
Dual Search in Permutation State Spaces

Uzi Zahavi
Computer Science
Bar-Ilan University

Ramat-Gan, Israel 92500
zahaviu@cs.biu.ac.il

Ariel Felner
Information Systems Engineering

Ben-Gurion University
Be’er-Sheva, Israel 85104

felner@bgu.ac.il

Robert Holte and Jonathan Schaeffer
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{holte,jonathan}@cs.ualberta.ca

Abstract
Geometrical symmetries are commonly exploited to im-
prove the efficiency of search algorithms. We introduce
a new logical symmetry in permutation state spaces
which we callduality. We show that each state has a
dual state. Both states share important attributes and
these properties can be used to improve search effi-
ciency. We also present a new search algorithm,dual
search, which switches between the original state and
the dual state when it seems likely that the switch will
improve the chances of a cutoff. The decision of when
to switch is very important and several policies for do-
ing this are investigated. Experimental results show sig-
nificant improvements for a number of applications.

Introduction
The states of many combinatorial problems (e.g., Rubik’s
cube, 15-puzzle) are defined as permutations of a set of
constants (orobjects) over a set of state variables (orlo-
cations). These problems can be solved optimally using
search algorithms such as IDA* in conjunction with an ad-
missible heuristic,h(S). The effectiveness of the search is
greatly influenced by the accuracy ofh(S). Pattern data-
bases(PDBs) have proven to be effective for generating ac-
curate, admissible, consistent heuristics for combinatorial
puzzles and other problems (Culberson & Schaeffer 1998;
Korf & Felner 2002; Edelkamp 2001; Korf 1997; Zhou &
Hansen 2004). PDBs are lookup tables that focus on a given
subset of objects (replacing the other objects by “don’t care”
symbols). Each possible configuration of these objects (pat-
tern) has its minimal distance to the goal state computed and
saved in the PDB. Aregular PDB lookupfor a stateS (de-
noted asPDB[S]) is done by mappingS into the PDB and
retrieving the heuristic value from the appropriate entry.

In many application domains, geometric symmetries en-
able additional lookups to be done in the PDB for a given
state (Culberson & Schaeffer 1998; Korf & Felner 2002;
Felneret al. 2004). The maximum over all such lookups
can be a better heuristic value. For example, given a state of
the 15-puzzle,S, reflecting the locations of the tiles about
the main diagonal produces mirror patterns, and the maxi-
mum between the different lookups can be used ash(S).

In (Felneret al. 2005) we introduced a new principle
for making an additional PDB lookup, called thedual PDB

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

lookup. In permutation state spaces, the roles played by the
objects and locations are interchangeable and when these
roles are flipped, we getdual patternswhich are used for
the dual PDB lookups. In this paper this principle is gener-
alized. Specifically, our paper’s contributions are as follows:

1: A general formal definition ofduality (which applies
not only to patterns but also to states) is given, along with
precise conditions for it to be applicable. The dual of a state,
S, is another state,Sd, that is easily computed fromS and
shares key search-related properties withS, such as being
the same distance from the goal. The dual PDB lookup in
(Felneret al. 2005) is preciselyPDB[Sd], but we show that
much more can be done withSd than a PDB lookup.

2: A new type of search algorithm,dual search, is intro-
duced. It is a novel bidirectional search algorithm, with the
surprising property that it does not have to maintain a (large)
search frontier data structure. Further, it has the unusual fea-
ture that it does not necessarily visit all the states on the so-
lution path it returns. Instead, it constructs its solution path
from path segments that it finds in disparate regions of the
state space. The jumping from region to region is effected
by choosing to expandSd instead ofS whenever doing so
improves the chances of achieving a cutoff in the search.

3: Experiments with Rubik’s cube, the pancake puzzle,
and the 24-puzzle show that dual search can reduce the num-
ber of nodes IDA* generates by up to an order of magnitude.

