
Memory-Based Heuristics for Explicit State Spaces

Nathan R. Sturtevant

Computing Science
University of Alberta

Edmonton, AB, Canada
nathanst@cs.ualberta.ca

Ariel Felner and Max Barrer

Information Systems Engineering
Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Israel
felner,maxb@bgu.ac.il

Jonathan Schaeffer and Neil Burch

Computing Science
University of Alberta

Edmonton, AB, Canada
jonathan,burch@cs.ualberta.ca

Abstract

In many scenarios, quickly solving a relatively small
search problem with an arbitrary start and arbitrary goal
state is important (e.g., GPS navigation). In order to
speed this process, we introduce a new class of memory-
based heuristics, called true distance heuristics, that store
true distances between some pairs of states in the origi-
nal state space can be used for a heuristic between any
pair of states. We provide a number of techniques for
using and improving true distance heuristics such that
most of the benefits of the all-pairs shortest-path com-
putation can be gained with less than 1% of the memory.
Experimental results on a number of domains show a 6-
14 fold improvement in search speed compared to tradi-
tional heuristics.

1 Introduction and Overview

A common direction in heuristic search is to develop tech-
niques which allow larger problems to be solved. How-
ever, there are many domains, such as map-based searches
(common in GPS navigation, computer games, and robotics),
where quickly solving a ‘small’ problem is most impor-
tant. Optimal paths for such domains can be found relatively
quickly with simple heuristics, especially compared to the ex-
ponential size of combinatorial domains. But relative quick-
ness might still not be enough in such real-time domains as
the search should be extremely fast. A significant body of
work has been performed to speed up such searches by com-
promising on the solution quality (e.g., [Bulitko et al., 2008]).
We address how available memory can be used to improve
search performance while still returning optimal solutions.

Over the last decade pattern databases (PDBs) have been
explored as a powerful method for automatically building
admissible memory-based heuristics [Culberson and Scha-
effer, 1998]. A range of enhancements have been proposed
that have been useful for many domains (e.g., [Felner et al.,
2007]), although some of these take advantage of unique
properties which are not generally available. Therefore,
PDBs have some limitations.

First, PDBs are goal-specific; they only provide heuristics
for a single goal state. While some domains have properties
(e.g., duality [Felner et al., 2005]) that allow a given PDB to
be used for many goal states, this is not a general property.

Second, PDBs store abstract distances between states. This
guarantees that the distances are lower bounds on distances in
the original domain, but if good abstractions are not available,
then the estimates will be poor. PDBs work very well for
domains where a state can be described by assigning values
to a set of variables (e.g., locations to tiles, as in the sliding-
tile puzzle). Replacing some of the assignments with a don’t
care value can yield an effective abstraction. But, in map-
based pathfinding problems a state is just an x/y coordinate.
Replacing the x or y coordinate by a don’t care yields an
abstraction that is too general to be effective.

We introduce a new class of memory-based heuristics
called true distance heuristics (TDHs). They are useful in
any undirected graph, even for applications where traditional
PDBs are not applicable. True distance heuristics aim to pro-
vide heuristic information between any pair of start and goal
states and as a consequence they may have significant mem-
ory needs. Thus, they are most applicable in what would or-
dinarily be considered ‘small’ domains such as maps, where
the entire search space fits into memory.

Unlike traditional PDBs, which store distances in an ab-
stract state space, TDHs store information about true dis-
tances in the original state space. A perfect heuristic for any
pair of start and goal states on any graph could be achieved by
computing and storing all-pairs-shortest-path distances (e.g.,
using the Floyd-Warshall algorithm). However, due to time
and memory limitations this is not practical. TDHs compute
and store only a small part of this information. We present
two ideas for reducing the time and memory overhead of the
full all-pairs-shortest-path data. First, a differential heuris-
tic stores distances from all states to one or more canonical
states. A second approach is to increase the number of canon-
ical states but only store distances between canonical states.
We unify these two ideas into a general framework and pro-
vide experimental results to show the benefits of true distance
heuristics on a number of different domains.

