Dual Search in Permutation State Spaces

Uzi Zahavi
Computer Science
Bar-llan University

Ramat-Gan, Israel 92500
zahaviu@cs.biu.ac.il

Abstract

Geometrical symmetries are commonly exploited to im-
prove the efficiency of search algorithms. We introduce
a new logical symmetry in permutation state spaces
which we callduality. We show that each state has a
dual state. Both states share important attributes and
these properties can be used to improve search effi-
ciency. We also present a hew search algoritdomal
search which switches between the original state and
the dual state when it seems likely that the switch will
improve the chances of a cutoff. The decision of when
to switch is very important and several policies for do-
ing this are investigated. Experimental results show sig-
nificant improvements for a number of applications.

Introduction
The states of many combinatorial problems (e.g., Rubik’s

Ariel Felner
Information Systems Engineering
Ben-Gurion University
Be'er-Sheva, Israel 85104
felner@bgu.ac.il

Robert Holte and Jonathan Schaeffer
Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{holte jonathah@cs.ualberta.ca

lookup In permutation state spaces, the roles played by the
objects and locations are interchangeable and when these
roles are flipped, we geatual patternswhich are used for
the dual PDB lookups. In this paper this principle is gener-
alized. Specifically, our paper’s contributions are as follows:

1: A general formal definition ofluality (which applies
not only to patterns but also to states) is given, along with
precise conditions for it to be applicable. The dual of a state,
S, is another state§<, that is easily computed frorfi and
shares key search-related properties withsuch as being
the same distance from the goal. The dual PDB lookup in
(Felneret al. 2005) is precisely? D B[S9], but we show that
much more can be done wif than a PDB lookup.

2: A new type of search algorithndual searchis intro-
duced. It is a novel bidirectional search algorithm, with the

cube, 15-puzzle) are defined as permutations of a set of surprising property that it does not have to maintain a (large)

constants (oiobject3 over a set of state variables (lo-
cationg. These problems can be solved optimally using
search algorithms such as IDA* in conjunction with an ad-
missible heuristich(S). The effectiveness of the search is
greatly influenced by the accuracy bfS). Pattern data-
baseqPDBs) have proven to be effective for generating ac-
curate, admissible, consistent heuristics for combinatorial
puzzles and other problems (Culberson & Schaeffer 1998;
Korf & Felner 2002; Edelkamp 2001; Korf 1997; Zhou &

search frontier data structure. Further, it has the unusual fea-
ture that it does not necessarily visit all the states on the so-
lution path it returns. Instead, it constructs its solution path
from path segments that it finds in disparate regions of the
state space. The jumping from region to region is effected
by choosing to expand“ instead ofS whenever doing so
improves the chances of achieving a cutoff in the search.

3: Experiments with Rubik’s cube, the pancake puzzle,
and the 24-puzzle show that dual search can reduce the num-

Hansen 2004). PDBs are lookup tables that focus on a given ber of nodes IDA* generates by up to an order of magnitude.

subset of objects (replacing the other objects by “don’t care”

Simple Duality

symbols)._ anh 'possiple configuration of these objects (pat- This section defines simple duality, which applies to per-
tern) has its minimal distance to the goal state computed and 1, jtation state spaces (e.g., Rubik's cube) in which the op-

saved in the PDB. Aegular PDB lookugfor a stateS (de-
noted asP D B[S]) is done by mapping into the PDB and
retrieving the heuristic value from the appropriate entry.

erators have no preconditions (every operator is applicable
to every state). A later section gives a general definition,
applicable to state spaces in which operators have precondi-

In- many application domains, geometric sSymmetries en- ions. Both definitions make three assumptions:

able additional lookups to be done in the PDB for a given
state (Culberson & Schaeffer 1998; Korf & Felner 2002;
Felneret al. 2004). The maximum over all such lookups

1: Every state is a permutation of a fixed setofistants
For example, the most natural representation of the 8-puzzle
has 9 constants, eight representing the individual tiles and

can be a better heuristic value. For example, given a state of 5, representing the blank.

the 15-puzzleS, reflecting the locations of the tiles about

2: The operators’ actions atdecation-based permuta-

the main diagonal produces mirror patterns, and the maxi- tions meaning that an operator permutes the contents of a

mum between the different lookups can be uset(&5.
In (Felneret al. 2005) we introduced a new principle
for making an additional PDB lookup, called tdaal PDB

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

given set of locations without any reference to specific do-

main constants. For example, an operator could swap the

contents of locationgl and B.

