The Games Computers (and People) Play

Jonathan Schaeffer
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1
jonathan@cs.ualberta.ca

May 10, 2000

Abstract

In the 40 years since Arthur Samuel’s 1960 Advances in Computers
chapter, enormous progress has been made in developing programs to play
games of skill at a level comparable to, and in some cases beyond, what
the best humans can achieve. In Samuel’s time, it would have seemed
unlikely that only a scant 40 years would be needed to develop programs
that play world-class backgammon, checkers, chess, Othello, and Scrabble.
These remarkable achievements are the result of a better understanding
of the problems being solved, major algorithmic insights, and tremendous
advances in hardware technology. Computer games research is one of the
major success stories of artificial intelligence.

This chapter can be viewed as a successor to Samuel’s work. A review
of the scientific advances made in developing computer games is given.
These ideas are the ingredients required for a successful program. Case
studies for the games of backgammon, bridge, checkers, chess, Othello,
poker; and Scrabble are presented. They are the recipes for building
high-performance game-playing programs.

1 Introduction

Arthur Samuel is one of the pioneers of artificial intelligence research. Together
with Claude Shannon [1] and Alan Turing [2], he laid the foundation for building
high-performance game-playing programs. Samuel is best known for developing
his checkers program. Over his career, he consistently sold his work as research
in machine learning. His papers describing the program and its learning capa-
bilities are classics in the literature [3, 4]. These papers are still frequently cited
today, almost four decades since the original research was completed. There are
few computing papers around today whose lifespan is 10 years, let alone 40.



In the years since Samuel’s 1960 chapter for the first volume of Advances in
Computers, enormous progress has been made in constructing high-performance
game-playing programs. In Samuel’s time, it would have seemed unlikely that
within a scant 40 years checkers (8 x 8 draughts), Othello!, and Scrabble? pro-
grams would exist that exceed the abilities of the best human players, while
backgammon and chess programs could play at a level comparable to the hu-
man world champion. These remarkable accomplishments are the result of a
better understanding of the problems being solved, major algorithmic insights,
and tremendous advances in hardware technology. The work on computer games
has been one of the most successful and visible results of artificial intelligence
research. For some games, one could argue that the Turing test has been passed
[5].

When talking about computer games, it is important to draw the distinction
between using games as a research tool for exploring new ideas in computing,
versus using computing to do research into games. The former is the subject of
this chapter; the latter is not. Nevertheless, it is important to recognize that
building high-performance game-playing programs has also been of enormous
benefit to the respective game-playing communities. The technology has ex-
panded human understanding of games, allowing us to explore more of the rich
tapestry and intellectual challenges that games have to offer. Computers offer
the key to answering some of the puzzling, unknown questions that have tan-
talized game aficionados. For example, computers have shown that the chess
endgame of king and two bishops versus king and knight is generally a win,
contrary to expert opinion [6]. In checkers, the famous 100-year position took
a century of human analysis to “prove” a win; the checkers program Chinook
takes a few seconds to prove the position is actually a draw (it is now called the
197-year position)[7].

This chapter can be viewed as a successor to Samuel’s 1960 chapter, dis-
cussing the progress made in developing programs for the classic board and
card games over the last four decades. A review of the scientific advances made
in developing computer games is presented (Section 2). It concentrates on search
and knowledge for two-person perfect-information games, and simulation-based
approaches for games of imperfect or non-deterministic information. These ideas
are the ingredients needed for a successful program. Section 3 presents seven
case studies to highlight progress in the games of checkers, Othello, Scrabble
(superior to man), backgammon, chess (comparable to the human world cham-
pion), bridge, and poker (human supremacy may be threatened). These are
successful recipes for building high-performance game-playing programs.

Although this chapter discusses the scientific advances, one should not un-
derestimate the engineering required to build these programs. One need only
look at the recent success of the Deep Blue chess machine to appreciate the
effort required. That project spanned eight years, and included several full-time
people, extensive computing resources, computer chip design, and grandmaster

1Othello is a registered trademark of Tsukuda Original, licensed by Anjar Co.
2Scrabble is a registered trademark of the Milton Bradley Company, a division of Hasbro,
Inc.



consultation. Some of the case studies hint at the amount of work required to
build these systems. In all cases, the successes reported in this chapter are the
result of consistent progress over many years.

2 Advances

The biggest advances in computer game-playing over the last 40 years have
come as a result of work done on the alpha-beta search algorithm. Although
this algorithm is not suitable for some of the games discussed in this chapter,
it received the most attention because of the research community’s preoccupa-
tion with chess. With the Deep Blue victory over world chess champion Garry
Kasparov, interest in methods suitable for chess has waned and been replaced
by activity in other games. One could argue that the chess victory removed
a ball and shackle that was stifling creativity doing research on game-playing
programs.

Because of the historical emphasis on search, the material in this section is
heavily biased towards it. In the last decade, new techniques have moved to the
forefront of games research. Two in particular are given special emphasis since
they are likely to play a more prominent role in the near future:

1. Monte Carlo simulation has been successfully applied to games with imper-
fect or non-deterministic information. In these games it is too expensive
to search all possible outcomes. Instead only a representative sample is
chosen to give a statistical profile of the outcome. This technique has been
successful in bridge, poker and Scrabble.

2. Temporal-difference learning is the direct descendent of Samuel’s machine
learning research. Thus it is fitting that this method be included in this
chapter. Here a database of games (possibly generated by computer self-
play) can be used to bootstrap a program to find a good combination
of knowledge features. The algorithm has been successfully applied to
backgammon, and has recently shown promise in chess.

This section gives a representative sample of some of the major results and
research thrusts over the past 40 years. Section 2.1 discusses the advances in
search technology for two-player perfect information games. Advances in knowl-
edge engineering have not kept pace, as discussed in Section 2.2. Section 2.3
discusses the emerging simulation framework for games of non-deterministic or
imperfect information. The material is intended to give a flavor of the progress
made in these areas, and it is not intended to be exhaustive.

2.1 Advances in Search

The minimax algorithm was at the heart of the checkers program described in
Samuel’s 1960 chapter. Minimax assumes that one player tries to maximize
their result (often called Max), while the other tries to minimize what Max



can achieve (the Min player). The program builds a search tree of alternating
moves by Max and Min. A leaf node is assigned either the game-theoretic value
if known (win, loss, draw) or a heuristic estimate of the likelihood of winning
(using a so-called evaluation function). These values are maximized (by Max)
and minimized (by Min) from the leaves back to the root of the search. Within
given resources (typically time), it is usually not possible to search deep enough
to reach leaf nodes for which the game-theoretic result is known. The evaluation
function uses application-dependent knowledge and heuristics to come up with
an estimate of the winning chances for the side to move.

Consider the example in Figure 1, where maximizing nodes are indicated
by squares and minimizing nodes by ovals. The root, Max (node A), has to
choose a move that leads to positions B, C, or D. It is Min to play at these
three positions and, similarly, Min’s choice of move will lead to a position with
Max to move. At the leaves of the tree are the heuristic values. These values
are maximized at the Max nodes (the nodes left-to-right beginning with E),
minimized at the Min nodes (B, C, and D), and maximized at the root (A).
In this example, the minimax value of the tree is 5. The bold lines indicate the
best line of play: Max will play from A to C to maximize his score, while Min
will play from C to H to minimize Max’s score. Max then chooses the branch
leading to a score of 5, the maximum of the possible moves. The best line of
play is often called the principal variation.
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Figure 1: Searching a min-max tree.

The minimax algorithm is a depth-first, left-to-right traversal of the tree,
evaluating all successors of Max and Min nodes. If one assumes that the tree
has a uniform branching factor of w and a fixed depth of d moves (or ply), then
the algorithm must examine O(w?) leaf nodes. Clearly, the exponential growth
of the search tree limits the effectiveness of the algorithm.

Sometime in the late 1950s or early 1960s, the alpha-beta algorithm for
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searching minimax trees was invented (the algorithm may have been indepen-
dently discovered, but the first publication appears in [8]). Alpha-beta simply
and elegantly proves that many branches in the search tree need not be consid-
ered since they are irrelevant to the final search result.

Consider Figure 1 again. The search of nodes E and F show that the value
of B is < 4. Now, consider searching G. The first child of G has a value
of 6. Thus, Max will guarantee that G’s value is > 6. Searching G’s other
children is pointless since they can only increase G’s value, which cannot affect
B’s value. Hence further search at G has been proven to be unnecessary. The
other children are said to be cut-off or pruned. Shaded nodes in the figure have
been eliminated from the search by alpha-beta. In this example, the number
of leaf nodes considered has been reduced from 27 using minimax to 16 with
alpha-beta.

The alpha-beta algorithm searches a tree using two bounds: a and §. « is
the minimum value that player Max has achieved. (8 is the maximum value to
which player Min can limit Max to (conversely, the best that Max can achieve
given Min’s best play). Any node where a score results in the condition a > 8
causes a cut-off.

The alpha-beta algorithm is given in Figure 2.? For a d-ply search, it is
called by:

AlphaBeta( rootnode, —oo, +o00, d, MAXNODE ).

Again assuming a tree of fixed branching factor w and search depth d, alpha-
beta improves the best case of the search tree size to O(w®?) (or, to be more
precise, w!%/2] 4 l4/2] — 1) [9]. This best case occurs when the move leading
to the best minimax score is searched first at every interior node.* If the worst
move is search first at every node, then alpha-beta will build an O(w?) minimax
tree.

Although the 20 lines of code in Figure 2 look simple, this is misleading.
These are possibly the most deceptive lines of code in the artificial intelligence
literature! Alpha-beta has the insidious property of hiding errors. For example,
an evaluation function error may only be detected when the error happens to
propagate to the root of the search tree. The deeper the search, the harder it
is for the error to be minimized and maximized all the way back to the root.
Consequently, many game-playing programs have bugs that survive for years
before the right sequence of events occurs that allows the problem to manifest
itself.?

In practice, a high-performance alpha-beta implementation is often 20 or
more pages of code. The reason for this is the exponential difference in the
search effort between the best and worst alpha-beta cases. Considerable effort
has to be invested to ensure a nearly best-case result. The consequence is a

3The Negamax formulation is more concise [9].

4At nodes where a cut-off occurs, one only needs to search a move that is sufficient to
immediately cause the cut-off.

5Empirical evidence suggests that this only happens in important tournament games!



int AlphaBeta( position p, int alpha, int beta, int depth, int type )
{
/* Check for a leaf node */
if( depth == 0 )
return( Evaluate( p ) );

/* Identify legal moves */
numbmoves = GenerateMoves( p, movelist );
if ( numbmoves == 0 )

return( Evaluate( p ) );

if ( type == MAXNODE )
nexttype = MINNODE;
else nexttype = MAXNODE;

/* Call AlphaBeta recursively for each move */
for( move = 1; move <= numbmoves; move++ )

{
p = MakeMove( p, movelist[ move ] );
value = AlphaBeta( p, alpha, beta, depth-1, nexttype );
p = UndoMove( p, movelist[ move ] );
/* Update best value found so far */
if ( type == MAXNODE )
alpha = MAX( value, alpha );
else beta = MIN( value, beta );
/* Check for a cut-off. Minimax without this line of code */
if( alpha >= beta )
break;
}

if( type == MAXNODE )
return( alpha );
else return( beta );

Figure 2: The alpha-beta algorithm.

myriad of enhancements to alpha-beta, significantly increasing the complexity
of the search process.

The main alpha-beta search enhancements can be characterized into four
groups:

1. Caching information: avoiding repeated work.

2. Move ordering: increasing the likelihood of the best move being searched
first at a node.

3. Search window: changing the [a, 8] window to speculatively reduce search
effort.

4. Search depth: dynamically adjusting the depth to redistribute search ef-
fort, attempting to maximize the value of the information gathered from
the search.



Each of these enhancements is discussed in turn.

2.1.1 Caching Information

For most games, the search tree is really a misnomer; it is a search graph. Two
different sequences of moves can transpose into each other. For example, in
chess, the move sequence 1. d4 d5 2. /3 gives rise to the same position as
the sequence 1. {HNf3 d5 2. d4. Detecting these transpositions and eliminating
redundant search effort can significantly reduce the search-tree size.

The transposition table is a cache of recently searched positions. When a
subtree has been searched, the result is saved in the transposition table. Before
searching a node in the tree, the table is consulted to see if it has been previously
searched. If so, the table information may be sufficient to stop further search
at this node. The table is usually implemented as a large hash table [10, 11].

The effectiveness of the transposition table is application dependent [12, 13].
For games like chess and checkers, where a single move changes a few squares on
the board, the benefits can be massive (roughly a 75% reduction for chess and
89% for checkers for a typical search). For games like Othello, where a move
can change many squares on the board, the likelihood of two move sequences
transposing into each other is small (roughly a 33% reduction for a typical
search).

2.1.2 Move Ordering

The exponential difference in the search-tree size between the best and worst
case of alpha-beta hinges on the order in which moves are considered. At a node
where a cut-off is to occur, it should be achieved with the first move searched.
Hence, effort is applied at interior nodes to order the moves from the most to
least likely to cause a cut-off.

The most important place for move ordering is at the root of the search.
For example, if a 10-ply search is initiated without any prior preparation, the
resulting search tree is likely to be large. The first move searched may provide
a poor bound (a value), increasing the size of the search window used for the
subsequent moves. Considering the best move first narrows the search window,
increasing the chances for cut-offs in the tree.

Most alpha-beta-based programs use a technique called iterative deepening
to maximize the chances of the best move being searched first [11]. The program
starts by searching all moves 1-ply deep. The moves are then ordered based on
the returned scores. The tree is then re-searched, this time 2-ply deep, and so
on. The idea is that the best move for a (d—1)-ply search is likely to also be best
for a d-ply search. By investing the overhead of repeating portions of the search,
the chances are increased that the best move is considered first in the last (most
expensive) iteration. Experience shows that the cost of the early iterations is
a small price to pay for the large gains achieved by improved move ordering at
the root of the tree. This is an important result that has been applied to many
other search domains (for example, single-agent search [14]).



The idea of considering the best move first should be applied at all nodes in
the tree. At interior nodes, cheaper methods are used to improve the quality of
the move ordering. Three popular choices are:

e Transposition table. When recording a search result in the table, save
the score and the move that leads to the best score. When the node is
revisited (within the same or the next iteration), if the score information
is insufficient to cause a cut-off, then the best move from the previous
search can be considered first. Since the move was previously best, there
is a good chance that it is still the best move.

e Application-dependent knowledge. Many games have application-dependent
properties that can be exploited by a move ordering scheme. For example,
in chess capture moves are more likely to cause a cut-off than non-capture
moves. Hence, many programs consider all capture moves first at each
node.

e History heuristic. There are numerous application-dependent move-ordering
algorithms in the literature. One application-independent technique that
has proved to be simple and effective is the history heuristic [15, 16]. A
move that is best in one position is likely also best in similar positions.
The heuristic maintains a global history score for each move that indicates
how often that move has been best. Moves can then be ordered by their
history heuristic score. A subset of this idea, the killer heuristic, is also
popular [17].

The contrast between the transposition table and history heuristic is interest-
ing. The transposition table stores the exact context under which a move is
considered best (i.e., it saves the position with the move). The history heuris-
tic records which moves are most often best, but has no knowledge about the
context that makes the move strong. Other move ordering schemes fall some-
where in between these two extremes by, for example, adding more context to
the history-heuristic moves.

Move ordering in game-playing programs is highly effective. For example,
a recent study showed that the best move was searched first over 90% of the
time in chess and checkers programs, and over 80% of the time in an Othello
program [12]. The chess result is quite impressive when one considers that a
typical position has 35 legal moves to choose from.

2.1.3 Search Window

The alpha-beta algorithm searches the tree with an initial search window of
[-00, +00]. Usually, the extreme values do not occur. Hence, the search can
be made more efficient by narrowing the range of values to consider, increasing
the likelihood of cut-offs. Aspiration search centers the search window around
the value expected from the search, plus or minus a reasonable range (J) of
uncertainty. If one expects the search to produce a value near, say, 40 then the



search can be called with a search window of [40 — ¢, 40 + 6]. The search will
result in one of three cases:

e 40 — § < result < 40 + 6. The actual value is within the search window.
This value has been determined with less effort than would have been
required had the full search window been used.

e result < 40 — §. The actual value is below the aspiration window (the
search is said to fail low). To find the actual value, a second search is
needed with the window [—oo, result].

e result > 40 + §. The actual value is above the aspiration window (the
search is said to fail high). To find the actual value, a second search is
needed with the window [result, +oo].

Aspiration search is a gamble. If the result is within the search window, then
the enhancement wins. Otherwise an additional search is needed. Aspiration
search is usually combined with iterative deepening. The result of the (d—1)-ply
iteration can be used as the center of the aspiration window used for the d-ply
search. ¢ is application dependent and determined by empirical evidence.

The idea of speculatively changing the search-window size can be applied
throughout the search. Consider an interior node with a search window of [a,
B]. The first move is searched and returns a score v in the search window. The
next move will be searched with the window [v, 5]. If the move ordering is
effective, then there is a high probability that the best move at this node was
searched first. Hence, the remaining moves are expected to return a score that
is < v. Search effort can be saved by modifying the search window to prove
that the remaining moves are inferior. This can be done using the window [v,
v + 1]. Occasionally, this assumption will be wrong, in which case a move that
returns a value v < v’ < 8 will have to be re-searched with the new window
[v', B]. This is the idea behind the NegaScout [18, 19] and Principal Variation
Search [20] algorithms.

A search window of width one (f —a = 1) is called a minimal window. The
idea of minimal windows can be taken to the extreme. Pearl’s Scout algorithm
[21] can be used to answer a Boolean question about the search value (e.g., is
the root value > 07). More recently, the MTD(f) algorithm uses only minimal
windows to determine the value of the root. This algorithm has been shown to
be superior to alpha-beta in terms of number of nodes expanded in the search
tree [12, 13].

