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tIn the 40 years sin
e Arthur Samuel's 1960 Advan
es in Computers
hapter, enormous progress has been made in developing programs to playgames of skill at a level 
omparable to, and in some 
ases beyond, whatthe best humans 
an a
hieve. In Samuel's time, it would have seemedunlikely that only a s
ant 40 years would be needed to develop programsthat play world-
lass ba
kgammon, 
he
kers, 
hess, Othello, and S
rabble.These remarkable a
hievements are the result of a better understandingof the problems being solved, major algorithmi
 insights, and tremendousadvan
es in hardware te
hnology. Computer games resear
h is one of themajor su

ess stories of arti�
ial intelligen
e.This 
hapter 
an be viewed as a su

essor to Samuel's work. A reviewof the s
ienti�
 advan
es made in developing 
omputer games is given.These ideas are the ingredients required for a su

essful program. Casestudies for the games of ba
kgammon, bridge, 
he
kers, 
hess, Othello,poker, and S
rabble are presented. They are the re
ipes for buildinghigh-performan
e game-playing programs.1 Introdu
tionArthur Samuel is one of the pioneers of arti�
ial intelligen
e resear
h. Togetherwith Claude Shannon [1℄ and Alan Turing [2℄, he laid the foundation for buildinghigh-performan
e game-playing programs. Samuel is best known for developinghis 
he
kers program. Over his 
areer, he 
onsistently sold his work as resear
hin ma
hine learning. His papers des
ribing the program and its learning 
apa-bilities are 
lassi
s in the literature [3, 4℄. These papers are still frequently 
itedtoday, almost four de
ades sin
e the original resear
h was 
ompleted. There arefew 
omputing papers around today whose lifespan is 10 years, let alone 40.1



In the years sin
e Samuel's 1960 
hapter for the �rst volume of Advan
es inComputers, enormous progress has been made in 
onstru
ting high-performan
egame-playing programs. In Samuel's time, it would have seemed unlikely thatwithin a s
ant 40 years 
he
kers (8� 8 draughts), Othello1, and S
rabble2 pro-grams would exist that ex
eed the abilities of the best human players, whileba
kgammon and 
hess programs 
ould play at a level 
omparable to the hu-man world 
hampion. These remarkable a

omplishments are the result of abetter understanding of the problems being solved, major algorithmi
 insights,and tremendous advan
es in hardware te
hnology. The work on 
omputer gameshas been one of the most su

essful and visible results of arti�
ial intelligen
eresear
h. For some games, one 
ould argue that the Turing test has been passed[5℄.When talking about 
omputer games, it is important to draw the distin
tionbetween using games as a resear
h tool for exploring new ideas in 
omputing,versus using 
omputing to do resear
h into games. The former is the subje
t ofthis 
hapter; the latter is not. Nevertheless, it is important to re
ognize thatbuilding high-performan
e game-playing programs has also been of enormousbene�t to the respe
tive game-playing 
ommunities. The te
hnology has ex-panded human understanding of games, allowing us to explore more of the ri
htapestry and intelle
tual 
hallenges that games have to o�er. Computers o�erthe key to answering some of the puzzling, unknown questions that have tan-talized game a�
ionados. For example, 
omputers have shown that the 
hessendgame of king and two bishops versus king and knight is generally a win,
ontrary to expert opinion [6℄. In 
he
kers, the famous 100-year position tooka 
entury of human analysis to \prove" a win; the 
he
kers program Chinooktakes a few se
onds to prove the position is a
tually a draw (it is now 
alled the197-year position)[7℄.This 
hapter 
an be viewed as a su

essor to Samuel's 1960 
hapter, dis-
ussing the progress made in developing programs for the 
lassi
 board and
ard games over the last four de
ades. A review of the s
ienti�
 advan
es madein developing 
omputer games is presented (Se
tion 2). It 
on
entrates on sear
hand knowledge for two-person perfe
t-information games, and simulation-basedapproa
hes for games of imperfe
t or non-deterministi
 information. These ideasare the ingredients needed for a su

essful program. Se
tion 3 presents seven
ase studies to highlight progress in the games of 
he
kers, Othello, S
rabble(superior to man), ba
kgammon, 
hess (
omparable to the human world 
ham-pion), bridge, and poker (human suprema
y may be threatened). These aresu

essful re
ipes for building high-performan
e game-playing programs.Although this 
hapter dis
usses the s
ienti�
 advan
es, one should not un-derestimate the engineering required to build these programs. One need onlylook at the re
ent su

ess of the Deep Blue 
hess ma
hine to appre
iate thee�ort required. That proje
t spanned eight years, and in
luded several full-timepeople, extensive 
omputing resour
es, 
omputer 
hip design, and grandmaster1Othello is a registered trademark of Tsukuda Original, li
ensed by Anjar Co.2S
rabble is a registered trademark of the Milton Bradley Company, a division of Hasbro,In
. 2




onsultation. Some of the 
ase studies hint at the amount of work required tobuild these systems. In all 
ases, the su

esses reported in this 
hapter are theresult of 
onsistent progress over many years.2 Advan
esThe biggest advan
es in 
omputer game-playing over the last 40 years have
ome as a result of work done on the alpha-beta sear
h algorithm. Althoughthis algorithm is not suitable for some of the games dis
ussed in this 
hapter,it re
eived the most attention be
ause of the resear
h 
ommunity's preo

upa-tion with 
hess. With the Deep Blue vi
tory over world 
hess 
hampion GarryKasparov, interest in methods suitable for 
hess has waned and been repla
edby a
tivity in other games. One 
ould argue that the 
hess vi
tory removeda ball and sha
kle that was sti
ing 
reativity doing resear
h on game-playingprograms.Be
ause of the histori
al emphasis on sear
h, the material in this se
tion isheavily biased towards it. In the last de
ade, new te
hniques have moved to theforefront of games resear
h. Two in parti
ular are given spe
ial emphasis sin
ethey are likely to play a more prominent role in the near future:1. Monte Carlo simulation has been su

essfully applied to games with imper-fe
t or non-deterministi
 information. In these games it is too expensiveto sear
h all possible out
omes. Instead only a representative sample is
hosen to give a statisti
al pro�le of the out
ome. This te
hnique has beensu

essful in bridge, poker and S
rabble.2. Temporal-di�eren
e learning is the dire
t des
endent of Samuel's ma
hinelearning resear
h. Thus it is �tting that this method be in
luded in this
hapter. Here a database of games (possibly generated by 
omputer self-play) 
an be used to bootstrap a program to �nd a good 
ombinationof knowledge features. The algorithm has been su

essfully applied toba
kgammon, and has re
ently shown promise in 
hess.This se
tion gives a representative sample of some of the major results andresear
h thrusts over the past 40 years. Se
tion 2.1 dis
usses the advan
es insear
h te
hnology for two-player perfe
t information games. Advan
es in knowl-edge engineering have not kept pa
e, as dis
ussed in Se
tion 2.2. Se
tion 2.3dis
usses the emerging simulation framework for games of non-deterministi
 orimperfe
t information. The material is intended to give a 
avor of the progressmade in these areas, and it is not intended to be exhaustive.2.1 Advan
es in Sear
hThe minimax algorithm was at the heart of the 
he
kers program des
ribed inSamuel's 1960 
hapter. Minimax assumes that one player tries to maximizetheir result (often 
alled Max), while the other tries to minimize what Max3




an a
hieve (the Min player). The program builds a sear
h tree of alternatingmoves by Max and Min. A leaf node is assigned either the game-theoreti
 valueif known (win, loss, draw) or a heuristi
 estimate of the likelihood of winning(using a so-
alled evaluation fun
tion). These values are maximized (by Max)and minimized (by Min) from the leaves ba
k to the root of the sear
h. Withingiven resour
es (typi
ally time), it is usually not possible to sear
h deep enoughto rea
h leaf nodes for whi
h the game-theoreti
 result is known. The evaluationfun
tion uses appli
ation-dependent knowledge and heuristi
s to 
ome up withan estimate of the winning 
han
es for the side to move.Consider the example in Figure 1, where maximizing nodes are indi
atedby squares and minimizing nodes by ovals. The root, Max (node A), has to
hoose a move that leads to positions B, C, or D. It is Min to play at thesethree positions and, similarly, Min's 
hoi
e of move will lead to a position withMax to move. At the leaves of the tree are the heuristi
 values. These valuesare maximized at the Max nodes (the nodes left-to-right beginning with E),minimized at the Min nodes (B, C, and D), and maximized at the root (A).In this example, the minimax value of the tree is 5. The bold lines indi
ate thebest line of play: Max will play from A to C to maximize his s
ore, while Minwill play from C to H to minimize Max's s
ore. Max then 
hooses the bran
hleading to a s
ore of 5, the maximum of the possible moves. The best line ofplay is often 
alled the prin
ipal variation.
H

1

5

216

6

1

C

A

8

8

5

5

505

8 E

4

F

B

33 8

4

4 I

XXXX

275

X

L M77G

XX

446

J

4

6

40

2

7

D

5

2

2

K

1 2Figure 1: Sear
hing a min-max tree.The minimax algorithm is a depth-�rst, left-to-right traversal of the tree,evaluating all su

essors of Max and Min nodes. If one assumes that the treehas a uniform bran
hing fa
tor of w and a �xed depth of d moves (or ply), thenthe algorithm must examine O(wd) leaf nodes. Clearly, the exponential growthof the sear
h tree limits the e�e
tiveness of the algorithm.Sometime in the late 1950s or early 1960s, the alpha-beta algorithm for4



sear
hing minimax trees was invented (the algorithm may have been indepen-dently dis
overed, but the �rst publi
ation appears in [8℄). Alpha-beta simplyand elegantly proves that many bran
hes in the sear
h tree need not be 
onsid-ered sin
e they are irrelevant to the �nal sear
h result.Consider Figure 1 again. The sear
h of nodes E and F show that the valueof B is � 4. Now, 
onsider sear
hing G. The �rst 
hild of G has a valueof 6. Thus, Max will guarantee that G's value is � 6. Sear
hing G's other
hildren is pointless sin
e they 
an only in
rease G's value, whi
h 
annot a�e
tB's value. Hen
e further sear
h at G has been proven to be unne
essary. Theother 
hildren are said to be 
ut-o� or pruned. Shaded nodes in the �gure havebeen eliminated from the sear
h by alpha-beta. In this example, the numberof leaf nodes 
onsidered has been redu
ed from 27 using minimax to 16 withalpha-beta.The alpha-beta algorithm sear
hes a tree using two bounds: � and �. � isthe minimum value that player Max has a
hieved. � is the maximum value towhi
h player Min 
an limit Max to (
onversely, the best that Max 
an a
hievegiven Min's best play). Any node where a s
ore results in the 
ondition � � �
auses a 
ut-o�.The alpha-beta algorithm is given in Figure 2.3 For a d-ply sear
h, it is
alled by: AlphaBeta( rootnode, �1, +1, d, MAXNODE ).Again assuming a tree of �xed bran
hing fa
tor w and sear
h depth d, alpha-beta improves the best 
ase of the sear
h tree size to O(wd=2) (or, to be morepre
ise, wdd=2e + wbd=2
 � 1) [9℄. This best 
ase o

urs when the move leadingto the best minimax s
ore is sear
hed �rst at every interior node.4 If the worstmove is sear
h �rst at every node, then alpha-beta will build an O(wd) minimaxtree.Although the 20 lines of 
ode in Figure 2 look simple, this is misleading.These are possibly the most de
eptive lines of 
ode in the arti�
ial intelligen
eliterature! Alpha-beta has the insidious property of hiding errors. For example,an evaluation fun
tion error may only be dete
ted when the error happens topropagate to the root of the sear
h tree. The deeper the sear
h, the harder itis for the error to be minimized and maximized all the way ba
k to the root.Consequently, many game-playing programs have bugs that survive for yearsbefore the right sequen
e of events o

urs that allows the problem to manifestitself.5In pra
ti
e, a high-performan
e alpha-beta implementation is often 20 ormore pages of 
ode. The reason for this is the exponential di�eren
e in thesear
h e�ort between the best and worst alpha-beta 
ases. Considerable e�orthas to be invested to ensure a nearly best-
ase result. The 
onsequen
e is a3The Negamax formulation is more 
on
ise [9℄.4At nodes where a 
ut-o� o

urs, one only needs to sear
h a move that is suÆ
ient toimmediately 
ause the 
ut-o�.5Empiri
al eviden
e suggests that this only happens in important tournament games!5



int AlphaBeta( position p, int alpha, int beta, int depth, int type ){ /* Che
k for a leaf node */if( depth == 0 )return( Evaluate( p ) );/* Identify legal moves */numbmoves = GenerateMoves( p, movelist );if( numbmoves == 0 )return( Evaluate( p ) );if( type == MAXNODE )nexttype = MINNODE;else nexttype = MAXNODE;/* Call AlphaBeta re
ursively for ea
h move */for( move = 1; move <= numbmoves; move++ ){ p = MakeMove( p, movelist[ move ℄ );value = AlphaBeta( p, alpha, beta, depth-1, nexttype );p = UndoMove( p, movelist[ move ℄ );/* Update best value found so far */if( type == MAXNODE )alpha = MAX( value, alpha );else beta = MIN( value, beta );/* Che
k for a 
ut-off. Minimax without this line of 
ode */if( alpha >= beta )break;}if( type == MAXNODE )return( alpha );else return( beta );} Figure 2: The alpha-beta algorithm.myriad of enhan
ements to alpha-beta, signi�
antly in
reasing the 
omplexityof the sear
h pro
ess.The main alpha-beta sear
h enhan
ements 
an be 
hara
terized into fourgroups:1. Ca
hing information: avoiding repeated work.2. Move ordering: in
reasing the likelihood of the best move being sear
hed�rst at a node.3. Sear
h window: 
hanging the [�, �℄ window to spe
ulatively redu
e sear
he�ort.4. Sear
h depth: dynami
ally adjusting the depth to redistribute sear
h ef-fort, attempting to maximize the value of the information gathered fromthe sear
h. 6



Ea
h of these enhan
ements is dis
ussed in turn.2.1.1 Ca
hing InformationFor most games, the sear
h tree is really a misnomer; it is a sear
h graph. Twodi�erent sequen
es of moves 
an transpose into ea
h other. For example, in
hess, the move sequen
e 1. d4 d5 2. Nf3 gives rise to the same position asthe sequen
e 1. Nf3 d5 2. d4. Dete
ting these transpositions and eliminatingredundant sear
h e�ort 
an signi�
antly redu
e the sear
h-tree size.The transposition table is a 
a
he of re
ently sear
hed positions. When asubtree has been sear
hed, the result is saved in the transposition table. Beforesear
hing a node in the tree, the table is 
onsulted to see if it has been previouslysear
hed. If so, the table information may be suÆ
ient to stop further sear
hat this node. The table is usually implemented as a large hash table [10, 11℄.The e�e
tiveness of the transposition table is appli
ation dependent [12, 13℄.For games like 
hess and 
he
kers, where a single move 
hanges a few squares onthe board, the bene�ts 
an be massive (roughly a 75% redu
tion for 
hess and89% for 
he
kers for a typi
al sear
h). For games like Othello, where a move
an 
hange many squares on the board, the likelihood of two move sequen
estransposing into ea
h other is small (roughly a 33% redu
tion for a typi
alsear
h).2.1.2 Move OrderingThe exponential di�eren
e in the sear
h-tree size between the best and worst
ase of alpha-beta hinges on the order in whi
h moves are 
onsidered. At a nodewhere a 
ut-o� is to o

ur, it should be a
hieved with the �rst move sear
hed.Hen
e, e�ort is applied at interior nodes to order the moves from the most toleast likely to 
ause a 
ut-o�.The most important pla
e for move ordering is at the root of the sear
h.For example, if a 10-ply sear
h is initiated without any prior preparation, theresulting sear
h tree is likely to be large. The �rst move sear
hed may providea poor bound (� value), in
reasing the size of the sear
h window used for thesubsequent moves. Considering the best move �rst narrows the sear
h window,in
reasing the 
han
es for 
ut-o�s in the tree.Most alpha-beta-based programs use a te
hnique 
alled iterative deepeningto maximize the 
han
es of the best move being sear
hed �rst [11℄. The programstarts by sear
hing all moves 1-ply deep. The moves are then ordered based onthe returned s
ores. The tree is then re-sear
hed, this time 2-ply deep, and soon. The idea is that the best move for a (d�1)-ply sear
h is likely to also be bestfor a d-ply sear
h. By investing the overhead of repeating portions of the sear
h,the 
han
es are in
reased that the best move is 
onsidered �rst in the last (mostexpensive) iteration. Experien
e shows that the 
ost of the early iterations isa small pri
e to pay for the large gains a
hieved by improved move ordering atthe root of the tree. This is an important result that has been applied to manyother sear
h domains (for example, single-agent sear
h [14℄).7