Simple Duality
This section defines simple duality, which applies to per-
mutation state spaces (e.g., Rubik’s cube) in which the op-
erators have no preconditions (every operator is applicable
to every state). A later section gives a general definition,
applicable to state spaces in which operators have precondi-
tions. Both definitions make three assumptions:

1: Every state is a permutation of a fixed set ofconstants.
For example, the most natural representation of the 8-puzzle
has 9 constants, eight representing the individual tiles and
one representing the blank.

2: The operators’ actions arelocation-based permuta-
tions, meaning that an operator permutes the contents of a
given set of locations without any reference to specific do-
main constants. For example, an operator could swap the
contents of locationsA andB.

3: The operators are invertible, and an operator and its
inverse cost the same. Consequently, if operator sequence

O can be applied to stateS1 and transforms it intoS2, then
its inverse,O−1, can be applied to stateS2 and transforms it
into S1 at the same cost asO.

S2e

a b c

f
7

d

ihg
4

hg i

d f

cba

π

π
S1

eidfhbcag
ihgfedcba

e
53

6 8

5

7

2 16

1

3 8 4

2

Figure 1: Location-based permutationπ that mapsS1 to S2

For any given pair of states,S1 andS2, there is a unique
location-based permutation,π, that describes the net effect
of any legal sequence of operators that transformsS1 to
S2. For example,π in Figure 1 describes how the constants
move from their locations in the 8-puzzle stateS1 to their
locations inS2. The lettersa, b, etc. denote the locations.
π mapsa to g in Figure 1 because the constant6 that is in
locationa in S1 is in locationg in S2. Note thatπ can be
determined by comparing the two state descriptions, with-
out knowing an operator sequence that transformsS1 to S2

or even knowing if such a sequence exists.

π
π

G
S

S
d

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

1 2 3 4
1 2 3 4 (1,3)(2,1)(3,4)(4,2)

π

2

(c) goal state G

(b) goal state G

2 4

3 1 4 2 1 3 4

2 4 1 3

(a) state S

(d) dual state Sd

(1,3)(2,1)(3,4)(4,2)
π

Dual

1

representation

2 3 4

1 2 3 4

4321

Figure 2: Simple duality,Sd = π(G)

Duality (simple definition): For stateS and goal stateG,
let π be the location-based permutation such thatπ(S) =
G. ThenSd, the simpledual of S for goalG, is defined to
beπ(G). π is applicable toG because we assume, for this
definition, that operators have no preconditions. In practice
Sd is calculated by constructingπ from the descriptions of
S andG and then applyingπ to G.

This definition is illustrated in the circle in Figure 2. With
our assumptions, the cost of reachingG from S andSd is
the same, and thereforemax(h(S), h(Sd)) is an admissible
heuristic forS for any admissible heuristich.

If we enumerate both the objects and the locations and as-
sume that in the goal stateG objecti is located in locationi
then the following interesting observation is true.
Observation: If in S an arbitrary objectj is located in loca-
tion i then inSd objecti will be located in locationj.
Proof: π moves the content of locationi to locationj. Ap-
plying π for the first time (toS) will move objectj from
locationi to locationj (its home location inG). Applyingπ

for the second time (toG) will move objecti from its home
location to locationj.

In permutation state spaces, the roles played in represent-
ing a state by the objects and the locations are interchange-
able. Usually, in a state description thelocationsare the
variablesand theobjectsare thevalues. If we flip the roles
of objectsandlocationsin the vector that describesS we get
adual representationwhereobjectsare thevariablesandlo-
cationsare thevalues. Based on the above observation, this
representation corresponds toSd, the dual state1 of S.

The lower part of Figure 2 shows the relation between
state vectorS (Figure 2(a)) and its dual,Sd (Figure 2(d)).
Figure 2(a,b) showsS being mapped toG by the permuta-
tion π, with the definition ofπ written beneath the arrow
((1, 3) means that the constant in location1 in S is mapped
to location3 in G, etc.). In the lower part of the figureπ
is applied toG to produceSd. The vector that describesS,
< 3, 1, 4, 2 >, means that location1 is occupied by object3,
2 by 1, etc. In thedual representationthis vector means that
object1 is in location3, 2 is in location1, etc. The state that
corresponds to the dual representation isSd in Figure 2(d).