It is important to note that while we discuss these ideas
under the assumption that the full state space fits in memory,
there are a number of abstraction-based algorithms which find
solutions in smaller abstract spaces as an intermediate step
towards finding optimal [Holte et al., 1996] or suboptimal
[Sturtevant and Buro, 2005] solutions in the original space. If
the state space does not fit in memory, TDHs can be used to
more quickly find solutions in abstracted state spaces. These

609

Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09)

N entries k entries (used)

N
 e

n
tr

ie
s

k
 e

n
tr

ie
s

(u
se

d
)

k entries (used)

k
 e

n
tr

ie
s

(u
se

d
)

All-Pairs Shortest Path Differential Heuristic (DH) Canonical Heuristic (CH)

(a) (b) (c)

Figure 1: Types of heuristics.

solutions are then used in the original, larger state spaces.
Björnsson and Halldórsson [2006], suggest a similar idea,

using the exact distances between some of the states in the
domain. However, their work is specific to maps of rooms
and passageways as seen in computer games (canonical states
were doorways into rooms). Our work is more general and
does not exploit application-specific properties.

2 True Distance Heuristics (TDHs)

Let N denote the number of vertices in a graph. If the full
all-pairs shortest-path database is available, then the exact
distance between two states, d(x, y), can be used as a per-
fect heuristic between x and y. This situation is illustrated in
Figure 1a. Each row and column corresponds to a state in the
world, and an entry in the grid is marked if the corresponding
distance is stored. Computing such a database will require as
much as O(N3) time which might not be feasible (even in
an offline phase). If there are N states, storing this database
will require O(N2) memory – more than is available in many
domains. We propose two methods that reduce the memory
needs by using a subset of the all-pairs-shortest-path informa-
tion to compute a heuristic distance between any two states.
The two ideas are presented separately, after which a unified
general formalization is given. The heuristics are admissible,
but a proof is omitted due to space limitations.

2.1 Differential Heuristics (DHs)

The first idea is shown Figure 1b. In this case, shortest
path data is only stored for k of the N states (k � N).
We denote these k states as canonical states. Because the
database is symmetric around the main diagonal (the graph
is undirected), this is equivalent to retaining only k rows (or
columns) out of the full all-pairs database. If s is one of the
canonical states then d(x, s) is available for any state x. The
heuristic between arbitrary states a and b would be the max
of h(a, b) = |d(a, s)− d(b, s)| over all s.

We call this database a Differential Heuristic (DH). Fig-
ure 2a illustrates how a DH works (with k = 1). The
traversable portion of the map is white. C is the canoni-
cal state and, hence, the shortest path from state C to all
other points is available. If d(C, D) = 10, d(C, B) = 50
and d(C, A) = 20, then this database will give an accurate
estimate for h(A, D) = |10 − 20| = 10 and h(D,B) =
|10 − 50| = 40 because D is close to the optimal path be-
tween C and A as well as C and B. But the estimate between

B

A

C

D
B

A

C

D

P1

P2

P3

P4
(b)(a)

Figure 2: DH and CH examples.

B and A is not very accurate: h(A, B) = |20 − 50| = 30
because B and A are opposite directions from C.

These examples show that a DH provides a more accurate
estimate between two points when the optimal path between
one of the points and the canonical state goes through the
other point. If we use k > 1 canonical states, we can take
the maximum from each of the independent heuristics. A dif-
ferential heuristic can be built using k complete single-source
searches. The time will be O(kN) and the memory used is
also O(kN). The canonical states can be chosen by various
methods discussed in Section 3. An idea similar to DH was
independently suggested by [Cazenave, 2006].

2.2 Canonical Heuristics (CHs)

Our second idea uses canonical states in a different way, illus-
trated in Figure 1c. Again, we first select k canonical states.
Here, the shortest path between all pairs of these k states is
stored in the database (primary data). Additionally, for each
of the N states in the world we store which canonical state
is closest as well as the distance to this canonical state (sec-
ondary data). The shortest-path data (primary data) is marked
in a light-gray in Figure 1 while the secondary data is slightly
darker. Note that in a domain with regular structure, it might
be possible to avoid storing the secondary data, instead com-
puting it on demand. We call this a canonical heuristic (CH).
Define C(x) as the closest canonical state to x. Then:

h(a, b) = d(C(a), C(b))− d(a, C(a))− d(b, C(b))

This can be less than 0 and can be rounded up but in prac-
tice we always take the max of the canonical heuristic and
an existing heuristic. In addition, if C(a) = C(b), then the
differential heuristic rule can be used instead.