3: The operators are invertible, and an operator and its
inverse cost the same. Consequently, if operator sequence

O can be applied to statgy and transforms it int®s, then
its inverse 0!, can be applied to sta% and transforms it
into S; at the same cost &3.

a b|

2 1
s119 785" $:> d 48 ' S2
gl Jhf i gl _h _i

4 7
n@abcdefghl
glajc|b|h|f|d]i]e

Figure 1: Location-based permutatisrthat mapsS; to S

For any given pair of state§; and.S,, there is a unique
location-based permutation, that describes the net effect
of any legal sequence of operators that transfoSngo
Ss. For exampler in Figure 1 describes how the constants
move from their locations in the 8-puzzle stéffe to their
locations inSy. The lettersa, b, etc. denote the locations.
m mapsa to g in Figure 1 because the constd@nthat is in
locationa in Sy is in locationg in S>. Note thatr can be
determined by comparing the two state descriptions, with-
out knowing an operator sequence that transfofinto S,
or even knowing if such a sequence exists.

(b) goal state G

Figure 2: Simple dualityS? = 7(G)

Duality (simple definition): For stateS and goal staté;,
let = be the location-based permutation such thgf) =
G. ThenS?, the simpledual of S for goal G, is defined to
bew(G). = is applicable toG because we assume, for this
definition, that operators have no preconditions. In practice
5% is calculated by constructing from the descriptions of
S andG and then applying to G.

This definition is illustrated in the circle in Figure 2. With
our assumptions, the cost of reachifigrom S and S¢ is
the same, and thereforeax (h(S), h(S?)) is an admissible
heuristic forS for any admissible heuristit.

If we enumerate both the objects and the locations and as-
sume that in the goal stafe objecti is located in locatiori
then the following interesting observation is true.
Observation: If in .S an arbitrary objecj is located in loca-
tion i then inS? objecti will be located in locatiory.

Proof: m moves the content of locatiarto location;. Ap-
plying = for the first time (toS) will move object; from
locationsi to location; (its home location irz). Applying =

for the second time (t67) will move object: from its home
location to locatiory.

In permutation state spaces, the roles played in represent-
ing a state by the objects and the locations are interchange-
able. Usually, in a state description tlezationsare the
variablesand theobjectsare thevalues If we flip the roles
of objectsandlocationsin the vector that describeswe get
adual representatiomwhereobjectsare thevariablesandlo-
cationsare thevalues Based on the above observation, this
representation correspondsd®, the dual stateof S.

The lower part of Figure 2 shows the relation between
state vectorS (Figure 2(a)) and its dual§? (Figure 2(d)).
Figure 2(a,b) shows being mapped td- by the permuta-
tion 7, with the definition ofr written beneath the arrow
((1,3) means that the constant in locatiotn .S is mapped
to location3 in G, etc.). In the lower part of the figure
is applied toG to produceS?. The vector that describes
< 3,1,4,2 >, means that locationhis occupied by objea,

2 by 1, etc. In thedual representatiothis vector means that
objectl is in location3, 2 is in locationl, etc. The state that
corresponds to the dual representatiof4sn Figure 2(d).