Using the heuristic of the dual state might produceincon-
sistentvalues even if the heuristic itself is consistent (i.e., for
any two states,x andy, |h(x) − h(y)| ≤ cost(x, y)). In a
standard search, a parent state,P , and any of its children,S,
are neighbors by definition. Thus a consistent heuristic must
return consistent values when applied toP andS. However,
the heuristic values obtained forP d andSd might not be
consistent becauseP d andSd are not necessarily neighbors.
In (Felneret al. 2005) we introduced thebidirectional path-
max(BPMX) method for propagating inconsistent heuristic
values during search, and showed that it can be very effec-
tive in pruning subtrees that would otherwise be explored.
We regard BPMX as an integral part of any search algorithm
and used it in all the experiments reported in this paper.

Dual search
Traditionally, heuristic search algorithms find optimal solu-
tions by starting at the initial state and traversing the state
space until the goal state is found. The various traditional
search algorithms differ in their decision as to which state
to expand next, but in all of them a solution path is found
only after all the states on the path have been traversed. We
introduce thedual searchalgorithm, which has the remark-
able property of not necessarily visiting all the states on the
solution path. Instead, it constructs its solution path from
solution path segments that it finds in disparate regions of
the state space. In this paper we demonstrate this idea with
DIDA*, the dual version of IDA*. Dual versions for other
algorithms can be similarly constructed.

Dual IDA* (DIDA*)
Recall that the distance to the goalG from bothS andSd

is identical and therefore the inverse,O−1, of any optimal

1In (Felneret al. 2005) we used this idea of flipping the roles
of objects and locations to producedual patterns. Our current ob-
servation generalizes this principle to the entire state and allows
any heuristic of the dual state (not just PDBs) to be used. The dual
PDB lookups as defined in (Felneret al. 2005) are equivalent to
the regular lookup of the dual state (i.e., toPDB[Sd]).

path,O, from Sd to G is an optimal path fromS to G. This
fact presents a choice, which DIDA* exploits, for how to
continue searching fromS. For each stateS, DIDA* com-
putesh(S) and h(Sd). Suppose thatmax(h(S), h(Sd))
does not exceed the current threshold. DIDA* can either
continue from this point usingS, as IDA* does, or it can
switch and continue its search fromSd. Switching fromS
to Sd is called jumping. A simple policy for making this
decision is to jump ifSd has a larger heuristic value than
S – larger heuristic values suggest that the dual side has a
better chance of achieving a cutoff sooner (due to the local-
ity of the heuristic values). We call this thejump if larger
(JIL) policy. Deciding when to jump is an important part of
the algorithm, and alternatives to JIL are discussed later. Of
course, later on in the search, DIDA* might decide to jump
back to the regular side (e.g., when that heuristic value is
better). Once the goal state is reached an optimal solution
path can be reconstructed, as described below, from the se-
quence of dual and regular path segments that led to the goal
from the start.

3
G

0S

4

5

6

2 1

(a) No jumps

G

2 1

6

5−1

−1

4−1

3
−1

1S

0

S

S

1

d

(b) One jump

S
d

2

1S

2S
−1

−1

−1

−1

G

3
2 1

0S

1S
d

6

5

4

2

(c) Two jumps

Figure 3: Dual IDA* Search (DIDA*)

Figure 3 illustrates the difference between IDA* and
DIDA*. In Figure 3(a), IDA* finds a path fromS0 to G.
In Figure 3(b), the DIDA* search starts the same: starting
at regular stateS0 moves1 and2 are made, leading to state
S1. Then, because of its jumping policy, DIDA* switches
to the dual stateSd

1 . No further switches occur, and DIDA*
continues on the dual side until the goalG is reached. In
3(c), the DIDA* search starts out the same as in Figure 3(b)
but at stateSd

2 a jump is made back to the regular side and
DIDA* continues fromS2 to G.