The idea of 
onsidering the best move �rst should be applied at all nodes inthe tree. At interior nodes, 
heaper methods are used to improve the quality ofthe move ordering. Three popular 
hoi
es are:� Transposition table. When re
ording a sear
h result in the table, savethe s
ore and the move that leads to the best s
ore. When the node isrevisited (within the same or the next iteration), if the s
ore informationis insuÆ
ient to 
ause a 
ut-o�, then the best move from the previoussear
h 
an be 
onsidered �rst. Sin
e the move was previously best, thereis a good 
han
e that it is still the best move.� Appli
ation-dependent knowledge. Many games have appli
ation-dependentproperties that 
an be exploited by a move ordering s
heme. For example,in 
hess 
apture moves are more likely to 
ause a 
ut-o� than non-
apturemoves. Hen
e, many programs 
onsider all 
apture moves �rst at ea
hnode.� History heuristi
. There are numerous appli
ation-dependent move-orderingalgorithms in the literature. One appli
ation-independent te
hnique thathas proved to be simple and e�e
tive is the history heuristi
 [15, 16℄. Amove that is best in one position is likely also best in similar positions.The heuristi
 maintains a global history s
ore for ea
h move that indi
ateshow often that move has been best. Moves 
an then be ordered by theirhistory heuristi
 s
ore. A subset of this idea, the killer heuristi
, is alsopopular [17℄.The 
ontrast between the transposition table and history heuristi
 is interest-ing. The transposition table stores the exa
t 
ontext under whi
h a move is
onsidered best (i.e., it saves the position with the move). The history heuris-ti
 re
ords whi
h moves are most often best, but has no knowledge about the
ontext that makes the move strong. Other move ordering s
hemes fall some-where in between these two extremes by, for example, adding more 
ontext tothe history-heuristi
 moves.Move ordering in game-playing programs is highly e�e
tive. For example,a re
ent study showed that the best move was sear
hed �rst over 90% of thetime in 
hess and 
he
kers programs, and over 80% of the time in an Othelloprogram [12℄. The 
hess result is quite impressive when one 
onsiders that atypi
al position has 35 legal moves to 
hoose from.2.1.3 Sear
h WindowThe alpha-beta algorithm sear
hes the tree with an initial sear
h window of[�1, +1℄. Usually, the extreme values do not o

ur. Hen
e, the sear
h 
anbe made more eÆ
ient by narrowing the range of values to 
onsider, in
reasingthe likelihood of 
ut-o�s. Aspiration sear
h 
enters the sear
h window aroundthe value expe
ted from the sear
h, plus or minus a reasonable range (Æ) ofun
ertainty. If one expe
ts the sear
h to produ
e a value near, say, 40 then the8



sear
h 
an be 
alled with a sear
h window of [40� Æ, 40 + Æ℄. The sear
h willresult in one of three 
ases:� 40� Æ < result < 40 + Æ. The a
tual value is within the sear
h window.This value has been determined with less e�ort than would have beenrequired had the full sear
h window been used.� result � 40 � Æ. The a
tual value is below the aspiration window (thesear
h is said to fail low). To �nd the a
tual value, a se
ond sear
h isneeded with the window [�1, result℄.� result � 40 + Æ. The a
tual value is above the aspiration window (thesear
h is said to fail high). To �nd the a
tual value, a se
ond sear
h isneeded with the window [result, +1℄.Aspiration sear
h is a gamble. If the result is within the sear
h window, thenthe enhan
ement wins. Otherwise an additional sear
h is needed. Aspirationsear
h is usually 
ombined with iterative deepening. The result of the (d�1)-plyiteration 
an be used as the 
enter of the aspiration window used for the d-plysear
h. Æ is appli
ation dependent and determined by empiri
al eviden
e.The idea of spe
ulatively 
hanging the sear
h-window size 
an be appliedthroughout the sear
h. Consider an interior node with a sear
h window of [�,�℄. The �rst move is sear
hed and returns a s
ore v in the sear
h window. Thenext move will be sear
hed with the window [v, �℄. If the move ordering ise�e
tive, then there is a high probability that the best move at this node wassear
hed �rst. Hen
e, the remaining moves are expe
ted to return a s
ore thatis � v. Sear
h e�ort 
an be saved by modifying the sear
h window to provethat the remaining moves are inferior. This 
an be done using the window [v,v + 1℄. O

asionally, this assumption will be wrong, in whi
h 
ase a move thatreturns a value v < v0 < � will have to be re-sear
hed with the new window[v0, �℄. This is the idea behind the NegaS
out [18, 19℄ and Prin
ipal VariationSear
h [20℄ algorithms.A sear
h window of width one (��� = 1) is 
alled a minimal window. Theidea of minimal windows 
an be taken to the extreme. Pearl's S
out algorithm[21℄ 
an be used to answer a Boolean question about the sear
h value (e.g., isthe root value � 0?). More re
ently, the MTD(f) algorithm uses only minimalwindows to determine the value of the root. This algorithm has been shown tobe superior to alpha-beta in terms of number of nodes expanded in the sear
htree [12, 13℄.2.1.4 Sear
h DepthAlthough alpha-beta is usually des
ribed as a �xed-depth sear
h, better per-forman
e 
an be a
hieved using a variable sear
h depth. The sear
h 
an be
ompared to a sto
k portfolio; don't treat all sto
ks as being equal. You shouldinvest in those that have the most promise, and redu
e or eliminate your hold-ings in those that look like losers. The same philosophy holds true in sear
h9



trees. If there is some hint in the sear
h that a sequen
e of moves looks promis-ing, then it may be a good idea to extend the sear
h along that line to get moreinformation. Similarly, moves that appear to be bad should have their sear
he�ort redu
ed. There are a number of ways that one 
an dynami
ally adjustthe depth to maximize the amount of information gathered by the sear
h.Most alpha-beta-based programs have a number of appli
ation-dependentte
hniques for altering the sear
h depth. For example, 
hess programs usuallyextend 
he
king moves an additional ply sin
e these moves indi
ate that some-thing interesting is happening. Most programs have a \hopeless" metri
 forredu
ing the sear
h depth. For example, in 
hess if one side has lost too mu
h(e.g., a queen and a rook), it is very unlikely this subtree will eventually end upas part of the prin
ipal variation. Hen
e, the sear
h depth may be redu
ed.There are a number of te
hniques that may be useful for a variety of domains.In 
hess, null-move sear
hes have been very e�e
tive at 
urtailing analysis ofpoor lines of play. The idea is that if one side is given two moves in a row andstill 
an't a
hieve anything, then this line of play is likely bad. Hen
e, the sear
hdepth is redu
ed. This idea 
an be applied re
ursively throughout the sear
h[22, 23℄.Another important idea is ProbCut [24℄. Here the result of a shallow sear
his used as a predi
tor of whether the deeper sear
h would produ
e a value thatis relevant to the sear
h window. Statisti
al analysis of the program's sear
hesis used to �nd a 
orrelation between the values of a shallow and deep sear
h.If the shallow sear
h result indi
ates that the deeper sear
h will not produ
ea value that is large enough to a�e
t the node's value, then further e�ort isstopped.Although both the null-move and ProbCut heuristi
s purport to be appli
a-tion independent, in fa
t they both rely on game-spe
i�
 properties. Null-move
ut-o�s are only e�e
tive if the 
onsequen
es of giving a side two moves in a rowis serious. This 
auses problems, for example, in 
he
kers where giving a playeran extra move may allow them to es
ape from a position where having only onemove loses (these are known as zugzwang positions). ProbCut depends on therebeing a strong 
orrelation between the values of shallow and deep sear
hes. Forgames with low varian
e in the leaf node values, this works well. If there is highvarian
e, then the evaluation fun
tion must be improved to redu
e the varian
e.In 
hess programs, for example, the varian
e is generally too high for ProbCutto be e�e
tive.The most 
ommon form of sear
h extension is the quies
en
e sear
h. It iseasier to get a reliable evaluation of a leaf position if that position is quiet orstable (quies
ent). Hen
e, a small sear
h is done to resolve immediate 
apturemoves or threats [11℄. Sin
e these position features are dis
overed by sear
h,this redu
es the amount of expli
it appli
ation-dependent knowledge requiredin the evaluation fun
tion.A sear
h-extension idea that has attra
ted a lot of attention is singularextensions [25℄. The sear
h attempts to identify for
ed (or singular) moves.This 
an be a
hieved by manipulating the sear
h window to see if the best moveis signi�
antly better than the se
ond-best move. When a singular move is10



found, then the sear
h along that line of play is extended an additional ply (ormore). The idea is that for
ing moves indi
ate an interesting property of theposition that needs to be explored further.In addition, there are various other extensions 
ommonly used, most basedon extending the sear
h to resolve the 
onsequen
es of a threat [26, 27℄.2.1.5 Close to Perfe
tion?Numerous studies have attempted to quantify the bene�ts of alpha-beta en-han
ements in �xed-depth sear
hes (for example, [10, 16℄). Move ordering andthe transposition table usually make the biggest performan
e di�eren
e, withother enhan
ements generally being mu
h smaller in their impa
t.The size of trees built by game-playing programs appears to be 
lose to thatof the minimal alpha-beta tree. For example, in 
hess, Belle is reported to bewithin a fa
tor of 2.2 [28℄, Phoenix within 1.4 [15℄, Hite
h within 1.5 [28℄ andZugzwang within 1.2 [29℄. These results suggest that there is little room forimprovement in �xed-depth alpha-beta sear
hing.The above 
omparisons have been done against the approximate minimalsear
h tree. However, �nding the real minimal tree is diÆ
ult, sin
e the sear
htree is really a sear
h graph. The real minimal sear
h should exploit this prop-erty by:1. sele
ting the move that builds the smallest tree to produ
e a 
ut-o�, and2. preferring moves that maximize the bene�ts of the transposition table (i.e.reuse results as mu
h as possible).Naturally, these obje
tives 
an 
on
i
t. In 
ontrast to the above impressivenumbers, results suggested that 
hess programs are o� by a fa
tor of three ormore from the real minimal sear
h graph [12, 13℄. Thus, there is still room forimprovements in alpha-beta sear
h eÆ
ien
y. Nevertheless, given the exponen-tial nature of alpha-beta, that programs 
an sear
h within a small 
onstant ofoptimal is truly impressive.Forty years of resear
h into alpha-beta have resulted in a re
ipe for a �nelytuned, highly eÆ
ient sear
h algorithm. The program designer has a ri
h setof sear
h enhan
ements at their disposal. The right 
ombination is appli
ationdependent and a matter of taste. Although building an eÆ
ient sear
her is wellunderstood, de
iding where to 
on
entrate the sear
h e�ort is not. It remainsa 
hallenge to identify ways to sele
tively extend or redu
e the depth in su
h away as to maximize the quality of the sear
h result.2.1.6 Alternative Approa
hesSin
e its dis
overy. alpha-beta has been the mainstay of 
omputer games de-velopment. Over the years, a number of interesting alternatives to alpha-beta-based sear
hing have been proposed.Berliner's B* algorithm attempts to prove the best move, without ne
essarilydetermining the best move's value [30, 31℄. In its simplest form, B* assigns an11



optimisti
 (upper bound) and a pessimisti
 (lower bound) value to ea
h leafnode. These values are re
ursively ba
ked up the tree. The sear
h 
ontinuesuntil there is one move at the root whose pessimisti
 value is as good as all thealternative move's optimisti
 values. In e�e
t, this is a proof that the best move(but not ne
essarily its value) has been found.There are several drawba
ks with B*, most notably the non-standard methodfor evaluating positions. It is diÆ
ult to devise reliable optimisti
 and pes-simisti
 evaluation fun
tions. B* has been re�ned so that the evaluations arenow probability distributions. However, the resulting algorithm is 
omplex andneeds 
onsiderable appli
ation tuning. It has been used in the Hite
h 
hessprogram, but even there the performan
e of alpha-beta is superior [31℄.M
Allester's 
onspira
y numbers algorithm tries to exploit properties of thesear
h tree [32℄. The algorithm re
ords the minimal number of leaf nodes in asear
h tree that must 
hange their value (or 
onspire) to 
hange the value ofthe root of the tree. Consider a Max node having a value of 10. To raise thisvalue to, say, 20, only one of the 
hildren has to have its value be
ome 20. Tolower the value to, say, 0, all 
hildren with a value greater than 0 must havetheir value lowered. Conspira
y numbers works by re
ursively ba
king up thetree the minimum numbers of nodes that must 
hange their value to 
ause thesear
h tree to be
ome a parti
ular value. The algorithm terminates when thee�ort required to 
hange the value at the root of the sear
h (i.e., 
onspira
ynumber) ex
eeds a prede�ned threshold.Conspira
y numbers 
aused quite a stir in the resear
h 
ommunity be
auseof its innovative aspe
t of measuring resistan
e to 
hange in the sear
h. Consid-erable e�ort has been devoted to understanding and improving the algorithm.Unfortunately it has a lot of overhead (for example: slow 
onvergen
e, 
ostof updating the 
onspira
y numbers, maintaining the sear
h tree in memory)whi
h has been an impediment to its usage in high-performan
e programs. Avariation on the original 
onspira
y numbers algorithm has been su

essfullyused in the Ulysses 
hess program [33℄.There are other innovative alternatives to alpha-beta, ea
h of whi
h is worthyof study. These in
lude BPIP [34℄, min/max approximation [35℄, and meta-greedy algorithms [36℄.Although all these alpha-beta alternatives have many desirable properties,none of them is a serious 
hallenger to alpha-beta's dominan
e. The 
on
eptualsimpli
ity of the alpha-beta framework makes it relatively easy to 
ode andhighly eÆ
ient at exe
ution time. The alpha-beta alternatives are mu
h harderto 
ode, the algorithms are not as well understood, and there is generally a largeexe
ution overhead. Perhaps if the resear
h 
ommunity devoted as mu
h e�ortto understanding these algorithms as they did in understanding alpha-beta, wewould see a new algorithm 
ome to the fore. Until that happens, alpha-beta will
ontinue to dominate as the sear
h algorithm of 
hoi
e for two-player perfe
tinformation games.
12



2.1.7 Con
lusionsResear
h on understanding the alpha-beta algorithm has dominated games re-sear
h sin
e its dis
overy in the early 1960's. This pro
ess was a

elerated bythe dis
overy of the strong 
orrelation of program performan
e with alpha-betasear
h depth [37℄. This gave a simple formula for su

ess: build a fast sear
hengine. This led to the building of spe
ial-purpose 
hips for 
hess [38℄ andmassively parallel alpha-beta sear
hers [29℄.Sear
h alone is not the answer. Additional sear
h eventually leads to di-minishing returns in the bene�ts a
hievable [39℄. Eventually, there 
omes thepoint where the most signi�
ant performan
e gains are to be had by identify-ing and implementing missing pie
es of appli
ation knowledge. This was evi-dent, for example, in the 1999 world 
omputer 
hess 
hampionship, where thedeep-sear
hing, large multi-pro
essor programs �nished behind the shallower-sear
hing, PC-based programs that used more 
hess knowledge.For many popular games, su
h as 
hess, 
he
kers, and Othello, alpha-betahas been suÆ
ient to a
hieve world-
lass play. Hen
e, there was no need to lookfor alternatives. For arti�
ial-intelligen
e purists, this is an unsatisfa
tory re-sult. By relying on so-
alled brute-for
e sear
hing, these programs 
an minimizetheir dependen
e on knowledge. However, for other games, most notably Go,sear
h-intensive solutions will not be e�e
tive. Radi
ally di�erent approa
hesare needed.2.2 Advan
es in KnowledgeIdeally, no knowledge other than the rules of the game should be needed tobuild a strong game-playing program. Unfortunately, for interesting games itis usually too deep to sear
h to �nd the game-theoreti
 value of a position.Hen
e knowledge for di�erentiating favorable from unfavorable positions has tobe added to the program. Nevertheless, there are some 
ases where the program
an learn position values without using heuristi
 knowledge.The �rst example is the transposition table. This is a form of rote learning.By saving information and reusing it, the program is learning, allowing it toeliminate nodes from the sear
h without sear
hing. Although the table is usuallythought of as something lo
al to an individual sear
h, \important" entries 
anbe saved to disk and used for subsequent sear
hes. For example, by saving sometransposition table results from a game, they may be used in the next game toavoid repeating the same mistake [40, 41℄.A se
ond example is endgame databases. Some games 
an be solved from theend of the game ba
kwards. One 
an enumerate all positions with one pie
e onthe board, and re
ord whi
h positions are wins, losses, and draws. These results
an be ba
ked up to solve all positions with two pie
es on the board, and so on.The result is an endgame database 
ontaining perfe
t information. For 
hess,most of the �ve-pie
e endgames have been solved, with some six-pie
e endgamesalso solved [6℄. This is of limited value, sin
e most games are over before su
h asimpli�ed position is rea
hed. In 
he
kers, all eight-pie
e endgames have been13



solved [42℄. The databases play a role in the sear
h of the �rst move of a game!Endgame databases have been used to solve the game of Nine Men's Morris [43℄.A third form of knowledge 
omes from the human literature. Most gameshave an extensive literature on the best opening moves of the game. This infor-mation 
an be 
olle
ted in an opening book and made available to the program.The book 
an either be used to sele
t the program's move, or as advi
e tobias the program's opening move sele
tion pro
ess. Many programs modify theopening book to tailor the moves in it to the style of the program.When pre-
omputed or human knowledge is not available, then the game-playing program must fall ba
k on its evaluation fun
tion. The fun
tion assignss
ores to positions that are a heuristi
 assessment of the likelihood of winning (orlosing) from the given position. Appli
ation-dependent knowledge and heuristi
sare usually applied to a position to s
ore features that are indi
ators of the truevalue of the position.The program implementor (usually in 
onsultation with a domain expert)will identify a set of features (f) that 
an be used to assess the position. Ea
hfeature is given a weight (w) that re
e
ts how important that feature is inrelation to the others in determining the overall assessment. Most programs usea linear 
ombination of this information to arrive at a position value:value = nXi=1 wi � fi (1)where n is the number of features. For example, in 
hess two features that are
orrelated with su

ess are the material balan
e and pawn stru
ture (f1 andf2). Material balan
e is usually mu
h more important than pawn stru
ture,and hen
e has a mu
h higher weighting (w1 >> w2).Identifying whi
h features might be 
orrelated with the �nal result of thegame is still largely done by hand. It is a 
omplex pro
ess that is not well un-derstood. Usually the features 
ome from human experien
e. However, human
on
epts are often vague and hard to de�ne algorithmi
ally. Even well-de�ned
on
epts may be impra
ti
al be
ause of the 
omputational overhead. One 
ouldapply 
onsiderable knowledge in the assessment pro
ess, but this in
reases the
ost of performing an evaluation. The more expensive the evaluation fun
tion isto 
ompute, the smaller the sear
h tree that 
an be explored in a �xed amount oftime. Thus, ea
h pie
e of knowledge has to be evaluated on what it 
ontributesto the a

ura
y of the overall evaluation, and the 
ost (both programmer timeand exe
ution time) of having it.Most evaluation fun
tions are 
arefully tuned by hand. The knowledge hasbeen judi
iously added, taking into a

ount the expe
ted bene�ts and the 
ostof 
omputing the knowledge. Hen
e, most of the knowledge that is used isof a general-purpose nature. Unfortunately, it is the ex
eptions to the knowl-edge that 
ause the most performan
e problems. As 
hess grandmaster KevinSpraggett said [42℄:I spent the �rst half of my 
areer learning the prin
iples for playingstrong 
hess and the se
ond half learning when to violate them.14