2.1.4 Search Depth

Although alpha-beta is usually described as a fixed-depth search, better per-
formance can be achieved using a variable search depth. The search can be
compared to a stock portfolio; don’t treat all stocks as being equal. You should
invest in those that have the most promise, and reduce or eliminate your hold-
ings in those that look like losers. The same philosophy holds true in search



trees. If there is some hint in the search that a sequence of moves looks promis-
ing, then it may be a good idea to extend the search along that line to get more
information. Similarly, moves that appear to be bad should have their search
effort reduced. There are a number of ways that one can dynamically adjust
the depth to maximize the amount of information gathered by the search.

Most alpha-beta-based programs have a number of application-dependent
techniques for altering the search depth. For example, chess programs usually
extend checking moves an additional ply since these moves indicate that some-
thing interesting is happening. Most programs have a “hopeless” metric for
reducing the search depth. For example, in chess if one side has lost too much
(e.g., a queen and a rook), it is very unlikely this subtree will eventually end up
as part of the principal variation. Hence, the search depth may be reduced.

There are a number of techniques that may be useful for a variety of domains.
In chess, null-move searches have been very effective at curtailing analysis of
poor lines of play. The idea is that if one side is given two moves in a row and
still can’t achieve anything, then this line of play is likely bad. Hence, the search
depth is reduced. This idea can be applied recursively throughout the search
22, 23].

Another important idea is ProbCut [24]. Here the result of a shallow search
is used as a predictor of whether the deeper search would produce a value that
is relevant to the search window. Statistical analysis of the program’s searches
is used to find a correlation between the values of a shallow and deep search.
If the shallow search result indicates that the deeper search will not produce
a value that is large enough to affect the node’s value, then further effort is
stopped.

Although both the null-move and ProbCut heuristics purport to be applica-
tion independent, in fact they both rely on game-specific properties. Null-move
cut-offs are only effective if the consequences of giving a side two moves in a row
is serious. This causes problems, for example, in checkers where giving a player
an extra move may allow them to escape from a position where having only one
move loses (these are known as zugzwang positions). ProbCut depends on there
being a strong correlation between the values of shallow and deep searches. For
games with low variance in the leaf node values, this works well. If there is high
variance, then the evaluation function must be improved to reduce the variance.
In chess programs, for example, the variance is generally too high for ProbCut
to be effective.

The most common form of search extension is the quiescence search. It is
easier to get a reliable evaluation of a leaf position if that position is quiet or
stable (quiescent). Hence, a small search is done to resolve immediate capture
moves or threats [11]. Since these position features are discovered by search,
this reduces the amount of explicit application-dependent knowledge required
in the evaluation function.

A search-extension idea that has attracted a lot of attention is singular
extensions [25]. The search attempts to identify forced (or singular) moves.
This can be achieved by manipulating the search window to see if the best move
is significantly better than the second-best move. When a singular move is
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found, then the search along that line of play is extended an additional ply (or
more). The idea is that forcing moves indicate an interesting property of the
position that needs to be explored further.

In addition, there are various other extensions commonly used, most based
on extending the search to resolve the consequences of a threat [26, 27].

2.1.5 Close to Perfection?

Numerous studies have attempted to quantify the benefits of alpha-beta en-
hancements in fixed-depth searches (for example, [10, 16]). Move ordering and
the transposition table usually make the biggest performance difference, with
other enhancements generally being much smaller in their impact.

The size of trees built by game-playing programs appears to be close to that
of the minimal alpha-beta tree. For example, in chess, Belle is reported to be
within a factor of 2.2 [28], Phoeniz within 1.4 [15], Hitech within 1.5 [28] and
Zugzwang within 1.2 [29]. These results suggest that there is little room for
improvement in fixed-depth alpha-beta searching.

The above comparisons have been done against the approximate minimal
search tree. However, finding the real minimal tree is difficult, since the search
tree is really a search graph. The real minimal search should exploit this prop-
erty by:

1. selecting the move that builds the smallest tree to produce a cut-off, and

2. preferring moves that maximize the benefits of the transposition table (i.e.
reuse results as much as possible).

Naturally, these objectives can conflict. In contrast to the above impressive
numbers, results suggested that chess programs are off by a factor of three or
more from the real minimal search graph [12, 13]. Thus, there is still room for
improvements in alpha-beta search efficiency. Nevertheless, given the exponen-
tial nature of alpha-beta, that programs can search within a small constant of
optimal is truly impressive.

Forty years of research into alpha-beta have resulted in a recipe for a finely
tuned, highly efficient search algorithm. The program designer has a rich set
of search enhancements at their disposal. The right combination is application
dependent and a matter of taste. Although building an efficient searcher is well
understood, deciding where to concentrate the search effort is not. It remains
a challenge to identify ways to selectively extend or reduce the depth in such a
way as to maximize the quality of the search result.

2.1.6 Alternative Approaches

Since its discovery. alpha-beta has been the mainstay of computer games de-
velopment. Over the years, a number of interesting alternatives to alpha-beta-
based searching have been proposed.

Berliner’s B* algorithm attempts to prove the best move, without necessarily
determining the best move’s value [30, 31]. In its simplest form, B* assigns an
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optimistic (upper bound) and a pessimistic (lower bound) value to each leaf
node. These values are recursively backed up the tree. The search continues
until there is one move at the root whose pessimistic value is as good as all the
alternative move’s optimistic values. In effect, this is a proof that the best move
(but not necessarily its value) has been found.

There are several drawbacks with B*, most notably the non-standard method
for evaluating positions. It is difficult to devise reliable optimistic and pes-
simistic evaluation functions. B* has been refined so that the evaluations are
now probability distributions. However, the resulting algorithm is complex and
needs considerable application tuning. It has been used in the Hitech chess
program, but even there the performance of alpha-beta is superior [31].

McAllester’s conspiracy numbers algorithm tries to exploit properties of the
search tree [32]. The algorithm records the minimal number of leaf nodes in a
search tree that must change their value (or conspire) to change the value of
the root of the tree. Consider a Max node having a value of 10. To raise this
value to, say, 20, only one of the children has to have its value become 20. To
lower the value to, say, 0, all children with a value greater than 0 must have
their value lowered. Conspiracy numbers works by recursively backing up the
tree the minimum numbers of nodes that must change their value to cause the
search tree to become a particular value. The algorithm terminates when the
effort required to change the value at the root of the search (i.e., conspiracy
number) exceeds a predefined threshold.

Conspiracy numbers caused quite a stir in the research community because
of its innovative aspect of measuring resistance to change in the search. Consid-
erable effort has been devoted to understanding and improving the algorithm.
Unfortunately it has a lot of overhead (for example: slow convergence, cost
of updating the conspiracy numbers, maintaining the search tree in memory)
which has been an impediment to its usage in high-performance programs. A
variation on the original conspiracy numbers algorithm has been successfully
used in the Ulysses chess program [33].

There are other innovative alternatives to alpha-beta, each of which is worthy
of study. These include BPIP [34], min/max approximation [35], and meta-
greedy algorithms [36].

Although all these alpha-beta alternatives have many desirable properties,
none of them is a serious challenger to alpha-beta’s dominance. The conceptual
simplicity of the alpha-beta framework makes it relatively easy to code and
highly efficient at execution time. The alpha-beta alternatives are much harder
to code, the algorithms are not as well understood, and there is generally a large
execution overhead. Perhaps if the research community devoted as much effort
to understanding these algorithms as they did in understanding alpha-beta, we
would see a new algorithm come to the fore. Until that happens, alpha-beta will
continue to dominate as the search algorithm of choice for two-player perfect
information games.
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2.1.7 Conclusions

Research on understanding the alpha-beta algorithm has dominated games re-
search since its discovery in the early 1960’s. This process was accelerated by
the discovery of the strong correlation of program performance with alpha-beta
search depth [37]. This gave a simple formula for success: build a fast search
engine. This led to the building of special-purpose chips for chess [38] and
massively parallel alpha-beta searchers [29].

Search alone is not the answer. Additional search eventually leads to di-
minishing returns in the benefits achievable [39]. Eventually, there comes the
point where the most significant performance gains are to be had by identify-
ing and implementing missing pieces of application knowledge. This was evi-
dent, for example, in the 1999 world computer chess championship, where the
deep-searching, large multi-processor programs finished behind the shallower-
searching, PC-based programs that used more chess knowledge.

For many popular games, such as chess, checkers, and Othello, alpha-beta
has been sufficient to achieve world-class play. Hence, there was no need to look
for alternatives. For artificial-intelligence purists, this is an unsatisfactory re-
sult. By relying on so-called brute-force searching, these programs can minimize
their dependence on knowledge. However, for other games, most notably Go,
search-intensive solutions will not be effective. Radically different approaches
are needed.

2.2 Advances in Knowledge

Ideally, no knowledge other than the rules of the game should be needed to
build a strong game-playing program. Unfortunately, for interesting games it
is usually too deep to search to find the game-theoretic value of a position.
Hence knowledge for differentiating favorable from unfavorable positions has to
be added to the program. Nevertheless, there are some cases where the program
can learn position values without using heuristic knowledge.

The first example is the transposition table. This is a form of rote learning.
By saving information and reusing it, the program is learning, allowing it to
eliminate nodes from the search without searching. Although the table is usually
thought of as something local to an individual search, “important” entries can
be saved to disk and used for subsequent searches. For example, by saving some
transposition table results from a game, they may be used in the next game to
avoid repeating the same mistake [40, 41].

A second example is endgame databases. Some games can be solved from the
end of the game backwards. One can enumerate all positions with one piece on
the board, and record which positions are wins, losses, and draws. These results
can be backed up to solve all positions with two pieces on the board, and so on.
The result is an endgame database containing perfect information. For chess,
most of the five-piece endgames have been solved, with some six-piece endgames
also solved [6]. This is of limited value, since most games are over before such a
simplified position is reached. In checkers, all eight-piece endgames have been
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solved [42]. The databases play a role in the search of the first move of a game!
Endgame databases have been used to solve the game of Nine Men’s Morris [43].

A third form of knowledge comes from the human literature. Most games
have an extensive literature on the best opening moves of the game. This infor-
mation can be collected in an opening book and made available to the program.
The book can either be used to select the program’s move, or as advice to
bias the program’s opening move selection process. Many programs modify the
opening book to tailor the moves in it to the style of the program.

When pre-computed or human knowledge is not available, then the game-
playing program must fall back on its evaluation function. The function assigns
scores to positions that are a heuristic assessment of the likelihood of winning (or
losing) from the given position. Application-dependent knowledge and heuristics
are usually applied to a position to score features that are indicators of the true
value of the position.

The program implementor (usually in consultation with a domain expert)
will identify a set of features (f) that can be used to assess the position. Each
feature is given a weight (w) that reflects how important that feature is in
relation to the others in determining the overall assessment. Most programs use
a linear combination of this information to arrive at a position value:

value = Zwi X fi (1)
i=1

where n is the number of features. For example, in chess two features that are
correlated with success are the material balance and pawn structure (f; and
f2). Material balance is usually much more important than pawn structure,
and hence has a much higher weighting (w; >> ws).

Identifying which features might be correlated with the final result of the
game is still largely done by hand. It is a complex process that is not well un-
derstood. Usually the features come from human experience. However, human
concepts are often vague and hard to define algorithmically. Even well-defined
concepts may be impractical because of the computational overhead. One could
apply considerable knowledge in the assessment process, but this increases the
cost of performing an evaluation. The more expensive the evaluation function is
to compute, the smaller the search tree that can be explored in a fixed amount of
time. Thus, each piece of knowledge has to be evaluated on what it contributes
to the accuracy of the overall evaluation, and the cost (both programmer time
and execution time) of having it.

Most evaluation functions are carefully tuned by hand. The knowledge has
been judiciously added, taking into account the expected benefits and the cost
of computing the knowledge. Hence, most of the knowledge that is used is
of a general-purpose nature. Unfortunately, it is the exceptions to the knowl-
edge that cause the most performance problems. As chess grandmaster Kevin
Spraggett said [42]:

I spent the first half of my career learning the principles for playing
strong chess and the second half learning when to violate them.
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Most game-playing program’s evaluation functions attempt to capture the first
half of Spraggett’s experience. Implementing the second half is often too difficult
and computationally time consuming, and generally has a small payoff (except
perhaps at the highest levels of play).

Important progress has been made in setting the weights automatically. Al-
though this seems like it should be much easier than building an evaluation
function, in reality it is a laborious process when done by hand. Automating
this process would result in a huge reduction in the effort required to build a
high-performance game-playing program.

Temporal difference learning has come to the fore as a major advance in
weighting evaluation function features. Samuel pioneered the idea [3, 4], but it
only became recognized as a valuable learning algorithm after Sutton extended
and formalized this work [44]. Temporal difference learning is at the heart of
Tesauro’s world-championship-caliber backgammon program (see Section 3.1),
and has shown promising results in chess (discussed later in this section).

Temporal difference learning (TDL) is a reinforcement learning algorithm.
The learner has an input state, produces an output action, and later receives
feedback (commonly called the reward) on how well its action performed. For
example, a chess game consists of a series of input states (positions) and actions
(the move to play). At the end of the game, the reward is known: win, loss,
or draw. In between the start and the end of the game, a program will use a
function to map the inputs onto the outputs (decide on its next move). This
function is a predictor of the future, since it is attempting to maximize its
expected outcome (make a move that leads to a win). The goal in reinforcement
learning is to propagate the reward information back along the game’s move
sequence to improve the quality of actions (moves) made. This is accomplished
by attributing the credit (or blame) to the outputs that led to the final reward.
By doing so, the learner’s evaluation function will change, hopefully in such a
way as to be a better predictor of the final reward.

To achieve the large-scale goal of matching inputs to the result of the game,
TDL focuses on the smaller goal of modifying the learner so that the current
prediction is a better approximation of the next prediction [44, 45]. Consider
a series of predictions Pj, P»,...Py on the outcome of a game. These could be
the program’s assessment of the likelihood of winning from move to move. In
chess, the initial position of a game, P;, has a value that is likely close to 0. For
a win Py = 1 while a loss would have Py = —1. For the moves in between, the
assessments will vary.

If the likelihood of winning for position ¢ (P;) is less (more) than that of
position ¢ + 1 (P;41), then we would like to increase (decrease) the value of
position ¢t to be a better predictor of the value of ¢ + 1. The idea behind
temporal difference learning is to adjust the evaluation based on the incremental
differences in the assessments. Thus,

A =P — B

measures that difference between the prediction for move t+1 and that for move
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Aw; = a(Pryy — P) Y N F gy, P
k=1

where:
e w is the set of weights being tuned,
e {is the time step being altered, in a sequence of moves from 1,2,..., N —1,

e Auwy, is the change in the set of weights at step t as a result of applying
temporal differences,

e P, is the prediction at time step ¢ (for the end of the game, Py, the final
outcome is used)

3

e A (0 < XA < 1) controls how much credit gets propagated back to the
previous estimates (A = 0 implies no feedback, while A = 1 would have all
previous moves sharing equally)

e /Py is the set of partial derivatives for each component of w, and

a > 0 is the rate of learning (a small o causes small incremental changes;
a large o makes larger steps).

A and «a are heuristic parameters that need to be tuned for each application
domain.

Figure 3: The TD(\) algorithm.

t. This adjustment can be done by modifying the weights of the evaluation
function to reduce the A from move to move.

Temporal difference learning is usually described with a variable weighting
of recency. Rather than considering only the previous move, one can consider all
previous moves with non-uniform weights (usually exponential). These moves
should not all be given the same importance in the decision-making process,
since the evaluation of moves made many moves previously are less likely to be
relevant to the current evaluation. Instead, previous moves are weighted by AP,
where p reflects how far back the move is. The parameter A controls how much
credit is given to previous moves, giving exponentially decaying feedback of the
prediction error over time. Hence, this algorithm is called TD(A). Figure 3 gives
the temporal difference relation used by TD(\).

A typical application of TDL is for a program with an evaluation function,
but unknown weights for the features. By playing a series of games, the pro-
gram gets feedback on the relative importance of features. TDL propagates this
information back along the move sequence played, causing incremental changes
to the feature weights. The result is that the evaluation function values get
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tuned to be better predictors.

In addition to Tesauro’s success in backgammon (Section 3.1), there are two
recent TDL data points in chess. First, Cilkchess, currently one of the strongest
chess programs, was tuned using temporal difference learning and the results
are encouraging. Don Dailey, a co-author of Cilkchess, writes that [46]:

Much to my surprise, TDL seems to be a success. But the weight set
that comes out is SCARY; I'm still afraid to run with it even though
it beats the hand-tuned weights. They are hard to understand too,
because TDL expresses chess concepts any way that is convenient
for it. So if you create a heuristic to describe a chess concept, TDL
may use it to “fix” something it considers broken in your weight set.

An interesting data point was achieved in the KnightCap chess program
[47]. Starting with a program that knew only about material and had all other
evaluation function terms weighted with zero, the program was able to quickly
tune its weights to achieve an impressive increase in its performance. The
authors recognized that the predictions of a chess program were the result of
an extensive search, and the score at the root of the tree was really the value of
the leaf node on the principal variation. Consequently, the temporal difference
learning should use the principal variation leaf positions, not the positions at
the root of the search tree [48]. This algorithm has been called TDLeaf()) [47].

These successes are exciting, and offer the hope that a major component of
building high-performance game-playing programs can be automated.®

2.3 Simulation-Based Approaches

In the 1990s, research into non-deterministic and imperfect information games
emerged as an important application for artificial-intelligence investigations.
In many ways, these domains are more interesting than two-player perfect-
information games, and promise greater long-term research potential. Handling
imperfect or probabilistic information significantly complicates the game, but is
a better model of the vagaries of real-world problems.

For non-deterministic and imperfect information games, alpha-beta search
does not work. The branches in the search tree represent probabilistic outcomes
based on, for example, the roll of the dice or unknown cards. At best one
can back up probabilities of expected outcomes. For these games it is usually
impractical to build the entire game tree of all possibilities.

Simulations can be used to sample the space of possible outcomes, trying
to gather statistical evidence to support the superiority of one action.” The
program can instantiate the missing information (e.g. assign cards or determine
dice rolls), play the game through to completion, and then record the result.
This can be repeated with a different assignment of the missing information.

6 An excellent survey of machine learning applied to games can be found in [49].
"Some of the material in this section has been taken from [50].
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By repeating this process many times, a statistical ranking of the move choices
can be obtained.