DIDA* has similarities to bidirectional search (e.g.
(Kaindl & Kainz 1997)) because it searches for the optimal
path in both directions. DIDA* does not depend on the ac-
tual states of the path – only the operator sequence of the op-
timal path matters. While bidirectional search suffers from
the need to maintain a (large) search frontier to detect when
the forward and backward search meet, DIDA* has no addi-
tional storage needs.

Constructing the solution path
IDA* constructs its solution path by backtracking from the
goal state to the start state, recovering the path in reverse or-
der. This will not work in DIDA* since some of the moves
are on the regular side while some are on the dual side. The
solution is to maintain an additional bit per state during the
search, theside bit, indicating whether the search at that
point is on the regular or the dual side. At the start of the
search, the side bit is set toREGULAR. A child inherits
the bit value of its parent, but if a jump occurs, the value of

the side bit is flipped. To construct the solution path, DIDA*
backtracks up the search tree to recover the moves made to
reach the goal. If the side bit for the current move,o, has the
valueREGULAR, theno is added to thefront of the par-
tially built path as usual. However, if the side bit indicates
that o is on the dual side, then its inverse,o−1, is added at
theend of the partially built path.

In Figure 3(a), when IDA* backtracks, the solution
path is reconstructed by adding the moves to the front
of the partially built path, resulting in the path being
built in the order{6}, {5, 6}, . . . , {1, 2, 3, 4, 5, 6}. Fig-
ure 3(b) illustrates how this works in DIDA*. Backtracking
from G will lead to the following pairs of values (cor-
responding to the move and the side bit) in the order
{(3−1, D), (4−1, D), (5−1, D), (6−1, D), (2, R), (1, R)}.
Since the side bit of the first four moves indicates that they
belong to the dual side, the inverses of those moves are
added to the end of the partially built path, yielding the
partially paths of{3}, {3, 4}, {3, 4, 5}, {3, 4, 5, 6}. Now
the side bit indicates that the search occurred in the regular
side. Hence the next two moves are inserted at the front of
the path, obtaining{2, 3, 4, 5, 6} and{1, 2, 3, 4, 5, 6}. The
dashed line in Figure 3(b) shows how to concatenate the
solution path fromSd

1 to G in its correct place.

Algorithm 1 DIDA*. “::” adds an element to a list.
1 DIDA*(initial stateS) (returns an optimal solution)
2 let threshold = max(h(S), h(Sd))
3 letPath = NULL
4 repeat{
4.1 GoalFound = DDFS(S,NULL,NULL,0,REGULAR,Path)
4.2 threshold = nextthreshold
4.3 } until GoalFound
5 returnPath

1 boolean DDFS(stateS, previousmovepmr,
previousdual movepmd, depthg, boolside bit, list Path)

2 leth = max(h(S), h(Sd))
3 if (h + g) > threshold return false
4 if S = goal state return true
5 if should jump(S, Sd){
5.1 S = Sd

5.2 swap(pmr , pmd)
5.3 side bit = ¬side bit
5.4 } endif
6 for each legalmovem {
6.1 if m = pmr

−1 continue /*operator pruning*/
6.2 generate childC by applyingm to S
6.3 if DDFS(C, m, pmd, g + 1, side bit, Path) = true{
6.3.1 if (side bit = REGULAR) thenPath = m :: Path
6.3.2 elsePath = Path :: m−1

6.3.3 return true
6.3.4 } endif
6.4 } endfor
7 return false

Algorithm 1 presents the pseudo code of DIDA*. DIDA*
mirrors IDA* by iteratively increasing a solution cost thresh-
old until a solution is found. Each iteration calls DDFS (dual
depth-first search), which recurses until a solution is found

or the cost threshold is exceeded. DIDA* differs from a
standard IDA* search in several respects. First, each call
to DDFS includes extra parameters: a sidebit (indicating if
the search is currently on the REGULAR or DUAL side) and
the last move made on the regular and dual sides (explained
later). Second, a jump decision is included, possibly result-
ing in a jump (lines5−5.4). Finally, when the goal has been
found, the reconstruction of the solution path distinguishes
between the regular and dual sides (lines6.3.1− 6.3.2).