Most game-playing program's evaluation fun
tions attempt to 
apture the �rsthalf of Spraggett's experien
e. Implementing the se
ond half is often too diÆ
ultand 
omputationally time 
onsuming, and generally has a small payo� (ex
eptperhaps at the highest levels of play).Important progress has been made in setting the weights automati
ally. Al-though this seems like it should be mu
h easier than building an evaluationfun
tion, in reality it is a laborious pro
ess when done by hand. Automatingthis pro
ess would result in a huge redu
tion in the e�ort required to build ahigh-performan
e game-playing program.Temporal di�eren
e learning has 
ome to the fore as a major advan
e inweighting evaluation fun
tion features. Samuel pioneered the idea [3, 4℄, but itonly be
ame re
ognized as a valuable learning algorithm after Sutton extendedand formalized this work [44℄. Temporal di�eren
e learning is at the heart ofTesauro's world-
hampionship-
aliber ba
kgammon program (see Se
tion 3.1),and has shown promising results in 
hess (dis
ussed later in this se
tion).Temporal di�eren
e learning (TDL) is a reinfor
ement learning algorithm.The learner has an input state, produ
es an output a
tion, and later re
eivesfeedba
k (
ommonly 
alled the reward) on how well its a
tion performed. Forexample, a 
hess game 
onsists of a series of input states (positions) and a
tions(the move to play). At the end of the game, the reward is known: win, loss,or draw. In between the start and the end of the game, a program will use afun
tion to map the inputs onto the outputs (de
ide on its next move). Thisfun
tion is a predi
tor of the future, sin
e it is attempting to maximize itsexpe
ted out
ome (make a move that leads to a win). The goal in reinfor
ementlearning is to propagate the reward information ba
k along the game's movesequen
e to improve the quality of a
tions (moves) made. This is a

omplishedby attributing the 
redit (or blame) to the outputs that led to the �nal reward.By doing so, the learner's evaluation fun
tion will 
hange, hopefully in su
h away as to be a better predi
tor of the �nal reward.To a
hieve the large-s
ale goal of mat
hing inputs to the result of the game,TDL fo
uses on the smaller goal of modifying the learner so that the 
urrentpredi
tion is a better approximation of the next predi
tion [44, 45℄. Considera series of predi
tions P1; P2; :::PN on the out
ome of a game. These 
ould bethe program's assessment of the likelihood of winning from move to move. In
hess, the initial position of a game, P1, has a value that is likely 
lose to 0. Fora win PN = 1 while a loss would have PN = �1. For the moves in between, theassessments will vary.If the likelihood of winning for position t (Pt) is less (more) than that ofposition t + 1 (Pt+1), then we would like to in
rease (de
rease) the value ofposition t to be a better predi
tor of the value of t + 1. The idea behindtemporal di�eren
e learning is to adjust the evaluation based on the in
rementaldi�eren
es in the assessments. Thus,4 = Pt+1 � Ptmeasures that di�eren
e between the predi
tion for move t+1 and that for move15



4wt = �(Pt+1 � Pt) tXk=1 �t�k 5w Pkwhere:� w is the set of weights being tuned,� t is the time step being altered, in a sequen
e of moves from 1; 2; :::; N�1,� 4wt is the 
hange in the set of weights at step t as a result of applyingtemporal di�eren
es,� Pt is the predi
tion at time step t (for the end of the game, PN , the �nalout
ome is used),� � (0 � � � 1) 
ontrols how mu
h 
redit gets propagated ba
k to theprevious estimates (� = 0 implies no feedba
k, while � = 1 would have allprevious moves sharing equally),� 5wPk is the set of partial derivatives for ea
h 
omponent of w, and� � > 0 is the rate of learning (a small � 
auses small in
remental 
hanges;a large � makes larger steps).� and � are heuristi
 parameters that need to be tuned for ea
h appli
ationdomain. Figure 3: The TD(�) algorithm.t. This adjustment 
an be done by modifying the weights of the evaluationfun
tion to redu
e the 4 from move to move.Temporal di�eren
e learning is usually des
ribed with a variable weightingof re
en
y. Rather than 
onsidering only the previous move, one 
an 
onsider allprevious moves with non-uniform weights (usually exponential). These movesshould not all be given the same importan
e in the de
ision-making pro
ess,sin
e the evaluation of moves made many moves previously are less likely to berelevant to the 
urrent evaluation. Instead, previous moves are weighted by �p,where p re
e
ts how far ba
k the move is. The parameter � 
ontrols how mu
h
redit is given to previous moves, giving exponentially de
aying feedba
k of thepredi
tion error over time. Hen
e, this algorithm is 
alled TD(�). Figure 3 givesthe temporal di�eren
e relation used by TD(�).A typi
al appli
ation of TDL is for a program with an evaluation fun
tion,but unknown weights for the features. By playing a series of games, the pro-gram gets feedba
k on the relative importan
e of features. TDL propagates thisinformation ba
k along the move sequen
e played, 
ausing in
remental 
hangesto the feature weights. The result is that the evaluation fun
tion values get16



tuned to be better predi
tors.In addition to Tesauro's su

ess in ba
kgammon (Se
tion 3.1), there are twore
ent TDL data points in 
hess. First, Cilk
hess, 
urrently one of the strongest
hess programs, was tuned using temporal di�eren
e learning and the resultsare en
ouraging. Don Dailey, a 
o-author of Cilk
hess, writes that [46℄:Mu
h to my surprise, TDL seems to be a su

ess. But the weight setthat 
omes out is SCARY; I'm still afraid to run with it even thoughit beats the hand-tuned weights. They are hard to understand too,be
ause TDL expresses 
hess 
on
epts any way that is 
onvenientfor it. So if you 
reate a heuristi
 to des
ribe a 
hess 
on
ept, TDLmay use it to \�x" something it 
onsiders broken in your weight set.An interesting data point was a
hieved in the KnightCap 
hess program[47℄. Starting with a program that knew only about material and had all otherevaluation fun
tion terms weighted with zero, the program was able to qui
klytune its weights to a
hieve an impressive in
rease in its performan
e. Theauthors re
ognized that the predi
tions of a 
hess program were the result ofan extensive sear
h, and the s
ore at the root of the tree was really the value ofthe leaf node on the prin
ipal variation. Consequently, the temporal di�eren
elearning should use the prin
ipal variation leaf positions, not the positions atthe root of the sear
h tree [48℄. This algorithm has been 
alled TDLeaf(�) [47℄.These su

esses are ex
iting, and o�er the hope that a major 
omponent ofbuilding high-performan
e game-playing programs 
an be automated.62.3 Simulation-Based Approa
hesIn the 1990s, resear
h into non-deterministi
 and imperfe
t information gamesemerged as an important appli
ation for arti�
ial-intelligen
e investigations.In many ways, these domains are more interesting than two-player perfe
t-information games, and promise greater long-term resear
h potential. Handlingimperfe
t or probabilisti
 information signi�
antly 
ompli
ates the game, but isa better model of the vagaries of real-world problems.For non-deterministi
 and imperfe
t information games, alpha-beta sear
hdoes not work. The bran
hes in the sear
h tree represent probabilisti
 out
omesbased on, for example, the roll of the di
e or unknown 
ards. At best one
an ba
k up probabilities of expe
ted out
omes. For these games it is usuallyimpra
ti
al to build the entire game tree of all possibilities.Simulations 
an be used to sample the spa
e of possible out
omes, tryingto gather statisti
al eviden
e to support the superiority of one a
tion.7 Theprogram 
an instantiate the missing information (e.g. assign 
ards or determinedi
e rolls), play the game through to 
ompletion, and then re
ord the result.This 
an be repeated with a di�erent assignment of the missing information.6An ex
ellent survey of ma
hine learning applied to games 
an be found in [49℄.7Some of the material in this se
tion has been taken from [50℄.17



By repeating this pro
ess many times, a statisti
al ranking of the move 
hoi
es
an be obtained.Consider the imperfe
t-information game of bridge. The de
larer does notknow in whi
h hand ea
h of the 26 hidden 
ards are. The simulator 
an instan-tiate one possible assignment of 
ards to ea
h opponent, and then play the handthrough to 
ompletion (a trial). Thus, a single data point has been obtained onthe number of tri
ks that 
an be won. This 
an then be repeated by dealing adi�erent set of 
ards to ea
h opponent. When these simulated hands have beenrepeated a suÆ
ient number of times, the statisti
s gathered from these runs
an be used to de
ide on a 
ourse of a
tion. For example, it may be that in90% of the samples a parti
ular 
ard play led to the best result. Based on thiseviden
e, the program 
an then de
ide with high 
on�den
e what the best 
ardto play is.For ea
h trial in the simulation, one instan
e of the non-deterministi
 orunknown information is applied. Hen
e, a representative sample of the sear
hspa
e is looked at to gather statisti
al eviden
e on whi
h move is best. Figure 4shows the pseudo-
ode for this approa
h. Some of its 
hara
teristi
s in
lude:1. The program iterates on the number of samples taken.2. The sear
h for ea
h sample usually goes to the end of the game.3. Heuristi
 evaluation usually o

urs at the interior nodes of the sear
h todetermine a subset of bran
hes to 
onsider, redu
ing the 
ost of a sample(and allowing more samples to be taken).The simulation bene�ts from sele
tive samples that use information from thegame state (i.e. su
h as the bidding au
tion in bridge), rather than a uniformdistribution or other �xed distribution sampling te
hnique.Statisti
al sampling has noise or varian
e. The sampling must be done ina way that 
aptures the reality of the situation, ruling out impossible s
enar-ios and properly re
e
ting the likelihood of improbable s
enarios. The morerepresentative the samples, the less the varian
e is likely to be. Sele
tive sam-pling refers to 
arefully 
hoosing the simulation data to be as representative aspossible [50℄.It is important to distinguish sele
tive sampling from traditional Monte Carlote
hniques. Sele
tive sampling uses information about the game state to skewthe underlying probability distribution, rather than assuming uniform or other�xed probability distributions. Monte Carlo te
hniques may eventually 
onvergeon the right answer, but sele
tive sampling allows for faster 
onvergen
e and lessvarian
e.As an example, 
onsider the imperfe
t-information and non-deterministi
game of S
rabble. Brian Sheppard, author of Maven, writes that for his simu-lations he generates [51℄:... a distribution of ra
ks that mat
hes the distribution a
tually seenin games. In Maven we use a uniform distribution of the ra
k, andwe take steps to ensure that every tile is represented as often as it18



/* From a given state, simulate and return the best move */move Simulator( known state state )f obvious move = NO;trials = 0;while( ( trials <= MAX TRIALS ) and ( obvious move == NO ) )f trials = trials + 1;/* Generate the missing information */missing info = sele
tive sampling to generate missing information;numbmoves = GeneratePlausibleMoves( state, missing info, movelist );/* Consider all moves */for( m = 1; m <= numbmoves; m++ )f state = MakeA
tion( state, movelist[ m ℄, missing info );value[m℄ = value[m℄ + Sear
h( state );state = UndoA
tion( state, movelist[ m ℄, missing info );g/* Test to see if one move is statisti
ally better than all others */if( 9 i su
h that value[ i ℄ >> value[ j ℄(8 j, j 6= i) )f obvious move = YES;gg/* Return the move with the highest s
ore */return( move i k value[ i ℄ >= value[ j ℄ (8 j, j 6= i) );g Figure 4: Simulation-based sear
h.should be. We do this without introdu
ing statisti
al bias by alwaysin
luding in the opponent's tiles for the next iteration the one tilethat has been most underrepresented among all previous ra
ks.Sele
tive sampling need not be perfe
t. In S
rabble, the opponent's tiles donot 
ome from a uniform distribution: opponents tend to play away bad lettersand keep good letters. Sheppard is 
onvin
ed that this small re�nement to themodel of the opponent's hands would make little di�eren
e in the simulationresults.An important feature of the simulation-based framework is the notion ofan obvious move. Although many alpha-beta-based programs in
orporate anobvious move feature, the te
hnique is usually ad ho
 and the heuristi
 is theresult of programmer experien
e rather than a sound analyti
 te
hnique. In thesimulation-based framework, an obvious move is statisti
ally well-de�ned. Asmore samples are taken, if one 
hoi
e ex
eeds the alternatives by a statisti
allysigni�
ant margin, one 
an stop the simulation early and 
ommit to the a
tion,19



with full knowledge of the statisti
al validity of the de
ision.It is interesting to 
ompare alpha-beta and simulation-based sear
h meth-ods. Alpha-beta 
onsiders all possible moves at a node that 
annot be logi
allyeliminated; simulation-based sear
h 
an only look at a representative sample.Whereas alpha-beta sear
h typi
ally has a depth limitation, most simulation-based programs follow a path from the root of the sear
h to the end of the game.Thus, one 
an 
hara
terize alpha-beta sear
h trees as having large width, butlimited depth. Simulations, on the other hand, typi
ally have limited breadthbut large depth. Figure 5 illustrates the di�eren
es in these two approa
hes,where an \x" is used to indi
ate where evaluations o

ur in the sear
h.
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(a) Alpha-beta sear
h (b) Simulation sear
hFigure 5: Contrasting sear
h methods.Simulations are used in many bran
hes of s
ien
e, but have only re
entlyemerged as a powerful tool for 
onstru
ting high-performan
e game-playing pro-grams. They have proven to be e�e
tive in ba
kgammon, bridge, poker, andS
rabble. This te
hnique deserves to be re
ognized as an important frameworkfor building game-playing programs, equal in stature to the alpha-beta model.2.4 Perspe
tivesEnormous progress has been made in understanding the algorithms needed tobuild game-playing programs. Most of this work has been driven by the desireto satisfy one of the early goals of arti�
ial intelligen
e resear
h, building aprogram 
apable of defeating the human world 
hess 
hampion. Hen
e, mostgames-related resear
h has 
on
entrated on alpha-beta sear
h. With the 
hesssu

ess on the horizon, many resear
hers bran
hed out into other games. Asa result, resear
h e�orts on two-player perfe
t-information games has movedto the ba
kground. New vistas are being explored, with temporal-di�eren
elearning and simulations being samples of the 
urrent resear
h thrusts.The resear
h in developing algorithms for game playing has appli
ability toother appli
ation domains, but the 
ommunity of resear
hers involved have done20



a poor job selling the te
hnology. For example, many of the sear
h te
hniquespioneered with alpha-beta have be
ome standard in other sear
h domains (e.g.,iterative deepening), with few realizing the lineage of the ideas.3 Advan
es in Computer GamesThis se
tion summarizes the progress made in a number of popular games.These in
lude games where 
omputers are better than all humans (
he
kers,Othello, and S
rabble), are as good as the human world 
hampion (ba
kgammonand 
hess), and some where human suprema
y may be 
hallenged in the nearfuture (bridge and poker). Ea
h se
tion 
ontains a brief history of programdevelopment for that game, a 
ase study on the best program in the area, anda representative sample of their play. The 
ase study highlights interesting orunique aspe
ts of the program.The histories are ne
essarily brief. I apologize in advan
e to the many hard-working resear
hers and hobbyists whose work is not mentioned here.3.1 Ba
kgammonThe �rst 
on
erted e�ort at building a strong ba
kgammon program was un-dertaken by Hans Berliner of Carnegie Mellon University. In 1979 his program,BKG9.8, played an exhibition mat
h against the the newly-
rowned world 
ham-pion Luigi Villa [52, 53℄. The stakes were $5,000, winner take all. The �nal s
orewas 7-1 in favor of the 
omputer, with BKG9.8 winning four of the �ve gamesplayed (the rest of the points 
ame from the doubling 
ube).Ba
kgammon is a game of both skill and lu
k. In a short mat
h, the di
e
an favor one player over another. Berliner writes that \In the short run, smallper
entage di�eren
es favoring one player are not too signi�
ant. However, inthe long run a few per
entage points are highly indi
ative of signi�
ant skilldi�eren
es" [53℄. Thus, assessing the results of a �ve-game mat
h are diÆ
ult.Afterwards Berliner analyzed the program's play and 
on
luded that [52℄:There is no doubt that BKG9.8 played well, but down the line Villaplayed better. He made the te
hni
ally 
orre
t plays almost all thetime, whereas the program did not make the best play in eight outof 73 non-for
ed situations.BKG9.8 was an important �rst step, but major work was still needed to bringthe level of play up to that of the world's best players.In the late 1980s, IBM resear
her Gerry Tesauro began work on a neural-net-based ba
kgammon program. The net used en
oded ba
kgammon knowledgeand, training on data sets of games played by expert players, learned the weightsto assign to these pie
es of knowledge. The program, Neurogammon, was goodenough to win �rst pla
e in the 1989 Computer Olympiad [54℄.Tesauro's next program used a neural network that was trained using tempo-ral di�eren
e learning. Instead of training the program with data sets of games21



played by humans, Tesauro was su

essful in having the program learn using thetemporal di�eren
es from self-play games. The evolution in TD-Gammon fromversion 0.0 to 3.0 saw an in
rease in the knowledge used, a larger neural net, andthe addition of small sele
tive sear
hes. The resulting program is a
knowledgedto be on par with the best players in the world, and possibly even better.In 1998, an exhibition mat
h was played between world 
hampion Mal
olmDavis and TD-Gammon 3.0. To redu
e the lu
k fa
tor, 100 games were playedover three days. The �nal result was a narrow eight-point win for Davis. BothDavis and Tesauro have done extensive analysis of the games, 
oming up withsimilar 
on
lusions [55℄:While this analysis isn't de�nitive, it suggests that we may have wit-nessed a superhuman level of performan
e by TD-Gammon, marredonly by one horrible blunder redoubling to 8 in game 16, 
osting awhopping 0.9 points in equity and probably the mat
h!3.1.1 TD-GammonBa
kgammon 
ombines both skill and lu
k. The lu
k element 
omes from therolls of the di
e, making 
onventional sear
h te
hniques impra
ti
al. A singleroll of the di
e results in one of 21 distin
t 
ombinations, ea
h of whi
h resultsin an average of 20 legal moves to 
onsider. With a bran
hing fa
tor of over400, many of whi
h are equally likely and 
annot be pruned, brute-for
e sear
hwon't be e�e
tive.TD-Gammon is a neural network that takes as input the 
urrent boardposition and returns as output the s
ore for the position (roughly, the probabilityof winning) [56℄. The neural network a
ts as the evaluation fun
tion. Ea
h ofthe 
onne
tions in the neural net is parameterized with a weight. Ea
h node isa fun
tion of the weighted sum of ea
h of its inputs, produ
ing an equity valueas output.The neural net has approximately 300 input values (see Figure 6) [45, 57℄.For ea
h of the 24 points on the board, there are four inputs for ea
h playergiving the number of pie
es they have on that point. Additional inputs forea
h side are the number of pie
es on the bar, the number of pie
es taken o�the board, and whose turn it is. The likelihood of a
hieving a gammon or aba
kgammon are also input. The remaining 100 inputs are from fun
tions that
ompute positional features, taken from the Neurogammon program. The inputsto the net were 
hosen to simplify the system, and not to minimize the numberof inputs.TD-Gammon 2.0 used no ba
kgammon knowledge and had a neural net 
on-taining 80 hidden units. This program was suÆ
ient to play strong ba
kgam-mon, but not at a world-
lass level. Tesauro was able to improve the program'sperforman
e to be world-
lass 
aliber by adding Neurogammon's ba
kgammonknowledge as input to the neural net. This version, TD-Gammon 3.0, 
ontains160 hidden units in the neural network. Ea
h unit in the net takes a linear sumof the weighted values of its input, and then 
onverts it to a value in the range22



... ...