Consider the imperfect-information game of bridge. The declarer does not
know in which hand each of the 26 hidden cards are. The simulator can instan-
tiate one possible assignment of cards to each opponent, and then play the hand
through to completion (a trial). Thus, a single data point has been obtained on
the number of tricks that can be won. This can then be repeated by dealing a
different set of cards to each opponent. When these simulated hands have been
repeated a sufficient number of times, the statistics gathered from these runs
can be used to decide on a course of action. For example, it may be that in
90% of the samples a particular card play led to the best result. Based on this
evidence, the program can then decide with high confidence what the best card
to play is.

For each trial in the simulation, one instance of the non-deterministic or
unknown information is applied. Hence, a representative sample of the search
space is looked at to gather statistical evidence on which move is best. Figure 4
shows the pseudo-code for this approach. Some of its characteristics include:

1. The program iterates on the number of samples taken.
2. The search for each sample usually goes to the end of the game.

3. Heuristic evaluation usually occurs at the interior nodes of the search to
determine a subset of branches to consider, reducing the cost of a sample
(and allowing more samples to be taken).

The simulation benefits from selective samples that use information from the
game state (i.e. such as the bidding auction in bridge), rather than a uniform
distribution or other fixed distribution sampling technique.

Statistical sampling has noise or variance. The sampling must be done in
a way that captures the reality of the situation, ruling out impossible scenar-
ios and properly reflecting the likelihood of improbable scenarios. The more
representative the samples, the less the variance is likely to be. Selective sam-
pling refers to carefully choosing the simulation data to be as representative as
possible [50].

It is important to distinguish selective sampling from traditional Monte Carlo
techniques. Selective sampling uses information about the game state to skew
the underlying probability distribution, rather than assuming uniform or other
fixed probability distributions. Monte Carlo techniques may eventually converge
on the right answer, but selective sampling allows for faster convergence and less
variance.

As an example, consider the imperfect-information and non-deterministic
game of Scrabble. Brian Sheppard, author of Maven, writes that for his simu-
lations he generates [51]:

. a distribution of racks that matches the distribution actually seen
in games. In Maven we use a uniform distribution of the rack, and
we take steps to ensure that every tile is represented as often as it
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/* From a given state, simulate and return the best move */
move Simulator( known_state state )

{

obvious_move = NO;
trials = 0;
while( ( trials <= MAX_TRIALS ) and ( obvious_move == NO ) )

{

trials = trials + 1;

/* Generate the missing information */

missing_info = selective_sampling to_generate missing_information;
numbmoves = GeneratePlausibleMoves( state, missing info, movelist );
/* Consider all moves */

for( m = 1; m <= numbmoves; m++ )

{

state = MakeAction( state, movelist[ m ], missing_info );
value[m] = value[m] + Search( state );
state = UndoAction( state, movelist[ m ], missing info );

}

/* Test to see if one move is statistically better than all others */
if( 3 i such that value[ i ] >> valuel j 1(V j, j # 1) )

{

obvious_move = YES;

}
}

/* Return the move with the highest score */
return( move i || value[ i ] >= valuel j 1 (V j, j # i) );

}

Figure 4: Simulation-based search.

should be. We do this without introducing statistical bias by always
including in the opponent’s tiles for the next iteration the one tile
that has been most underrepresented among all previous racks.

Selective sampling need not be perfect. In Scrabble, the opponent’s tiles do
not come from a uniform distribution: opponents tend to play away bad letters
and keep good letters. Sheppard is convinced that this small refinement to the
model of the opponent’s hands would make little difference in the simulation
results.

An important feature of the simulation-based framework is the notion of
an obvious move. Although many alpha-beta-based programs incorporate an
obvious move feature, the technique is usually ad hoc and the heuristic is the
result of programmer experience rather than a sound analytic technique. In the
simulation-based framework, an obvious move is statistically well-defined. As
more samples are taken, if one choice exceeds the alternatives by a statistically
significant margin, one can stop the simulation early and commit to the action,
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with full knowledge of the statistical validity of the decision.

It is interesting to compare alpha-beta and simulation-based search meth-
ods. Alpha-beta considers all possible moves at a node that cannot be logically
eliminated; simulation-based search can only look at a representative sample.
Whereas alpha-beta search typically has a depth limitation, most simulation-
based programs follow a path from the root of the search to the end of the game.
Thus, one can characterize alpha-beta search trees as having large width, but
limited depth. Simulations, on the other hand, typically have limited breadth
but large depth. Figure 5 illustrates the differences in these two approaches,

where an “x” is used to indicate where evaluations occur in the search.

m%ﬁ

a) Alpha-beta search (b) Simulation search

Figure 5: Contrasting search methods.

Simulations are used in many branches of science, but have only recently
emerged as a powerful tool for constructing high-performance game-playing pro-
grams. They have proven to be effective in backgammon, bridge, poker, and
Scrabble. This technique deserves to be recognized as an important, framework
for building game-playing programs, equal in stature to the alpha-beta model.

2.4 Perspectives

Enormous progress has been made in understanding the algorithms needed to
build game-playing programs. Most of this work has been driven by the desire
to satisfy one of the early goals of artificial intelligence research, building a
program capable of defeating the human world chess champion. Hence, most
games-related research has concentrated on alpha-beta search. With the chess
success on the horizon, many researchers branched out into other games. As
a result, research efforts on two-player perfect-information games has moved
to the background. New vistas are being explored, with temporal-difference
learning and simulations being samples of the current research thrusts.

The research in developing algorithms for game playing has applicability to
other application domains, but the community of researchers involved have done
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a poor job selling the technology. For example, many of the search techniques
pioneered with alpha-beta have become standard in other search domains (e.g.,
iterative deepening), with few realizing the lineage of the ideas.

3 Advances in Computer Games

This section summarizes the progress made in a number of popular games.
These include games where computers are better than all humans (checkers,
Othello, and Scrabble), are as good as the human world champion (backgammon
and chess), and some where human supremacy may be challenged in the near
future (bridge and poker). Each section contains a brief history of program
development for that game, a case study on the best program in the area, and
a representative sample of their play. The case study highlights interesting or
unique aspects of the program.

The histories are necessarily brief. I apologize in advance to the many hard-
working researchers and hobbyists whose work is not mentioned here.

3.1 Backgammon

The first concerted effort at building a strong backgammon program was un-
dertaken by Hans Berliner of Carnegie Mellon University. In 1979 his program,
BK@G9.8, played an exhibition match against the the newly-crowned world cham-
pion Luigi Villa [52, 53]. The stakes were $5,000, winner take all. The final score
was 7-1 in favor of the computer, with BKG9.8 winning four of the five games
played (the rest of the points came from the doubling cube).

Backgammon is a game of both skill and luck. In a short match, the dice
can favor one player over another. Berliner writes that “In the short run, small
percentage differences favoring one player are not too significant. However, in
the long run a few percentage points are highly indicative of significant skill
differences” [53]. Thus, assessing the results of a five-game match are difficult.
Afterwards Berliner analyzed the program’s play and concluded that [52]:

There is no doubt that BKG9.8 played well, but down the line Villa
played better. He made the technically correct plays almost all the
time, whereas the program did not make the best play in eight out
of 73 non-forced situations.

BK(G9.8 was an important first step, but major work was still needed to bring
the level of play up to that of the world’s best players.

In the late 1980s, IBM researcher Gerry Tesauro began work on a neural-net-
based backgammon program. The net used encoded backgammon knowledge
and, training on data sets of games played by expert players, learned the weights
to assign to these pieces of knowledge. The program, Neurogammon, was good
enough to win first place in the 1989 Computer Olympiad [54].

Tesauro’s next program used a neural network that was trained using tempo-
ral difference learning. Instead of training the program with data sets of games
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played by humans, Tesauro was successful in having the program learn using the
temporal differences from self-play games. The evolution in TD-Gammon from
version 0.0 to 3.0 saw an increase in the knowledge used, a larger neural net, and
the addition of small selective searches. The resulting program is acknowledged
to be on par with the best players in the world, and possibly even better.

In 1998, an exhibition match was played between world champion Malcolm
Davis and TD-Gammon 3.0. To reduce the luck factor, 100 games were played
over three days. The final result was a narrow eight-point win for Davis. Both
Davis and Tesauro have done extensive analysis of the games, coming up with
similar conclusions [55]:

While this analysis isn’t definitive, it suggests that we may have wit-
nessed a superhuman level of performance by TD-Gammon, marred
only by one horrible blunder redoubling to 8 in game 16, costing a
whopping 0.9 points in equity and probably the match!

3.1.1 TD-Gammon

Backgammon combines both skill and luck. The luck element comes from the
rolls of the dice, making conventional search techniques impractical. A single
roll of the dice results in one of 21 distinct combinations, each of which results
in an average of 20 legal moves to consider. With a branching factor of over
400, many of which are equally likely and cannot be pruned, brute-force search
won’t be effective.

TD-Gammon is a neural network that takes as input the current board
position and returns as output the score for the position (roughly, the probability
of winning) [56]. The neural network acts as the evaluation function. Each of
the connections in the neural net is parameterized with a weight. Each node is
a function of the weighted sum of each of its inputs, producing an equity value
as output.

The neural net has approximately 300 input values (see Figure 6) [45, 57].
For each of the 24 points on the board, there are four inputs for each player
giving the number of pieces they have on that point. Additional inputs for
each side are the number of pieces on the bar, the number of pieces taken off
the board, and whose turn it is. The likelihood of achieving a gammon or a
backgammon are also input. The remaining 100 inputs are from functions that
compute positional features, taken from the Neurogammon program. The inputs
to the net were chosen to simplify the system, and not to minimize the number
of inputs.

TD-Gammon 2.0 used no backgammon knowledge and had a neural net con-
taining 80 hidden units. This program was sufficient to play strong backgam-
mon, but not at a world-class level. Tesauro was able to improve the program’s
performance to be world-class caliber by adding Neurogammon’s backgammon
knowledge as input to the neural net. This version, T'D-Gammon 3.0, contains
160 hidden units in the neural network. Each unit in the net takes a linear sum
of the weighted values of its input, and then converts it to a value in the range
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Figure 6: TD-Gammon 3.0’s neural network.

-3 to 3. A backgammon is worth three points, a gammon two, and a win, one
point. The conversion is done with a nonlinear sigmoid function, allowing the
output to be a nonlinear function of the inputs. The resulting neural net has
approximately 50,000 weights that need to be trained.

The weights in the hidden units were trained using temporal difference learn-
ing from self-play games. By playing the program against itself, there was an
endless supply of data for the program to train itself against. In a given game
position, the program uses the neural net to evaluate each of the roughly 20
different ways it can play its dice roll, and then chooses the move leading to
the maximum evaluation. Each game is played to completion, and then tempo-
ral difference learning is applied to the sequence of moves. Roughly 1,500,000
self-play games were used for training TD-Gammon 3.0.

TD-Gammon has been augmented with a selective three-ply search. For each
of its moves, TD-Gammon considers the most likely opponent responses, and
its replies to those responses. Each state considered in the search has roughly
400 possibilities, so for each of the 21 dice rolls, TD-Gammon only considers
a handful of likely best moves for the opponent (selectively paring down the
search).

A critical component of strong backgammon is the handling of the doubling
cube. The cube strategy was added after the program was trained. It uses
a theoretical doubling formula developed by mathematicians in the 1970s [58].
During a game, TD-Gammon’s reward estimates are fed into this formula to
come up with an approximation of the expected doubling payoff.

Post-mortem analysis of backgammon games use simulations (or roll-outs as
they are called in the backgammon community). A roll-out consists of repeat-
edly simulating the play from a starting position through to the end of the game.
Each trial consists of a different sequence of dice rolls. Each move decision is
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based on a one-ply search. A simulation is stopped after 10,000 trials or when
a move becomes statistically better than all the alternatives.

3.1.2 The Best of Computer Backgammon

The following game was the 18th played in the exhibition match between T'D-
Gammon 3.0 and world champion Malcolm Davis, held at the 1998 conference
of the American Association for Artificial Intelligence. The game comments
are by Gerry Tesauro (GT), Malcolm Davis (MD) and T'D-Gammon (TD). TD
gives the top moves in a position, ordered by their score. These values were
determined after the match by roll-outs. Tesauro explains how to interpret the
scores [59]:

Ignoring gammons and backgammons, if player’s move decision is
0.1 worse than the best move, the player has reduced his winning
chances by about 5%, and backgammon experts would regard that
as a “blunder.” On the other hand, if the error is 0.02 or less, it only
costs about 1% in winning chances, and such errors are regarded as
small.

Each of the 24 points is numbered and given relative to the side to move
(White is counter clockwise from their home; Black is clockwise from their
home). A move consists of 1 to 4 checkers being moved, each specified with their
from- and to-points. The bar is labeled as point number 25. An x indicates a
capture move. In the following text, for each turn the side to move (Black or
White) is given, followed by the dice roll and the moves chosen.

Black: Malcolm Davis White: TD-Gammon 3.0

B 5,1: 24-23 13-8; W 4,2: 8-4 6-4; B 6,2: 24-18 18-16; W 6,4: 24-18
13%x9; MD: A good play. Hitting twice is reasonably close. GT: Good play by
TD. Aggressively blitzing with 13x 9 8x 2 or 8x2 6-2 is not bad, but committal.
TD’s play keeps more options open and seems to be a more solid all-around
positional play, and in fact it comes out on top in the roll-out results. TD:
24-18 13x9 = 0.252; 13x9 8x2 = 0.216; 8x 2 6-2 = 0.207.

B 4,2: 25-23 13-9; MD: A total toss-up versus 8-4. Going to the 9 point is
more my style, ignoring the 3 duplication. GT: Whoops, the roll-outs say that
8-4 is slightly better. Not only is it fewer shots, but it’s also a better point if
missed and covered. Not sure what MD was thinking here. TD: 25-23 8-4 =
-0.389; 25-23 13-9 = -0.407.

W 6,6: 24-18 13-7 13-7 13-7; MD: Not challenging. Going to the 3 point
duplicates 1’s and is about a 4% error. GT: I have to confess that this one is
beyond me. I would have held on to the midpoint and slotted the 3 point with
the last sixz. TD’s play gives up a point, leaves two blots instead of one, in not
very good locations, and yet it wins the roll-out. I guess what’s going on is that
TD’s play leaves a bunch of builders to make the five point, which is perhaps the
key point in this position. The midpoint is not so valuable when White already
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Figure 7: Malcolm Davis (Black) versus TD-Gammon 3.0 (White).
White to play a 2-1.

owns the 18 point, and playing 9-3 makes it very unlikely that White will be able
to make the five point anytime soon. Well done, TD! TD: 24-18 13-7 13-7 13-7
= 0.516; 24-18 13-7 13-7 9-3 = 0.444.

B 4,3: 9-5 8-5; MD: High marks to the human. Hitting is a slight error,
perhaps more so if the cube is about to be turned, as it creates a more volatile
position. TD: 9-5 8-5 = -0.479; 23-20 20x 16 = -0.482.

White doubles, Black takes; MD: This double is apparently a little too
aggressive, although not at all unreasonable. GT: Based on 10,000 full roll-outs
with the cube, the double is barely correct. The no-double equity is 0.73, whereas
the equity after double/take is 0.75.

W 3,3: 85 8-5 6-3 6-3; MD: TD’s biggest piece movement error. Making
the 15 and 3 points is about 2% better. GT: Many options here: one can attempt
to disengage with 18-15 18-15, safety the blot, make the 5 point, or make the 3
point. TD makes the best play hanging back on the 18 point and keeping all full-
contact options open. However, the position thematically points to disengaging
since White is far ahead in the race and has gotten all the back checkers out.
The roll-outs reveal that this is better than TD’s choice. TD: 18-15 18-15 6-3
6-3 = 0.547; 8-5 8-5 6-3 6-3 = 0.522.

B 1,1: 13x12 12-11 11-10 6-5; MD: My biggest error — I was playing
quickly and didn’t consider the much better 6-4 6-4. GT: A tough choice for
MD. He can hit the blot while he has the chance, or wait and build up his board
with 6-4 6-4 and hope that TD has trouble clearing the 18 point. If he’s going to
hit, perhaps he should hit safely with 13x 12 13-12 13-12 6-5. The choice is not
clear to me, but the roll-outs say that MD’s play is a big mistake. TD: 6-5 6-5
5-4 5-4 = -0.466; 18x12 13-12 13-12 6-5 = -0.489; (5th ranked move) 13x 12
12-11 11-10 6-5 = -0.549.
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W 5,2: 25x23 23-18; B 5,1: 10-5 5-4; W 6,3: 18-15 15-9; B 4,2:
8-4 5-3; W 4,1: 9-5 7-6; B 5,1: 8-3 6-5; MD: A photo compared to 6-5 6-1.
GT: Bold play by MD, risking an immediate fatal hit in order to keep a nice
inner board structure. I would have chickened out and played safe with 6-1 4-3.
The roll-outs come out about equal. TD: 6-1 }-8 = -0.535; 83 6-5 = -0.544;
6-5 6-1 = -0.545.

W 6,5: 6-1 9-3; B 5,2: 83 6-4; MD: Perhaps a very good play. GT: If
MD slots the ace point, it could be a liability in the event of immediate action
after TD rolls a five. Instead, he chooses 6-4, avoiding the blot, but making his
own fives awkward. The roll-outs give a statistically insignificant edge to 3-1.
TD: 8-83 3-1 = -0.401; 8-3 6-4 = -0.414.

W 2,1: 3-1 5-4; B 5,1: 6-1 3-2; MD: Perhaps a very good play by the
human. Leaving only one blot gives up about 2%. GT: Talk about fives being
awkward! MD makes an outstanding play here, leaving three blots in the home
board, but keeping a smooth distribution and hoping to straighten everything out
next turn. I would have played the more craven 4-3 or 5-4, which turns out
badly in the roll-outs. Being able to play the bad rolls well is the hallmark of a
champion. TD: 6-1 3-2 = -0.657; 6-1 4-3 = -0.716; 6-1 5-4 = -0.728.