The Benefit of Jumping
The regular and dual states are different and, hence, there
can be large differences in the (admissible) heuristic values
between statesS and Sd. By using the side that has the
highest heuristic value (for the current context), one is in-
creasing the chances of moving into a region of the search
space with values high enough to create a cutoff. Of course,
the decision to switch sides is a heuristic and not guaranteed
to improve the search every time a jump is made.

The Penalty for Jumping
Usually, depth-first search algorithms avoid generating du-
plicate nodes by disallowing operators that can be shown
to be irrelevant based on the previous sequence of operators.
The simplest example of this is disallowing the inverse of the
previous operator. More sophisticated techniques enforce an
ordering on the operators, disallowing redundant sequences.
We call such mechanismsoperator pruning. Operator prun-
ing can significantly reduce the branching factor. For exam-
ple, the branching factor of Rubik’s cube at the root node is
18, but the average branching factor below the root can be
reduced to 13.35 (Korf 1997).

There can be no operator pruning at the start state, because
there is no search history. Let its branching factor beb. Sub-
sequent nodes in a normal search have a smaller branching
factor, at mostb − 1, because of operator pruning. By con-
trast, bidirectional search, in addition to expanding the start
state and some of its descendants, will begin its backwards
search by expanding the goal state. Since search in this di-
rection has no history, the goal will have a branching factor
of b. Hence bidirectional search pays a penalty; it has two
states with a branching factor ofb, not just one.

DIDA* pays a penalty for the same reason as bidirectional
search. As before, the start state has a branching factor of
b, and subsequent nodes on the regular side have a lower
branching factor. However, on every branch of the search
tree, when a jump is made to the dual side for the first time
only, the dual state has no search history and will have a
branching factor ofb. On subsequent jumps we can use the
history on that side to do operator pruning. In Algorithm
1, the previous moves from the regular and dual sides are
passed as parameters, allowing DIDA* to prune the inverse
of the previously applied operator on a given side.

To illustrate this, consider Figure 3(c). DIDA* has to con-
sider all operators at the start state,S0. Moves1 and2 are
made on the regular side, reachingS1. Here DIDA* decides
to jump toSd

1 ; a completely new state with no history. Thus,
operator pruning is not possible here and all the operators
must be considered. DIDA* makes moves6−1, 5−1 and
4−1 on the dual side until stateSd

2 is reached. DIDA* then

jumps to the dual state ofSd
2 , S2, back on the regular side.

Because it is returning to the regular side, a history of the
previous moves is known and operator pruning can be used
in expandingS2. For example, the previous operator on this
side is operator2, so its inverse,2−1, can be ignored. To un-
derstand why operator pruning can be applied, even though
S1 bears no apparent relation toS2, recall how DIDA* con-
structs its final solution path. If a path is found leading from
S2 to the goal, the first operator on this path will be placed
immediately after the operator that leads toS1 in the final
solution path. Since this path is optimal, it cannot possi-
bly contain an operator followed immediately by its inverse.
The same reasoning justifies the use of more sophisticated
operator pruning techniques as well.

To avoid the penalty of jumping, a degenerate jumping
policy, which only allows a jump at the root node, can be
used (JOR). Ifh(root) > h(rootd) then the search is con-
ducted on the regular side, otherwise it is conducted on the
dual side. No further jumps are allowed for JOR.

Experimental results: Rubik’s Cube
Table 1 shows the average results for 100 “easy” instances
of Rubik’s cube (the start states are 14 random moves from
the goal state, and have an average solution length of 10.66).
The heuristic used was a PDB based on a pattern with seven
edge cubies. The table columns are as follows:
H: Heuristic (PDB lookups:r for the regular state andd for
its dual state).
O: Operator pruning (yes or no).
S: Search algorithm (IDA* or DIDA*).
P: Jumping rule used by DIDA*.
NodesandTime: Average number of generated nodes and
the average number of seconds needed to solve the problem.
Jumps: Average number of times that DIDA* jumped be-
tween the regular and dual sides.