160 hidden inputs

Inputs:
backgammon position
and features (300 units)

Neural net:... ...

Output:
predicted probability
of winning

Figure 6: TD-Gammon 3.0's neural network.-3 to 3. A ba
kgammon is worth three points, a gammon two, and a win, onepoint. The 
onversion is done with a nonlinear sigmoid fun
tion, allowing theoutput to be a nonlinear fun
tion of the inputs. The resulting neural net hasapproximately 50,000 weights that need to be trained.The weights in the hidden units were trained using temporal di�eren
e learn-ing from self-play games. By playing the program against itself, there was anendless supply of data for the program to train itself against. In a given gameposition, the program uses the neural net to evaluate ea
h of the roughly 20di�erent ways it 
an play its di
e roll, and then 
hooses the move leading tothe maximum evaluation. Ea
h game is played to 
ompletion, and then tempo-ral di�eren
e learning is applied to the sequen
e of moves. Roughly 1,500,000self-play games were used for training TD-Gammon 3.0.TD-Gammon has been augmented with a sele
tive three-ply sear
h. For ea
hof its moves, TD-Gammon 
onsiders the most likely opponent responses, andits replies to those responses. Ea
h state 
onsidered in the sear
h has roughly400 possibilities, so for ea
h of the 21 di
e rolls, TD-Gammon only 
onsidersa handful of likely best moves for the opponent (sele
tively paring down thesear
h).A 
riti
al 
omponent of strong ba
kgammon is the handling of the doubling
ube. The 
ube strategy was added after the program was trained. It usesa theoreti
al doubling formula developed by mathemati
ians in the 1970s [58℄.During a game, TD-Gammon's reward estimates are fed into this formula to
ome up with an approximation of the expe
ted doubling payo�.Post-mortem analysis of ba
kgammon games use simulations (or roll-outs asthey are 
alled in the ba
kgammon 
ommunity). A roll-out 
onsists of repeat-edly simulating the play from a starting position through to the end of the game.Ea
h trial 
onsists of a di�erent sequen
e of di
e rolls. Ea
h move de
ision is23



based on a one-ply sear
h. A simulation is stopped after 10,000 trials or whena move be
omes statisti
ally better than all the alternatives.3.1.2 The Best of Computer Ba
kgammonThe following game was the 18th played in the exhibition mat
h between TD-Gammon 3.0 and world 
hampion Mal
olm Davis, held at the 1998 
onferen
eof the Ameri
an Asso
iation for Arti�
ial Intelligen
e. The game 
ommentsare by Gerry Tesauro (GT), Mal
olm Davis (MD) and TD-Gammon (TD). TDgives the top moves in a position, ordered by their s
ore. These values weredetermined after the mat
h by roll-outs. Tesauro explains how to interpret thes
ores [59℄:Ignoring gammons and ba
kgammons, if player's move de
ision is0.1 worse than the best move, the player has redu
ed his winning
han
es by about 5%, and ba
kgammon experts would regard thatas a \blunder." On the other hand, if the error is 0.02 or less, it only
osts about 1% in winning 
han
es, and su
h errors are regarded assmall.Ea
h of the 24 points is numbered and given relative to the side to move(White is 
ounter 
lo
kwise from their home; Bla
k is 
lo
kwise from theirhome). A move 
onsists of 1 to 4 
he
kers being moved, ea
h spe
i�ed with theirfrom- and to-points. The bar is labeled as point number 25. An � indi
ates a
apture move. In the following text, for ea
h turn the side to move (Bla
k orWhite) is given, followed by the di
e roll and the moves 
hosen.Bla
k: Mal
olm Davis | White: TD-Gammon 3.0B 5,1: 24-23 13-8; W 4,2: 8-4 6-4; B 6,2: 24-18 18-16; W 6,4: 24-1813�9; MD: A good play. Hitting twi
e is reasonably 
lose. GT: Good play byTD. Aggressively blitzing with 13�9 8�2 or 8�2 6-2 is not bad, but 
ommittal.TD's play keeps more options open and seems to be a more solid all-aroundpositional play, and in fa
t it 
omes out on top in the roll-out results. TD:24-18 13�9 = 0.252; 13�9 8�2 = 0.216; 8�2 6-2 = 0.207.B 4,2: 25-23 13-9; MD: A total toss-up versus 8-4. Going to the 9 point ismore my style, ignoring the 3 dupli
ation. GT: Whoops, the roll-outs say that8-4 is slightly better. Not only is it fewer shots, but it's also a better point ifmissed and 
overed. Not sure what MD was thinking here. TD: 25-23 8-4 =-0.389; 25-23 13-9 = -0.407.W 6,6: 24-18 13-7 13-7 13-7; MD: Not 
hallenging. Going to the 3 pointdupli
ates 1's and is about a 4% error. GT: I have to 
onfess that this one isbeyond me. I would have held on to the midpoint and slotted the 3 point withthe last six. TD's play gives up a point, leaves two blots instead of one, in notvery good lo
ations, and yet it wins the roll-out. I guess what's going on is thatTD's play leaves a bun
h of builders to make the �ve point, whi
h is perhaps thekey point in this position. The midpoint is not so valuable when White already24
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242322Figure 7: Mal
olm Davis (Bla
k) versus TD-Gammon 3.0 (White).White to play a 2-1.owns the 18 point, and playing 9-3 makes it very unlikely that White will be ableto make the �ve point anytime soon. Well done, TD! TD: 24-18 13-7 13-7 13-7= 0.516; 24-18 13-7 13-7 9-3 = 0.444.B 4,3: 9-5 8-5; MD: High marks to the human. Hitting is a slight error,perhaps more so if the 
ube is about to be turned, as it 
reates a more volatileposition. TD: 9-5 8-5 = -0.479; 23-20 20�16 = -0.482.White doubles, Bla
k takes; MD: This double is apparently a little tooaggressive, although not at all unreasonable. GT: Based on 10,000 full roll-outswith the 
ube, the double is barely 
orre
t. The no-double equity is 0.73, whereasthe equity after double/take is 0.75.W 3,3: 8-5 8-5 6-3 6-3; MD: TD's biggest pie
e movement error. Makingthe 15 and 3 points is about 2% better. GT: Many options here: one 
an attemptto disengage with 18-15 18-15, safety the blot, make the 5 point, or make the 3point. TD makes the best play hanging ba
k on the 18 point and keeping all full-
onta
t options open. However, the position themati
ally points to disengagingsin
e White is far ahead in the ra
e and has gotten all the ba
k 
he
kers out.The roll-outs reveal that this is better than TD's 
hoi
e. TD: 18-15 18-15 6-36-3 = 0.547; 8-5 8-5 6-3 6-3 = 0.522.B 1,1: 13�12 12-11 11-10 6-5; MD: My biggest error { I was playingqui
kly and didn't 
onsider the mu
h better 6-4 6-4. GT: A tough 
hoi
e forMD. He 
an hit the blot while he has the 
han
e, or wait and build up his boardwith 6-4 6-4 and hope that TD has trouble 
learing the 18 point. If he's going tohit, perhaps he should hit safely with 13�12 13-12 13-12 6-5. The 
hoi
e is not
lear to me, but the roll-outs say that MD's play is a big mistake. TD: 6-5 6-55-4 5-4 = -0.466; 13�12 13-12 13-12 6-5 = -0.489; (5th ranked move) 13�1212-11 11-10 6-5 = -0.549. 25



W 5,2: 25�23 23-18; B 5,1: 10-5 5-4; W 6,3: 18-15 15-9; B 4,2:8-4 5-3; W 4,1: 9-5 7-6; B 5,1: 8-3 6-5; MD: A photo 
ompared to 6-5 6-1.GT: Bold play by MD, risking an immediate fatal hit in order to keep a ni
einner board stru
ture. I would have 
hi
kened out and played safe with 6-1 4-3.The roll-outs 
ome out about equal. TD: 6-1 4-3 = -0.535; 8-3 6-5 = -0.544;6-5 6-1 = -0.545.W 6,5: 6-1 9-3; B 5,2: 8-3 6-4; MD: Perhaps a very good play. GT: IfMD slots the a
e point, it 
ould be a liability in the event of immediate a
tionafter TD rolls a �ve. Instead, he 
hooses 6-4, avoiding the blot, but making hisown �ves awkward. The roll-outs give a statisti
ally insigni�
ant edge to 3-1.TD: 8-3 3-1 = -0.401; 8-3 6-4 = -0.414.W 2,1: 3-1 5-4; B 5,1: 6-1 3-2; MD: Perhaps a very good play by thehuman. Leaving only one blot gives up about 2%. GT: Talk about �ves beingawkward! MD makes an outstanding play here, leaving three blots in the homeboard, but keeping a smooth distribution and hoping to straighten everything outnext turn. I would have played the more 
raven 4-3 or 5-4, whi
h turns outbadly in the roll-outs. Being able to play the bad rolls well is the hallmark of a
hampion. TD: 6-1 3-2 = -0.657; 6-1 4-3 = -0.716; 6-1 5-4 = -0.728.W 2,1: 18-16 18-17; See Figure 7. MD: A �ne play. GT: Brian Sheppard,who was in the audien
e at the time, applauded TD for this spe
ta
ularly un-
omputer-like play. White 
ould easily leave no blots with 7-6 7-5, and keep allthe points with 4-1. However, TD realizes that it's ahead in the ra
e and behindin timing, and that if it waits on the 18 point, it may well have to break it nextturn, when MD's board will likely be 
leaned up and mu
h stronger. So this isan ex
ellent time to run with 18-17 18-16. Bla
k's board is su
h a mess thathe probably won't hit even if he 
an. TD: 18-17 18-16 = 0.718; 18-16 16-15 =0.668; 4-3 3-1 = 0.558; 7-6 7-5 = 0.550.B 4,2: 5-1 4-2; W 4,1: 16-15 15-11; MD: Straightforward. GT: Another�ne play by TD. It's tempting to button up and leave one blot and fewer shotswith 17-16 7-3. However, this leaves a diÆ
ult point to 
lear next turn, plus it'snot a good idea to allow Bla
k to a

omplish both hitting and es
aping with �vesnext turn. TD: 16-15 15-11 = 0.424; 17-16 7-3 = 0.392.B 3,3: 13-10 13-10 10-7 10-7; W 3,2: 11-9 9-6; B 4,3: 7-4 6-2; MD:Close, but the best play. GT: MD saves a six in the out�eld so he won't have tobreak the 23 point next turn. An eminently reasonable idea, but 
uriously 7-37-4 
omes out a tiny bit better in the roll-outs, quite possibly due to samplingnoise. TD: 7-4 7-3 = -0.763; 7-4 6-2 = -0.777.W 2,1: 6-5 17-15; B 6,4: 23-17 7-3; MD: Not 
lear and very 
lose. GT:A tough 
hoi
e. MD boldly breaks the an
hor and leaves two blots, rather thanwre
k his board with 7-1 5-1. Comparing apples and oranges is often diÆ
ult forhumans and, here, the roll-outs say that safety is better. TD: 7-1 5-1 = -0.822;23-17 7-3 = -0.865.W 4,1: 7-3 3�2; MD: TD is fearless. Hitting is right by a huge margin.GT: A s
ary play, but it's often been said that \Computers don't get s
ared."TD: 7-3 3�2 = 0.575; 7-6 7-3 = 0.514.26



B 2,1: 25-23 17-16; W 2,1: no move; Bla
k redoubles, Whitepasses; MD: Against a human it would be right to double if there's any 
han
eat all that the 
ube might be taken. However, there's no 
han
e of that againsta [TD-Gammon℄, so this is a small 
ube error. GT: Whoops! This position isa
tually too good to redouble! Bla
k does slightly better by holding the 
ube andtrying to win a gammon by pi
king up the se
ond blot. 10,000 roll-outs with the
ube indi
ate an equity advantage of 0.04 to playing on instead of 
ashing.Tesauro's postmortem analysis of the mat
h strongly suggests that TD-Gammon was the better player [55℄:I rolled out every position in the Davis{TD mat
h where the dou-bling 
ube was turned (full roll-outs with the 
ube, no settlements).There were 130 su
h positions. In 72 positions, TD-Gammon dou-bled:1. TD made 63 
orre
t doubles and 9 in
orre
t doubles; total eq-uity loss 1.25.2. MD made 56 
orre
t take/pass de
isions and 16 in
orre
t; totalequity loss 2.60.In 58 positions, Mal
olm Davis doubled:� MD made 46 
orre
t doubles and 12 in
orre
t; total equity loss1.58.� TD made 54 
orre
t take/pass de
isions and 4 in
orre
t; totalequity loss 0.19.Of 
ourse, to get the whole story, we also have to 
he
k all the posi-tions where a player 
ould have doubled but didn't. It's infeasible toroll out all these positions, but I did do roll-outs of ea
h of the 130\turn-before" positions, to see if a player missed a double the turnbefore the 
ube was a
tually o�ered. To summarize those results:� In 72 positions, TD 
orre
tly waited in 67 and missed doublesin 5; total equity loss 0.25.� In 58 positions, MD 
orre
tly waited in 45 and missed doublesin 13; total equity loss 1.24.However, 4 of MD's \errors" were at the end of the mat
h when hewas playing 
onservatively to prote
t his mat
h lead. If we ignorethese then he only missed doubles in 9 positions, for a total equityloss of 0.61.Mal
olm has also done a preliminary analysis with Jelly�sh [a 
om-mer
ial program℄ of the 
he
ker plays, whi
h indi
ated that TDplayed better. (The fa
t that TD obtained more opportunities todouble than MD also suggests it was moving the pie
es better.)27



3.2 BridgeWork on 
omputer bridge began in the early 1960s ([60℄, for example), but itwasn't until the 1980s that major e�orts were made. The advent of the personal
omputer spurred on numerous 
ommer
ial proje
ts that resulted in programswith relatively poor 
apabilities. Perennial world 
hampion Bob Hamman on
eremarked that the 
ommer
ial programs \would have to improve to be hopeless"[61℄. A similar opinion was shared by another frequent world 
hampion, ZiaMahmood. In 1990, he o�ered a prize of $1,000,000 to the person who developeda program that 
ould defeat him at bridge. At the time, this seemed like a safebet for the foreseeable future.In the 1990s, several a
ademi
 e�orts began using bridge for resear
h in ar-ti�
ial intelligen
e [62, 63, 61, 64, 65℄. The 
ommer
ial Bridge Baron programteamed up with Dana Nau and Steve Smith from the University of Maryland.The result was a program that won the 1997 world 
omputer bridge 
hampi-onship. The program used a hierar
hi
al task network for the play of the hand.Rather than building a sear
h tree where ea
h bran
h was the play of a 
ard,they would de�ne ea
h bran
h to be a strategy, using human-de�ned 
on
eptssu
h as �nesse and squeeze [64, 65℄. The result was an in
remental improvementin the program's 
ard play, but it was still far from being world-
lass 
aliber.Beginning in 1998, Mathew Ginsberg's program GIB started dominatingthe 
omputer bridge 
ompetition, handily winning the world 
omputer bridge
hampionship. The program started produ
ing strong results in 
ompetitionsagainst humans, in
luding an impressive result in an exhibition mat
h againstworld 
hampions Zia Mahmood and Mi
hael Rosenberg. The mat
h lastedtwo hours, allowing 14 boards to be played. The result was in doubt untilthe last hand, before the humans prevailed by 6.31 IMPs (International Mat
hPoints). This was the �rst notable man-ma
hine su

ess for 
omputer bridge-playing programs. Zia Mahmood, impressed by the rapid progress made byGIB, withdrew his million pound prize.GIB was invited to 
ompete in the Par Contest at the 1998 world bridge
hampionships. This tournament tests the 
ontestant's skills at playing outbridge hands. In a sele
t �eld of 35 of the premier players in the world, theprogram �nished strongly in 12th pla
e. Mi
hael Rosenberg won the eventwith a s
ore of 16,850 out of 24,000; GIB s
ored 11,210. Of the points lost byGIB, 1,000 were due to time (there was a 10 point penalty per minute spentthinking), 6,000 were due to GIB not understanding the au
tion, and 6,000 weredue to GIB's inability to handle some hands where the 
orre
t strategy involves
ombining di�erent possibilities [61℄. The latter two issues are 
urrently beingaddressed.3.2.1 GIBThe name GIB originally stood for \Goren In a Box", a tribute to one of thepioneers of bridge. Another interpretation is \Ginsberg's Intelligent Bridge."To play out a hand, a variation of alpha-beta sear
h 
an be used. The28