Using the heuristic of the dual state might prodireon-
sistentvalues even if the heuristic itself is consistent (i.e., for
any two statesg andy, |h(z) — h(y)| < cost(z,y)). Ina
standard search, a parent stdteand any of its childreng,
are neighbors by definition. Thus a consistent heuristic must
return consistent values when applied?t@ndS. However,
the heuristic values obtained f@? and S¢ might not be
consistent becaude’ and S are not necessarily neighbors.
In (Felneret al. 2005) we introduced thieidirectional path-
max(BPMX) method for propagating inconsistent heuristic
values during search, and showed that it can be very effec-
tive in pruning subtrees that would otherwise be explored.
We regard BPMX as an integral part of any search algorithm
and used it in all the experiments reported in this paper.

Dual search

Traditionally, heuristic search algorithms find optimal solu-
tions by starting at the initial state and traversing the state
space until the goal state is found. The various traditional
search algorithms differ in their decision as to which state
to expand next, but in all of them a solution path is found
only after all the states on the path have been traversed. We
introduce thedual searchalgorithm, which has the remark-
able property of not necessarily visiting all the states on the
solution path. Instead, it constructs its solution path from
solution path segments that it finds in disparate regions of
the state space. In this paper we demonstrate this idea with
DIDA*, the dual version of IDA*. Dual versions for other
algorithms can be similarly constructed.

Dual IDA* (DIDA¥)

Recall that the distance to the gd@lfrom both S and S¢
is identical and therefore the inverse; !, of any optimal

In (Felneret al. 2005) we used this idea of flipping the roles
of objects and locations to produdeal patterns Our current ob-
servation generalizes this principle to the entire state and allows
any heuristic of the dual state (not just PDBs) to be used. The dual
PDB lookups as defined in (Felnet al. 2005) are equivalent to
the regular lookup of the dual state (i.e.,RDB[S?)).

path,O, from S? to G is an optimal path frons to G. This the side bit is flipped. To construct the solution path, DIDA*
fact presents a choice, which DIDA* exploits, for how to backtracks up the search tree to recover the moves made to
continue searching frorfi. For each stat&, DIDA* com- reach the goal. If the side bit for the current mavehas the
putesh(S) and h(S?). Suppose thatnax(h(S), h(S?)) value REGU LAR, theno is added to theront of the par-
does not exceed the current threshold. DIDA* can either tially built path as usual. However, if the side bit indicates
continue from this point using, as IDA* does, or it can thato is on the dual side, then its inverss;', is added at
switch and continue its search frofif. Switching fromS theend of the partially built path.

to S is calledjumping A simple policy for making this In Figure 3(a), when IDA* backtracks, the solution
decision is to jump ifS? has a larger heuristic value than path is reconstructed by adding the moves to the front
S — larger heuristic values suggest that the dual side has aof the partially built path, resulting in the path being
better chance of achieving a cutoff sooner (due to the local- built in the order{6},{5,6},...,{1,2,3,4,5,6}. Fig-

ity of the heuristic values). We call this themp if larger ure 3(b) illustrates how this works in DIDA*. Backtracking
(JIL) policy. Deciding when to jump is an important part of from G will lead to the following pairs of values (cor-
the algorithm, and alternatives to JIL are discussed later. Of responding to the move and the side bit) in the order
course, later on in the search, DIDA* might decide to jump {(37!, D), (47!, D), (57, D), (671, D), (2, R), (1, R)}.

back to the regular side (e.g., when that heuristic value is Since the side bit of the first four moves indicates that they
better). Once the goal state is reached an optimal solution belong to the dual side, the inverses of those moves are
path can be reconstructed, as described below, from the se-added to the end of the partially built path, yielding the
guence of dual and regular path segments that led to the goalpartially paths of{3},{3,4},{3,4,5},{3,4,5,6}. Now
from the start. the side bit indicates that the search occurred in the regular
side. Hence the next two moves are inserted at the front of
the path, obtainind2,3,4,5,6} and{1,2,3,4,5,6}. The
dashed line in Figure 3(b) shows how to concatenate the
solution path fromS¢ to G in its correct place.

Algorithm 1 DIDA*. “::" adds an element to a list.