H O S P Nodes Time Jumps

max(r,d) - IDA* - 29,583,452 30.27 0

max(r,d) - DIDA* JIL 19,022,292 20.44 3,627,504

max(r,d) + IDA* - 2,997,539 3.43 0

max(r,d) + DIDA* JIL 2,697,087 3.16 15,013

max(r,d) + DIDA* JOR 2,464,685 2.82 0.23

Table 1: Rubik’s cube (7-edges PDB) results

The first two rows compare IDA* and DIDA* with op-
erator pruning disabled. Results show that DIDA* with JIL
reduced the number of generated nodes by one third. In lines
3− 5 operator pruning was enabled. Line3 presents the re-
sults from (Felneret al. 2005). Line4 shows that DIDA*
with the JIL jumping policy yields a modest improvement
over line3. The results show that operator pruning is impor-
tant and, in this domain, the penalty of DIDA* almost offsets
the benefits. Applying the JOR policy (line5) improves the
results by a modest amount. TheJumpvalue reveals that in
23 of the cases the dual heuristic at the start state was better
and the search was performed in the dual side; the other 77
cases had ties or a better regular heuristic.

Experimental results: Pancake Problem
For the pancake puzzle (Dweighter 1975), DIDA* with the
JIL policy produces significant performance improvements.

In this domain, a state is a permutation of the values0...(N−
1). A state hasN − 1 successors, with thekth successor
formed by reversing the order of the firstk + 1 elements of
the permutation (1 ≤ k < N). From any state it is possible
to reach any other permutation, so the size of the state space
is N !. In this domain, every operator is applicable to every
state. Hence its branching factor isN − 1.

In this domain there are no obvious redundant operator se-
quences, so only the trivial pruning of the parent is possible,
making the branching factor below the rootN − 2. When
performing the first jump to the dual side, on any particu-
lar branch, the branching factor increases by only one, from
N − 2 to N − 1.

H O S P Nodes Time Jumps

max(r,d) + IDA* - 2,205,610,700 3176 0

max(r,d) + DIDA* JIL 223,305,375 344 903,892

Table 2: 17-pancake puzzle results

Table 2 presents results averaged over 30 random in-
stances of the 17-pancake problem (search space is3.55 ×
1014 states). The heuristic used was a PDB based on tokens
10, 11, . . . , 16 (which gives slightly better average heuris-
tic values than a PDB based on tokens0, 1, . . . , 6). DIDA*
gives an impressive 9.88-fold improvement over IDA* –
from 53 minutes to less then 6 minutes.

General Duality
The simple definition of duality used so far assumes that
any operator sequence that can be applied to any given state
S can also be applied to the goalG. This only applies to
search spaces where operators have no preconditions. In
the sliding tile puzzles, for example, operators have precon-
ditions (the blank must be adjacent to the tile that moves)
and an operator sequence that applies toS will not be ap-
plicable toG if the blank is in different locations inS and
G. A more general definition of duality, allowing precondi-
tions on operators, will now be given. Assumptions 1–3 are
still needed. Nevertheless, with this general definition, dual
heuristic evaluations and dual search are possible for a much
wider range of state spaces, including the tile puzzles.

8
β

β

π

π

β

d
S

G

X

S

76

3 5

1

8

4 6

7

5

3 2

4

8

53

6 8

45

7

2 1

2

1

6

1 7

3 8 4

2

3 2 6 5 1 4 7
87654321

Figure 4: General dualitySd = π(β(S)) = β(π(S))

Duality (general definition): The dual of a given state,
S, for goal stateG, can be defined with respect to any state
X such that any sequence of operators that can be applied to
stateS can also be applied to stateX and vice versa. Ifπ

is the location-based permutation such thatπ(S) = G, then
Sd, the dual ofS with respect toX, is defined to beπ(X).
As a special case, ifX = G (this is possible if any oper-
ator sequence applicable toS is also applicable toG) then
this definition becomes the simple definition given earlier.
The 8-puzzle stateS and the goal stateG of Figure 4 do not
have the same applicable operators. For example, the oper-
ator “move the tile in the upper left corner to the right” is
applicable toS but not toG. We want to find a stateX such
that all operator sequences applicable toS will be applicable
to X. This is done with the mappingβ, which renames the
tiles to transformS into X. For the givenS this X could
be any state having the blank in the same position asS. Sd

can be derived in two ways, either by applyingπ to X or by
renaming the tiles inG according toβ. π (shown in Figure
1), for example, maps the tile in the upper left location inS,
or in X, to the lower left location inG, or Sd, respectively.
β, by contrast, renames the constant6 in S, or in G, to the
constant1 in X, or Sd, respectively.