W 2,1: 18-16 18-17; See Figure 7. MD: A fine play. GT: Brian Sheppard,
who was in the audience at the time, applauded TD for this spectacularly un-
computer-like play. White could easily leave no blots with 7-6 7-5, and keep all
the points with 4-1. However, TD realizes that it’s ahead in the race and behind
in timing, and that if it waits on the 18 point, it may well have to break it next
turn, when MD’s board will likely be cleaned up and much stronger. So this is
an excellent time to run with 18-17 18-16. Black’s board is such a mess that
he probably won’t hit even if he can. TD: 18-17 18-16 = 0.718; 18-16 16-15 =
0.668; 4-3 3-1 = 0.558; 7-6 7-5 = 0.550.

B 4,2: 5-1 4-2; W 4,1: 16-15 15-11; MD: Straightforward. GT: Another
fine play by TD. It’s tempting to button up and leave one blot and fewer shots
with 17-16 7-3. However, this leaves a difficult point to clear next turn, plus it’s
not a good idea to allow Black to accomplish both hitting and escaping with fives
next turn. TD: 16-15 15-11 = 0.424; 17-16 7-3 = 0.392.

B 3,3: 13-10 13-10 10-7 10-7; W 3,2: 11-9 9-6; B 4,3: 7-4 6-2; MD:
Close, but the best play. GT: MD saves a siz in the outfield so he won’t have to
break the 28 point next turn. An eminently reasonable idea, but curiously 7-3
7-4 comes out a tiny bit better in the roll-outs, quite possibly due to sampling
noise. TD: 7-4 7-3 = -0.763; 7-4 6-2 = -0.777.

W 2,1: 6-5 17-15; B 6,4: 23-17 7-3; MD: Not clear and very close. GT:
A tough choice. MD boldly breaks the anchor and leaves two blots, rather than
wreck his board with 7-1 5-1. Comparing apples and oranges is often difficult for
humans and, here, the roll-outs say that safety is better. TD: 7-1 5-1 = -0.822;
23-17 7-3 = -0.865.

W 4,1: 7-3 3x2; MD: TD is fearless. Hitting is right by a huge margin.
GT: A scary play, but it’s often been said that “Computers don’t get scared.”
TD: 7-3 3x2 = 0.575; 7-6 7-3 = 0.51}.
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B 2,1: 25-23 17-16; W 2,1: no move; Black redoubles, White
passes; MD: Against a human it would be right to double if there’s any chance
at all that the cube might be taken. However, there’s no chance of that against
a [TD-Gammon], so this is a small cube error. GT: Whoops! This position is
actually too good to redouble! Black does slightly better by holding the cube and
trying to win a gammon by picking up the second blot. 10,000 roll-outs with the
cube indicate an equity advantage of 0.04 to playing on instead of cashing.

Tesauro’s postmortem analysis of the match strongly suggests that TD-
Gammon was the better player [55]:

I rolled out every position in the Davis TD match where the dou-
bling cube was turned (full roll-outs with the cube, no settlements).
There were 130 such positions. In 72 positions, T'D-Gammon dou-
bled:

1. TD made 63 correct doubles and 9 incorrect doubles; total eq-
uity loss 1.25.

2. MD made 56 correct take/pass decisions and 16 incorrect; total
equity loss 2.60.

In 58 positions, Malcolm Davis doubled:

e MD made 46 correct doubles and 12 incorrect; total equity loss
1.58.

e TD made 54 correct take/pass decisions and 4 incorrect; total
equity loss 0.19.

Of course, to get the whole story, we also have to check all the posi-
tions where a player could have doubled but didn’t. It’s infeasible to
roll out all these positions, but I did do roll-outs of each of the 130
“turn-before” positions, to see if a player missed a double the turn
before the cube was actually offered. To summarize those results:

e In 72 positions, TD correctly waited in 67 and missed doubles
in 5; total equity loss 0.25.

e In 58 positions, MD correctly waited in 45 and missed doubles
in 13; total equity loss 1.24.

However, 4 of MD’s “errors” were at the end of the match when he
was playing conservatively to protect his match lead. If we ignore
these then he only missed doubles in 9 positions, for a total equity
loss of 0.61.

Malcolm has also done a preliminary analysis with Jellyfish [a com-
mercial program] of the checker plays, which indicated that TD
played better. (The fact that TD obtained more opportunities to
double than MD also suggests it was moving the pieces better.)
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3.2 Bridge

Work on computer bridge began in the early 1960s ([60], for example), but it
wasn’t until the 1980s that major efforts were made. The advent of the personal
computer spurred on numerous commercial projects that resulted in programs
with relatively poor capabilities. Perennial world champion Bob Hamman once
remarked that the commercial programs “would have to improve to be hopeless”
[61]. A similar opinion was shared by another frequent world champion, Zia
Mahmood. In 1990, he offered a prize of £1,000,000 to the person who developed
a program that could defeat him at bridge. At the time, this seemed like a safe
bet for the foreseeable future.

In the 1990s, several academic efforts began using bridge for research in ar-
tificial intelligence [62, 63, 61, 64, 65]. The commercial Bridge Baron program
teamed up with Dana Nau and Steve Smith from the University of Maryland.
The result was a program that won the 1997 world computer bridge champi-
onship. The program used a hierarchical task network for the play of the hand.
Rather than building a search tree where each branch was the play of a card,
they would define each branch to be a strategy, using human-defined concepts
such as finesse and squeeze [64, 65]. The result was an incremental improvement
in the program’s card play, but it was still far from being world-class caliber.

Beginning in 1998, Mathew Ginsberg’s program GIB started dominating
the computer bridge competition, handily winning the world computer bridge
championship. The program started producing strong results in competitions
against humans, including an impressive result in an exhibition match against
world champions Zia Mahmood and Michael Rosenberg. The match lasted
two hours, allowing 14 boards to be played. The result was in doubt until
the last hand, before the humans prevailed by 6.31 IMPs (International Match
Points). This was the first notable man-machine success for computer bridge-
playing programs. Zia Mahmood, impressed by the rapid progress made by
GIB, withdrew his million pound prize.

GIB was invited to compete in the Par Contest at the 1998 world bridge
championships. This tournament tests the contestant’s skills at playing out
bridge hands. In a select field of 35 of the premier players in the world, the
program finished strongly in 12th place. Michael Rosenberg won the event
with a score of 16,850 out of 24,000; GIB scored 11,210. Of the points lost by
GIB, 1,000 were due to time (there was a 10 point penalty per minute spent
thinking), 6,000 were due to GIB not understanding the auction, and 6,000 were
due to GIB’s inability to handle some hands where the correct strategy involves
combining different possibilities [61]. The latter two issues are currently being
addressed.

3.2.1 GIB

The name GIB originally stood for “Goren In a Box”, a tribute to one of the
pioneers of bridge. Another interpretation is “Ginsberg’s Intelligent Bridge.”
To play out a hand, a variation of alpha-beta search can be used. The
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average branching factor is roughly 4. Alpha-beta pruning and transposition
tables reduces it to approximately 1.7. Ordering moves at interior nodes of the
search to favor those moves that give the opponent the least number of possible
respounses (i.e. preferring small sub-trees over large ones), further reduces the
branching factor to 1.3. Given the depth of the search (to the end of the hand;
possibly a tree of depth 52), the trees are surprisingly small (on the order of 10°
nodes).

Ginsberg’s partition search algorithm is used to augment the search [63].
Partition search is a “smart” transposition table, where different hands that have
inconsequential differences are treated as the same hand, significantly increasing
the number of table hits. For example, from a transposition table’s point of
view, the hands “é4 K Q 8 4 2” and “& K Q 8 4 3”7 are different. However, by
representing the entry as “# K Q 8 X X”, where “X” denotes any small card,
the analysis on the first hand can be applied to the second hand. The result
of adding partition search reduces the average search tree size for a deal to a
remarkably small 50,000 nodes.

To decide how to play a hand, GIB uses a simulation [61]. For each trial,
cards are dealt to each opponent that are consistent with the play thus far.
Typically 50 deals are used in the simulation; the card play that results in
the highest expected number of tricks won is chosen to be played. Simulations
are not without their disadvantages. An important component to the play
of the hand are so-called information-gathering plays. A trick is played (and
possibly lost) to reveal more information on the makeup of the opponent’s hands.
Unfortunately, since a simulation involves assigning cards to the opponents, the
program has perfect knowledge of where all the cards lie and, within a given trial,
information gathering plays are not needed! This demonstrates a limitation of
perfect-information variants of imperfect-information reality.

Most previous attempts at bridge bidding have been based on an expert-
defined set of rules. This is largely unavoidable, since bidding is an agreed-upon
convention for communicating card information. GIB takes this one step further,
building on the ability to quickly simulate a hand [61]. The program has access
to a large database of bidding rules (7,400 rules from the commercial program
Meadowlark Bridge). At each point in the bidding, GIB queries the database to
find the set of plausible bids. For each bid, the rest of the auction is projected
using the database, and then the play of the resulting contract is simulated.
G1B chooses the bid that leads to the average best result for the program.

Although intuitively appealing, this approach does have some problems. No-
tably, as with opening books in other games, the database of rules may have
gaps and errors in it. Consider a rule where the response to the bid 44 is in-
correct in the database. GIB will direct its play towards this bid because it
assumes the opponent’s will make the (likely bad) database response. As Gins-
berg writes, “it is difficult to distinguish a good choice that is successful because
the opponent has no winning options from a bad choice that appears successful
because the heuristic fails to identify such options” [61].

GIB uses three partial solutions to the problem of an erroneous or incomplete
bidding system. First, the bidding database can be examined by doing extensive
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off-line computations to identify erroneous or missing bid information. This
is effective, but can take a long time to complete. Second, during a game,
simulation results can be used to identify when a database response to a bid
leads to a poor result. This may be evidence of a database problem, but it could
also be the result of effective disruptive bidding by GIB. Finally, GIB can be
biased to make bids that are “close” to the suggested database bids, allowing
the program the flexibility to deviate from the database.

To summarize, GIB is well on the way to becoming a world-class bridge
player. The program’s card play is already at a world-class level (as evidenced by
the Par Contest result), and current efforts will only enhance this. The bidding
needs improvement, and this is currently being addressed. Had Zia Mahmood
not withdrawn his offer, he might have lost his money within a couple of years
from now.

3.2.2 The Best of Computer Bridge

The following hand is board 11 of the 1998 exhibition match between GIB and
world champions Zia Mahmood and Michael Rosenberg, held at the annual
conference of the American Association for Artificial Intelligence in 1998. The
humans won the match by 6.31 IMPs over 14 deals.

North: Zia
AATO
Q73
CKQJ10853
& K
West: GIB1 East: GIB2
AN10762 AKQ4
©J64 QA0
$ T2 $96
& A1093 &876542
South: Rosenberg
A853
OKQ9852
O A4
& QJ

South West North FEast

1$ pass

10 pass 3 pass

30 pass BT pass

4 pass 40 pass
pass  pass
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Opening lead: 2

Figure 8: Mahmood-Rosenberg versus two GIBs.

The hand shown in Figure 8 was analyzed by Mike Whittaker and reported
in Bridge Magazine [66],° commenting on GIB’s defensive play.

GIB1, West, led with a small &, won by the Queen. GIB2 switched to a {,
won by dummy’s Jack. Leading a QO to the King won, and Rosenberg then led
a &, won by GIB1. A second { lead was won by the Ace and Rosenberg tried
a W to the Jack, losing to the King. GIB2 cashed the Ace Q before leading a
small & to dummy’s Ace. Rosenberg found himself locked in dummy, forced to
lead a . This had the effect of promoting the Jack O for GIB2 and Rosenberg
finished two down.

Finally, we come to the FAQ (Frequently Asked Question): will the com-
puters ever triumph against top quality human opposition? The idea has always
been laughed at but I would not be too complacent. Before long the sheer comput-
ing power of the computer will give it a definite edge over even the best human
declarer in contracts that require technical expertise. However, I think that the
complexities of the bidding language, the use of deception in play and defense
and some abstract qualities, such as table presence, will keep the humans ahead,
at least for a while.

Figure 9 is used to illustrate GIB’s stellar play of the hand. The analysis
was done by Onno Eskes and reported in IMP magazine [67]°.

West opens 2 &, showing a weak hand with both major suits. Unpleasant,
but on the other hand, it becomes a lot easier for us to stay out of a O contract.
We confidently reach 7. West leads the Jack &. I greet dummy with approval.
“Well bid,” I remember thinking. I count five trumps, twice Ace-King-Queen,
Ace & and a ruff in dummy. What can go wrong?

Trumps four-zero. If left-hand opponent has them all, I will go down. If
opponent on the right has them, I can finesse against his Jack. But then [
cannot ruff a O anymore. Well, then they’d better not be four-zero. I take Ace
& and lead a $ to the Ace. West discards a #. I curse under my breath and
start thinking again. Are there any chances left? In &, maybe? If those are
four-four, I can discard a loser on the fifth &.

8Reproduced with permission. Minor editing changes have been made to conform with the
style of this chapter.

9Reproduced with permission. Minor editing changes have been made to conform with the
style of this chapter.
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North

AA3

Q74

$ Q874

SdAKQG63
West, East

South

AQ2

CAKQ1083

S AK 1032

&

Contract: 7§
Opening lead: J&

Figure 9: Tllustrating GIB’s play of the hand.

But I have only one entry left. I should have started by ruffing a &. “One
down,” I concede, “how are the clubs divided?” “Four-four,” is the painful reply.
Fortunately for us, exactly the same thing happened at the other table!

The next day I am still disqusted with the hand. It is a nice problem, however.
I decide to present the hand to GIB... I enter the hands and the auction. I also
enter the explanation of the bids (West at least 4-4 in the majors, less than
opening strength) and the opening lead. Then the computer starts to bubble.
After 80 seconds it produces Ace M. I tell it which card Fast plays to the first
trick. Again 30 seconds of thinking. Ace &! I let East and West follow small.
The computer discards Queen #&. Another 30 seconds. Small &, ruffed in hand!
Forlorn, I watch the computer finish the rest of the play in immaculate fashion.
Ace  (discovering the bad trump split), & to the Queen, King &, Queen & and
a good &. FEast ruffs, South over-ruffs and he can now ruff his last © in dummy.

Beaten by the computer! The humiliation is complete when the machine
subtly announces that it just scored plus 2140.

3.3 Checkers

Arthur Samuel began thinking about a checkers program in 1948 but did not
start coding until a few years later. He was not the first to write a checkers-
playing program; Strachey pre-dated him by a few months [68]. Over the span
of three decades, Samuel worked steadily on his program with performance tak-
ing a back seat to his higher goal of creating a program that learned. Samuel’s
program is best known for its single win against Robert Nealey in a 1963 exhi-
bition match. From this single game, many people erroneously concluded that
checkers was a “solved” game.

In the late 1970’s, a team of researchers at Duke University built a strong
checkers-playing program that defeated Samuel’s program in a short match [69].
Early success convinced the authors that their program was possibly one of
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the 10 best players in the world. World champion Marion Tinsley effectively
debunked that, writing that: “The programs may indeed consider a lot of moves
and positions, but one thing is certain. They do not see much!” [70]. Efforts
to arrange a match between the two went nowhere and the Duke program was
quietly retired.

Interest in checkers was rekindled in 1989 with the advent of strong commer-
cial programs and a research effort at the University of Alberta: Chinook. Chi-
nook was authored principally by Jonathan Schaeffer, Norman Treloar, Robert
Lake, Paul Lu, and Martin Bryant. In 1990, the program earned the right to
challenge for the human world championship. The checkers federations refused
to sanction the match, leading to the creation of a new title: the world man-
machine championship. This title was contested for the first time in 1992, with
Marion Tinsley defeating Chinook in a 40-game match by a score of 4 wins
to 2. Chinook’s wins were the first against a reigning world champion in a
non-exhibition event for any competitive game.

There was a rematch in 1994, but after six games (all draws), Tinsley re-
signed the match and the title to Chinook, citing health concerns. The following
week he was diagnosed with cancer, and he died eight months later. Chinook
has subsequently defended its title twice, and has not lost a game since 1994.
The program was retired in 1997 after it became clear that there was no living
person whose abilities came close to that of the program [42].

Chinook is the first program to win a human world championship. At the
time of this writing, the gap between Chinook and the highest-rated human is
200 rating points (using the chess rating scale) [42], making it unlikely that
humans will ever improve to Chinook’s level of play.

3.3.1 Chinook

In his 1960 Advances in Computers chapter, Samuel felt bad about using the
article to describe his work instead of his predecessor, Strachey. The same
comment that Samuel wrote in 1960 applies to this section, after substituting
Schaeffer’s name for Samuel’s and replacing Strachey with Samuel: “While it
is grossly unfair to dismiss Samuel’s work in a single paragraph and to discuss
the present writer’s own efforts in some detail, in the interests of conciseness
this will have to be done. Perhaps such high-handed behavior can be excused
if the writer publicly apologizes for his action, as he does now, and publicly
acknowledges the credit which Dr. Samuel is due.”

The structure of Chinook is similar to that of a typical chess program: search,
knowledge, opening book, and endgame databases [42, 71]. Chinook uses alpha-
beta search (NegaScout) with a myriad of enhancements including iterative
deepening, transposition table, history heuristic, search extensions, and search
reductions. Further performance is provided by a parallel search algorithm.
With 1994 technology, an 18-processor Silicon Graphics Power Challenge, Chi-
nook was able to average a minimum of 19-ply searches against Tinsley with
search extensions occasionally reaching 45 ply into the tree. The median posi-
tion evaluated was typically 25-ply deep into the search.
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The search depths achieved are usually sufficient to uncover most tacti-
cal threats in a position, however they are inadequate to resolve positional
subtleties. Hence, considerable computational effort is devoted to identifying
promising lines of play to extend the search, and futile lines to reduce the search
depth. Experiments show that a program searching 17 ply plus extensions will
defeat a program going 23 ply deep without extensions (each program used the
same amount of time for each search). By most standards, giving up 6-ply of
search for the extensions is extraordinarily high. However, players like Tinsley
have consistently demonstrated an ability to analyze 30-ply deep (or more), so
Chinook has to be able to match this capability.