average bran
hing fa
tor is roughly 4. Alpha-beta pruning and transpositiontables redu
es it to approximately 1.7. Ordering moves at interior nodes of thesear
h to favor those moves that give the opponent the least number of possibleresponses (i.e. preferring small sub-trees over large ones), further redu
es thebran
hing fa
tor to 1.3. Given the depth of the sear
h (to the end of the hand;possibly a tree of depth 52), the trees are surprisingly small (on the order of 106nodes).Ginsberg's partition sear
h algorithm is used to augment the sear
h [63℄.Partition sear
h is a \smart" transposition table, where di�erent hands that havein
onsequential di�eren
es are treated as the same hand, signi�
antly in
reasingthe number of table hits. For example, from a transposition table's point ofview, the hands \� K Q 8 4 2" and \� K Q 8 4 3" are di�erent. However, byrepresenting the entry as \� K Q 8 X X", where \X" denotes any small 
ard,the analysis on the �rst hand 
an be applied to the se
ond hand. The resultof adding partition sear
h redu
es the average sear
h tree size for a deal to aremarkably small 50,000 nodes.To de
ide how to play a hand, GIB uses a simulation [61℄. For ea
h trial,
ards are dealt to ea
h opponent that are 
onsistent with the play thus far.Typi
ally 50 deals are used in the simulation; the 
ard play that results inthe highest expe
ted number of tri
ks won is 
hosen to be played. Simulationsare not without their disadvantages. An important 
omponent to the playof the hand are so-
alled information-gathering plays. A tri
k is played (andpossibly lost) to reveal more information on the makeup of the opponent's hands.Unfortunately, sin
e a simulation involves assigning 
ards to the opponents, theprogram has perfe
t knowledge of where all the 
ards lie and, within a given trial,information gathering plays are not needed! This demonstrates a limitation ofperfe
t-information variants of imperfe
t-information reality.Most previous attempts at bridge bidding have been based on an expert-de�ned set of rules. This is largely unavoidable, sin
e bidding is an agreed-upon
onvention for 
ommuni
ating 
ard information. GIB takes this one step further,building on the ability to qui
kly simulate a hand [61℄. The program has a

essto a large database of bidding rules (7,400 rules from the 
ommer
ial programMeadowlark Bridge). At ea
h point in the bidding, GIB queries the database to�nd the set of plausible bids. For ea
h bid, the rest of the au
tion is proje
tedusing the database, and then the play of the resulting 
ontra
t is simulated.GIB 
hooses the bid that leads to the average best result for the program.Although intuitively appealing, this approa
h does have some problems. No-tably, as with opening books in other games, the database of rules may havegaps and errors in it. Consider a rule where the response to the bid 4� is in-
orre
t in the database. GIB will dire
t its play towards this bid be
ause itassumes the opponent's will make the (likely bad) database response. As Gins-berg writes, \it is diÆ
ult to distinguish a good 
hoi
e that is su

essful be
ausethe opponent has no winning options from a bad 
hoi
e that appears su

essfulbe
ause the heuristi
 fails to identify su
h options" [61℄.GIB uses three partial solutions to the problem of an erroneous or in
ompletebidding system. First, the bidding database 
an be examined by doing extensive29



o�-line 
omputations to identify erroneous or missing bid information. Thisis e�e
tive, but 
an take a long time to 
omplete. Se
ond, during a game,simulation results 
an be used to identify when a database response to a bidleads to a poor result. This may be eviden
e of a database problem, but it 
ouldalso be the result of e�e
tive disruptive bidding by GIB. Finally, GIB 
an bebiased to make bids that are \
lose" to the suggested database bids, allowingthe program the 
exibility to deviate from the database.To summarize, GIB is well on the way to be
oming a world-
lass bridgeplayer. The program's 
ard play is already at a world-
lass level (as eviden
ed bythe Par Contest result), and 
urrent e�orts will only enhan
e this. The biddingneeds improvement, and this is 
urrently being addressed. Had Zia Mahmoodnot withdrawn his o�er, he might have lost his money within a 
ouple of yearsfrom now.3.2.2 The Best of Computer BridgeThe following hand is board 11 of the 1998 exhibition mat
h between GIB andworld 
hampions Zia Mahmood and Mi
hael Rosenberg, held at the annual
onferen
e of the Ameri
an Asso
iation for Arti�
ial Intelligen
e in 1998. Thehumans won the mat
h by 6.31 IMPs over 14 deals.North: Zia� A J 9~ 7 3} K Q J 10 8 5 3| KWest: GIB1 East: GIB2� 10 7 6 2 � K Q 4~ J 6 4 ~ A 10} 7 2 } 9 6| A 10 9 3 | 8 7 6 5 4 2South: Rosenberg� 8 5 3~ K Q 9 8 5 2} A 4| Q JSouth West North East1} pass1~ pass 3} pass3~ pass 3� pass4} pass 4~ passpass pass
30



Opening lead: 2�Figure 8: Mahmood-Rosenberg versus two GIBs.The hand shown in Figure 8 was analyzed by Mike Whittaker and reportedin Bridge Magazine [66℄,8 
ommenting on GIB's defensive play.GIB1, West, led with a small �, won by the Queen. GIB2 swit
hed to a },won by dummy's Ja
k. Leading a ~ to the King won, and Rosenberg then leda |, won by GIB1. A se
ond } lead was won by the A
e and Rosenberg trieda � to the Ja
k, losing to the King. GIB2 
ashed the A
e ~ before leading asmall � to dummy's A
e. Rosenberg found himself lo
ked in dummy, for
ed tolead a }. This had the e�e
t of promoting the Ja
k ~ for GIB2 and Rosenberg�nished two down.Finally, we 
ome to the FAQ (Frequently Asked Question): will the 
om-puters ever triumph against top quality human opposition? The idea has alwaysbeen laughed at but I would not be too 
ompla
ent. Before long the sheer 
omput-ing power of the 
omputer will give it a de�nite edge over even the best humande
larer in 
ontra
ts that require te
hni
al expertise. However, I think that the
omplexities of the bidding language, the use of de
eption in play and defenseand some abstra
t qualities, su
h as table presen
e, will keep the humans ahead,at least for a while.Figure 9 is used to illustrate GIB's stellar play of the hand. The analysiswas done by Onno Eskes and reported in IMP magazine [67℄9.West opens 2 |, showing a weak hand with both major suits. Unpleasant,but on the other hand, it be
omes a lot easier for us to stay out of a ~ 
ontra
t.We 
on�dently rea
h 7 }. West leads the Ja
k �. I greet dummy with approval.\Well bid," I remember thinking. I 
ount �ve trumps, twi
e A
e-King-Queen,A
e � and a ru� in dummy. What 
an go wrong?Trumps four-zero. If left-hand opponent has them all, I will go down. Ifopponent on the right has them, I 
an �nesse against his Ja
k. But then I
annot ru� a ~ anymore. Well, then they'd better not be four-zero. I take A
e� and lead a } to the A
e. West dis
ards a �. I 
urse under my breath andstart thinking again. Are there any 
han
es left? In |, maybe? If those arefour-four, I 
an dis
ard a loser on the �fth |.8Reprodu
ed with permission. Minor editing 
hanges have been made to 
onform with thestyle of this 
hapter.9Reprodu
ed with permission. Minor editing 
hanges have been made to 
onform with thestyle of this 
hapter.
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North� A 3~ 7 4} Q 8 7 4| A K Q 6 3West EastSouth� Q 2~ A K Q 10 8 3} A K 10 3 2| |Contra
t: 7}Opening lead: J�Figure 9: Illustrating GIB's play of the hand.But I have only one entry left. I should have started by ruÆng a |. \Onedown," I 
on
ede, \how are the 
lubs divided?" \Four-four," is the painful reply.Fortunately for us, exa
tly the same thing happened at the other table!The next day I am still disgusted with the hand. It is a ni
e problem, however.I de
ide to present the hand to GIB... I enter the hands and the au
tion. I alsoenter the explanation of the bids (West at least 4-4 in the majors, less thanopening strength) and the opening lead. Then the 
omputer starts to bubble.After 30 se
onds it produ
es A
e �. I tell it whi
h 
ard East plays to the �rsttri
k. Again 30 se
onds of thinking. A
e |! I let East and West follow small.The 
omputer dis
ards Queen �. Another 30 se
onds. Small |, ru�ed in hand!Forlorn, I wat
h the 
omputer �nish the rest of the play in imma
ulate fashion.A
e } (dis
overing the bad trump split), } to the Queen, King |, Queen | anda good |. East ru�s, South over-ru�s and he 
an now ru� his last ~ in dummy.Beaten by the 
omputer! The humiliation is 
omplete when the ma
hinesubtly announ
es that it just s
ored plus 2140.3.3 Che
kersArthur Samuel began thinking about a 
he
kers program in 1948 but did notstart 
oding until a few years later. He was not the �rst to write a 
he
kers-playing program; Stra
hey pre-dated him by a few months [68℄. Over the spanof three de
ades, Samuel worked steadily on his program with performan
e tak-ing a ba
k seat to his higher goal of 
reating a program that learned. Samuel'sprogram is best known for its single win against Robert Nealey in a 1963 exhi-bition mat
h. From this single game, many people erroneously 
on
luded that
he
kers was a \solved" game.In the late 1970's, a team of resear
hers at Duke University built a strong
he
kers-playing program that defeated Samuel's program in a short mat
h [69℄.Early su

ess 
onvin
ed the authors that their program was possibly one of32



the 10 best players in the world. World 
hampion Marion Tinsley e�e
tivelydebunked that, writing that: \The programs may indeed 
onsider a lot of movesand positions, but one thing is 
ertain. They do not see mu
h!" [70℄. E�ortsto arrange a mat
h between the two went nowhere and the Duke program wasquietly retired.Interest in 
he
kers was rekindled in 1989 with the advent of strong 
ommer-
ial programs and a resear
h e�ort at the University of Alberta: Chinook. Chi-nook was authored prin
ipally by Jonathan S
hae�er, Norman Treloar, RobertLake, Paul Lu, and Martin Bryant. In 1990, the program earned the right to
hallenge for the human world 
hampionship. The 
he
kers federations refusedto san
tion the mat
h, leading to the 
reation of a new title: the world man-ma
hine 
hampionship. This title was 
ontested for the �rst time in 1992, withMarion Tinsley defeating Chinook in a 40-game mat
h by a s
ore of 4 winsto 2. Chinook's wins were the �rst against a reigning world 
hampion in anon-exhibition event for any 
ompetitive game.There was a remat
h in 1994, but after six games (all draws), Tinsley re-signed the mat
h and the title to Chinook, 
iting health 
on
erns. The followingweek he was diagnosed with 
an
er, and he died eight months later. Chinookhas subsequently defended its title twi
e, and has not lost a game sin
e 1994.The program was retired in 1997 after it be
ame 
lear that there was no livingperson whose abilities 
ame 
lose to that of the program [42℄.Chinook is the �rst program to win a human world 
hampionship. At thetime of this writing, the gap between Chinook and the highest-rated human is200 rating points (using the 
hess rating s
ale) [42℄, making it unlikely thathumans will ever improve to Chinook's level of play.3.3.1 ChinookIn his 1960 Advan
es in Computers 
hapter, Samuel felt bad about using thearti
le to des
ribe his work instead of his prede
essor, Stra
hey. The same
omment that Samuel wrote in 1960 applies to this se
tion, after substitutingS
hae�er's name for Samuel's and repla
ing Stra
hey with Samuel: \While itis grossly unfair to dismiss Samuel's work in a single paragraph and to dis
ussthe present writer's own e�orts in some detail, in the interests of 
on
isenessthis will have to be done. Perhaps su
h high-handed behavior 
an be ex
usedif the writer publi
ly apologizes for his a
tion, as he does now, and publi
lya
knowledges the 
redit whi
h Dr. Samuel is due."The stru
ture of Chinook is similar to that of a typi
al 
hess program: sear
h,knowledge, opening book, and endgame databases [42, 71℄. Chinook uses alpha-beta sear
h (NegaS
out) with a myriad of enhan
ements in
luding iterativedeepening, transposition table, history heuristi
, sear
h extensions, and sear
hredu
tions. Further performan
e is provided by a parallel sear
h algorithm.With 1994 te
hnology, an 18-pro
essor Sili
on Graphi
s Power Challenge, Chi-nook was able to average a minimum of 19-ply sear
hes against Tinsley withsear
h extensions o

asionally rea
hing 45 ply into the tree. The median posi-tion evaluated was typi
ally 25-ply deep into the sear
h.33



The sear
h depths a
hieved are usually suÆ
ient to un
over most ta
ti-
al threats in a position, however they are inadequate to resolve positionalsubtleties. Hen
e, 
onsiderable 
omputational e�ort is devoted to identifyingpromising lines of play to extend the sear
h, and futile lines to redu
e the sear
hdepth. Experiments show that a program sear
hing 17 ply plus extensions willdefeat a program going 23 ply deep without extensions (ea
h program used thesame amount of time for ea
h sear
h). By most standards, giving up 6-ply ofsear
h for the extensions is extraordinarily high. However, players like Tinsleyhave 
onsistently demonstrated an ability to analyze 30-ply deep (or more), soChinook has to be able to mat
h this 
apability.The evaluation fun
tion was manually tuned over a period of �ve years.For ea
h of four game phases, it 
onsists of 25 features 
ombined by a linearfun
tion. Interestingly, most of the features in Samuel's program were not usedin Chinook|many of them were there to over
ome the limitations of the shallowsear
h depths that Samuel 
ould a
hieve using 1960's hardware. The evaluationfun
tion was 
arefully tuned by a 
he
kers expert through extensive trial-and-error testing. Attempts at automati
ally tuning the evaluation fun
tion wereunsu

essful.There were two major improvements to the evaluation fun
tion that are ofinterest. First, in 1992 a major 
hange enhan
ed the program's knowledge butresulted in a two-fold redu
tion in the number of positions that the program
ould analyze per se
ond (e�e
tively 
osting it one ply of sear
h) [42℄. Despitethe redu
ed sear
h pro�
ien
y, the new knowledge signi�
antly improved thequality of the evaluations, resulting in a stronger program. This was strongeviden
e that Chinook's sear
h depths were hitting diminishing returns for ad-ditional sear
h e�orts [39℄; more was to be gained by the addition of usefulknowledge than additional sear
h.The se
ond re�nement was allowing the sum of positional s
ores to be able toex
eed the value of a 
he
ker. In prin
iple, this is dangerous sin
e the programmay prefer large positional s
ores over material ones. However, a 
riti
al 
om-ponent in human grandmaster play is the ability to re
ognize the ex
eptions;when material is a se
ondary 
onsideration. Adding this 
apability eliminateda serious sour
e of errors, and was a major reason for Chinook's ex
ellent resultin the 1992 world man-ma
hine 
hampionship.Chinook uses an endgame database 
ontaining all 
he
kers positions witheight or fewer pie
es. This database has 444 billion (4 � 1011) positions, 
om-pressed into six gigabytes for real-time de
ompression. Unlike 
hess programswhi
h are 
ompute-bound, Chinook be
omes I/O-bound after a few moves in agame. The deep sear
hes mean that the database is o

asionally being hit on the�rst move of a game. The databases introdu
e a

urate values (win/loss/draw)into the sear
h, redu
ing the heuristi
 error. In many games, the program isable to ba
kup a draw s
ore to the root of a sear
h within 10 moves by ea
h sidefrom the start of a game. This suggests that it may be possible to determinethe game-theoreti
 value of the starting position of the game (one de�nition of\solving" the game).Chinook has a

ess to a large database of opening moves 
ompiled from the34




he
kers openings literature. This extensive opening book allows the programto play its �rst moves from the opening database, 
ome out of the book, andthen usually be able to sear
h deeply enough to �nd its way into the endgamedatabase. This implies that the window for program error is very small. In the1994 Chinook{Tinsley mat
h, �ve of the six games followed this pattern (in theother game, Tinsley made an error and Chinook had to try for a win). All thepositions in the opening book were veri�ed using at least 19-ply sear
hes. Thisun
overed numerous errors in the published literature.A database of all known games played by Marion Tinsley was 
ompiled.When the program was out of its opening book, this database 
ould be usedto bias the sear
h. For example, when playing the weaker side of an opening,the program would in
lude a favorable bias towards any move that Tinsley hadpreviously played in this position. The idea is that, sin
e Tinsley rarely madea mistake, his move is likely to be the right 
hoi
e. When playing the strongerside of the opening, the database was used for a di�erent purpose. By biasingthe sear
h againstmoves suggested by the database, the program 
ould in
reasethe 
han
es of playing a new move, thereby throwing the human opponent ontotheir own resour
es (in
reasing the 
han
e of human error).Arthur Samuels' program did not 
ome 
lose to rea
hing the pinna
le of
he
kers. In part, this was be
ause of the limited hardware resour
es that hehad available to him at the time. But it was also due to his insisten
e ondeveloping a program that learned everything by itself. Samuel wrote in his1960 
hapter that \suggestions that [I℄ in
orporate standard openings or otherforms of man-devised 
he
ker lore have been 
onsistently reje
ted. ... [I℄ refuseto pass judgment on whether the program makes good moves for the rightreasons, demanding instead, that it develop its own reasons" [72℄. Ironi
ally, amajor reason for the su