1 DIDA*(initial _stateS) (returns an optimal solution)
2 letthreshold = max(h(S), h(S%))

(a) No jumps (b) One jump (c) Two jumps 3 letPath = NULL
. . 4 repeaf
Figure 3: Dual IDA* SearchRIDA*) 4.1 GoalFound=DDFS(S,NULL,NULL,0,REGULAR, Path)
Figure 3 illustrates the difference between IDA* and 4.2 threshold = nextthreshold
DIDA*. In Figure 3(a), IDA* finds a path fromS, to G. 4.3} until Goal Found

In Figure 3(b), the DIDA* search starts the same: starting 2 'etumPath

at regular stat&, movesl and2 are made, leading to state
S1. Then, because of its jumping policy, DIDA* switches
to the dual staté{. No further switches occur, and DIDA*
continues on the dual side until the gdalis reached. In
3(c), the DIDA* search starts out the same as in Figure 3(b)
but at stateS§ a jump is made back to the regular side and
DIDA* continues fromSs to G.

DIDA* has similarities to bidirectional search (e.g.
(Kaindl & Kainz 1997)) because it searches for the optimal
path in both directions. DIDA* does not depend on the ac-

1 boolean DDFS(staté, previousmovepm,.,
previousdualmovepmg, depthg, bool side_bit, list Path)
2 leth = maz(h(S), h(S?))
3 if (h+ g) > threshold return false
if S = goal_state return true
if should_jump(S, S%){
51 S=g9¢
5.2 swappm, , pma)
5.3 side_bit = ~side_bit

tual states of the path — only the operator sequence of the op- 5.4 }f endlfh leaatm
timal path matters. While bidirectional search suffers from or each legamovem { .
6.1 if m =pm,.~" continue /*operator pruning*/

the need to maintain a (large) search frontier to detect when
the forward and backward search meet, DIDA* has no addi-
tional storage needs.

6.2 generate child’ by applyingm to S
6.3 if DDFS(C,m,pma, g + 1, side_bit, Path) = true{

)) 6.3.1 if (side_bit = REGULAR) thenPath = m :: Path
Constructing the solution path 6.3.2 elsePath = Path :: m~"
IDA* constructs its solution path by backtracking from the 6.3.3 return true

goal state to the start state, recovering the path in reverse or-6.3.4 } endif
der. This will not work in DIDA* since some of the moves 6.4 } endfor
are on the regular side while some are on the dual side. The 7 return false
solution is to maintain an additional bit per state during the
search, theside bit, indicating whether the search at that Algorithm 1 presents the pseudo code of DIDA*. DIDA*
point is on the regular or the dual side. At the start of the mirrors IDA* by iteratively increasing a solution cost thresh-
search, the side bit is set ®FGULAR. A child inherits old until a solution is found. Each iteration calls DDFS (dual
the bit value of its parent, but if a jump occurs, the value of depth-first search), which recurses until a solution is found

or the cost threshold is exceeded. DIDA* differs from a jumps to the dual state &¢, S,, back on the regular side.
standard IDA* search in several respects. First, each call Because it is returning to the regular side, a history of the
to DDFS includes extra parameters: a shde(indicating if previous moves is known and operator pruning can be used
the search is currently on the REGULAR or DUAL side) and in expandingS,. For example, the previous operator on this
the last move made on the regular and dual sides (explained side is operato, so its inverse2~!, can be ignored. To un-
later). Second, a jump decision is included, possibly result- derstand why operator pruning can be applied, even though
ing in ajump (liness —5.4). Finally, when the goal has been S; bears no apparent relation $g, recall how DIDA* con-
found, the reconstruction of the solution path distinguishes structs its final solution path. If a path is found leading from
between the regular and dual sides (liGes1 — 6.3.2). S5 to the goal, the first operator on this path will be placed
The Benefit of Jumping imme_diately after the operator t_hat Ie_ads,Stpin the final _

solution path. Since this path is optimal, it cannot possi-
bly contain an operator followed immediately by its inverse.
The same reasoning justifies the use of more sophisticated
operator pruning techniques as well.