Figure 2b illustrates canonical heuristics. There are four
canonical states, P1 . . . P4. The distance between A and B
will be estimated accurately because these points are both

610

Technique Storage Time to Build
All-Pairs Shortest Path N2 O(N3)

DH kN O(kN)
CH(k, 1) k2 + 2N O(kN)
CH(k, d) k2 + 2dN O(kN)

Figure 3: Memory and time complexity.

Total Memory
Closest States Stored Num Canonical States (2dN + k2)

d < k
d = 1 k =

√
8N 10N

d = 2 k =
√

6N 10N
d = 3 k =

√
4N 10N

d = 4 k =
√

2N 10N
d = k

d = 5 k = 5 10N
d = 10 (optimized) k = 10 10N

Figure 4: Transition between DH and CH.

close to canonical points. But, the distance between B and
C will be estimated less accurately because C is far from P2,
the closest canonical state. Once k canonical states are cho-
sen, we need to perform k complete single-source searches.
The time complexity is again O(kN). The memory needed is
k2 for the primary data but additional 2N memory might be
needed for the secondary data (when applicable).

2.3 Unified View

Figure 3 summarizes the time and memory requirements for
DH and CH. Building either database requires k single-source
searches of the entire state space. However, DHs generally
use a much smaller k, so they can be built more quickly; they
can also be built incrementally.

Differential and canonical heuristics can be viewed as op-
posite extremes of a general framework. Suppose the avail-
able memory is fixed at 10N . Memory can be filled in one of
two ways. First, 10 differential heuristics can be built, each
of which takes N memory. Alternately, k =

√
8N canonical

states can be selected for a canonical heuristic which will use
k2 = 8N memory. With the additional 2N memory for stor-
ing the secondary data, this will also require 10N memory.

Consider that instead of keeping the distance to the clos-
est canonical state (and its identity) in the secondary data,
we keep the distance to the d closest canonical states among
the k canonical states available (d < k). We denote this as
CH(d, k). The memory required is 2dN +k2. Our introduc-
tory discussion to CH implicitly used d = 1. When d = k
then every state maintains the exact distance to all k canonical
states – which is actually a differential heuristic.

The possible heuristics using 10N memory are shown in
Figure 4. When d < k, both the optimal distance to the clos-
est canonical states and the identity of these canonical states
must be stored in the secondary data. When d = k (logically
a differential heuristic) the distance to all canonical states is
stored. Thus, the identity of the canonical state is not needed,
allowing twice as many canonical states to be used. Addition-
ally, when d = k the primary data of all-pairs-shortest-path

C S G

16

16
32

ab

11

Figure 5: Two heuristic lookups are better than one.

distance between the k canonical states is redundant here, as
it is already stored in the secondary data. This allows us to
reuse the space by doubling d (‘optimized’ in Figure 4).

In this unified scheme, there are many possible heuristic
lookups. For any two states a and b we need to choose two
out of d different canonical states as reference points for the
canonical heuristic; a total of d2 possible lookups. As well,
there could be as many as d valid differential lookups. Clearly
there is a tradeoff; the maximum over multiple heuristic val-
ues yields a better heuristic but at the cost of increased execu-
tion time. In addition, larger d means fewer canonical states.

The advantage of using d > 1 is shown in Figure 5. The
search is between the start (S) and the goal (G), both of which
are canonical states. While the canonical heuristic will store
the exact distance between these states (16), it will give no
guidance to an A* search as to which nodes are on the optimal
path to G. Consider states a and b. They are equally far
from S (say, 5) so their heuristic value from G will be the
same (16− 5 = 11), they will have the same f -cost (16), and
will both be expanded. But, we can use canonical state C to
improve the heuristic estimate for b. In particular, h(b, G) =
d(C, G)− d(b, C)− d(G, G) = 32− 11 = 21. With a g-cost
of 5, b will have an f -cost of 26 and will not be expanded
(26 > 16). The second lookup can be seen as triangulating
the position of state b to improve its heuristic value.