The evaluation function was manually tuned over a period of five years.
For each of four game phases, it consists of 25 features combined by a linear
function. Interestingly, most of the features in Samuel’s program were not used
in Chinook  many of them were there to overcome the limitations of the shallow
search depths that Samuel could achieve using 1960’s hardware. The evaluation
function was carefully tuned by a checkers expert through extensive trial-and-
error testing. Attempts at automatically tuning the evaluation function were
unsuccessful.

There were two major improvements to the evaluation function that are of
interest. First, in 1992 a major change enhanced the program’s knowledge but
resulted in a two-fold reduction in the number of positions that the program
could analyze per second (effectively costing it one ply of search) [42]. Despite
the reduced search proficiency, the new knowledge significantly improved the
quality of the evaluations, resulting in a stronger program. This was strong
evidence that Chinook’s search depths were hitting diminishing returns for ad-
ditional search efforts [39]; more was to be gained by the addition of useful
knowledge than additional search.

The second refinement was allowing the sum of positional scores to be able to
exceed the value of a checker. In principle, this is dangerous since the program
may prefer large positional scores over material ones. However, a critical com-
ponent in human grandmaster play is the ability to recognize the exceptions;
when material is a secondary consideration. Adding this capability eliminated
a serious source of errors, and was a major reason for Chinook’s excellent result
in the 1992 world man-machine championship.

Chinook uses an endgame database containing all checkers positions with
eight or fewer pieces. This database has 444 billion (4 x 10'!) positions, com-
pressed into six gigabytes for real-time decompression. Unlike chess programs
which are compute-bound, Chinook becomes I/O-bound after a few moves in a
game. The deep searches mean that the database is occasionally being hit on the
first move of a game. The databases introduce accurate values (win/loss/draw)
into the search, reducing the heuristic error. In many games, the program is
able to backup a draw score to the root of a search within 10 moves by each side
from the start of a game. This suggests that it may be possible to determine
the game-theoretic value of the starting position of the game (one definition of
“solving” the game).

Chinook has access to a large database of opening moves compiled from the
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checkers openings literature. This extensive opening book allows the program
to play its first moves from the opening database, come out of the book, and
then usually be able to search deeply enough to find its way into the endgame
database. This implies that the window for program error is very small. In the
1994 Chinook Tinsley match, five of the six games followed this pattern (in the
other game, Tinsley made an error and Chinook had to try for a win). All the
positions in the opening book were verified using at least 19-ply searches. This
uncovered numerous errors in the published literature.

A database of all known games played by Marion Tinsley was compiled.
When the program was out of its opening book, this database could be used
to bias the search. For example, when playing the weaker side of an opening,
the program would include a favorable bias towards any move that Tinsley had
previously played in this position. The idea is that, since Tinsley rarely made
a mistake, his move is likely to be the right choice. When playing the stronger
side of the opening, the database was used for a different purpose. By biasing
the search against moves suggested by the database, the program could increase
the chances of playing a new move, thereby throwing the human opponent onto
their own resources (increasing the chance of human error).

Arthur Samuels’ program did not come close to reaching the pinnacle of
checkers. In part, this was because of the limited hardware resources that he
had available to him at the time. But it was also due to his insistence on
developing a program that learned everything by itself. Samuel wrote in his
1960 chapter that “suggestions that [I] incorporate standard openings or other
forms of man-devised checker lore have been consistently rejected. ... [I] refuse
to pass judgment on whether the program makes good moves for the right
reasons, demanding instead, that it develop its own reasons” [72]. Ironically, a
major reason for the success of Chinook was the use of the “man-devised” lore
that Samuel consistently rejected.

3.3.2 The Best of Computer Checkers

In the 1992 world man-machine championship, the match was tied at one win
apiece at the start of game 14. The annotations are based on those appearing
in [42]. Comments in italics are from Marion Tinsley. The game notation is
identical to that used in chess: columns are labeled a to h from left to right,
and the rows are labeled 1 to 8 from bottom to top. An x indicates a capture
move.

Black: Marion Tinsley — White: Chinook

1. h6-g5 a3-b4 2. b6-c5 Since the standard starting position is drawish,
tournament checkers uses the so-called “Three Move Ballot”. The first three
moves of the game (two by Black, one by White) are chosen randomly, resulting
in some interesting, lop-sided starting positions. Hence two games are played
for each opening, with the opponents switching colors after the first game. At
the time of this match, 142 openings had been approved for tournament play.
Chinook has to have opening knowledge for both sides of all the openings.
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(a) 16. ... a5-b6 (b) 34. ... e3-d4

Figure 10: Tinsley (Black) versus Chinook (White).

2. ... b4-a5 3. g5-f4 g3xeb5 4. d6xf4 e3xg5 5. f6xh4 d2-e3 6. g7-f6
c3-d4 7. e€7-d6 d4xb6 8. aTxc5 b2-c¢3 9. h8-g7 ¢3-d4 Chinook is now out
of its opening book. The program reports having a small advantage.

10. ¢5-b4 el-d2 11. d6-e5 d4-c5 12. g7-h6 I once laughed at [grand-
master Willie] Ryan for forgetting his own published play, but no more! Back
in 1948, I gave the better f6-95 to draw... Pat McCarthy [a top British player]
later asked me why I didn’t take this simple route. The answer? I had simply
forgotten it! Tinsley seems to think g7-h6 is a bad move, but Chinook sees
nothing wrong with it.

12. ... h2-g3 Chinook expects c7-d6 in reply, with an even game.

13. h6-g5 Tinsley has no comment on this move, but Chinook thinks it is a
major mistake. Analysis conducted months after the game indicates that after
h6-g5 the game is probably lost. Tinsley attaches the blame to his previous
move which apparently leads to a position that he feels uncomfortable with,
even though it leads to a draw (assuming perfect play).

13. ... al-b2 14. b4-a3 c¢5-b6 Suddenly Chinook believes it has a huge
advantage (over one-half of a checker). This may not be obvious by looking at
the position; it is the result of searching over 20 plies into the future.

15. f8-g7 b6-a7 This illustrates an important lesson about putting knowl-
edge into a program: every piece of knowledge has its exceptions. Normally,
putting a man into the dog-hole (a7 for White; h2 for Black) is bad, but here it
turns out to be very strong. Unfortunately, Chinook always penalizes the dog-
hole; it does not understand any of the exceptions. After this b6-a7, I never
saw a glimpse of a draw.

16. c7-d6 a5-b6 See Figure 10a. Incredible! Chinook is sacrificing a checker
against Tinsley. Prior to this match, Chinook had a history of misassessing these
type of sacrifices, resulting in some bad losses. Tinsley himself identified this as
a serious weakness in the program. Fortunately, a few days before the match
began, a serious problem in Chinook’s evaluation function was uncovered (and
fixed) that explained the program’s poor play in these type of positions.

17. b8-c7 a7-b8=k Now the preceding moves make sense. This sacrifice
has been in the works for a few moves now and Tinsley has been avoiding it.
Now he has run out of safe moves and is forced to accept it. It is hard to believe
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that Black can survive. White has a mobile king and strong back rank (making
it hard for Black to get a king). What is Black to do?

18. c7xab5 b8-a7 19. d8-e7 a7-b8 Is Chinook winning? The position
looks very strong, but Chinook reports only a moderate advantage. The pro-
gram intended to play b2-c3, but at the last minute switches to a7-b8 by a
narrow margin. The alpha-beta search differentiates between the moves by an
insignificant (and likely random) 3/100ths of the value of a checker. After the
game, Tinsley revealed that he was praying for b2-c3, as he claimed that it led
to a draw. a7-b8 may be the only winning move.

20. g7-h6 gl-h2 21. d6-c5 b8-c7 22. e5-d4 c7-d6 Winning back the
checker with a dominating position. Unfortunately, Chinook’s score does not
reflect this. It was searching so deep that it must have found a way for Black
to extricate himself.

23. f6-e5 d6xf8 24. g5-f4 e3xgh 25. h6xf4 f8-e7 26. c5-b4 d2-c3 At
this point, Chinook’s analysis revealed why the assessment had been low over
the past few moves: it saw that it was winning a checker but thought Black
could draw despite the checker deficit. Now the search is able to see far enough
ahead to realize that the draw is unlikely.

27. b4xd2 clxe3xgh 28. a3xcl=k e7-d6 29. d4-c3 d6xf4 30. c3-
d2 g5-f6 Chinook announces it has found a forced win in its endgame database.
For this match, the program had access to all the seven-piece positions, and a
small portion of the eight-piece endgames.

31. d2-el=k f6-e7 32. c1-b2 f4-e3 33. b2-c3 e7-f8=k 34. c3-b4 e3-
d4 Tinsley resigns. See Figure 10b. The winning line goes as follows: b4-a3
f8-e7 a5-b4 d4-e3 b4-c3 e7-d6 c3-b2 d6-e5 b2-c1=k, and now g3-f4 frees White’s
checkers. After elxg3, then f4-g5 surprisingly traps the king. The dominant
White kings control the center of the board, keeping Black’s pieces at bay.

After Tinsley extended his hand in resignation, the crowd rushed forward to
congratulate Tinsley. Congratulate Tinsley? “That’s a fine draw,” exclaimed
Grandmaster Con McCarrick, the match referee. Once the truth was revealed,
the spectators were stunned. The audience thought that Tinsley had found a
beautiful drawing line!

With Chinook leading 2-1, Tinsley looked like he was in trouble. However,
Chinook forfeited game 18 due to technical problems and then was out-played
in game 25. In the last game of the match, trailing 3-2 and needing a win,
Chinook was pre-programmed to treat a draw as a loss. The program saw a
draw, rejected it, and went on to lose the game and the match.

3.4 Chess

The progress of computer chess was strongly influenced by an article by Ken
Thompson which equated search depth with chess-program performance [37].
Basically, the paper presented a formula for success: build faster chess search
engines. The milestones in chess program development become a statement of
the state-of-the-art in high-performance computing:
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e 1980-1982: Thompson’s Belle, the first program to earn a U.S. master title,
was a machine built to play chess. It consisted of 10 large wire-wrapped
boards using LSI chips [73].

e 1983-1984: Cray Blitz used a multi-processor Cray supercomputer [74].

e 1985-1986: The Hitech chess machine was based on 64 special-purpose
VLSI chips (one per board square) [75, 28].

e 1985-1986: Waycool used a 256-processor hypercube [76].

e 1987-present: ChipTest (and its successors Deep Thought and Deep Blue)
took VLSI technology even further to come up with a chess chip [38, 77,
78].

In 1987, ChipTest shocked the chess world by tieing for first place in a
strong tournament, finishing ahead of a former world champion and defeating a
grandmaster. The unexpected success aroused the interest of world champion
Garry Kasparov, who played a two-game exhibition match against the program
in 1989. Man easily defeated machine in both games.

The Deep Blue team worked for seven years on improving the program, in-
cluding designing a single-chip chess search engine and making significant strides
in the quality of their software. In 1996, the chess machine played a six-game
exhibition match against Kasparov. The world champion was stunned by a de-
feat in the first game, but he recovered to win the match, scoring three wins and
two draws to offset the single loss. The following year, another exhibition match
was played. Deep Blue scored a brilliant win in game two, handing Kasparov
a psychological blow that he never recovered from. In the final, decisive game
of the match, Kasparov fell into a trap and the game ended quickly. This gave
Deep Blue an unexpected match victory, scoring two wins, three draws and a
loss.

It is important to keep this result in perspective. First, it was an exhibition
match; Deep Blue did not earn the right to play Kasparov.!® Second, the match
was too short to accurately determine the better player; world-championship
matches are typically at least 20 games long. Although it is not clear just how
good Deep Blue is, there is no doubt that the program is a strong grandmaster.

What does the research community think of the Deep Blue result? Many
are filled with admiration at this feat of engineering. Some are cautious about
the significance. John McCarthy writes that [79]:

In 1965, the Russian mathematician Alexander Kronrod said, “Chess
is the Drosophila'! of artificial intelligence.” However, computer
chess has developed much as genetics might have if the geneticists
had concentrated their efforts starting in 1910 on breeding racing

10To be fair, it is unlikely that the international chess federation will ever allow computers
to compete for the world championship.

The drosophila is the fruit fly. The analogy is that the fruit fly is to genetics research as
games are to artificial intelligence research.
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Drosophila. We would have some science, but mainly we would have
very fast fruit flies.

In retrospect, the chess “problem” turned out to be much harder than anyone
thought in Samuel’s time. The Deep Blue result is a tremendous achievement,
and a milestone in the history of both artificial intelligence and computing
science.

From the scientific point of view, it is to be regretted that Deep Blue has
been retired, the hardware unused, and the programming team disbanded. The
scientific community has a single data point that suggests machine might be
better than man at chess. The data is insufficient and the sample size is not
statistically significant. Moreover, given the current lack of interest in Deep
Blue from IBM, it is doubtful that this experiment will ever be repeated. Of
what value is a single, non-repeatable data point?

3.4.1 Deep Blue

Deep Blue and its predecessors represents a decade-long intensive effort by a
team of people. The project was funded by IBM, and the principal scientists
who developed the program were Feng-hsiung Hsu, Murray Campbell, and Joe
Hoane.

Deep Blue’s speed comes from a single-chip chess machine. The chip includes
a search engine, a move generator, and an evaluation function [38]. The chip’s
search algorithm is alpha-beta, but it is restricted to always use a minimal
window. Transposition tables are not implemented on the chip (it would take
too much chip real estate). The search is capable of doing a limited set of search
extensions. The evaluation function is implemented as small tables on the chip;
the values for these tables can be downloaded to the chip before the search
begins. These tables are indexed by board features and the results summed in
parallel to provide the positional score.

A single chip is capable of analyzing over two million chess positions per sec-
ond. Tt is important to note that this speed understates the chip’s capabilities.
Some operations that are too expensive to implement in software can be done
with little or no cost in hardware. For example, one capability of the chip is
to selectively generate subsets of legal moves, such as all moves that can put
the opponent in check. These increased capabilities give rise to new opportu-
nities for the search algorithm and the evaluation function. Hsu estimates that
each chess chip position evaluation roughly equates to 40,000 instructions on
a general-purpose computer. If so, then each chip translates to a 100 billion
instruction per second chess supercomputer [38].

Access to the chip is controlled by an alpha-beta search algorithm that is
implemented on the host computer (an IBM SP-2). Deep Blue uses alpha-
beta with iterative deepening and transposition tables. Considerable effort was
devoted to researching search extensions. The Deep Blue team pioneered the
idea of singular extensions, using local search to identify forced moves [25].
Other extensions include those for threats and piece influence [27]. Extensive
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tuning was done to find the right combination of extensions that maximized
the benefits while not causing an explosion in search effort. In Deep Blue,
a search extension would increase the search depth by an amount up to two
ply. The algorithm used fractional extensions (e.g. a threat might increase the
search depth by 0.5 ply), allowing several features to combine to cause a search
extension.

The search has been parallelized. For the 1997 Kasparov match, Deep Blue
used a 30-processor IBM SP-2, with each processor connected to 16 chess chips.
The parallel search algorithm uses a three-level hierarchy. The first four ply are
done by a single master process. The leaves of the master’s tree are searched
an additional four or more ply deeper by the other SP-2 processors. The par-
allel search running on the SP-2 uses a variant on Hsu’s Delayed Branch Tree
Expansion algorithm [80]. The leaf nodes of these searches are passed off to the
chess chips for additional search. In effect, one could view the chips as perform-
ing a sophisticated evaluation using at least a four-ply search, plus extensions.
During the Kasparov match, Deep Blue “only” searched 200 million positions
per second on average. The maximum hardware speed is roughly one billion
positions per second (30 processors X 16 chips per processor x 2 million posi-
tions per second). The difference reflects both the difficulty of achieving a high
degree of parallelism with alpha-beta, and the team decision that more efficient
searching was unlikely to have an impact against Kasparov.

The biggest difference in Deep Blue’s performance in 1997 compared to 1996
was undoubtedly due to improved chess knowledge. Chess grandmaster Joel
Benjamin worked with the team to identify weaknesses in the program’s play.
The evaluation function consists of over 8,000 tunable parameters. Most of the
terms are combined linearly to arrive at a position value, but some terms are
scaled to create a non-linear relationship. Although several attempts were made
to tune the parameters automatically, in the end the tuning was primarily done
by hand.

The program uses an endgame database of all positions with five or fewer
pieces on the board, although this is rarely a factor in a game. The opening
book is small, but Deep Blue has access to a large database of grandmaster
games. When the program is out of its book, it will query the grandmaster
database to find all games where the board position has arisen. All moves for
this position retrieved from the database are assessed, based on who played it
and how favorably the game ended. These moves receive a positive or negative
bias that influences the evaluation of a line of play. Essentially, moves with a
history of success are favored, and those with a bad track record are discouraged.

3.4.2 The Best of Computer Chess

In the 1997 match against world champion Garry Kasparov, Deep Blue lost
the first game, causing many to predict an easy victory for man over machine.
The second game astounded the chess world, convincingly demonstrating Deep
Blue’s championship-caliber skills. In the game notation, columns are labeled a
to h from left to right and the rows are labeled 1 to 8 from bottom to top. An
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(a) 24. Za3 (b) 45. Bab

Figure 11: Deep Blue (White) versus Kasparov (Black).

X indicates a capture move.
White: Deep Blue  Black: Gary Kasparov

1. e4eb 2. N3 HHNc6 3. @&b5a6 4. 2a4 Nf6 5. O-0 &e7 6.
Hel b5 7. 2b3d6 8. ¢c30-O 9. h3 h6 10. d4 Ze8 11. H\bd2
A8 12. HO)fl &d7 13. Hg3 HHad 14. &c2 c5 15. b3 H\c6 16. d5 HeT
17. 2e3 HNgb6 18. Wd2 Until now, standard opening theory. Kasparov
repeatedly claimed that he understood how to play against computers. Indeed
this position is consistent with the common perception that computers are weak
in closed (blocked) positions. Nevertheless, with his next move Kasparov begins
to appear complacent, perhaps underestimating his dangerous foe.

18. ... /Hh7 19. a4 HHh4 20. Hxhd Wxha 21. We2 Wd8 Black’'s
last few moves have accomplished nothing except to exchange a pair of knights
on the opposite side of the board from all the action.