The regular and dual states are different and, hence, there
can be large differences in the (admissible) heuristic values
between state$ and S?. By using the side that has the

highest hehl.ll’iS'I[’i]C value](cfor the current con_text)% ohne is i”'h To avoid the penalty of jumping, a degenerate jumping
creasing the chances of moving into a region of the search i “\vhich only allows a jump at the root node, can be

space with values high enough to create a cutoff. Of course, \,qeq (JOR). Ifu(root) > h(root) then the search is con-
the decision to switch sides is a heuristic and not guaranteed ducted on the regular side, otherwise it is conducted on the
to improve the search every time a jump is made. dual side. No further jumps are allowed for JOR.

The Penalty for Jumping _ . Experimental results: Rubik’s Cube
Usually, depth-first search algorithms avoid generating du- Table 1 shows the average results for 100 “easy” instances

plicate nodes by disallowing operators that can be shown of Rubik’s cube (the start states are 14 random moves from

E?hbe |_rrelleva:nt baseld 0? tthh_e .prSY'OhJS s_equttre]nqe of Opeﬁthors'the goal state, and have an average solution length of 10.66).
€ simples eﬁamﬁ/le 0 'Sr'f' t'lsat Odv‘{'ngh e mversi O'tN€ The heuristic used was a PDB based on a pattern with seven
previous operator. More sophisticated techniques enforce an ¢ 4,0 ¢ hies. The table columns are as follows:

ordering on the operators, disallowing redundant sequences. H: Heuristic (PDB lookupst- for the regular state andifor
We call such mechanisnoperator pruning Operator prun- ité dual state)

ing can significantly reduce the branching factor. For exam- 5. Operator hruning (yes or no)

ple, the branching factor of Rubik’s cube at the root node is S'. Search algorithm (IDA* or DIIf)A*)

18, but the average branching factor below the root can be 4. '
reduced to 13.35 (Korf 1997).

There can be no operator pruning at the start state, becaus
there is no search history. Let its branching factob.b8ub-
sequent nodes in a normal search have a smaller branching
factor, at most — 1, because of operator pruning. By con-

P: Jumping rule used by DIDA*.

NodesandTime: Average number of generated nodes and
&he average number of seconds needed to solve the problem.
Jumps: Average number of times that DIDA* jumped be-
tween the regular and dual sides.

trast, bidirectional search, in addition to expanding the start " [0 s [P [Nodes] Time| Jumps]
state and some of its descendants, will begin its backwards | max(rd) | - | IDA* | - 29,583,452 | 30.27 0
search by expanding the goal state. Since search in this di- | ") | - | DIDA* | JL | 19,022,292] 2044 | 3,627,504
rection has no history, the goal will have a branching factor zz)x(gg; ' DI|D|§A* W igg;g:g g‘l‘z . 0103
of b. Hence bidirectional search pays a penalty; it has two max(nd) | + | DIDA* | JOR | 2464685| 282 0.23

states with a branching factor bfnot just one.
DIDA* pays a penalty for the same reason as bidirectional Table 1: Rubik’s cube (7-edges PDB) results
search. As before, the start state has a branching factor of The first two rows compare IDA* and DIDA* with op-

b, and subsequent nodes on the regular side have a lowerg aor pruning disabled. Results show that DIDA* with JIL

branching factor. However, on every branch of the search oy ced the number of generated nodes by one third. In lines
tree, when a jump is made to the dual side for the first time 3 — 5 operator pruning was enabled. Lif@resents the re-

only, the dual state has no search history and will have a g5 from (Felneet al. 2005). Line4 shows that DIDA*
branching factor ob. On subsequent jumps we can use the \,ith the JIL jumping policy yields a modest improvement

history on that side to do operator pruning. In Algorithm o6y jine3. The results show that operator pruning is impor-