By definition, any legal sequence of operators that pro-
ducesSd when applied toX can be legally applied toS to
produceG, and vice versa. Because an operator and its in-
verse cost the same, duality provides an alternative way to
estimate the distance fromS to G: any admissible estimate
of the distance fromSd to X is also an admissible estimate
of the distance fromS to G. If PDBs are being used, general
duality suggests using a PDB,PDBX (with X as the goal
state), in addition to the usual PDB,PDBG (with G as the
goal). Given a stateS, in addition to the standard heuris-
tic value,PDBG[S], we will also get a heuristic value for
the dual state by computingπ for S and then looking up
PDBX [π(X)].

It is possible to have multiple states,{Xi}, each playing
the role ofX in the definition. In this case, a stateS will not
have just one dual, it would have a dual with respect to each
Xi that had the all-important property that any sequence of
operators applicable toS is also applicable toXi and vice
versa. A PDB,PDBXi would be built for eachXi (with Xi

as the goal). Lookups for the dual state ofS could be made
in PDBXi for eachXi for which a dual ofS is defined.

This is precisely what we will do for the tile puzzle.Xi

will be a state in which the blank is in positioni, and we
will build a PDB for eachXi. Then, given a stateS with the
blank in positioni, we calculate the dual ofS with respect
to Xi and look up its value inPDBXi . For example, in
the 8-puzzle there are 9 different locations the blank could
occupy. Define 9 different states,X0 . . . X8, with Xi having
the blank in positioni, and compute 9 PDBs, one for each
Xi. Of course, geometric symmetries can be used to reduce
the number of distinct PDBs that must actually be created
and stored. For example, below only seven PDBs are needed
to cover all possible blank locations in the 24-puzzle.

Suppose dual search is proceeding on the “regular side”
(with G as the goal) and decides at stateS to jump toSd

i ,
the dual ofS with respect toXi. Search now proceeds with
Xi playing the role of the goal in all respects. In particular:
(1) if Xi is reached, the search is finished and the final so-
lution path can be reconstructed; and (2) the permutationπ
is calculated usingXi instead ofG. The latter point has an

important implication for the sliding tile puzzles: the dual of
any state generated when the search goal isXi will have the
blank in locationi.

Experimental results on the 24-puzzle

56

10

65

0 1 1

10

6

11010

5 6 11 5

010

11

12

0

1111

(a) symmetries

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

6

6 6

6
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

6

66

6

0

12

(b) 6-6-6-6 PDB

11

1

5

10

12 20.30

19.89

19.32

19.60

19.76

19.09

19.82

AveragePDB

0

6

(c) Quality

Figure 5: 24 puzzle heuristic

The sliding tile puzzle has two important attributes that
did not arise in the previous domains, but should be taken
into account in DIDA*’s jumping policy. First, the branch-
ing factor is not uniform, it varies from 2 to 4 depending
on the location of the blank, and will often be different for
S andSd. Second, as explained above, we will have sev-
eral different PDBs, each based on anXi having the blank
in a different position. TheXi are chosen to maximally ex-
ploit the geometrical symmetries of the puzzle, so that al-
though there are 25 positions the blank could be in, only 7
PDBs are needed. They are numbered0, 1, 5, 6, 10, 11, 12,
with the number reflecting the location of the blank in theXi

that defined the PDB. Figure 5(a) indicates which PDB is to
be used for each possible position of the blank, and Figure
5(b) shows two different 6-6-6-6 additive PDB partitionings,
PDB12 andPDB0 (the PDB case used in (Korf & Felner
2002)). Figure 5(c) shows the average heuristic value for
each of the PDBs. Note that a small difference in average
PDB value can have a dramatic effect on the PDB’s prun-
ing power. BecauseS andSd will often have the blank in a
different location, and therefore draw their heuristic values
from different PDBs, it is important for the jumping policy
to take the average value of the PDBs into account.