ess of Chinook was the use of the \man-devised" lorethat Samuel 
onsistently reje
ted.3.3.2 The Best of Computer Che
kersIn the 1992 world man-ma
hine 
hampionship, the mat
h was tied at one winapie
e at the start of game 14. The annotations are based on those appearingin [42℄. Comments in itali
s are from Marion Tinsley. The game notation isidenti
al to that used in 
hess: 
olumns are labeled a to h from left to right,and the rows are labeled 1 to 8 from bottom to top. An � indi
ates a 
apturemove. Bla
k: Marion Tinsley | White: Chinook1. h6-g5 a3-b4 2. b6-
5 Sin
e the standard starting position is drawish,tournament 
he
kers uses the so-
alled \Three Move Ballot". The �rst threemoves of the game (two by Bla
k, one by White) are 
hosen randomly, resultingin some interesting, lop-sided starting positions. Hen
e two games are playedfor ea
h opening, with the opponents swit
hing 
olors after the �rst game. Atthe time of this mat
h, 142 openings had been approved for tournament play.Chinook has to have opening knowledge for both sides of all the openings.35
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0Z0Z030ZZ0Z0Z0Z00Z0Z0Z0Z20Z0Z0Z004030Z02Z0Z0Z0100Z0Z0101Z0Z040Z0(a) 16. ... a5-b6 (b) 34. ... e3-d4Figure 10: Tinsley (Bla
k) versus Chinook (White).2. ... b4-a5 3. g5-f4 g3�e5 4. d6�f4 e3�g5 5. f6�h4 d2-e3 6. g7-f6
3-d4 7. e7-d6 d4�b6 8. a7�
5 b2-
3 9. h8-g7 
3-d4 Chinook is now outof its opening book. The program reports having a small advantage.10. 
5-b4 e1-d2 11. d6-e5 d4-
5 12. g7-h6 I on
e laughed at [grand-master Willie℄ Ryan for forgetting his own published play, but no more! Ba
kin 1948, I gave the better f6-g5 to draw... Pat M
Carthy [a top British player℄later asked me why I didn't take this simple route. The answer? I had simplyforgotten it! Tinsley seems to think g7-h6 is a bad move, but Chinook seesnothing wrong with it.12. ... h2-g3 Chinook expe
ts 
7-d6 in reply, with an even game.13. h6-g5 Tinsley has no 
omment on this move, but Chinook thinks it is amajor mistake. Analysis 
ondu
ted months after the game indi
ates that afterh6-g5 the game is probably lost. Tinsley atta
hes the blame to his previousmove whi
h apparently leads to a position that he feels un
omfortable with,even though it leads to a draw (assuming perfe
t play).13. ... a1-b2 14. b4-a3 
5-b6 Suddenly Chinook believes it has a hugeadvantage (over one-half of a 
he
ker). This may not be obvious by looking atthe position; it is the result of sear
hing over 20 plies into the future.15. f8-g7 b6-a7 This illustrates an important lesson about putting knowl-edge into a program: every pie
e of knowledge has its ex
eptions. Normally,putting a man into the dog-hole (a7 for White; h2 for Bla
k) is bad, but here itturns out to be very strong. Unfortunately, Chinook always penalizes the dog-hole; it does not understand any of the ex
eptions. After this b6-a7, I neversaw a glimpse of a draw.16. 
7-d6 a5-b6 See Figure 10a. In
redible! Chinook is sa
ri�
ing a 
he
keragainst Tinsley. Prior to this mat
h, Chinook had a history of misassessing thesetype of sa
ri�
es, resulting in some bad losses. Tinsley himself identi�ed this asa serious weakness in the program. Fortunately, a few days before the mat
hbegan, a serious problem in Chinook's evaluation fun
tion was un
overed (and�xed) that explained the program's poor play in these type of positions.17. b8-
7 a7-b8=k Now the pre
eding moves make sense. This sa
ri�
ehas been in the works for a few moves now and Tinsley has been avoiding it.Now he has run out of safe moves and is for
ed to a

ept it. It is hard to believe36



that Bla
k 
an survive. White has a mobile king and strong ba
k rank (makingit hard for Bla
k to get a king). What is Bla
k to do?18. 
7�a5 b8-a7 19. d8-e7 a7-b8 Is Chinook winning? The positionlooks very strong, but Chinook reports only a moderate advantage. The pro-gram intended to play b2-
3, but at the last minute swit
hes to a7-b8 by anarrow margin. The alpha-beta sear
h di�erentiates between the moves by aninsigni�
ant (and likely random) 3/100ths of the value of a 
he
ker. After thegame, Tinsley revealed that he was praying for b2-
3, as he 
laimed that it ledto a draw. a7-b8 may be the only winning move.20. g7-h6 g1-h2 21. d6-
5 b8-
7 22. e5-d4 
7-d6 Winning ba
k the
he
ker with a dominating position. Unfortunately, Chinook's s
ore does notre
e
t this. It was sear
hing so deep that it must have found a way for Bla
kto extri
ate himself.23. f6-e5 d6�f8 24. g5-f4 e3�g5 25. h6�f4 f8-e7 26. 
5-b4 d2-
3 Atthis point, Chinook's analysis revealed why the assessment had been low overthe past few moves: it saw that it was winning a 
he
ker but thought Bla
k
ould draw despite the 
he
ker de�
it. Now the sear
h is able to see far enoughahead to realize that the draw is unlikely.27. b4�d2 
1�e3�g5 28. a3�
1=k e7-d6 29. d4-
3 d6�f4 30. 
3-d2 g5-f6 Chinook announ
es it has found a for
ed win in its endgame database.For this mat
h, the program had a

ess to all the seven-pie
e positions, and asmall portion of the eight-pie
e endgames.31. d2-e1=k f6-e7 32. 
1-b2 f4-e3 33. b2-
3 e7-f8=k 34. 
3-b4 e3-d4 Tinsley resigns. See Figure 10b. The winning line goes as follows: b4-a3f8-e7 a5-b4 d4-e3 b4-
3 e7-d6 
3-b2 d6-e5 b2-
1=k, and now g3-f4 frees White's
he
kers. After e1�g3, then f4-g5 surprisingly traps the king. The dominantWhite kings 
ontrol the 
enter of the board, keeping Bla
k's pie
es at bay.After Tinsley extended his hand in resignation, the 
rowd rushed forward to
ongratulate Tinsley. Congratulate Tinsley? \That's a �ne draw," ex
laimedGrandmaster Con M
Carri
k, the mat
h referee. On
e the truth was revealed,the spe
tators were stunned. The audien
e thought that Tinsley had found abeautiful drawing line!With Chinook leading 2-1, Tinsley looked like he was in trouble. However,Chinook forfeited game 18 due to te
hni
al problems and then was out-playedin game 25. In the last game of the mat
h, trailing 3-2 and needing a win,Chinook was pre-programmed to treat a draw as a loss. The program saw adraw, reje
ted it, and went on to lose the game and the mat
h.3.4 ChessThe progress of 
omputer 
hess was strongly in
uen
ed by an arti
le by KenThompson whi
h equated sear
h depth with 
hess-program performan
e [37℄.Basi
ally, the paper presented a formula for su

ess: build faster 
hess sear
hengines. The milestones in 
hess program development be
ome a statement ofthe state-of-the-art in high-performan
e 
omputing:37



� 1980-1982: Thompson's Belle, the �rst program to earn a U.S. master title,was a ma
hine built to play 
hess. It 
onsisted of 10 large wire-wrappedboards using LSI 
hips [73℄.� 1983-1984: Cray Blitz used a multi-pro
essor Cray super
omputer [74℄.� 1985-1986: The Hite
h 
hess ma
hine was based on 64 spe
ial-purposeVLSI 
hips (one per board square) [75, 28℄.� 1985-1986: Way
ool used a 256-pro
essor hyper
ube [76℄.� 1987-present: ChipTest (and its su

essors Deep Thought and Deep Blue)took VLSI te
hnology even further to 
ome up with a 
hess 
hip [38, 77,78℄.In 1987, ChipTest sho
ked the 
hess world by tieing for �rst pla
e in astrong tournament, �nishing ahead of a former world 
hampion and defeating agrandmaster. The unexpe
ted su

ess aroused the interest of world 
hampionGarry Kasparov, who played a two-game exhibition mat
h against the programin 1989. Man easily defeated ma
hine in both games.The Deep Blue team worked for seven years on improving the program, in-
luding designing a single-
hip 
hess sear
h engine and making signi�
ant stridesin the quality of their software. In 1996, the 
hess ma
hine played a six-gameexhibition mat
h against Kasparov. The world 
hampion was stunned by a de-feat in the �rst game, but he re
overed to win the mat
h, s
oring three wins andtwo draws to o�set the single loss. The following year, another exhibition mat
hwas played. Deep Blue s
ored a brilliant win in game two, handing Kasparova psy
hologi
al blow that he never re
overed from. In the �nal, de
isive gameof the mat
h, Kasparov fell into a trap and the game ended qui
kly. This gaveDeep Blue an unexpe
ted mat
h vi
tory, s
oring two wins, three draws and aloss.It is important to keep this result in perspe
tive. First, it was an exhibitionmat
h; Deep Blue did not earn the right to play Kasparov.10 Se
ond, the mat
hwas too short to a

urately determine the better player; world-
hampionshipmat
hes are typi
ally at least 20 games long. Although it is not 
lear just howgood Deep Blue is, there is no doubt that the program is a strong grandmaster.What does the resear
h 
ommunity think of the Deep Blue result? Manyare �lled with admiration at this feat of engineering. Some are 
autious aboutthe signi�
an
e. John M
Carthy writes that [79℄:In 1965, the Russian mathemati
ian Alexander Kronrod said, \Chessis the Drosophila11 of arti�
ial intelligen
e." However, 
omputer
hess has developed mu
h as geneti
s might have if the geneti
istshad 
on
entrated their e�orts starting in 1910 on breeding ra
ing10To be fair, it is unlikely that the international 
hess federation will ever allow 
omputersto 
ompete for the world 
hampionship.11The drosophila is the fruit 
y. The analogy is that the fruit 
y is to geneti
s resear
h asgames are to arti�
ial intelligen
e resear
h. 38



Drosophila. We would have some s
ien
e, but mainly we would havevery fast fruit 
ies.In retrospe
t, the 
hess \problem" turned out to be mu
h harder than anyonethought in Samuel's time. The Deep Blue result is a tremendous a
hievement,and a milestone in the history of both arti�
ial intelligen
e and 
omputings
ien
e.From the s
ienti�
 point of view, it is to be regretted that Deep Blue hasbeen retired, the hardware unused, and the programming team disbanded. Thes
ienti�
 
ommunity has a single data point that suggests ma
hine might bebetter than man at 
hess. The data is insuÆ
ient and the sample size is notstatisti
ally signi�
ant. Moreover, given the 
urrent la
k of interest in DeepBlue from IBM, it is doubtful that this experiment will ever be repeated. Ofwhat value is a single, non-repeatable data point?3.4.1 Deep BlueDeep Blue and its prede
essors represents a de
ade-long intensive e�ort by ateam of people. The proje
t was funded by IBM, and the prin
ipal s
ientistswho developed the program were Feng-hsiung Hsu, Murray Campbell, and JoeHoane.Deep Blue's speed 
omes from a single-
hip 
hess ma
hine. The 
hip in
ludesa sear
h engine, a move generator, and an evaluation fun
tion [38℄. The 
hip'ssear
h algorithm is alpha-beta, but it is restri
ted to always use a minimalwindow. Transposition tables are not implemented on the 
hip (it would taketoo mu
h 
hip real estate). The sear
h is 
apable of doing a limited set of sear
hextensions. The evaluation fun
tion is implemented as small tables on the 
hip;the values for these tables 
an be downloaded to the 
hip before the sear
hbegins. These tables are indexed by board features and the results summed inparallel to provide the positional s
ore.A single 
hip is 
apable of analyzing over two million 
hess positions per se
-ond. It is important to note that this speed understates the 
hip's 
apabilities.Some operations that are too expensive to implement in software 
an be donewith little or no 
ost in hardware. For example, one 
apability of the 
hip isto sele
tively generate subsets of legal moves, su
h as all moves that 
an putthe opponent in 
he
k. These in
reased 
apabilities give rise to new opportu-nities for the sear
h algorithm and the evaluation fun
tion. Hsu estimates thatea
h 
hess 
hip position evaluation roughly equates to 40,000 instru
tions ona general-purpose 
omputer. If so, then ea
h 
hip translates to a 100 billioninstru
tion per se
ond 
hess super
omputer [38℄.A

ess to the 
hip is 
ontrolled by an alpha-beta sear
h algorithm that isimplemented on the host 
omputer (an IBM SP-2). Deep Blue uses alpha-beta with iterative deepening and transposition tables. Considerable e�ort wasdevoted to resear
hing sear
h extensions. The Deep Blue team pioneered theidea of singular extensions, using lo
al sear
h to identify for
ed moves [25℄.Other extensions in
lude those for threats and pie
e in
uen
e [27℄. Extensive39



tuning was done to �nd the right 
ombination of extensions that maximizedthe bene�ts while not 
ausing an explosion in sear
h e�ort. In Deep Blue,a sear
h extension would in
rease the sear
h depth by an amount up to twoply. The algorithm used fra
tional extensions (e.g. a threat might in
rease thesear
h depth by 0.5 ply), allowing several features to 
ombine to 
ause a sear
hextension.The sear
h has been parallelized. For the 1997 Kasparov mat
h, Deep Blueused a 30-pro
essor IBM SP-2, with ea
h pro
essor 
onne
ted to 16 
hess 
hips.The parallel sear
h algorithm uses a three-level hierar
hy. The �rst four ply aredone by a single master pro
ess. The leaves of the master's tree are sear
hedan additional four or more ply deeper by the other SP-2 pro
essors. The par-allel sear
h running on the SP-2 uses a variant on Hsu's Delayed Bran
h TreeExpansion algorithm [80℄. The leaf nodes of these sear
hes are passed o� to the
hess 
hips for additional sear
h. In e�e
t, one 
ould view the 
hips as perform-ing a sophisti
ated evaluation using at least a four-ply sear
h, plus extensions.During the Kasparov mat
h, Deep Blue \only" sear
hed 200 million positionsper se
ond on average. The maximum hardware speed is roughly one billionpositions per se
ond (30 pro
essors � 16 
hips per pro
essor � 2 million posi-tions per se
ond). The di�eren
e re
e
ts both the diÆ
ulty of a
hieving a highdegree of parallelism with alpha-beta, and the team de
ision that more eÆ
ientsear
hing was unlikely to have an impa
t against Kasparov.The biggest di�eren
e in Deep Blue's performan
e in 1997 
ompared to 1996was undoubtedly due to improved 
hess knowledge. Chess grandmaster JoelBenjamin worked with the team to identify weaknesses in the program's play.The evaluation fun
tion 
onsists of over 8,000 tunable parameters. Most of theterms are 
ombined linearly to arrive at a position value, but some terms ares
aled to 
reate a non-linear relationship. Although several attempts were madeto tune the parameters automati
ally, in the end the tuning was primarily doneby hand.The program uses an endgame database of all positions with �ve or fewerpie
es on the board, although this is rarely a fa
tor in a game. The openingbook is small, but Deep Blue has a

ess to a large database of grandmastergames. When the program is out of its book, it will query the grandmasterdatabase to �nd all games where the board position has arisen. All moves forthis position retrieved from the database are assessed, based on who played itand how favorably the game ended. These moves re
eive a positive or negativebias that in
uen
es the evaluation of a line of play. Essentially, moves with ahistory of su

ess are favored, and those with a bad tra
k re
ord are dis
ouraged.3.4.2 The Best of Computer ChessIn the 1997 mat
h against world 
hampion Garry Kasparov, Deep Blue lostthe �rst game, 
ausing many to predi
t an easy vi
tory for man over ma
hine.The se
ond game astounded the 
hess world, 
onvin
ingly demonstrating DeepBlue's 
hampionship-
aliber skills. In the game notation, 
olumns are labeled ato h from left to right and the rows are labeled 1 to 8 from bottom to top. An40
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0s0Z0Z0ZZ0Z0Zko0RlQa0o0oZpZPoPZ00OpZBZ0ZZ0O0Z0ZP0Z0Z0ZPZZ0Z0ZKZ0(a) 24. Ra3 (b) 45. Ra6Figure 11: Deep Blue (White) versus Kasparov (Bla
k).� indi
ates a 
apture move.White: Deep Blue | Bla
k: Gary Kasparov1. e4 e5 2. Nf3 N
6 3. Bb5 a6 4. Ba4 Nf6 5. O{O Be7 6.Re1 b5 7. Bb3 d6 8. 
3 O{O 9. h3 h6 10. d4 Re8 11. Nbd2Bf8 12. Nf1 Bd7 13. Ng3 Na5 14. B
2 
5 15. b3 N
6 16. d5 Ne717. Be3 Ng6 18. Qd2 Until now, standard opening theory. Kasparovrepeatedly 
laimed that he understood how to play against 
omputers. Indeedthis position is 
onsistent with the 
ommon per
eption that 
omputers are weakin 
losed (blo
ked) positions. Nevertheless, with his next move Kasparov beginsto appear 
ompla
ent, perhaps underestimating his dangerous foe.18. ... Nh7 19. a4 Nh4 20. N�h4 Q�h4 21. Qe2 Qd8 Bla
k'slast few moves have a

omplished nothing ex
ept to ex
hange a pair of knightson the opposite side of the board from all the a
tion.22. b4 Q
7 23. Re
1 With this move, the audien
e began to sensethat something was di�erent with Deep Blue's play, 
ompared to the quality ofplay seen in the 1996 mat
h. From the human's point of view, this move showsextraordinary insight into the position. At �rst glan
e, it looks like the rook isbeing moved to a useless square. However, this is a \prophyla
ti
 move" thatsubtly restri
ts Bla
k's options. The move be
omes very strong if Bla
k allowsthe 
-�le to be
ome open.23. ... 
4 24. Ra3 See Figure 11a. Another strong move, intendingto double the rooks on the a-�le. Most 
omputer programs would immediatelyex
hange a-pawns. Joel Benjamin revealed afterward that Deep Blue had a
ommon 
omputer tenden
y to release tension by ex
hanging pawns. Spe
ialknowledge was added to refrain from these ex
hanges, thereby maximizing the
omputer's options in the position.24. ... Re
8 25. R
a1 Qd8 26. f4 Another strong positional movethat is \obvious" to humans, but usually diÆ
ult to �nd for 
omputers. Havingse
ured the advantage on the queen-side, the program now strives to dominatethe king-side. Subsequent analysis showed that this move may not have beenstrongest. Although the idea is good, 26. a�b5 a�b5 27. Ba7 would allowWhite to make inroads on the queen-side.41