1, the previous moves from the regular and dual sides are (5nt ang in this domain, the penalty of DIDA* almost offsets

passed as parameters, allowing DIDA* to prune the inverse e penefits. Applying the JOR policy (lirig¢ improves the

of the previously applied operator on a given s’!de. results by a modest amount. Thempvalue reveals that in
Toillustrate this, consider Figure 3(c). DIDA*hasto con- 53 of the cases the dual heuristic at the start state was better

sider all operators at the start stas, Moves1 and2 are and the search was performed in the dual side; the other 77
made on the regular side, reachitig Here DIDA* decides cases had ties or a better regular heuristic.

to jump toS¢; a completely new state with no history. Thus, . .
operator pruning is not possible here and all the operators ~ EXPerimental results: Pancake Problem

must be considered. DIDA* makes movés!, 5-! and For the pancake puzzle (Dweighter 1975), DIDA* with the
4~1 on the dual side until staté{ is reached. DIDA* then JIL policy produces significant performance improvements.

In this domain, a state is a permutation of the value$ N —
1). A state hasV — 1 successors, with the'" successor
formed by reversing the order of the fistt 1 elements of
the permutationl(< k£ < N). From any state it is possible

is the location-based permutation such th@®) = G, then
54, the dual ofS with respect taX, is defined to ber(X).
As a special case, ik = G (this is possible if any oper-
ator sequence applicable fbis also applicable td~) then

to reach any other permutation, so the size of the state spacethis definition becomes the simple definition given earlier.

is N!. In this domain, every operator is applicable to every
state. Hence its branching factoris— 1.

In this domain there are no obvious redundant operator se-

guences, so only the trivial pruning of the parent is possible,
making the branching factor below the ra¥t— 2. When
performing the first jump to the dual side, on any particu-
lar branch, the branching factor increases by only one, from
N-—-2toN — 1.

[H [(0] [S [P [Nodes[Time [Jumps]
max(r,d) | + | IDA* - 2,205,610,700| 3176 0
max(r,d) | + | DIDA* | JIL 223,305,375| 344 | 903,892

Table 2: 17-pancake puzzle results

Table 2 presents results averaged over 30 random in-
stances of the 17-pancake problem (search spatéisx

The 8-puzzle stat® and the goal stat€' of Figure 4 do not
have the same applicable operators. For example, the oper-
ator “move the tile in the upper left corner to the riglg
applicable taS but not toG. We want to find a stat& such
that all operator sequences applicabl@will be applicable
to X. This is done with the mapping, which renames the
tiles to transformsS into X. For the givenS this X could
be any state having the blank in the same positiof.aS?
can be derived in two ways, either by applyimdgo X or by
renaming the tiles ir7 according to3. = (shown in Figure
1), for example, maps the tile in the upper left locatiorbin
orin X, to the lower left location irGG, or S¢, respectively.
(8, by contrast, renames the constérnh S, or in G, to the
constantl in X, or S¢, respectively.

By definition, any legal sequence of operators that pro-
ducesS¢ when applied taX can be legally applied t6 to

10'* states). The heuristic used was a PDB based on tokens produceG, and vice versa. Because an operator and its in-

10,11,...,16 (which gives slightly better average heuris-
tic values than a PDB based on tokéns, ..., 6). DIDA*
gives an impressive 9.88-fold improvement over IDA* —
from 53 minutes to less then 6 minutes.

General Duality
The simple definition of duality used so far assumes that

verse cost the same, duality provides an alternative way to
estimate the distance frofito G: any admissible estimate

of the distance fronf? to X is also an admissible estimate
of the distance fron% to G. If PDBs are being used, general
duality suggests using a PDB,D By (with X as the goal
state), in addition to the usual PDB,D B¢ (with G as the
goal). Given a stat&, in addition to the standard heuris-

any operator sequence that can be applied to any given statetic value, PDB¢[S], we will also get a heuristic value for

S can also be applied to the go@l This only applies to

the dual state by computing for S and then looking up

search spaces where operators have no preconditions. INPDBx[r(X)].