3 Canonical State Placement

Several optimizations can be made in placing canonical
states. In general, we can do so randomly, with an advanced
placement algorithm, or by domain specific methods.

3.1 Canonical Heuristics – Advanced Placement

For each canonical state s, define the canonical neighborhood
of that state as all nodes x for which C(x) = s. Consider the
example in Figure 6. There are two canonical states in this ex-
ample, A and B. A’s canonical neighborhood is a circle. This
means that, when subtracting the distance from some state a
to the canonical state A, the maximum value subtracted is the
radius of the canonical neighborhood. B’s canonical neigh-
borhood is asymmetric, meaning that it is possible for a state
in the neighborhood to be much further from the canonical
state, resulting in lower heuristic estimates.

Thus, it would be wise to place the canonical states as
uniformly as possible throughout a (multi-dimensional) state
space, minimizing the radius (and possible penalty) of each
canonical neighborhood. We approximate this approach with
the following. First, choose an unmarked node at random, and
then do a breadth-first search of N/k states, marking each of
them. Second, repeat the first step until all nodes have been
marked. Canonical states are then placed at the middle of

611

A B
d(C(a), C(b))d(a, C(a)) d

(b
, C

(b
))

a

bCanonical Neighborhood

Figure 6: Placement of canonical heuristics.

a) b)
Figure 7: Placement of differential heuristics.

each marked region (seeds of the BFS). As the process in-
volves some randomness, we cannot exactly control the num-
ber of canonical states, but sample until we are within 10%
of our intended size of k states. We show the effectiveness of
this in the experimental results.

3.2 Differential Heuristics - Advanced Placement

A differential heuristic will give a perfect heuristic value be-
tween two points if one of them is on an optimal path between
the other point and the canonical state. Additionally, the max-
imum value returned by a differential heuristic is bounded by
the maximum distance from a canonical state to any other
state in the world. Thus, we want to maximize the length of
these paths. This suggests putting the canonical states as far
as possible from each other and from other states in the world.

In Figure 7a the canonical state S is in the middle. It will
only provide good heuristic values between two states if they
both fall on the same optimal path line originating from S. In
this case, the lines are short, so heuristic values returned must
be small. But, when S is placed in the corner, as in Figure 7b,
much larger values can be returned.

In practice, we first perform a breadth-first search from a
random state. The furthest state from the random point is our
first canonical state. The second canonical state is chosen by
finding the state that is farthest away from the first canonical
state. Subsequent states can be chosen by finding the node for
which the minimum distance to all existing canonical states
is maximized.

3.3 Domain-Specific Methods for Placement

Consider GPS navigation. The North American map easily
fits into memory on many portable devices. Instead of just us-
ing one method, regular differential heuristics might be used
for intra-city search, while population centers would be ef-
fective canonical states for inter-city search. Thus, we expect
that many domains have specific properties for which these
approaches could be adapted (e.g., our 8-puzzle experiments
below).

Figure 8: Example mazes/rooms (left/center) and robotic arm.

4 Experimental Results

We provide detailed experimental results for the pathfinding
domain and an actuated robotic arm, as well as a short sum-
mary of results on the 8-puzzle. In all experiments we use
the max of the existing heuristic with the canonical heuris-
tics. Search is performed with A* in all domains except the
8-puzzle. All times are reported in seconds.

4.1 Pathfinding: Differential Heuristics

Pathfinding is an example of a domain where the entire state
space is usually kept in memory. The real-time nature of this
domain requires finding a path as quickly as possible.

Two types of maps were used which are illustrated in Fig-
ure 8: mazes (left) and rooms (center). In a simple maze there
is only one path between any two points, however we use cor-
ridors with width two, which increases the average branching
factor from two to five. The octile-distance heuristic, which
is similar to Manhattan distance except that it allows for di-
agonal moves, can be very inaccurate on mazes. Room maps
are composed of small (16×16) rooms with randomly opened
doors between rooms. Octile-distance is more accurate on
these maps. All maps used here are publicly available.