22. b4 Wc7 23. Zecl With this move, the audience began to sense
that something was different with Deep Blue’s play, compared to the quality of
play seen in the 1996 match. From the human’s point of view, this move shows
extraordinary insight into the position. At first glance, it looks like the rook is
being moved to a useless square. However, this is a “prophylactic move” that
subtly restricts Black’s options. The move becomes very strong if Black allows
the c-file to become open.

23. ... ¢4 24. Ha3 See Figure 11a. Another strong move, intending
to double the rooks on the a-file. Most computer programs would immediately
exchange a-pawns. Joel Benjamin revealed afterward that Deep Blue had a
common computer tendency to release tension by exchanging pawns. Special
knowledge was added to refrain from these exchanges, thereby maximizing the
computer’s options in the position.

24. ... Zec8 25. Hcal Wd8 26. f4 Another strong positional move
that is “obvious” to humans, but usually difficult to find for computers. Having
secured the advantage on the queen-side, the program now strives to dominate
the king-side. Subsequent analysis showed that this move may not have been
strongest. Although the idea is good, 26. axbb axbb 27. &a7 would allow
White to make inroads on the queen-side.
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26. ... O)H)\f6 27. fxe5 dxe5 28. Wfl Another human-like move. 28.
W2 may have been even stronger.

28. ... HNe8 29. W2 /Nd6 30. 2b6 We8 31. H3a2 £e7 Kasparov
has drifted into a horribly passive position. He can only wait for Deep Blue to
attack.

32. &ch5 &f8 33. N5 & x5 34. exf5 f6 35. & xd6 & xd6 36.
axb5 At first glance, Wh6 seems to win material. However e4 gives Black
counter-play.

36. ... axbb5 37. £e4 Black’s position is miserable, and everyone ex-
pected the seemingly crushing 37. ¥W/b6. However, there is a hidden trap:  37.
... BExa238. Exa2 Hal 38. Exa8 Wxa8 39. Wxd6 Wal+ 40. h2 Wel with a
probable draw. In some lines, Black can play e4 and get (limited) counter-play.
37. £ed upset Kasparov: the move eliminates all counter-chances. Kasparov
couldn’t believe that the program would pass up the chance to win material.
This position gave rise to considerable controversy after the match. Kasparov’s
disbelief that a computer was capable of this level of sophistication resulted in
his leveling unfounded accusations of cheating against the Deep Blue team.

37. ... Exa2 38. Wxa2 Wd7 39. Wa7 Hc7 40. Wh6 HEb7 41.
Ba8+ Hf7 42. Wab We7 43. We6 Wh6+ 44. Hfl  An error, but no
one knew it at the time...

44. ... Eb8 45. EHa6 Kasparov resigns. See Figure 11b. The
audience erupted in applause. History was made! But — incredible as it seems
— the final position is a draw! The analysis is long and difficult, but the amazing
We3 secures a miraculous draw. Even the incredible search depths of Deep Blue
were incapable of finding this within the time constraints of a game.

Much has been made of Kasparov’s missed opportunity. However, this dis-
tracts the discussion from the real issue: Deep Blue played a magnificent game.
Who cares if there is a minor imperfection in a masterpiece? Most classic games
of chess contain many flaws. Perfect chess is still an elusive goal, even for Kas-
parov and Deep Blue.

Despite the defeat, even Kasparov had grudging respect for his electronic
opponent [81]:

In Deep Blue’'s Game 2 we saw something that went well beyond
our wildest expectations of how well a computer would be able to
foresee the long-term positional consequences of its decisions. The
machine refused to move to a position that had a decisive short-term
advantage showing a very human sense of danger. I think this
moment, could mark a revolution in computer science...

Kasparov pressed hard for a win in games 3, 4, and 5 of the match. In the
end, he seemed to run out of energy. In game 6, he made an uncharacteristic
mistake early in the game and Deep Blue quickly capitalized. The dream of
a world-class chess-playing program, a 50-year quest of the computing science
and artificial intelligence communities, was finally realized.
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3.5 Othello

The first major Othello program was Paul Rosenbloom’s Iago [82]. It achieved
impressive results given its early-1980s hardware. It played only two games
against world-class players, losing both. However, it dominated play against
other Othello programs of the time. Based on the program’s ability to predict
59% of the moves played by human experts, Rosenbloom concluded that the
program’s playing strength was of world-championship caliber.

By the end of the decade, Iago had been eclipsed. Kai-Fu Lee and San-
joy Mahajan’s program Bill represented a major improvement in the quality of
computer Othello play [83]. The program combined deep search with exten-
sive knowledge (in the form of precomputed tables) in its evaluation function.
Bayesian learning was used to combine the evaluation function features in a
weighted quadratic polynomial.

Statistical analysis of the program’s play indicated that it was a strong
Othello player. Bill won a single game against Brian Rose, the highest rated
American Othello player at the time. In test games against Iago, Bill won every
game. These results led Lee and Mahajan to conclude that “Bill is one of the
best, if not the best, Othello player in the world.” As usual, there is danger in
extrapolating conclusions based on limited evidence.

With the advent of the Internet Othello Server (I0S), computer Othello
tournaments became routine. In the 1990s they were dominated by Michael
Buro’s Logistello. The program participated in 25 tournaments, finished first 18
times, second six times, and fourth once. The program combined deep search
with an extensive evaluation function that was automatically tuned. This was
combined with an extensive opening book and a perfect endgame player.

Although it was suspected that in the mid-1990s, computers surpassed hu-
mans in their playing abilities at Othello, this was not properly demonstrated
until 1997, when Logistello played an exhibition match against world champion
Takeshi Murakami. In preparation for the match, Buro writes that [84]:

Bill played a series of games against different versions of Logistello.
The results showed that Bill, when playing 5-minute games running
on a PentiumPro/200 PC, is about as strong as a 3-ply Logistello,
even though Bill searches 8 to 9 plies. Obviously, the additional
search is compensated for by knowledge. However, the 3-ply Logis-
tello can only be called mediocre by today’s human standards.

Two explanations for the overestimation of playing strength in the
past come to mind: (1) during the last decade human players have
improved their playing skills considerably, and (2) the playing strength
of the early programs was largely overestimated by using ... non-
reliable scientific methods.

Logistello won all six games against Murakami by a total disc count of 264 to
120 [84]. This confirmed what everyone had expected about the relative playing
strengths of man and machine. The gap between the best human players and the
best computer programs is believed to be large and effectively unsurmountable.
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3.5.1 Logzstello

Outwardly, Logistello looks like a typical alpha-beta-based searcher. The pro-
gram has a highly-tuned search algorithm, sophisticated evaluation function,
and a large opening book.'? The architecture of the program is illustrated in
Figure 12.

Internet Graphical i
Othello User Public Self-play

Server Interface Games Games

Communication

Game-Tree Searcher
Game
Analyzer/Corrector
Game
|
Manager /
Move Evaluator
Evaluation
Function

Opening Book Play

Opening Book consisting of
over 23,000 tournament games +
evaluations of "best" move
alternatives

Periodic Update

Estimation of feature weights

and values of pattern instances
Training set consisting of over
11 million scored positions

Periodic Correction
Figure 12: Logistello’s architecture [85].

The search algorithm is standard alpha-beta (NegaScout) with iterative
deepening, a large transposition table, and the killer heuristic. Corners are
a critical region of the board. The program does a small quiescense search if
there is some ambiguity about who controls a corner.

Buro introduced his ProbCut algorithm in Logistello [24]. This search en-
hancement takes advantage of the Othello property that the results of a shallow
search (s ply) are correlated with the results of a deep search (¢ ply). An s-ply

I2Note that endgame databases are not possible in Othello because, unlike chess and check-
ers, the number of pieces on the board increases as the end of game approaches.
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search produces a value v,. This value is extrapolated to give the value of a
t-ply search v;. The deeper search’s estimated value is then compared to the
alpha-beta search window, and the likelihood that v; will be relevant to this
window is computed. If v; is likely to be irrelevant (e.g., is unlikely to reach
alpha), then the search is pruned on the basis of the shallow search.

The deeper search value can be viewed as being:

vy =aXvs+b+e

where a and b are constants and e is the error (normally distributed with a mean
of 0 and variance ¢2). Given s and t, the parameters a, b and e are determined
using linear regression on a large number of samples. For each sample position,
searches to depth s and t are performed.

In a game, this information can be used to probabilistically eliminate trees
using the relationship v; < a with probability p if vy < (=®'(p) x o +a—b)/a.
The value of ®1(p), the cut threshold, is set according to how much confidence
one has in these cut-offs. Buro uses ® ~1(1.5) = 0.93. With this value, Logistello
enhanced with ProbCut defeated the program without ProbCut by a score of 52
18 [24]. Since then, Buro has refined the algorithm to make it more applicable
and powerful [86].

A special search case occurs as the end of game approaches. Here it is
possible to search to the end and find the exact search result given perfect play
by both players. Typically, Logistello can solve a position when there are 22 26
moves left in the game. The search is a highly tuned, blindingly fast routine
with no knowledge to slow it down. When the program thinks it can solve
the position, it will allocate a large portion of its remaining time to determine
whether the position is a win, loss, or draw. Once the result is determined,
searches on subsequent moves can be used (if necessary) to refine the score to
maximize the result. Once the position is solved, all the remaining moves of the
game can be played instantly.

Logistello uses an evaluation function that has been automatically tuned.
The program treats the game as having 13 phases: 13-16 discs on the board,
17 20 discs, ..., and 61 64 discs.!> Each phase has a different set of weights in
the evaluation function. Thus, Equation 1 can be viewed as being:

np

value = Zwm X fpi (2)

i=1

where p is the phase of the game.

The evaluation-function features are patterns of squares comprising com-
binations of corners, diagonals, and rows. These patterns capture important
Othello concepts, such as mobility, stability and parity. Logistello has 11 such
patterns, which with rotations and reflections yields 46. Some of the patterns
are a 3 X 3 and a 5 x 2 configuration of stones anchored in a corner, and all
diagonals of length greater than 3.

I3Note that there is no need for a phase for less than 13 discs on the board, since the search
from the first move easily reaches 13 or more discs.
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The weights for each entry in each pattern (46) for each phase of the game
(11) are determined by linear regression. There are over 1.5 million table entries
that need to be determined. The data was trained using 11 million scored
positions obtained from self-play games and practice games against another
program [87]. The evaluation function is completely table-driven. Given a
position, all 46 patterns are matched against the position, with a successful
match returning the associated weight. These weights are summed to get the
overall evaluation which approximates the final disc differential.

Opening books are a critical component to Othello programs. Ignoring
passed moves (occasionally one side has no legal moves), each side has only
30 moves to play in a game. Given that programs can solve games with, say,
24 discs left on the board, that means that only the first 18 moves by each side
are relevant. A strong opening book can guarantee that most of these moves
are correct. Hence, considerable computational effort is spent on building an
opening book.

The book is essentially a large tree of move sequences starting from the initial
position of the game. It is built off-line using the results from tournament and
self-play games [88]. The move sequence of a game can be analyzed backwards,
allowing each position to get a more accurate score than had the moves been
analyzed in a forward manner (the backwards searches benefit from the results
obtained from the later searches in the game). The final result (win, loss, draw)
is propagated as far back in the game as possible. These positions are added to
the book as accurate values. Other positions are assigned their heuristic value
(obtained from a deeper search than occurred in the game) and added to the
book. At all positions added to the book, all the move alternatives not played
are evaluated with a deep search. The scores are then minimaxed back up the
opening book tree. For example, consider the scenario of Logistello playing a
game and losing. Assume that the program identifies the loss on its 20th move.
The book program will analyze this position and score all the alternative moves
in this position. If the first 19 moves of a future game repeat the above move
sequence, then the book will select for its 20th move the one that leads to
the highest score (which is likely not the loss score). In this way, Logistello is
guaranteed to deviate its play from the earlier game.

Deep searches, good evaluation, and a strong opening book are a winning
recipe for Othello. Michael Buro comments on the reasons why Logistello easily
won the Murakami match[84]:

When looking at the games of the match the main reasons for the
clear outcome are as follows:

1. Lookahead search is very hard for humans in Othello. The disad-
vantage becomes very clear in the endgame phase, where the board
changes are more substantial than in the opening and middlegame
stage. Computers are playing perfectly in the endgame while hu-
mans often lose discs.

2. Due to the automated tuning of the evaluation functions and
deep selective searches, the best programs estimate their winning
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chance in the opening and middlegame phase very accurately. This
leaves little room for human innovations in the opening, especially
because the best Othello programs are extending their opening books
automatically to explore new variations.

3.5.2 The Best of Computer Othello

In August 1997, the World Champion Takeshi Murakami played a six-game
exhibition match with Logistello. Having lost the first five games, Murakami
fought hard for a win in the last game. Michael Buro, author of Logistello, an-
notates this game (comments are in italics) [89]. Logistello’s analysis is enclosed
in [Js giving the main lines of play and the final predicted result from Logistello’s
point of view. Moves are given by specifying the column from left-to-right, “A”
to “H”, and the row from top-to-bottom, 1 to 8.

White: Logistello — Black: Takeshi Murakami

1. F5 D6 2. C4 D3 3. C3 F44. C5 B3 5. C2 E6 6. C6 B4 7.
B5 D2 8. E3 A6 9. C1 B6 10. F3 F6 11. F7 E1 12. E2 F1 13. E7
G3 14. C7 G4 Logistello prefers D7 over Mr. Murakami’s G4. After D7 the
position seems to be quite close. Mr. Murakami’s opening and early midgame
were flawless in Logistello’s view.

15. G5 D1 See Figure 13a. According to Logistello’s 26 ply selective
search, Mr. Murakami’s D1 s probably two discs worse than playing F2.

16. G1 F2 17. H3 H4 One move earlier, Mr. Murakami missed the last
opportunity to deprive Logistello of its free move to B1. While H5 flips F5 and
thereby denies Logistello access to B1, it also leads to a risky edge configuration
after the moves H6 and H7. This may be the reason why Mr. Murakami prefered
HJ, which, however, loses two discs. Today’s best programs would start selective
win-loss-draw searches in this position after conducting a >24 ply “midgame”
Multi-ProbCut search. This leaves human players with very little room for the
slightest errors. [H5 H6 H7 = J; H4 H5 D8 = 6]

18. H5 C8 Here, Mr. Murakami does not want to break Logistello’s wall
which would create additional moves for Logistello. One plan is to move into
the south-west region (C8 or D8) or to exploit regional parity in the north-east
by playing G2. Although Mr. Murakami’s G2 gives up corner HI1 it leaves him
with the last move in this region. Mr. Murakami chose C8, losing two discs.
[G2 B1 D8 = 6; D8 C8 D7 = 6; C8 B1 D7 = 8]

19. B1 D7 20. H2 E8 21. D8 G6 22. F8 G8 23. H6 GT7 24.
A2 A3 25. A4 B7 26. A8 B8 27. B2 See Figure 13b. In this game
Mr. Murakami never thought he was losing until the late endgame where he was
faced with a swindle threat. At first glance, Mr. Murakami seems to have the
advantage because the eastern and northern edge configurations look weak for
Logistello. However, the only losing move in this position is G2 which allows
Mr. Murakami to grab HI and to secure enough edge and interior discs later
on. The optimal move is B2 which Mr. Murakami had not anticipated in his
earlier calculations.
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(a) before 15. ... D1 (b) before 27. B2

Figure 13: White: Logistello — Black: Takeshi Murakami
27. ... A1 This move creates a so-called swindle in the south-east corner

region, meaning that Logistello gets both remaining moves (H8 and H7) there
winning by 10. A little better is A5 which loses by 8. [A5 A7 A1 H8 = 8; Al
H8 H1 H7 = 10]

28. H8 H1 29. H7 G2 30. A5 A7 Logistello wins by 10 discs: 37-27.

3.6 Poker

There are many popular poker variants. Texas Hold’em is generally acknowl-
edged to be the most strategically complex variant of poker that is widely played.
It is the premier event at the annual world series of poker.

Until recently, poker has been largely ignored by the computing academic
community. However, poker has a number of attributes that make it an in-
teresting domain for mainstream artificial-intelligence research. These include
imperfect knowledge (the opponent’s hands are hidden), multiple competing
agents (more than two players), risk management (betting strategies and their
consequences), agent modeling (identifying patterns and weaknesses in the op-
ponent’s strategy and exploiting them), deception (bluffing and varying your
style of play), and dealing with unreliable information (taking into account
your opponent’s deceptive plays). All of these are challenging dimensions to a
difficult problem.

There are two main approaches to poker research [90]. One approach is
to use simplified variants that are easier to analyze. However, one must be
careful that the simplification does not remove challenging components of the
problem. For example, Findler worked on and off for 20 years on a poker-playing
program for 5-card draw poker [91]. His approach was to model human cognitive
processes and build a program that could learn, ignoring many of the interesting
complexities of the game.

The other approach is to pick a real variant, and investigate it using math-
ematical analysis, simulation, and/or ad-hoc expert experience. Expert players
with a penchant for mathematics are usually involved in this approach. None
of this work has led to the development of strong poker-playing programs.

There is one event in the meager history of computer poker that stands out.
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In 1984 Mike Caro, a professional poker player, wrote a program that he called
Orac (Caro spelled backwards). It played one-on-one, no-limit Texas Hold’em.
Few technical details are known about Orac other than it was programmed on
an Apple II computer in Pascal. However, Caro arranged a few exhibitions of
the program against strong players [92]:

It lost the TV match to casino owner Bob Stupak, but arguably
played the superior game. The machine froze on one game of the
two-out-of-three set when it had moved all-in and been called with
its three of a kind against Stupak’s top two pair. Under the rules,
the hand had to be replayed. In the [world series of poker] matches,
it won one (from twice world champion Doyle Brunson — or at least
it had a two-to-one chip lead after an hour and a quarter when the
match was cancelled for a press conference) and lost two (one each
to Brunson and then-reigning world champion Tom McEvoy), but

again was fairly unlucky. In private, preparatory exhibition
matches against top players, it won many more times than it lost.
It had even beaten me most of the time.