26. ... Nf6 27. f�e5 d�e5 28. Qf1 Another human-like move. 28.Qf2 may have been even stronger.28. ... Ne8 29. Qf2 Nd6 30. Bb6 Qe8 31. R3a2 Be7 Kasparovhas drifted into a horribly passive position. He 
an only wait for Deep Blue toatta
k.32. B
5 Bf8 33. Nf5 B�f5 34. e�f5 f6 35. B�d6 B�d6 36.a�b5 At �rst glan
e, Qb6 seems to win material. However e4 gives Bla
k
ounter-play.36. ... a�b5 37. Be4 Bla
k's position is miserable, and everyone ex-pe
ted the seemingly 
rushing 37. Qb6. However, there is a hidden trap: 37.... Rxa2 38. Rxa2Ra8 38. Rxa8Qxa8 39. Qxd6Qa1+ 40. Kh2Q
1 with aprobable draw. In some lines, Bla
k 
an play e4 and get (limited) 
ounter-play.37. Be4 upset Kasparov: the move eliminates all 
ounter-
han
es. Kasparov
ouldn't believe that the program would pass up the 
han
e to win material.This position gave rise to 
onsiderable 
ontroversy after the mat
h. Kasparov'sdisbelief that a 
omputer was 
apable of this level of sophisti
ation resulted inhis leveling unfounded a

usations of 
heating against the Deep Blue team.37. ... R�a2 38. Q�a2 Qd7 39. Qa7 R
7 40. Qb6 Rb7 41.Ra8+ Kf7 42. Qa6 Q
7 43. Q
6 Qb6+ 44. Kf1 An error, but noone knew it at the time...44. ... Rb8 45. Ra6 Kasparov resigns. See Figure 11b. Theaudien
e erupted in applause. History was made! But | in
redible as it seems| the �nal position is a draw! The analysis is long and diÆ
ult, but the amazingQe3 se
ures a mira
ulous draw. Even the in
redible sear
h depths of Deep Bluewere in
apable of �nding this within the time 
onstraints of a game.Mu
h has been made of Kasparov's missed opportunity. However, this dis-tra
ts the dis
ussion from the real issue: Deep Blue played a magni�
ent game.Who 
ares if there is a minor imperfe
tion in a masterpie
e? Most 
lassi
 gamesof 
hess 
ontain many 
aws. Perfe
t 
hess is still an elusive goal, even for Kas-parov and Deep Blue.Despite the defeat, even Kasparov had grudging respe
t for his ele
troni
opponent [81℄:In Deep Blue's Game 2 we saw something that went well beyondour wildest expe
tations of how well a 
omputer would be able toforesee the long-term positional 
onsequen
es of its de
isions. Thema
hine refused to move to a position that had a de
isive short-termadvantage | showing a very human sense of danger. I think thismoment 
ould mark a revolution in 
omputer s
ien
e...Kasparov pressed hard for a win in games 3, 4, and 5 of the mat
h. In theend, he seemed to run out of energy. In game 6, he made an un
hara
teristi
mistake early in the game and Deep Blue qui
kly 
apitalized. The dream ofa world-
lass 
hess-playing program, a 50-year quest of the 
omputing s
ien
eand arti�
ial intelligen
e 
ommunities, was �nally realized.42



3.5 OthelloThe �rst major Othello program was Paul Rosenbloom's Iago [82℄. It a
hievedimpressive results given its early-1980s hardware. It played only two gamesagainst world-
lass players, losing both. However, it dominated play againstother Othello programs of the time. Based on the program's ability to predi
t59% of the moves played by human experts, Rosenbloom 
on
luded that theprogram's playing strength was of world-
hampionship 
aliber.By the end of the de
ade, Iago had been e
lipsed. Kai-Fu Lee and San-joy Mahajan's program Bill represented a major improvement in the quality of
omputer Othello play [83℄. The program 
ombined deep sear
h with exten-sive knowledge (in the form of pre
omputed tables) in its evaluation fun
tion.Bayesian learning was used to 
ombine the evaluation fun
tion features in aweighted quadrati
 polynomial.Statisti
al analysis of the program's play indi
ated that it was a strongOthello player. Bill won a single game against Brian Rose, the highest ratedAmeri
an Othello player at the time. In test games against Iago, Bill won everygame. These results led Lee and Mahajan to 
on
lude that \Bill is one of thebest, if not the best, Othello player in the world." As usual, there is danger inextrapolating 
on
lusions based on limited eviden
e.With the advent of the Internet Othello Server (IOS), 
omputer Othellotournaments be
ame routine. In the 1990s they were dominated by Mi
haelBuro's Logistello. The program parti
ipated in 25 tournaments, �nished �rst 18times, se
ond six times, and fourth on
e. The program 
ombined deep sear
hwith an extensive evaluation fun
tion that was automati
ally tuned. This was
ombined with an extensive opening book and a perfe
t endgame player.Although it was suspe
ted that in the mid-1990s, 
omputers surpassed hu-mans in their playing abilities at Othello, this was not properly demonstrateduntil 1997, when Logistello played an exhibition mat
h against world 
hampionTakeshi Murakami. In preparation for the mat
h, Buro writes that [84℄:Bill played a series of games against di�erent versions of Logistello.The results showed that Bill, when playing 5-minute games runningon a PentiumPro/200 PC, is about as strong as a 3-ply Logistello,even though Bill sear
hes 8 to 9 plies. Obviously, the additionalsear
h is 
ompensated for by knowledge. However, the 3-ply Logis-tello 
an only be 
alled medio
re by today's human standards.Two explanations for the overestimation of playing strength in thepast 
ome to mind: (1) during the last de
ade human players haveimproved their playing skills 
onsiderably, and (2) the playing strengthof the early programs was largely overestimated by using ... non-reliable s
ienti�
 methods.Logistello won all six games against Murakami by a total dis
 
ount of 264 to120 [84℄. This 
on�rmed what everyone had expe
ted about the relative playingstrengths of man and ma
hine. The gap between the best human players and thebest 
omputer programs is believed to be large and e�e
tively unsurmountable.43



3.5.1 LogistelloOutwardly, Logistello looks like a typi
al alpha-beta-based sear
her. The pro-gram has a highly-tuned sear
h algorithm, sophisti
ated evaluation fun
tion,and a large opening book.12 The ar
hite
ture of the program is illustrated inFigure 12.
Graphical


Game


Move Evaluator


Games
Games


Communication


Server


Internet


Game


Manager


Public


Opening Book consisting of


over 23,000 tournament games +


evaluations of "best" move


Opening Book Play


11 million scored positions


Training set consisting of over


Periodic Correction


Game-Tree Searcher


and values of pattern instances


Self-play
Othello

Interface


User


Estimation of feature weights


Analyzer/Corrector


Periodic Update


alternatives


Evaluation


Function


Figure 12: Logistello's ar
hite
ture [85℄.The sear
h algorithm is standard alpha-beta (NegaS
out) with iterativedeepening, a large transposition table, and the killer heuristi
. Corners area 
riti
al region of the board. The program does a small quies
ense sear
h ifthere is some ambiguity about who 
ontrols a 
orner.Buro introdu
ed his ProbCut algorithm in Logistello [24℄. This sear
h en-han
ement takes advantage of the Othello property that the results of a shallowsear
h (s ply) are 
orrelated with the results of a deep sear
h (t ply). An s-ply12Note that endgame databases are not possible in Othello be
ause, unlike 
hess and 
he
k-ers, the number of pie
es on the board in
reases as the end of game approa
hes.44



sear
h produ
es a value vs. This value is extrapolated to give the value of at-ply sear
h vt. The deeper sear
h's estimated value is then 
ompared to thealpha-beta sear
h window, and the likelihood that vt will be relevant to thiswindow is 
omputed. If vt is likely to be irrelevant (e.g., is unlikely to rea
halpha), then the sear
h is pruned on the basis of the shallow sear
h.The deeper sear
h value 
an be viewed as being:vt = a� vs + b+ ewhere a and b are 
onstants and e is the error (normally distributed with a meanof 0 and varian
e �2). Given s and t, the parameters a, b and e are determinedusing linear regression on a large number of samples. For ea
h sample position,sear
hes to depth s and t are performed.In a game, this information 
an be used to probabilisti
ally eliminate treesusing the relationship vt � � with probability p if vs � (���1(p)��+��b)=a.The value of ��1(p), the 
ut threshold, is set a

ording to how mu
h 
on�den
eone has in these 
ut-o�s. Buro uses ��1(1:5) = 0.93. With this value, Logistelloenhan
ed with ProbCut defeated the programwithout ProbCut by a s
ore of 52{18 [24℄. Sin
e then, Buro has re�ned the algorithm to make it more appli
ableand powerful [86℄.A spe
ial sear
h 
ase o

urs as the end of game approa
hes. Here it ispossible to sear
h to the end and �nd the exa
t sear
h result given perfe
t playby both players. Typi
ally, Logistello 
an solve a position when there are 22{26moves left in the game. The sear
h is a highly tuned, blindingly fast routinewith no knowledge to slow it down. When the program thinks it 
an solvethe position, it will allo
ate a large portion of its remaining time to determinewhether the position is a win, loss, or draw. On
e the result is determined,sear
hes on subsequent moves 
an be used (if ne
essary) to re�ne the s
ore tomaximize the result. On
e the position is solved, all the remaining moves of thegame 
an be played instantly.Logistello uses an evaluation fun
tion that has been automati
ally tuned.The program treats the game as having 13 phases: 13{16 dis
s on the board,17{20 dis
s, ..., and 61{64 dis
s.13 Ea
h phase has a di�erent set of weights inthe evaluation fun
tion. Thus, Equation 1 
an be viewed as being:value = npXi=1 wp;i � fp;i (2)where p is the phase of the game.The evaluation-fun
tion features are patterns of squares 
omprising 
om-binations of 
orners, diagonals, and rows. These patterns 
apture importantOthello 
on
epts, su
h as mobility, stability and parity. Logistello has 11 su
hpatterns, whi
h with rotations and re
e
tions yields 46. Some of the patternsare a 3 � 3 and a 5 � 2 
on�guration of stones an
hored in a 
orner, and alldiagonals of length greater than 3.13Note that there is no need for a phase for less than 13 dis
s on the board, sin
e the sear
hfrom the �rst move easily rea
hes 13 or more dis
s.45



The weights for ea
h entry in ea
h pattern (46) for ea
h phase of the game(11) are determined by linear regression. There are over 1.5 million table entriesthat need to be determined. The data was trained using 11 million s
oredpositions obtained from self-play games and pra
ti
e games against anotherprogram [87℄. The evaluation fun
tion is 
ompletely table-driven. Given aposition, all 46 patterns are mat
hed against the position, with a su

essfulmat
h returning the asso
iated weight. These weights are summed to get theoverall evaluation whi
h approximates the �nal dis
 di�erential.Opening books are a 
riti
al 
omponent to Othello programs. Ignoringpassed moves (o

asionally one side has no legal moves), ea
h side has only30 moves to play in a game. Given that programs 
an solve games with, say,24 dis
s left on the board, that means that only the �rst 18 moves by ea
h sideare relevant. A strong opening book 
an guarantee that most of these movesare 
orre
t. Hen
e, 
onsiderable 
omputational e�ort is spent on building anopening book.The book is essentially a large tree of move sequen
es starting from the initialposition of the game. It is built o�-line using the results from tournament andself-play games [88℄. The move sequen
e of a game 
an be analyzed ba
kwards,allowing ea
h position to get a more a

urate s
ore than had the moves beenanalyzed in a forward manner (the ba
kwards sear
hes bene�t from the resultsobtained from the later sear
hes in the game). The �nal result (win, loss, draw)is propagated as far ba
k in the game as possible. These positions are added tothe book as a

urate values. Other positions are assigned their heuristi
 value(obtained from a deeper sear
h than o

urred in the game) and added to thebook. At all positions added to the book, all the move alternatives not playedare evaluated with a deep sear
h. The s
ores are then minimaxed ba
k up theopening book tree. For example, 
onsider the s
enario of Logistello playing agame and losing. Assume that the program identi�es the loss on its 20th move.The book program will analyze this position and s
ore all the alternative movesin this position. If the �rst 19 moves of a future game repeat the above movesequen
e, then the book will sele
t for its 20th move the one that leads tothe highest s
ore (whi
h is likely not the loss s
ore). In this way, Logistello isguaranteed to deviate its play from the earlier game.Deep sear
hes, good evaluation, and a strong opening book are a winningre
ipe for Othello. Mi
hael Buro 
omments on the reasons why Logistello easilywon the Murakami mat
h[84℄:When looking at the games of the mat
h the main reasons for the
lear out
ome are as follows:1. Lookahead sear
h is very hard for humans in Othello. The disad-vantage be
omes very 
lear in the endgame phase, where the board
hanges are more substantial than in the opening and middlegamestage. Computers are playing perfe
tly in the endgame while hu-mans often lose dis
s.2. Due to the automated tuning of the evaluation fun
tions anddeep sele
tive sear
hes, the best programs estimate their winning46




han
e in the opening and middlegame phase very a

urately. Thisleaves little room for human innovations in the opening, espe
iallybe
ause the best Othello programs are extending their opening booksautomati
ally to explore new variations.3.5.2 The Best of Computer OthelloIn August 1997, the World Champion Takeshi Murakami played a six-gameexhibition mat
h with Logistello. Having lost the �rst �ve games, Murakamifought hard for a win in the last game. Mi
hael Buro, author of Logistello, an-notates this game (
omments are in itali
s) [89℄. Logistello's analysis is en
losedin [℄s giving the main lines of play and the �nal predi
ted result from Logistello'spoint of view. Moves are given by spe
ifying the 
olumn from left-to-right, \A"to \H", and the row from top-to-bottom, 1 to 8.White: Logistello | Bla
k: Takeshi Murakami1. F5 D6 2. C4 D3 3. C3 F4 4. C5 B3 5. C2 E6 6. C6 B4 7.B5 D2 8. E3 A6 9. C1 B6 10. F3 F6 11. F7 E1 12. E2 F1 13. E7G3 14. C7 G4 Logistello prefers D7 over Mr. Murakami's G4. After D7 theposition seems to be quite 
lose. Mr. Murakami's opening and early midgamewere 
awless in Logistello's view.15. G5 D1 See Figure 13a. A

ording to Logistello's 26 ply sele
tivesear
h, Mr. Murakami's D1 is probably two dis
s worse than playing F2.16. G1 F2 17. H3 H4 One move earlier, Mr. Murakami missed the lastopportunity to deprive Logistello of its free move to B1. While H5 
ips F5 andthereby denies Logistello a

ess to B1, it also leads to a risky edge 
on�gurationafter the moves H6 and H7. This may be the reason why Mr. Murakami preferedH4, whi
h, however, loses two dis
s. Today's best programs would start sele
tivewin-loss-draw sear
hes in this position after 
ondu
ting a �24 ply \midgame"Multi-ProbCut sear
h. This leaves human players with very little room for theslightest errors. [H5 H6 H7 = 4; H4 H5 D8 = 6℄18. H5 C8 Here, Mr. Murakami does not want to break Logistello's wallwhi
h would 
reate additional moves for Logistello. One plan is to move intothe south-west region (C8 or D8) or to exploit regional parity in the north-eastby playing G2. Although Mr. Murakami's G2 gives up 
orner H1 it leaves himwith the last move in this region. Mr. Murakami 
hose C8, losing two dis
s.[G2 B1 D8 = 6; D8 C8 D7 = 6; C8 B1 D7 = 8℄19. B1 D7 20. H2 E8 21. D8 G6 22. F8 G8 23. H6 G7 24.A2 A3 25. A4 B7 26. A8 B8 27. B2 See Figure 13b. In this gameMr. Murakami never thought he was losing until the late endgame where he wasfa
ed with a swindle threat. At �rst glan
e, Mr. Murakami seems to have theadvantage be
ause the eastern and northern edge 
on�gurations look weak forLogistello. However, the only losing move in this position is G2 whi
h allowsMr. Murakami to grab H1 and to se
ure enough edge and interior dis
s lateron. The optimal move is B2 whi
h Mr. Murakami had not anti
ipated in hisearlier 
al
ulations. 47



7757667777566777766656677666656776566667665666777757667777777777
7555555757565675556565555555555575656555665566557665566756666667(a) before 15. ... D1 (b) before 27. B2Figure 13: White: Logistello | Bla
k: Takeshi Murakami27. ... A1 This move 
reates a so-
alled swindle in the south-east 
ornerregion, meaning that Logistello gets both remaining moves (H8 and H7) there|winning by 10. A little better is A5 whi
h loses by 8. [A5 A7 A1 H8 = 8; A1H8 H1 H7 = 10℄28. H8 H1 29. H7 G2 30. A5 A7 Logistello wins by 10 dis
s: 37{27.3.6 PokerThere are many popular poker variants. Texas Hold'em is generally a
knowl-edged to be the most strategi
ally 
omplex variant of poker that is widely played.It is the premier event at the annual world series of poker.Until re
ently, poker has been largely ignored by the 
omputing a
ademi

ommunity. However, poker has a number of attributes that make it an in-teresting domain for mainstream arti�
ial-intelligen
e resear
h. These in
ludeimperfe
t knowledge (the opponent's hands are hidden), multiple 
ompetingagents (more than two players), risk management (betting strategies and their
onsequen
es), agent modeling (identifying patterns and weaknesses in the op-ponent's strategy and exploiting them), de
eption (bluÆng and varying yourstyle of play), and dealing with unreliable information (taking into a

ountyour opponent's de
eptive plays). All of these are 
hallenging dimensions to adiÆ
ult problem.There are two main approa
hes to poker resear
h [90℄. One approa
h isto use simpli�ed variants that are easier to analyze. However, one must be
areful that the simpli�
ation does not remove 
hallenging 
omponents of theproblem. For example, Findler worked on and o� for 20 years on a poker-playingprogram for 5-
ard draw poker [91℄. His approa
h was to model human 
ognitivepro
esses and build a program that 
ould learn, ignoring many of the interesting
omplexities of the game.The other approa
h is to pi
k a real variant, and investigate it using math-emati
al analysis, simulation, and/or ad-ho
 expert experien
e. Expert playerswith a pen
hant for mathemati
s are usually involved in this approa
h. Noneof this work has led to the development of strong poker-playing programs.There is one event in the meager history of 
omputer poker that stands out.48