To begin, we compare the search effort required with the
full all-pairs-shortest-path data to the differential heuristics.
The results in Figure 9 use a 512×512 room map with
206,720 states. The number of canonical states varied from 0
to 125 by intervals of 5. Because we cannot plot ‘0’ canoni-
cal states on a log-plot, the first point denotes the result with
the default octile heuristic. The results are averaged over 640
problems with solution lengths between 256 and 512.

The all-pairs data was estimated by assuming that with a
perfect heuristic only the optimal path would be explored. We
drew a line from the 125 data point to the 206,720 data point
(all pairs) to approximate data in between.

The top of the graph shows how the average h-value grows
as the number of canonical states is increased. Note that the
x-axis is logarithmic. The optimal heuristic value is 384.59
and would require the full all-pairs data and 21 billion heuris-
tic entries. With 125 canonical states (26 million entries) we
get an average heuristic value of 382.04. With just 10 canon-
ical states (2 million entries) the heuristic value is 370.34. In
contrast, the average octile-distance heuristic is 306.83.

The number of node expansions are shown in the bottom of
Figure 9. This is a log-log graph, so the line looks much shal-
lower than it actually is. With octile-distance, 21,686 nodes
are expanded on average. 10 canonical states reduces this to
3,440 nodes. 125 canonical states reduces this further to 760
nodes (29× reduction). The absolute minimum, assuming a

612

Heuristic Value

Nodes Expanded

E
x

p
an

si
o

n
s

103

104

h
-v

al
u

e

300

330

360

390

Canonical States

100 101 102 103 104 105

Figure 9: DH performance as memory usage grows.

h Random Placement Advanced Placement
d k nodes h-val time nodes h-val time

Octile 7792 151 0.068
1 1448 2621 596 0.026 2377 611 0.026
2 1254 2221 610 0.023 1845 626 0.022
3 1042 1992 613 0.022 1729 627 0.021
4 724 1955 605 0.023 1776 619 0.023
5 5 1749 610 0.022 1793 610 0.026

10 10 811 629 0.011 707 636 0.010

Figure 10: Results on maze maps. Memory = 10N.

perfect heuristic would be 384.6 nodes. A 29× reduction in
nodes expanded can be achieved with only 1/1000 of the to-
tal memory needed for the full all-pairs information (which
will only achieve an additional reduction of a factor of two.)

Time, not plotted here, tracks closely with the nodes ex-
panded, however it peaks with a 13× reduction when there
are 80 canonical states. With 125 canonical states there is still
a 12× speedup. In a DH the number of differential lookups
grows linearly with the number of canonical states. It is likely
that most of the gain for a particular problem comes from a
few canonical states. If these were identified, the overhead
could be reduced (See Holte [2006] for a deeper discussion
of reducing the time overhead of heuristic lookups).

4.2 Pathfinding: Canonical Heuristics

Next, we look at the transition between canonical heuristic
parameters. We begin with the default heuristic, octile dis-
tance. Then, fixing the total memory at 10N we build a
CH(d, k) (where d = {1 . . . 5} and k =

√
(10N − 2Nd))

and a DH(k = 10). The canonical and differential heuristics
were built twice: once with random and once with advanced
placement of canonical states.

We present the average number of nodes expanded by A*,
starting h-cost, and average time for the search. The results
are averaged over 640 problem instances on each of 5 maze
and room maps (3,200 total instances for each map type). All
maps are 512 × 512. Paths were evenly distributed between
lengths 256 and 512 on the room maps and between lengths
512 and 768 on the maze maps. Paths are longer on maze
maps, but fewer nodes are expanded because the search is
more restricted in the maze corridors.

The results for mazes are in Figure 10. The average heuris-
tic between start and goal points is 151 with octile distance,
while the optimized DH (last line) has an average heuristic
value of 636. The DH expands over 11× fewer nodes than

the octile heuristic but is only 6.8× faster due to the overhead
of the heuristic lookups.