Unfortunately, Orac was never properly documented and the results never re-
produced. It is highly unlikely that Orac was as good as this small sample
suggests. No scientific analysis was done to see whether the results were due
to skill or luck (as was done, for example, in the BKG9.8 Villa match; see Sec-
tion 3.1). As further evidence, none of the commercial efforts can claim to be
anything but intermediate-level players.

In the 1990s, the creation of an Internet Relay Chat poker server gave the
opportunity for humans (and computers) to play interactive games over the
Internet. A number of hobbyists developed programs to play on IRC. Foremost
among them is R00lbot, developed by Greg Wohletz. The program’s strength
comes from using expert knowledge at the beginning of the game, and doing
simulations for subsequent betting decisions.

The University of Alberta program Loki, authored by Darse Billings, Denis
Papp, Lourdes Pena, Jonathan Schaeffer and Duane Szafron, is the first serious
academic effort to build a strong poker-playing program. Loki plays on the IRC
poker server and, like R00Ibot, is a consistent big winner. Unfortunately, since
these games are played with fictitious money, it is hard to extrapolate these
results to casino poker.

At best, Loki and ROO0Ibot are strong intermediate-level poker players. A
considerable gap remains to be overcome before computers will be as good as
the best human players.

3.6.1 Lok:

Most readers will be familiar with one or more variants of poker. To avoid
confusion, the following gives a brief summary of Texas Hold’em. A hand begins
with the “pre-flop”, where each player is dealt two cards face down (the “hole”
cards), followed by the first round of betting. Three community cards are then
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dealt face up on the table, called the “flop”, and a second round of betting
occurs. On the “turn”, a fourth community card is dealt face up and another
round of betting ensues. Finally, on the “river”, a fifth community card is dealt
face up and there is a final round of betting. All players still in the game reveal
their two hole cards for the showdown. The best five-card poker hand formed
from the two hole cards and the five community cards wins the pot. If a tie
occurs, the pot is split. Texas Hold’em is typically played with 8 to 10 players.

Loki is named after the Norse God of mischief [93].}* Figure 14 shows the
program’s architecture and how the major components interact [94]. In the
diagram, rectangles are major components, rounded rectangles are major data
structures, and ovals are actions. The data follows the arrows between compo-
nents. An annotated arrow indicates how many times data moves between the
components for each of the program’s betting actions.

The architecture revolves around generating and using probability triples
[50]. A probability triple is an ordered set of values, PT = [f,c,r], such that f
4+ ¢ + r = 1.0, representing the probability distribution that the next betting
action in a given context should be a fold, call, or raise, respectively. The Triple
Generator contains the poker knowledge, and is analogous to an evaluation
function in two-player games. The Triple Generator calls the Hand Evaluator
to evaluate any two-card hand in the current context. It uses the resulting hand
value, the current game state, and expert-defined betting rules to compute the
triple. To evaluate a hand, the Hand Evaluator enumerates over all possible
opponent hands and counts how many of them would win, lose, or tie the given
hand.

Each time it is Lok#’s turn to bet, the Action Selector uses a single probability
triple to decide what action to take. For example, if the triple [0.0,0.8,0.2] were
generated, then the Action Selector would never fold, call 80% of the time and
raise 20% of the time. A random number is generated to select one of these
actions so that the program varies its play, even in identical situations.

After the flop, the probability for each possible opponent hand is different.
For example, the probability that Ace-Ace hole cards are held is much higher
than the cards 7-2, since most players will fold 7-2 before the flop. There is
a Weight Table for each opponent. Each Weight Table contains a value for
each possible two-card hand that the opponent could hold (47 choose 2 = 1,081
possibilities). The value is the probability that the hand would be played exactly
as that opponent has played so far. After an opponent action, the Opponent
Modeler updates the Weight Table for that opponent in a process called re-
weighting. The value for each hand is increased or decreased to be consistent
with the opponent’s action. The Hand Evaluator uses the Weight Table in
assessing the strength of each possible hand, and these values are in turn used
to update the Weight Table after each opponent action.

For example, suppose the weight for Ace Ace is 0.7. That is, if these cards
have been dealt to an opponent, there is a 70% chance that they would have
played it in exactly the manner observed so far. What happens if the opponent

14This section is largely based on previously-published descriptions of Loki [50].
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Figure 14: Loki's architecture.

now calls? Loki calculates the probability triple for these cards in the current
context (as it does for all possible two-card holdings). Assume that the resulting
triple is [0.0, 0.2, 0.8]. The updated weight for this case would be 0.7x0.2 = 0.14.
The relative likelihood of the opponent holding Ace-Ace has decreased to 14%
because they did not raise. The call value of 0.2 reflects the possibility that this
particular opponent might deliberately try to mislead us by calling instead of
raising. Using a probability distribution allows us to account for uncertainty in
our beliefs.

The Triple Generator provides good betting decisions. However, better re-
sults can be achieved by augmenting the evaluation with simulation. Loki can
play out many likely scenarios to determine how much money each decision will
win or lose. Every time it faces a decision, Loki invokes the Simulator to get
an estimate of the expected value (EV) of each betting action (see the dashed
box in Figure 14 with the Simulator replacing the Action Selector). A simu-
lation consists of playing out the hand a specified number of times, from the
current, state of the game through to the end. Folding is considered to have
a zero EV, because there is no future profit or loss. Each trial is played out
twice  once to consider the consequences of a check/call and once to consider
a bet/raise as Lok#’s first action. In each trial, cards are dealt to each opponent
(based on the probabilities maintained in the Weight Table), the resulting game
is simulated to the end, and the amount of money won or lost is determined.
Probability triples are used to approximate the actions of the opponents and
Loki’s subsequent actions based on their two cards assigned for that trial. The
average amount won or lost over all of the trials is taken as the EV of each
action. In the current implementation, the action with the greatest expectation
is selected, folding if both expectations are negative. To increase the program’s
unpredictability, the selection of betting actions whose EVs are close in value
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can be randomized.

It should be obvious that the simulation approach must be better than the
simple evaluation approach, since simulation essentially uses a selective search to
augment and refine a static evaluation function. Barring a serious misconception
(or bad luck on a limited sample size), playing out relevant scenarios will improve
the default values obtained by heuristics, resulting in a more accurate estimate.
For example, a simulation contains implicit knowledge such as:

1. hand strength (fraction of trials where Lok#’s hand is better than the one
assigned to the opponent)

3

2. hand potential (fraction of trials where Loki’s hand improves to the best,
or is overtaken), and

3. subtle implications not addressed in the simplistic betting strategy (e.g.
“implied odds”, extra bets won after a successful draw).

It also allows complex strategies to be uncovered without providing additional
expert knowledge. For example, simulations can result in the emergence of
advanced betting tactics like a check-raise, even if the basic strategy without
simulation is incapable of this play.

In strategic games like chess, the performance loss by ignoring opponent
modeling is small, and hence it is usually ignored. In contrast, not only does
opponent modeling have tremendous value in poker, it can be the distinguishing
feature between players at different skill levels. If a set of players all have
a comparable knowledge of poker fundamentals, the ability to alter decisions
based on an accurate model of the opponent may have a greater impact on
success than any other strategic principle.

The Weight Table is the first step toward opponent modeling since the
weights for opponent cards are changed based on the dynamics of the games.
The simplest approach to determining these weights is to treat all opponents
the same, calculating a single set of weights to reflect reasonable behavior, and
use them for all opponents. An initial set of weights was determined by rank-
ing the starting hands (as determined by off-line simulations) and assigning a
probability commensurate with the average return on investment of each hand.
These weights closely approximate the ranking of hands by strong players. In
Loki, the Opponent Modeler uses probability triples to update the Weight Table
after each opponent action (re-weighting). To accomplish this, the Triple Gen-
erator is called for each possible two-card hand. It then multiplies each weight
in the Weight Table by the entry in the probability triple that corresponds to
the opponent’s action.

The above scheme is called Generic Opponent Modeling (GOM) [95]. Each
hand is viewed in isolation and all opponents are treated as the same player.
Each player’s Weight Table is initially identical, and gets modified based on
their betting action. Although rather simplistic, this model is quite powerful in
that it does a good job of skewing the hand evaluations to take into account the
most likely opponent holdings.
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Obviously, treating all opponents the same is clearly wrong. Each player has
a different style. Specific Opponent Modeling (SOM) customizes the probability
triple function to represent the playing style of each opponent. For a given game,
the re-weighting factor applied to the entries of the Weight table is adjusted by
betting frequency statistics gathered on that opponent from previous hands.
This results in a shift of the assumed call and raise thresholds for each player.
During each round of a game, the history of previous actions by the opponent
is used to influence the probability triple generated for that opponent.

In competitive poker, opponent modeling is much more complex than por-
trayed here. For example, players can act to mislead their opponents into con-
structing an erroneous model. Early in a session a strong poker player may try
to create the impression of being very conservative, only to exploit that image
later in that session when the opponents are using an incorrect opponent model.
A strong player has to have a model of each opponent that can quickly adapt
to changing playing styles.

An important part of strong poker is bluffing. Although mastering this is
difficult for humans, it is not an obstacle for a poker program. The computer
can extend the range of hands it will play to include a few that have small
negative expectations.

3.6.2 The Best of Computer Poker

The hand shown in Figure 15 was played on IRC against six opponents. The
following abbreviations are used to show the betting in each round: “sb”: small
blind, “bb”: big blind”, “c¢”: call, “k”: check, “b”: bet, “f”: fold, and “r”:
raise. Instead of an ante, Texas Hold’em uses blinds to initially seed the pot.
The sample game is $10/$20 Hold’em. Here the first player puts in $5 (the
small blind), while the second player puts in $10 (the big blind). The first two
betting rounds use $10 bets; the last two use $20 bets. There are a maximum
of three raises per betting round.

The following annotations in italics are by Darse Billings, co-author of Loki
and a former professional poker player.

Loki makes a “loose call” with a fairly weak hand before the flop, because the
conditions are otherwise ideal (last position, no raises, and a suited hand with
5 or 6 opponents). In slightly less favorable circumstances, Loki would fold this
hand before the flop.

The flop yields a good flush draw with an overcard to the board. After the bet
and two calls, a raise is a viable option, since it would have positive expectation
against three opponents (> 25% of winning), and might also earn a “free card”
(no bet on the turn). Loki opts for the quieter alternative, which gains an
additional caller in the small blind (which is favorable in this situation). A
higher spinner value for the mized strateqy would have resulted in a raise.

The turn card adds a straight possibility to the draw, and after everyone
shows weakness by checking, Loki decides to “semi-bluff”. Unfortunately, the
big blind was playing possum and check-raises with the best possible hand (a
straight). In hindsight, this was a very risky play on his part — if Loki had
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Events oppl opp2 opp3 opp4 oppb opp6 Loki

Hole cards 4 Q¢
Preflop betting sb bb c c o o o

Flop cards 5 J# 7
Flop betting k b £ c £ c c

Turn card 3é&
Turn betting k k k

River card J

River betting k b f r
f r c
Showdown opp2 shows 64 4M

Loki shows Q< 4<$

Loki wins $400

Figure 15: Loki in Action

checked, he would have failed to earn anything from the other players with his
very strong hand, and would have given away a free chance to make a better
hand. After Loki’s bet, he is happily able to build a large pot.

Loki is lucky enough to make the flush, and raises on the river. After the
re-raise, the opponent’s betting pattern suggests a full house (at least as likely
as a straight) and Loki calls.

Loki’s flush wins against the opponent’s straight. Loki wins $400. Were this
only real money...

3.7 Scrabble

The first documented Scrabble program appears to have been written by Stuart
Shapiro and Howard Smith and was published in 1977 [96]. In the 1980s a num-
ber of Scrabble programming efforts emerged and by the end of the decade, it
was apparent that these programs were strong players. With access to the entire
Scrabble dictionary (now over 100,000 words), the programs held an important
advantage in any games against humans.

At the First Computer Olympiad in 1989 the Scrabble winner was Crab
written by Andrew Appel, Guy Jacobson, and Graeme Thomas [97]. Second
was Tyler written by Alan Frank. Subsequent Olympiads saw the emergence of
TSP (Jim Homan), which edged out Tyler in the second and third Olympiads.
TSP later became the commercial program Crosswise. All of these programs
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were very good, and quite possibly strong enough to be a serious test for the
best players in the world.

Part of their success was due to the fast, compact Scrabble move generator
developed by Andrew Appel [98]. Steven Gordon subsequently developed a
move generator that was twice as fast, but used five times as much storage [99].

Brian Sheppard began working on a Scrabble program in 1983, and started
developing Maven in 1986. In a tournament in December 1986, Maven scored
eight wins and two losses over an elite field, finishing in second place on tie-
break. Sheppard describes the games against humans at this tournament [51]:

Maven reels off JOUNCES, JAUNTIER, and OVERTOIL on succes-
sive plays, each for exactly 86 points, to come from behind against
future national champion Bob Felt. Maven crushed humans repeat-
edly in offhand games. The human race begins to contemplate the
potential of computers.

In the following years, Maven continued to demonstrate its dominating play
against human opposition. Unfortunately, since it did not compete in the Com-
puter Olympiads, it was difficult to know how strong it was compared to other
programs at the time.

In the 1990s, Sheppard developed a pre-endgame analyzer (for when there
were a few tiles left in the bag) and improved the program’s ability to simulate
likely sequences of moves. These represented important advances in the pro-
gram’s ability. It was not until 1997, however, that the opportunity arose to
properly assess the program’s abilities against world-class players. In 1997, a
two-game match between Maven and Adam Logan, one of the best players in
North America, ended in two wins for the human. Unfortunately, the match
was not long enough to get a sense of who was really the best player.

In March 1998, the New York Times sponsored an exhibition match between
Maven and a team consisting of world champion Joel Sherman and the runner-
up Matt Graham. It is not clear whether the collaboration helped or hindered
the human side, but the computer won convincingly by a score of six wins to
three. The result was not an anomaly. In July of that year, Maven played
another exhibition match against Adam Logan, scoring nine wins to five.

Shortly after the Logan match, Brian Sheppard wrote:

The evidence right now is that Maven is far stronger than human
players. ... I have outright claimed in communication with the cream
of humanity that Maven should be moved from the “championship
caliber” class to the “abandon hope” class, and challenged anyone
who disagrees with me to come out and play. No takers so far, but
maybe one brave human will yet venture forth.

No one has.

3.7.1 Maven

The following description of Maven is based on information provided by Maven’s
author, Brian Sheppard [100].
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Maven divides the game into three phases: early game, pre-endgame, and
endgame. The early game starts at move one and continues until there are
nine or fewer tiles left in the bag (i.e., with the opponent’s seven tiles, this
implies that there are 16 or fewer unknown tiles). From there, the pre-endgame
continues until there are no tiles in the bag. In the endgame, all the tiles in the
opponent’s rack are known.

Maven uses the following techniques in regular play, before the pre-endgame
is reached. The program uses the simulation framework described in Section 2.3,
with some important Scrabble-specific refinements. Whereas for other games,
such as bridge and poker, the number of candidate moves is small, for Scrabble
there can be many moves to consider. On average there are over 700 legal moves
per position, and the presence of two blanks in the rack can increase this figure
to over 5,000! Thus, Maven needs to pare the list of possible moves (using the
move generator algorithm described in [98]) down to a small list of likely moves.
Omitting an important move from this list will have serious consequences; it
will never be played. Consequently, Maven employs multiple move generators,
each identifying moves that have important features that merit consideration.
These move generators are:

e Score and Rack. This generator finds moves that result in a high score and
a good rack (tiles remaining in your possession). Strong players evaluate
their rack based on the likeliness of the letters being used to aid upcoming
words. For example, playing a word that leaves a rack of QXI would
be less preferable than leaving QUI; the latter offers more potential for
playing the Q effectively.

e Bingo Blocking. Playing all seven letters in a single turn leads to a bonus
of 50 points (often called a bingo). This move generator finds moves that
reduce the chances of the opponent scoring a bingo on their next turn.
Sometimes it is worth sacrificing points to reduce the opponent’s chances
of scoring big.

e Immediate Scoring. This generates the moves with the maximum number
of points (this becomes more important as the end of the game nears).

Each routine provides up to 10 candidate moves. Merging these lists results in
typically 20-30 unique candidate moves to consider. In the early game only the
Score and Rack generator is used. In the pre-endgame there are four: the three
listed above plus a pre-endgame evaluator that “took years to tune to the point
where it didn’t blunder nearly always” [101]. In the endgame, all possible moves
are considered.

The move generation routines are highly effective at filtering the hundreds
or thousands of possible moves [101]:

It is important to note that simply selecting the one move preferred
by the Score and Rack evaluator plays championship caliber Scrab-
ble. My practice of combining 10 moves from multiple generators is
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evidence of developing paranoia on my part. “Massive overkill” is
the centerpiece of Maven’s design philosophy.

Sheppard points out that his program is missing a fishing move generator.
Sometimes it is better to pass a move or play a small word (one or two letters),
so that you can exchange some of your tiles. For example, with the opening
rack of AEINQST, you can play QAT for 24 points. Instead, you can fish by not
playing a word and exchanging the Q. Of the 93 remaining tiles, 90 will make a
bingo.

For the simulations, Maven does a two-ply search to evaluate each candidate
move (in effect, this is a three-ply search). It could use a four-ply search for the
evaluation, but this results in fewer simulation data points. Sheppard discusses
the trade-offs:

If you compare a four-ply horizon and a two-ply horizon, you find
that each iteration of the four-ply horizon takes twice as long, and
the variance is twice as large, so you need 2 x v/2 times as much
time to simulate to equal levels of statistical accuracy. Since Scrab-
ble has only limited long-term issues, it makes sense to do shallow
lookaheads.

The limited long-term issues mentioned are a consequence of the rapid turnover
in the rack. Maven averages playing 4.5 tiles per turn. After a two-ply looka-
head, there are few (if any) tiles left from the original rack. Consequently,
positions being evaluated at the leaves of a two-ply search are very different
than the root node.

Typically, 1,000 two-ply simulations are done when making a move decision.
The move leading to the highest average point differential is selected. After a
few simulations, it may become statistically obvious that some of the candidate
moves have little or no chance of being selected because their expected values
are too low. If a move’s score is at least two standard deviations below that of
the best move, and at least 17 simulation iterations have been performed then
the low-scoring move is eliminated from consideration. The assignment of tiles
to opponent hands is done in a way that guarantees a uniform distribution. A
minimum of 14 iterations are needed to place all tiles in an opponent’s rack at
least once. The 17 iterations comes from 14 being rounded up to a power of two
(16) and then an inadvertent off-by-one error giving 17.