Our jumping policy for the 24-puzzle, J24, considers both
these attributes. It is a three-step decision process. First,
the effective branching factor of the regular and dual states
is compared. This is done by considering the blank location
and the history of the previous moves, choosing to prefer the
state with the smaller effective branching factor. Second, if
there is a tie, then the quality (average value) of the PDB (as
presented in Figure 5(c)) is considered. Preference is given
to the PDB with the higher average. Third, if there is still a
tie, then the JIL policy is used.

H # S P Nodes Jumps Imp

max(r,r*) 25 IDA* - 43,454,810,045 - 1.00

max(r,d) 25 IDA* - 31,103,112,894 - 1.40

max(r,d) 25 DIDA* JIL 16,302,942,680 176,075,343 2.67

max(r,d) 25 DIDA* J24 8,248,769,713 23,851,828 5.27

max(r,r*) 50 IDA* - 360,892,479,671 - 1.00

max(r,r*) 50 DIDA* J24 75,201,250,618 147,733,548 4.79

Table 3: 24-puzzle results

In (Korf & Felner 2002), 50 random instances of the 24-

puzzle were solved. The first four lines of Table 3 presents
the average results over the 25 problems of that set with the
shortest optimal paths. The average solution length for this
set is 95 moves. The first line presents the benchmark results
from (Korf & Felner 2002) where the maximum between
the regular PDB (r) and its reflection about the main diag-
onal (r∗) were taken. The second line is IDA* with regular
and dual PDB lookups. The next line is DIDA* with JIL.
Finally, the last line shows DIDA* with J24. The results
show an increasing improvement factor. The last two lines
present results for the entire set of 50 instances. DIDA* with
J24 outperforms the benchmark results by a factor of 4.79.
Note that all the variations in Table 3 are for programs us-
ing exactly two PDB lookups. Since the overhead of DIDA*
over IDA* (e.g., the jumping decision) is significantly dom-
inated by the PDB lookup overhead, all these versions ran at
roughly 300,000 nodes per second on our machine.

Conclusions and future work
DIDA* is a novel form of a bidirectional search. By exploit-
ing the logical symmetries in a domain, DIDA* can switch
between state representations to maximize the overall qual-
ity of the heuristic values seen in the search. The algorithm
has several surprising properties, including no need for a
search frontier data structure and solution path construction
from disparate regions of the search space. The resulting al-
gorithm provides significant (up to an order of magnitude)
performance gains in several application domains.

Future work can continue in the following directions. 1.
Obtaining a better understanding of the jumping policies.
Given an application, how does one go about determining
the best policy? 2. Analysis to see if the duality concept
can be generalized to encompass a wider set of application
domains. 3. Integrating the idea of duality in other search
algorithms (e.g. A*).

Acknowledgments
The financial support of the Israeli Ministry of Science In-
frastructure grant No. 3-942, of NSERC and of iCORE is
greatly appreciated.

References
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.Com-
putational Intelligence14(3):318–334.

Dweighter, H. 1975. Problem e2569.American Mathematical
Monthly82:1010.

Edelkamp, S. 2001. Planning with pattern databases.Proc, ECP-
0113–34.

Felner, A.; Meshulam, R.; Holte, R.; and Korf, R. 2004. Com-
pressing pattern databases. InProc. AAAI-04, 638–643.

Felner, A.; Zahavi, U.; Holte, R.; and Schaeffer, J. 2005. Dual
lookups in pattern databases. InIJCAI-05, 103–108.

Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic search
reconsidered.JAIR7:283–317.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligence134:9–22.

Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. InProc. AAAI-97, 700–705.

Zhou, R., and Hansen, E. 2004. Space-efficient memory-based
heuristics. InProc. AAAI-04, 677–682.

