian Conference on AI, pages 194–203, 2001.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The
FF Planning System: Fast Plan Generation Through
Heuristic Search. JAIR, 14:253–302, 2001.

[Iba, 1989] G. Iba. A Heuristic Approach to the Discovery
of Macro-Operators. Machine Learning, 3(4):285–317,
1989.

[Junghanns and Schaeffer, 2001] A. Junghanns and J. Scha-
effer. Sokoban: Enhancing Single-Agent Search Us-
ing Domain Knowledge. Artificial Intelligence, 129(1–
2):219–251, 2001.

[Korf, 1983] R. Korf. Learning to Solve Problems by Search-
ing for Macro-Operators. PhD thesis, Carnegie-Mellon
University, 1983.

[Korf, 1985] R. Korf. Macro-Operators: A Weak Method for
Learning. Artificial Intelligence, 26(1):35–77, 1985.

[McCluskey and Porteous, 1997] T. L. McCluskey and
J. Porteous. Engineering and Compiling Planning Domain
Models to Promote Validity and Efficiency. Artificial
Intelligence, 95:1–65, 1997.

[Minton, 1985] S. Minton. Selectively Generalizing Plans
for Problem-Solving. In IJCAI-85, pages 596–599, 1985.

[Mooney, 1988] R. Mooney. Generalizing the Order of Oper-
ators in Macro-Operators. In ICML, pages 270–283, 1988.

[Newton et al., 2005] M. Newton, J. Levine, and M. Fox.
Genetically Evolved Macro-Actions in AI Planning. In
UK Planning and Scheduling SIG, 2005.

[Vidal, 2004] V. Vidal. A Lookahead Strategy for Heuristic
Search Planning. In ICAPS-04, pages 150–159, 2004.

IJCAI07
1833

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