Other pruning schemes are used to refine the move list. First, nearly identical
plays usually lead to almost identical scores. For example, an opening move of
“PLAY” versus “PALY” makes no difference in the simulation results. After
101 simulations, the lower rated of almost-identical moves is pruned. Secondly,
if it becomes impossible for a low-scoring move to catch up to the best-scoring
move given the number of trials remaining, then that move is pruned without
any risk.

In the pre-endgame, the program’s emphasis changes from scoring points
to scoring wins. With fewer moves to consider, the simulations are extended
to reach the end of the game to determine which side wins. The simulations
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contain additional pruning. If a candidate move is generating significantly fewer
points than the best move and its frequency of wins is less, then that move is
eliminated.

Using the simulations to count the frequency of wins and points can cause
a dilemma. It may be ambiguous as to what the best move to play is [101]:

Sometimes one move is the winner both on points and wins, so the
choice is clear. But sometimes it is not clear, because wins and
points do not agree. In that case Maven “mixes” wins and points
on a linear basis. There are two important practical reason for this.
First, the simulation might not be representative of the actual play
of the game, either because the opponent is incapable of playing
as well as Maven (the good case), or because Maven’s simulations
are mishandling the situation (the bad case). In either of these
cases extra points may come in handy. Second, in tournaments it
is important to have a high point differential, since that is used to
break ties. My calculation shows that a 1% higher chance of winning
a game is worth roughly a three to four point sacrifice of point spread.
We don’t want to go overboard on defensive gestures at the end of
a game. It is better to lose occasionally to keep a high differential.

A special case occurs when there are only eight unknown tiles. In this case,
the opponent can have only one of eight possible tile holdings, so Maven searches
each case to the end of the game to determine the final result. Sheppard has
recently extended his program to handle up to 12 unknown tiles (924 combina-
tions).

When there are no tiles left to be drawn, Scrabble reverts to a game of
perfect information (all missing tiles are in the opponent’s rack). Alpha-beta
would take too long to exhaustively search this, since the branching factor is
large, and the program (move generation) is slow. Instead, Maven uses the
B* algorithm (see Section 2.1.6). The success of B* hinges on assigning good
upper and lower bounds to the moves. Considerable heuristic code is devoted
to determining these bounds. Although Maven is capable of making an error in
the search (e.g. poor bounds, or limits on space), in practice this is rarely seen.
This may be the only example of a real system where B* is to be preferred to
alpha-beta.

The Scrabble community has extensively analysed Maven’s play and found
a few minor errors in the program’s play. Postmortem analysis of the Logan
match showed that Maven made mistakes that averaged nine points per game.
Logan’s average was 40 points per game. Maven missed seven fishing moves
(69 points lost), some programming errors (48 points lost), and several smaller
mistakes (6 points lost). The programming errors have have been corrected.
If a future version of Maven included fishing, the points per game error rate
would drop to less than one per game. Maven would be playing nearly perfect
Scrabble.

Of the points lost due to programming errors, Brian Sheppard writes:
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It just drives me crazy that I can think up inventive ways to get com-
puters to act intelligently, but I am not smart enough to implement
them correctly.

And that is the soliloquy of every games programmer.

3.7.2 The Best of Computer Scrabble

In July 1998, at the annual conference of the American Association for Artificial
Intelligence, Maven played an exhibition match against Adam Logan, one of the
top Scrabble players in North America. Logan won three of the first four games
of the match, but Maven won six of the next seven games. Going into the critical
12th game, Maven led by a score of seven wins to four. The following annotations
are by Brian Sheppard and originally appeared in the Scrabble Players News.'®
The columns of a Scrabble board are specified from left-to-right by the letters a
to 0. Rows are specified from top-to-bottom using the numbers 1 to 15. Moves
are specified by giving the square of the first letter of the word. If the coordinate
begins with a number, then the word is placed horizontally. If the coordinate
begins with a letter, then the word is placed vertically. The blank is referred to
by “?7.

Maven  Adam Logan

Maven(ACNTVYZ) plays CAVY at 8f, 24 pts, Maven=24 Logan=0. The
alternative is ZANY for 32, but the CVT rack is poor. Much better is 24 points
with an NTZ rack. As to placement, a better choice than Maven’s is probably
CAVY 8G. This version of Maven was not ideal at first-turn placement, for
inexcusable internal reasons. Fortunately this is not a significant skill factor
compared to scoring and keeping good tiles. Maven is almost ideal at those skill
factors.

Logan(EGLNORY) plays YEARLONG at g6, 66 pts, Maven=24 Logan=66.
Adam finds the only bingo.

Maven(ADNNOTZ) plays DOZY at 6d, 37 pts, Maven=61 Logan=66. It is
DOZY(6d,37,ANNT) versus AZLON(10e,34,NTD) or ZOON(11e,26,ADNT).
DOZY’s extra points and retention of a vowel win despite duplicate Ns.

Logan(ADEFOTYV) plays OFT at hl13, 21 pts, Maven=61 Logan=8T7.
Adam’s choice is best. He also has VOTED(5A,27,AF), OVA(H13,21,DEFT),
FOVEAL(10b,22,DT), and ADVENT(12¢,22,FO). Adam didn’t think long, and
since the choices are so close it doesn’t pay to think long!

Maven(AENNNOT) plays NEON at 5b, 15 pts, Maven=76 Logan=87.
NEON(5b,15,ANT) edges ANON(5b,15,ENT). I am not sure why, but clearly
ENT and ANT are both good rack leaves, and there must be some benefit to
avoiding a FANON hook in the “a” column. It may also be that ANON’s vowel-
consonant-vowel-consonant pattern is easier to overlap than NEON.

15Reproduced with permission. Minor editing changes have been made to conform with the
style of this chapter.
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Logan(ACDEEIV) plays DEVIANCE at 12b, 96 pts, Maven=76 Logan=183.
Adam finds the only bingo.

Maven(AHINRTU) plays HURT at 4a, 34 pts, Maven=110 Logan=183.
HUNT would usually surpass HURT, because R is better than N, but here there
are three N’s already on the board versus one R. It is important to note that
Maven did not choose HUNT for the reason I gave; Maven chose HUNT because
in 1,000 iterations of simulation it found that HUNT scored more points than
HURT. The reason I am giving (that three N’s have been played versus one R)
is my interpretation of that same body of data.

Logan(DDEEMMN) plays EMENDED at c7, 26 pts, Maven=110 Logan=209.
EMENDED is a good play, following sound principles: score points, undouble
letters. Simulations give a two-point edge to MEM(13a,25,EDDN), however.
Possibly the 8a-8d spot weighs against EMENDED, plus keeping an F is a valu-
able benefit for MEM. These advantages outweigh the extra point and duplicated
“D7s.

Maven(ABEINNP) plays ITAMB at 8a, 33 pts, Maven=143 Logan=2009.
TAMB is really the only play, doubled N’s notwithstanding.

Logan(AILMTTU) plays MATH at al, 27 pts, Maven=143 Logan=236.
MATH(a1,27,ILTU) is best, with UTA(3a,20,ILMT) second. The advantage of
MATH over UTA is its seven extra points, but the disadvantage is keeping a U.
These almost wash, with an edge to MATH.

Maven(EFGNNPS) plays FEIGN at €10, 18 pts, Maven=161 Logan=236.
FEIGN is the only good move. FENS(j9,24,GNP) is higher scoring, but FEIGN
keeps better tiles; NPS easily makes up the scoring deficit plus a lot more on
top.

Logan(AILORTU) plays TUTORIAL at 15h, 77 pts, Maven=161 Logan=313.
Adam finds the only bingo. (Actually, TUTORIAL also plays at 15f, but scores
only 59 there.)

Maven(?ABNOPS) plays BOS at j10, 26 pts, Maven=187 Logan=313. See
Figure 16. Maven made a great draw from the bag, and then made one of
the most difficult plays of the game. Maven has no bingos, and has to choose
how to make one. Playing off the B and P is indicated, so plays like BAP
or BOP (7i,20) come to mind. But Maven finds two stronger, and surprising,
alternatives: BOS(j10,26,?ANP) and BOPS(j9,25,2AN). These plays score a
few extra points as compensation for playing the S, and they open the “k” column
for bingo-making. I would have thought that BOPS would win out, but BOS is
better. BOS does show a higher point differential, but that is not why it is better.
It is better because the chance of getting a big bingo is higher due to the creation
of a spot where a bingo can hit two double word squares. I believe that the great
magjority of human masters would have rejected BOS without a second thought,
probably choosing BOP. BOS is a fantastic play, and yet, there are two plays
still to come in this game that are more difficult still.

Logan(ITLPRSU) plays PILIS at 15a, 34 pts, Maven=187 Logan=347. PILIS,
PULIS, PILUS, and PURIS are all good. Adam’s choice is best because there
are only two U’s left, and Adam doesn’t want to risk getting a bad Q. When you
lead the game you have to guard against extreme outcomes.
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Figure 16: Maven plays BOS (j10) scoring 26 points.

Maven(?AKNPRS) plays SPANKER at k5, 105 pts, Maven=292 Logan=347.
This is the only bingo, and a big boost to Maven’s chances. I saw SPANKER
but I wasn’t sure it was legal, so I was sitting on the edge of my seat. Being
down 160 points is depressing. Worse than depressing: it is nearly impossible to
come back from that far behind. The national championship tournament gives
a prize to the greatest comeback, and in this 31-round, 400-player event there is
often only one game that features such a comeback.

Logan(EEEORUS) plays OE at b1, 12 pts, Maven=292 Logan=359. Adam
plays the best move again. This play scores well, as his highest-scoring play
is just 18 points (ERE L6). OFE dumps vowels while keeping all his conso-
nants (an edge over ERE). It also keeps the U as “Q-insurance,” an edge over
MOUE(1a,7,EERS). And it blocks a bingo line. Not bad value, and a good
example of how to make something positive happen on every rack.

Maven(?HJITTWW) plays JAW at 7j, 13 pts, Maven=305 Logan=359.
Maven’s draw is bad overall, but at least there is hope if Maven can clear
drek. Any play that dumps two of the big tiles is worth considering, with JAW,
WORTH(11i,16,2JW), and WAW(b7,19,2JHTT) as leading contenders. JAW
wins because the WH and TH are bearable combinations, and the TT isn’t too
bad either. Many players would exchange this rack, but Maven didn’t consider
doing so. I don’t know how exchanging (keeping ?HT, presumably) would fare,
but I suspect it wouldn’t do well; there are few good tiles remaining, and drawing
a () is a real risk.

Logan(AEEGRSU) plays GREASE at m3, 31 pts, Maven=305 Logan=390.
Simulations show AGER(L9,24,ESU) as three points superior to GREASE, but
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I suspect that GREASE does at least as good a job of winning the game, since
it takes away _ _ _ S bingos off of JAW. It also pays to score extra points, which
provide a cushion if Maven bingos. And it pays to turn over tiles, which gives
Maven fewer turns to come back.

Maven(?HRTTWX) plays AX at 6m, 25 pts, Maven=330 Logan=390. Maven’s
move is brilliant. Who would pick AX over GOX(13G,36)? Would you sacrifice
11 points, while at the same time creating a huge hook on the “0” column for an
AX _ _ _ E play? And do so when there are two E’s unseen among only 13 tiles
and you don’t have an E and you are only turning over one tile to draw one? It
seems crazy, but here’s the point: among the unseen tiles (AAEEIIILOQUU)
are only two consonants, and one of them is the @, which severely restricts the
moves that can be made on the “o” column. If Adam has EQUAL then Maven is
dead, of course, but otherwise it is hard to get a decent score on the “o” column.
In effect, Maven is getting a free shot at a big “0” column play. AX is at least
10 points better than any other move, and gives Maven about a 20% chance of
winning the game. The best alternative is HAW(b7,19). GOX is well back.

Logan(EIIILQU) plays LEI at 05, 13 pts, Maven=330 Logan=403. Adam
sensibly blocks, and this is the best play. The unseen tiles from Adam’s perspec-
tive are PAAEHIORTTUW, so Adam’s vowelitis stands a good chance of being
cured by the draw.

Maven(?AHRTTW) plays WE at 9b, 10 pts, Maven=340 Logan=390. Again
a problem move, and again Maven finds the best play. In fact, it is the only play
that offers real winning chances. Maven calculates that it will win if it droaws a
U, with the unseen tiles AEIIIOQUU. There may also be occasional wins when
Adam is stuck with the (). This move requires fantastic depth of calculation.
What will Maven do if it draws a U?

Logan(AIIIOQU) plays QUAT at j2, 35 pts, Maven=340 Logan=438. Adam’s
natural play wins unless there is an F in the bag. AQUA(N12,26), QUAIL(011,15),
QUAI(M12,26), and QUA(N183,24) also win unless there is an E in the bag, but
with much, much lower point differential than QUAI because these plays do not
block bingos through the G in GREASE. There is no better play. If an E is in
the bag then Adam is lost.

Maven(?AHRTTU) plays MOUTHPART at 1a, 92+8 pts, Maven=440 Lo-
gan=438. See Figure 17. Maven scores 92 points for MOUTHPART, and eight
points for the tiles remaining in Logan’s rack. Maven was fishing for this bingo
when it played WE last turn. With this play Maven steals the game on the last
move. Adam, of course, was stunned, as it seemed that there were no places
for bingos left on this board. If I hadn’t felt so bad for Adam, who played mag-
nificently, I would have jumped and cheered. This game put Maven up by eight
games to four, so winning the match was no longer in doubt.

How often do you score 438 points in a game of Scrabble... and lose?

3.8 Other Games

Conspicuously absent from this chapter is the Oriental game of Go. It has been
resistant to the techniques that have been successfully applied to the games
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Figure 17: Maven — Logan, final position

discussed in this chapter. For example, because of the 19 x 19 board and the
resulting large branching factor, alpha-beta search alone has no hope of produc-
ing strong play. Instead, the programs perform small, local searches that use
extensive application-dependent knowledge. David Fotland, the author of the
Many Faces of Go program, identifies over 50 major components needed by a
strong Go-playing program. The components are substantially different from
each other, few are easy to implement, and all are critical to achieving strong
play. In effect, you have a linked chain, where the weakest link determines the
overall strength.

Martin Miiller (author of Ezplorer) gives a stark assessment of the reality of
the current situation in developing Go programs [102]:

Given the complexity of the task, the supporting infrastructure for
writing Go programs should offer more than is offered for other
games such as chess. However, the available material (publications
and source code) is far inferior. The playing level of publicly avail-
able source code ..., though improved recently, lags behind that of
the state-of-the-art programs. Quality publications are scarce and
hard to track down. Few of the top programmers have an interest
in publishing their methods. Whereas articles on computer chess or
general game-tree search methods regularly appear in mainstream
AT journals, technical publications on computer Go remain confined
to hard to find proceedings of specialized conferences. The most in-
teresting developments can be learned only by direct communication
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with the programmers and never get published.

Although progress has been steady, it will take many decades of research and
development before world-championship-caliber Go programs exist.

At the other end of the spectrum to Go are solved games. For some games,
computers have been able to determine the result of perfect play and a sequence
of moves to achieve this play.'® In these games the computer can play perfectly,
in the sense that the program will never make a move that fails to achieve the
best-possible result. Solved games include Nine Men’s Morris [43], Connect-4
[103], Qubic [104], and Go Moku [104].

This chapter has not addressed one-player games (or puzzles). Single-agent
search has been successfully used to optimally solve the 15-puzzle [14] and Ru-
bik’s Cube [105], and progress is being made on solving Sokoban problems [106].
Recently, major advances have occurred in building programs that can solve
crossword puzzles [107].

The last few years have seen research on team games become popular. The
annual RoboCup competition encourages hardware builders and software de-
signers to test their skills on the soccer field (www.robocup.com).

Finally, other areas of games-related interest include commercial computer
games, such as sports and role-playing games. The artificial-intelligence work
on these games is still in its infancy.

4 Conclusions

Samuel was writing as a pioneer, one of the first to realize that computer games
could be a rich domain for exploring the boundaries of computer science and ar-
tificial intelligence. Since his 1960 paper, software and hardware advances have
led to significant success and milestones in the history of computing. With it has
come a change in people’s attitudes. Whereas in Samuel’s time, understanding
how to build strong game-playing program was at the forefront of artificial-
intelligence research, today, 40 years later, it has been demoted to lesser status.
In part this is an acknowledgment of the success achieved in this field no
other area of artificial intelligence research can claim such an impressive track
record of producing high-quality working systems. But it is also a reflection
on the nature of artificial intelligence itself. It seems that as the solution to
problems become understood, the techniques become less “Alish”.

The work on computer games has resulted in advances in numerous areas
of computing. One could argue that the series of computer-chess tournaments
that began in 1970 and continue to this day represents the longest running
experiment in computing science. The games research has demonstrated the
benefits of brute-force search, something that has become a widely accepted
tool for a number of search-based applications. Many of the ideas that saw the

16This is in contrast to the game of Hex where it is easy to prove the game to be a first
player win, but computers are not yet able to demonstrate that win.
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light of day in game-tree search have been applied to other algorithms. Build-
ing world-championship-caliber games programs has demonstrated the cost of
constructing high-performance artificial-intelligence systems. Games have been
used as experimental test beds for many areas of artificial intelligence. And so
on.

Samuel’s concluding remarks from his 1960 chapter are as relevant today as
they were when he wrote the paper [72]:

Just as it was impossible to begin the discussion of game-playing
machines without referring to the hoaxes of the past, it is equally
unthinkable to close the discussion without a prognosis. Program-
ming computers to play games is but one stage in the development
of an understanding of the methods which must be employed for
the machine simulation of intellectual behavior. As we progress in
this understanding it seems reasonable to assume that these newer
techniques will be applied to real-life situations with increasing fre-
quency, and the effort devoted to games ... will decrease. Perhaps
we have not yet reached this turning point, and we may still have
much to learn from the study of games.
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