Results for room maps are in Figure 11. The octile heuris-
tic is more accurate in these maps with an average value be-
tween start and goal pairs of 309, compared to 370 with the
best canonical heuristic. There is a saddle point in the canon-
ical results, where the best results are with d = 3 (for mazes
too). The best time performance is with the optimized DH,
5.5× faster than the octile heuristic with 6× fewer nodes.

The average DH value between the start to the goal is 370,
lower than the CH(d = 3) (376), but fewer nodes are ex-
panded with the DH. To investigate this, we recorded the h-
value of every node expanded over 640 problems on a single
room map. A histogram of values is in Figure 12. Search-
ing with either heuristic expands the same number of nodes
with high heuristic values. But, the DH results in far fewer
nodes expansions with low heuristic values. CHs are inaccu-
rate near the borders of the canonical neighborhoods which
suggests there are enough nodes along these borders to sig-
nificantly increase the cost of search.

4.3 Robotic Arm

The robotic arm domain has often been used as a test-bed for
suboptimal search [Likhachev and Stentz, 2008]. A robotic
arm can have many degrees of freedom which makes the
search space large and optimal solutions infeasible except for
small instances of the problem. We experimented on the 3-
arm robotic arm in a 2D plane, shown in Figure 8. The base
is fixed at the origin and the task is to move its end effec-
tor from its initial configuration to an arbitrary x/y location.
Arm rotation has been discretized into 0.7◦ increments, re-
sulting in (360/0.7)3 = 134M possible states. Of these, only
24.5M are legal in our configuration space, as the arms are
not allowed to cross themselves or other obstacles. An action
is moving one joint 0.7◦ and has cost 1.

This search problem is different from previous examples
because the goal state is implicit, only specified by a posi-
tion for the end effector. Thus, there are many possible goal
configurations. The default heuristic is the minimum path the
arm must travel from the start to the goal divided by the max-
imum distance moved by the arm in a single step. The cost
of moving around obstacles is included. To improve perfor-
mance, we bucket the possible end effector positions (on a
200×200 grid), storing all possible arm configurations which
fall in each cell. This table has 24.5M entries, although a sin-
gle DH uses 134M entries, which could be optimized. When
given a goal location, we search from all arm configurations
in that cell towards a single start state. This allows us to use a

h Random Placement Advanced Placement
d k nodes h-val time nodes h-val time

Octile 21354 309 0.296
1 1448 12269 367 0.163 8698 372 0.123
2 1254 9276 370 0.128 6011 375 0.091
3 1042 7962 370 0.114 5472 376 0.083
4 724 8185 368 0.120 5646 373 0.092
5 5 13742 342 0.217 14473 337 0.246
10 10 6266 357 0.093 3479 370 0.054

Figure 11: Results on room maps. Memory = 10N.

613

Canonical Heuristic

Differential Heuristic
#
 n

o
d
es

 w
it

h
 v

al
u
e

103

0

5

10

Heuristic Value

0 100 200 300 400 500

Figure 12: Nodes expanded with CH and DH.

more accurate default heuristic – the number of turns needed
to get the arm to the goal configuration (arm-angle heuristic).

Random Placement Advanced Placement
0 nodes h-val time nodes h-val time

Dist 4.04M 89.99 278.3
Arm 1.98M 209.89 31.5

1 637k 221.68 10.1 610k 223.20 10.3
2 334k 224.52 5.2 214k 226.69 3.6
3 245k 225.14 3.8 162k 227.65 2.9
4 245k 225.14 4.0 140k 228.00 2.5

Figure 13: Differential heuristic results for robotic arm.

We choose 500 problems at random and report average re-
sults over the 101 hardest in Figure 13. These are the prob-
lems that take over 1s to solve using the arm-angle heuristic.
The first two lines report results with the straight-line (Dist)
and arm-angle (Arm) heuristics. The arm-angle heuristic ex-
pands 2× fewer nodes, and is much faster, due to a faster
heuristic function. (The dist heuristic took 40 hours to solve
the entire problem set, while the arm heuristic only took 53
minutes.) Subsequent lines show DH (advanced placement)
results with 1 to 4 canonical states, which fits in 2GB of
RAM. Our implementation is coarse, and could be improved.
But, the DHs still provided a 14× improvement in nodes ex-
panded over the arm-angle heuristic, and a 13× improvement
in speed. The advanced placement algorithm shows some im-
provements over the random DH placement.