the sliding tile puzzles, for example, operators have precon-
ditions (the blank must be adjacent to the tile that moves)
and an operator sequence that applie$ will not be ap-
plicable toG if the blank is in different locations i and

G. A more general definition of duality, allowing precondi-
tions on operators, will now be given. Assumptions 1-3 are

It is possible to have multiple statesX;}, each playing
the role ofX in the definition. In this case, a stafewill not
have just one dual, it would have a dual with respect to each
X; that had the all-important property that any sequence of
operators applicable t§8 is also applicable to\; and vice
versa. A PDB,PD Bx, would be built for eachX; (with X;

still needed. Nevertheless, with this general definition, dual as the goal). Lookups for the dual stateSoéould be made
heuristic evaluations and dual search are possible fora muchin Pp B for eachX; for which a dual ofS is defined.

wider range of state spaces, including the tile puzzles.

6] |2 T 1|2
8175|::>34SG
3lsela 678
1] |2 T 3]2
X[3[4][5] =——> [6]8]5| *
8 1 7

=

2[3[4]5[6[7]8
BJl 3/2/6/8/ 5147
Figure 4: General duality? = (3(S)) = B(n(S))

Duality (general definition): The dual of a given state,
S, for goal state, can be defined with respect to any state

This is precisely what we will do for the tile puzzleX;
will be a state in which the blank is in position and we
will build a PDB for eachX;. Then, given a staté with the
blank in positioni, we calculate the dual o8 with respect
to X; and look up its value ilPDBx,. For example, in
the 8-puzzle there are 9 different locations the blank could
occupy. Define 9 different stateX . . . Xg, with X; having
the blank in position, and compute 9 PDBs, one for each
X;. Of course, geometric symmetries can be used to reduce
the number of distinct PDBs that must actually be created
and stored. For example, below only seven PDBs are needed
to cover all possible blank locations in the 24-puzzle.
Suppose dual search is proceeding on the “regular side”
(with G as the goal) and decides at state¢o jump to S¢,
the dual ofS with respect taX;. Search now proceeds with
X, playing the role of the goal in all respects. In particular:
(1) if X; is reached, the search is finished and the final so-

X such that any sequence of operators that can be applied tolution path can be reconstructed; and (2) the permutation

stateS can also be applied to stafé and vice versa. Ifr

is calculated usind(; instead ofGG. The latter point has an

important implication for the sliding tile puzzles: the dual of
any state generated when the search go&l iwill have the
blank in location.

Experimental results on the 24-puzzle

PDB | Average
0 | 1982
10 19.09
6|11|6 | 5 5 | 1976
0] 6 | 19.60
10 {11 |12 [11|10 6
6 10 | 1932
5/6/1116/5 11 | 19.89
o[1]10]1]0 6 |6 6 |[6 12 | 2030
(a) symmetries (b) 6-6-6-6 PDB (c) Quality

Figure 5: 24 puzzle heuristic

The sliding tile puzzle has two important attributes that
did not arise in the previous domains, but should be taken
into account in DIDA*'s jumping policy. First, the branch-
ing factor is not uniform, it varies from 2 to 4 depending
on the location of the blank, and will often be different for
S and S¢. Second, as explained above, we will have sev-
eral different PDBs, each based on &@phaving the blank
in a different position. TheX; are chosen to maximally ex-
ploit the geometrical symmetries of the puzzle, so that al-
though there are 25 positions the blank could be in, only 7
PDBs are needed. They are numbebetl, 5,6, 10,11, 12,
with the number reflecting the location of the blank in g
that defined the PDB. Figure 5(a) indicates which PDB is to
be used for each possible position of the blank, and Figure
5(b) shows two different 6-6-6-6 additive PDB partitionings,
PDB;s; and PD B, (the PDB case used in (Korf & Felner
2002)). Figure 5(c) shows the average heuristic value for
each of the PDBs. Note that a small difference in average
PDB value can have a dramatic effect on the PDB’s prun-
ing power. Becaus§ andS< will often have the blank in a
different location, and therefore draw their heuristic values
from different PDBs, it is important for the jumping policy
to take the average value of the PDBs into account.