4.4 Experiments on the 8-Puzzle

TDHs will likely work best in domains where paths cover
long distances. This means that most puzzles, where the op-
timal path length tends to grow with the log of the state space
size, will not be good candidates for TDHs. We demonstrate
this on the 8 puzzle, which has N = 181,440 states. Fig-
ure 14 shows the average results over 31,125 problems where
the average optimal path was 21.84 moves. The gains pro-
vided by DHs and CHs with 10N are modest. But, we also
built a CH where the canonical states are all states with the
blanks in the middle (20,160 states). Due to the regular struc-
ture of the domain secondary data was not stored and com-
puted on the fly. While the memory requirements are huge
(≈200MB), using a CH(d = 3) results in only 69 nodes ex-
panded on average, 40× better than MD.

h d k h start nodes Mem
Manhattan - - 14.21 3000.26 -

DH 10 10 14.41 2570.33 10N
CH 1 1204 14.50 2376.23 10N
CH 3 852 14.44 2422.28 10N
DH 200 200 16.11 832.71 200N
CH 1 20,160 18.55 345.95 1120N
CH 3 20,160 19.83 69.42 1120N

Figure 14: Results on the 8 puzzle.

5 Conclusions

In the past decade, pattern databases have received consider-
able attention in the heuristic search literature. This paper in-
troduces two new table-based heuristics that use memory in a
novel way to solve more general problems with arbitrary start
and goal states. The result is important performance gains for
real-time pathfinding, and a practical demonstration of per-
formance benefits in other domains. Considerable research
remains. The best number and location of canonical states is
an open problem. Our solution shows the potential of ‘smart’
placement, but can probably be improved. More insights are
also needed into the nature of these heuristics to give guid-
ance to an application developer as to which heuristic (and its
parameters) to choose for a given problem.
Acknowledgments

This research was supported by the ISF under grant number 728/06
to Ariel Felner and by Alberta’s iCORE Canada’s NSERC.

References
[Björnsson and Halldórsson, 2006] Y. Björnsson and

K. Halldórsson. Improved heuristics for optimal path-finding on
game maps. In AIIDE, pages 9–14, 2006.

[Bulitko et al., 2008] V. Bulitko, M. Lustrek, J. Schaeffer,
Y. Björnsson, and S. Sigmundarson. Dynamic control in
real-time heuristic search. JAIR, 32:419–452, 2008.

[Cazenave, 2006] Tristan Cazenave. Optimizations of data struc-
tures, heuristics and algorithms for path-finding on maps. In CIG,
pages 27–33, 2006.

[Culberson and Schaeffer, 1998] J. Culberson and J. Schaeffer. Pat-
tern databases. Computational Intelligence, 14(3):318–334,
1998.

[Felner et al., 2005] A. Felner, U. Zahavi, R. Holte, and J. Schaef-
fer. Dual lookups in pattern databases. In IJCAI, pages 103–108,
2005.

[Felner et al., 2007] A. Felner, R. E. Korf, R. Meshulam, and R. C.
Holte. Compressed pattern databases. JAIR, 30:213–247, 2007.

[Holte et al., 1996] R. C. Holte, M. B. Perez, R. M. Zimmer, and
A. J. MacDonald. Hierarchical A*: Searching abstraction hierar-
chies efficiently. AAAI, pages 530–535, 1996.

[Holte et al., 2006] R. C. Holte, A. Felner, J. Newton, R. Meshu-
lam, and D. Furcy. Maximizing over multiple pattern databases
speeds up heuristic search. Artificial Intelligence, 170:1123–
1136, 2006.

[Likhachev and Stentz, 2008] M. Likhachev and A. Stentz. R*
search. In AAAI, pages 344–350, 2008.

[Sturtevant and Buro, 2005] N. Sturtevant and M. Buro. Partial
pathfinding using map abstraction and refinement. In AAAI,
pages 1392–1397, 2005.

614

	IJCAI-09 CD
	Home
	Contents
	Index
	IJCAI Website