Our jumping policy for the 24-puzzle, J24, considers both
these attributes. It is a three-step decision process. First,
the effective branching factor of the regular and dual states
is compared. This is done by considering the blank location
and the history of the previous moves, choosing to prefer the
state with the smaller effective branching factor. Second, if
there is a tie, then the quality (average value) of the PDB (as
presented in Figure 5(c)) is considered. Preference is given
to the PDB with the higher average. Third, if there is still a
tie, then the JIL policy is used.

[H [# [S [P [Nodes[Jumps[Imp]
max(r,r) 25 IDA* 43,454,810,045 1.00
max(r,d) 25 IDA* - 31,103,112,894 - 1.40
max(r,d) | 25 | DIDA* | JIL 16,302,942,680| 176,075,343| 2.67
max(r,d) 25 DIDA* J24 8,248,769,713| 23,851,828 | 5.27
max(r,r) | 50 IDA* - 360,892,479,671 - 1.00
max(r,r) 50 DIDA* J24 75,201,250,618| 147,733,548 | 4.79

Table 3: 24-puzzle results

In (Korf & Felner 2002), 50 random instances of the 24-

puzzle were solved. The first four lines of Table 3 presents
the average results over the 25 problems of that set with the
shortest optimal paths. The average solution length for this
setis 95 moves. The first line presents the benchmark results
from (Korf & Felner 2002) where the maximum between
the regular PDB«) and its reflection about the main diag-
onal (*) were taken. The second line is IDA* with regular
and dual PDB lookups. The next line is DIDA* with JIL.
Finally, the last line shows DIDA* with J24. The results
show an increasing improvement factor. The last two lines
present results for the entire set of 50 instances. DIDA* with
J24 outperforms the benchmark results by a factor of 4.79.
Note that all the variations in Table 3 are for programs us-
ing exactly two PDB lookups. Since the overhead of DIDA*
over IDA* (e.g., the jumping decision) is significantly dom-
inated by the PDB lookup overhead, all these versions ran at
roughly 300,000 nodes per second on our machine.

Conclusions and future work

DIDA* is a novel form of a bidirectional search. By exploit-
ing the logical symmetries in a domain, DIDA* can switch
between state representations to maximize the overall qual-
ity of the heuristic values seen in the search. The algorithm
has several surprising properties, including no need for a
search frontier data structure and solution path construction
from disparate regions of the search space. The resulting al-
gorithm provides significant (up to an order of magnitude)
performance gains in several application domains.

Future work can continue in the following directions. 1.
Obtaining a better understanding of the jumping policies.
Given an application, how does one go about determining
the best policy? 2. Analysis to see if the duality concept
can be generalized to encompass a wider set of application
domains. 3. Integrating the idea of duality in other search
algorithms (e.g. A*).

Acknowledgments
The financial support of the Israeli Ministry of Science In-
frastructure grant No. 3-942, of NSERC and of iCORE is
greatly appreciated.
References
Culberson, J. C., and Schaeffer, J. 1998. Pattern datalases.
putational Intelligencel 4(3):318—-334.
Dweighter, H. 1975. Problem e256%merican Mathematical
Monthly82:1010.
Edelkamp, S. 2001. Planning with pattern databaBesc, ECP-
0113-34.
Felner, A.; Meshulam, R.; Holte, R.; and Korf, R. 2004. Com-
pressing pattern databases Pioc. AAAI-04 638-643.
Felner, A.; Zahavi, U.; Holte, R.; and Schaeffer, J. 2005. Dual
lookups in pattern databases.|JCAI-05 103—-108.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic search
reconsideredJAIR7:283-317.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligencel34:9-22.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. Rnoc. AAAI-97 700-705.
Zhou, R., and Hansen, E. 2004. Space-efficient memory-based
heuristics. InProc. AAAI-04 677-682.