In 1984 Mike Caro, a professional poker player, wrote a program that he 
alledOra
 (Caro spelled ba
kwards). It played one-on-one, no-limit Texas Hold'em.Few te
hni
al details are known about Ora
 other than it was programmed onan Apple II 
omputer in Pas
al. However, Caro arranged a few exhibitions ofthe program against strong players [92℄:It lost the TV mat
h to 
asino owner Bob Stupak, but arguablyplayed the superior game. The ma
hine froze on one game of thetwo-out-of-three set when it had moved all-in and been 
alled withits three of a kind against Stupak's top two pair. Under the rules,the hand had to be replayed. In the [world series of poker℄ mat
hes,it won one (from twi
e world 
hampion Doyle Brunson | or at leastit had a two-to-one 
hip lead after an hour and a quarter when themat
h was 
an
elled for a press 
onferen
e) and lost two (one ea
hto Brunson and then-reigning world 
hampion Tom M
Evoy), but| again | was fairly unlu
ky. In private, preparatory exhibitionmat
hes against top players, it won many more times than it lost.It had even beaten me most of the time.Unfortunately, Ora
 was never properly do
umented and the results never re-produ
ed. It is highly unlikely that Ora
 was as good as this small samplesuggests. No s
ienti�
 analysis was done to see whether the results were dueto skill or lu
k (as was done, for example, in the BKG9.8{Villa mat
h; see Se
-tion 3.1). As further eviden
e, none of the 
ommer
ial e�orts 
an 
laim to beanything but intermediate-level players.In the 1990s, the 
reation of an Internet Relay Chat poker server gave theopportunity for humans (and 
omputers) to play intera
tive games over theInternet. A number of hobbyists developed programs to play on IRC. Foremostamong them is R00lbot, developed by Greg Wohletz. The program's strength
omes from using expert knowledge at the beginning of the game, and doingsimulations for subsequent betting de
isions.The University of Alberta program Loki, authored by Darse Billings, DenisPapp, Lourdes Pe~na, Jonathan S
hae�er and Duane Szafron, is the �rst seriousa
ademi
 e�ort to build a strong poker-playing program. Loki plays on the IRCpoker server and, like R00lbot, is a 
onsistent big winner. Unfortunately, sin
ethese games are played with �
titious money, it is hard to extrapolate theseresults to 
asino poker.At best, Loki and R00lbot are strong intermediate-level poker players. A
onsiderable gap remains to be over
ome before 
omputers will be as good asthe best human players.3.6.1 LokiMost readers will be familiar with one or more variants of poker. To avoid
onfusion, the following gives a brief summary of Texas Hold'em. A hand beginswith the \pre-
op", where ea
h player is dealt two 
ards fa
e down (the \hole"
ards), followed by the �rst round of betting. Three 
ommunity 
ards are then49



dealt fa
e up on the table, 
alled the \
op", and a se
ond round of bettingo

urs. On the \turn", a fourth 
ommunity 
ard is dealt fa
e up and anotherround of betting ensues. Finally, on the \river", a �fth 
ommunity 
ard is dealtfa
e up and there is a �nal round of betting. All players still in the game revealtheir two hole 
ards for the showdown. The best �ve-
ard poker hand formedfrom the two hole 
ards and the �ve 
ommunity 
ards wins the pot. If a tieo

urs, the pot is split. Texas Hold'em is typi
ally played with 8 to 10 players.Loki is named after the Norse God of mis
hief [93℄.14 Figure 14 shows theprogram's ar
hite
ture and how the major 
omponents intera
t [94℄. In thediagram, re
tangles are major 
omponents, rounded re
tangles are major datastru
tures, and ovals are a
tions. The data follows the arrows between 
ompo-nents. An annotated arrow indi
ates how many times data moves between the
omponents for ea
h of the program's betting a
tions.The ar
hite
ture revolves around generating and using probability triples[50℄. A probability triple is an ordered set of values, PT = [f,
,r℄, su
h that f+ 
 + r = 1.0, representing the probability distribution that the next bettinga
tion in a given 
ontext should be a fold, 
all, or raise, respe
tively. The TripleGenerator 
ontains the poker knowledge, and is analogous to an evaluationfun
tion in two-player games. The Triple Generator 
alls the Hand Evaluatorto evaluate any two-
ard hand in the 
urrent 
ontext. It uses the resulting handvalue, the 
urrent game state, and expert-de�ned betting rules to 
ompute thetriple. To evaluate a hand, the Hand Evaluator enumerates over all possibleopponent hands and 
ounts how many of them would win, lose, or tie the givenhand.Ea
h time it is Loki's turn to bet, the A
tion Sele
tor uses a single probabilitytriple to de
ide what a
tion to take. For example, if the triple [0.0,0.8,0.2℄ weregenerated, then the A
tion Sele
tor would never fold, 
all 80% of the time andraise 20% of the time. A random number is generated to sele
t one of thesea
tions so that the program varies its play, even in identi
al situations.After the 
op, the probability for ea
h possible opponent hand is di�erent.For example, the probability that A
e-A
e hole 
ards are held is mu
h higherthan the 
ards 7-2, sin
e most players will fold 7-2 before the 
op. There isa Weight Table for ea
h opponent. Ea
h Weight Table 
ontains a value forea
h possible two-
ard hand that the opponent 
ould hold (47 
hoose 2 = 1,081possibilities). The value is the probability that the hand would be played exa
tlyas that opponent has played so far. After an opponent a
tion, the OpponentModeler updates the Weight Table for that opponent in a pro
ess 
alled re-weighting. The value for ea
h hand is in
reased or de
reased to be 
onsistentwith the opponent's a
tion. The Hand Evaluator uses the Weight Table inassessing the strength of ea
h possible hand, and these values are in turn usedto update the Weight Table after ea
h opponent a
tion.For example, suppose the weight for A
e{A
e is 0.7. That is, if these 
ardshave been dealt to an opponent, there is a 70% 
han
e that they would haveplayed it in exa
tly the manner observed so far. What happens if the opponent14This se
tion is largely based on previously-published des
riptions of Loki [50℄.50



Figure 14: Loki's ar
hite
ture.now 
alls? Loki 
al
ulates the probability triple for these 
ards in the 
urrent
ontext (as it does for all possible two-
ard holdings). Assume that the resultingtriple is [0.0, 0.2, 0.8℄. The updated weight for this 
ase would be 0:7�0:2 = 0:14.The relative likelihood of the opponent holding A
e-A
e has de
reased to 14%be
ause they did not raise. The 
all value of 0.2 re
e
ts the possibility that thisparti
ular opponent might deliberately try to mislead us by 
alling instead ofraising. Using a probability distribution allows us to a

ount for un
ertainty inour beliefs.The Triple Generator provides good betting de
isions. However, better re-sults 
an be a
hieved by augmenting the evaluation with simulation. Loki 
anplay out many likely s
enarios to determine how mu
h money ea
h de
ision willwin or lose. Every time it fa
es a de
ision, Loki invokes the Simulator to getan estimate of the expe
ted value (EV) of ea
h betting a
tion (see the dashedbox in Figure 14 with the Simulator repla
ing the A
tion Sele
tor). A simu-lation 
onsists of playing out the hand a spe
i�ed number of times, from the
urrent state of the game through to the end. Folding is 
onsidered to havea zero EV, be
ause there is no future pro�t or loss. Ea
h trial is played outtwi
e | on
e to 
onsider the 
onsequen
es of a 
he
k/
all and on
e to 
onsidera bet/raise as Loki's �rst a
tion. In ea
h trial, 
ards are dealt to ea
h opponent(based on the probabilities maintained in the Weight Table), the resulting gameis simulated to the end, and the amount of money won or lost is determined.Probability triples are used to approximate the a
tions of the opponents andLoki's subsequent a
tions based on their two 
ards assigned for that trial. Theaverage amount won or lost over all of the trials is taken as the EV of ea
ha
tion. In the 
urrent implementation, the a
tion with the greatest expe
tationis sele
ted, folding if both expe
tations are negative. To in
rease the program'sunpredi
tability, the sele
tion of betting a
tions whose EVs are 
lose in value51




an be randomized.It should be obvious that the simulation approa
h must be better than thesimple evaluation approa
h, sin
e simulation essentially uses a sele
tive sear
h toaugment and re�ne a stati
 evaluation fun
tion. Barring a serious mis
on
eption(or bad lu
k on a limited sample size), playing out relevant s
enarios will improvethe default values obtained by heuristi
s, resulting in a more a

urate estimate.For example, a simulation 
ontains impli
it knowledge su
h as:1. hand strength (fra
tion of trials where Loki's hand is better than the oneassigned to the opponent),2. hand potential (fra
tion of trials where Loki's hand improves to the best,or is overtaken), and3. subtle impli
ations not addressed in the simplisti
 betting strategy (e.g.\implied odds", extra bets won after a su

essful draw).It also allows 
omplex strategies to be un
overed without providing additionalexpert knowledge. For example, simulations 
an result in the emergen
e ofadvan
ed betting ta
ti
s like a 
he
k-raise, even if the basi
 strategy withoutsimulation is in
apable of this play.In strategi
 games like 
hess, the performan
e loss by ignoring opponentmodeling is small, and hen
e it is usually ignored. In 
ontrast, not only doesopponent modeling have tremendous value in poker, it 
an be the distinguishingfeature between players at di�erent skill levels. If a set of players all havea 
omparable knowledge of poker fundamentals, the ability to alter de
isionsbased on an a

urate model of the opponent may have a greater impa
t onsu

ess than any other strategi
 prin
iple.The Weight Table is the �rst step toward opponent modeling sin
e theweights for opponent 
ards are 
hanged based on the dynami
s of the games.The simplest approa
h to determining these weights is to treat all opponentsthe same, 
al
ulating a single set of weights to re
e
t reasonable behavior, anduse them for all opponents. An initial set of weights was determined by rank-ing the starting hands (as determined by o�-line simulations) and assigning aprobability 
ommensurate with the average return on investment of ea
h hand.These weights 
losely approximate the ranking of hands by strong players. InLoki, the Opponent Modeler uses probability triples to update the Weight Tableafter ea
h opponent a
tion (re-weighting). To a

omplish this, the Triple Gen-erator is 
alled for ea
h possible two-
ard hand. It then multiplies ea
h weightin the Weight Table by the entry in the probability triple that 
orresponds tothe opponent's a
tion.The above s
heme is 
alled Generi
 Opponent Modeling (GOM) [95℄. Ea
hhand is viewed in isolation and all opponents are treated as the same player.Ea
h player's Weight Table is initially identi
al, and gets modi�ed based ontheir betting a
tion. Although rather simplisti
, this model is quite powerful inthat it does a good job of skewing the hand evaluations to take into a

ount themost likely opponent holdings. 52



Obviously, treating all opponents the same is 
learly wrong. Ea
h player hasa di�erent style. Spe
i�
 Opponent Modeling (SOM) 
ustomizes the probabilitytriple fun
tion to represent the playing style of ea
h opponent. For a given game,the re-weighting fa
tor applied to the entries of the Weight table is adjusted bybetting frequen
y statisti
s gathered on that opponent from previous hands.This results in a shift of the assumed 
all and raise thresholds for ea
h player.During ea
h round of a game, the history of previous a
tions by the opponentis used to in
uen
e the probability triple generated for that opponent.In 
ompetitive poker, opponent modeling is mu
h more 
omplex than por-trayed here. For example, players 
an a
t to mislead their opponents into 
on-stru
ting an erroneous model. Early in a session a strong poker player may tryto 
reate the impression of being very 
onservative, only to exploit that imagelater in that session when the opponents are using an in
orre
t opponent model.A strong player has to have a model of ea
h opponent that 
an qui
kly adaptto 
hanging playing styles.An important part of strong poker is bluÆng. Although mastering this isdiÆ
ult for humans, it is not an obsta
le for a poker program. The 
omputer
an extend the range of hands it will play to in
lude a few that have smallnegative expe
tations.3.6.2 The Best of Computer PokerThe hand shown in Figure 15 was played on IRC against six opponents. Thefollowing abbreviations are used to show the betting in ea
h round: \sb": smallblind, \bb": big blind", \
": 
all, \k": 
he
k, \b": bet, \f": fold, and \r":raise. Instead of an ante, Texas Hold'em uses blinds to initially seed the pot.The sample game is $10/$20 Hold'em. Here the �rst player puts in $5 (thesmall blind), while the se
ond player puts in $10 (the big blind). The �rst twobetting rounds use $10 bets; the last two use $20 bets. There are a maximumof three raises per betting round.The following annotations in itali
s are by Darse Billings, 
o-author of Lokiand a former professional poker player.Loki makes a \loose 
all" with a fairly weak hand before the 
op, be
ause the
onditions are otherwise ideal (last position, no raises, and a suited hand with5 or 6 opponents). In slightly less favorable 
ir
umstan
es, Loki would fold thishand before the 
op.The 
op yields a good 
ush draw with an over
ard to the board. After the betand two 
alls, a raise is a viable option, sin
e it would have positive expe
tationagainst three opponents (> 25% of winning), and might also earn a \free 
ard"(no bet on the turn). Loki opts for the quieter alternative, whi
h gains anadditional 
aller in the small blind (whi
h is favorable in this situation). Ahigher spinner value for the mixed strategy would have resulted in a raise.The turn 
ard adds a straight possibility to the draw, and after everyoneshows weakness by 
he
king, Loki de
ides to \semi-blu�". Unfortunately, thebig blind was playing possum and 
he
k-raises with the best possible hand (astraight). In hindsight, this was a very risky play on his part | if Loki had53



Events opp1 opp2 opp3 opp4 opp5 opp6 LokiHole 
ards 4} Q}Preflop betting sb bb 
 
 
 
 

 kFlop 
ards 5} J� 7}Flop betting k b f 
 f 
 

Turn 
ard 3|Turn betting k k k k b
 r f 
 

River 
ard J}River betting k b f rf r 
Showdown opp2 shows 6� 4�Loki shows Q} 4}Loki wins $400Figure 15: Loki in A
tion
he
ked, he would have failed to earn anything from the other players with hisvery strong hand, and would have given away a free 
han
e to make a betterhand. After Loki's bet, he is happily able to build a large pot.Loki is lu
ky enough to make the 
ush, and raises on the river. After there-raise, the opponent's betting pattern suggests a full house (at least as likelyas a straight) and Loki 
alls.Loki's 
ush wins against the opponent's straight. Loki wins $400. Were thisonly real money...3.7 S
rabbleThe �rst do
umented S
rabble program appears to have been written by StuartShapiro and Howard Smith and was published in 1977 [96℄. In the 1980s a num-ber of S
rabble programming e�orts emerged and by the end of the de
ade, itwas apparent that these programs were strong players. With a

ess to the entireS
rabble di
tionary (now over 100,000 words), the programs held an importantadvantage in any games against humans.At the First Computer Olympiad in 1989 the S
rabble winner was Crabwritten by Andrew Appel, Guy Ja
obson, and Graeme Thomas [97℄. Se
ondwas Tyler written by Alan Frank. Subsequent Olympiads saw the emergen
e ofTSP (Jim Homan), whi
h edged out Tyler in the se
ond and third Olympiads.TSP later be
ame the 
ommer
ial program Crosswise. All of these programs54



were very good, and quite possibly strong enough to be a serious test for thebest players in the world.Part of their su

ess was due to the fast, 
ompa
t S
rabble move generatordeveloped by Andrew Appel [98℄. Steven Gordon subsequently developed amove generator that was twi
e as fast, but used �ve times as mu
h storage [99℄.Brian Sheppard began working on a S
rabble program in 1983, and starteddeveloping Maven in 1986. In a tournament in De
ember 1986, Maven s
oredeight wins and two losses over an elite �eld, �nishing in se
ond pla
e on tie-break. Sheppard des
ribes the games against humans at this tournament [51℄:Maven reels o� JOUNCES, JAUNTIER, and OVERTOIL on su

es-sive plays, ea
h for exa
tly 86 points, to 
ome from behind againstfuture national 
hampion Bob Felt. Maven 
rushed humans repeat-edly in o�hand games. The human ra
e begins to 
ontemplate thepotential of 
omputers.In the following years, Maven 
ontinued to demonstrate its dominating playagainst human opposition. Unfortunately, sin
e it did not 
ompete in the Com-puter Olympiads, it was diÆ
ult to know how strong it was 
ompared to otherprograms at the time.In the 1990s, Sheppard developed a pre-endgame analyzer (for when therewere a few tiles left in the bag) and improved the program's ability to simulatelikely sequen
es of moves. These represented important advan
es in the pro-gram's ability. It was not until 1997, however, that the opportunity arose toproperly assess the program's abilities against world-
lass players. In 1997, atwo-game mat
h between Maven and Adam Logan, one of the best players inNorth Ameri
a, ended in two wins for the human. Unfortunately, the mat
hwas not long enough to get a sense of who was really the best player.In Mar
h 1998, the New York Times sponsored an exhibition mat
h betweenMaven and a team 
onsisting of world 
hampion Joel Sherman and the runner-up Matt Graham. It is not 
lear whether the 
ollaboration helped or hinderedthe human side, but the 
omputer won 
onvin
ingly by a s
ore of six wins tothree. The result was not an anomaly. In July of that year, Maven playedanother exhibition mat
h against Adam Logan, s
oring nine wins to �ve.Shortly after the Logan mat
h, Brian Sheppard wrote:The eviden
e right now is that Maven is far stronger than humanplayers. ... I have outright 
laimed in 
ommuni
ation with the 
reamof humanity that Maven should be moved from the \
hampionship
aliber" 
lass to the \abandon hope" 
lass, and 
hallenged anyonewho disagrees with me to 
ome out and play. No takers so far, butmaybe one brave human will yet venture forth.No one has.3.7.1 MavenThe following des
ription ofMaven is based on information provided byMaven'sauthor, Brian Sheppard [100℄. 55



Maven divides the game into three phases: early game, pre-endgame, andendgame. The early game starts at move one and 
ontinues until there arenine or fewer tiles left in the bag (i:e:, with the opponent's seven tiles, thisimplies that there are 16 or fewer unknown tiles). From there, the pre-endgame
ontinues until there are no tiles in the bag. In the endgame, all the tiles in theopponent's ra
k are known.Maven uses the following te
hniques in regular play, before the pre-endgameis rea
hed. The program uses the simulation framework des
ribed in Se
tion 2.3,with some important S
rabble-spe
i�
 re�nements. Whereas for other games,su
h as bridge and poker, the number of 
andidate moves is small, for S
rabblethere 
an be many moves to 
onsider. On average there are over 700 legal movesper position, and the presen
e of two blanks in the ra
k 
an in
rease this �gureto over 5,000! Thus, Maven needs to pare the list of possible moves (using themove generator algorithm des
ribed in [98℄) down to a small list of likely moves.Omitting an important move from this list will have serious 
onsequen
es; itwill never be played. Consequently, Maven employs multiple move generators,ea
h identifying moves that have important features that merit 
onsideration.These move generators are:� S
ore and Ra
k. This generator �nds moves that result in a high s
ore anda good ra
k (tiles remaining in your possession). Strong players evaluatetheir ra
k based on the likeliness of the letters being used to aid up
omingwords. For example, playing a word that leaves a ra
k of QXI wouldbe less preferable than leaving QUI; the latter o�ers more potential forplaying the Q e�e
tively.� Bingo Blo
king. Playing all seven letters in a single turn leads to a bonusof 50 points (often 
alled a bingo). This move generator �nds moves thatredu
e the 
han
es of the opponent s
oring a bingo on their next turn.Sometimes it is worth sa
ri�
ing points to redu
e the opponent's 
han
esof s
oring big.� Immediate S
oring. This generates the moves with the maximum numberof points (this be
omes more important as the end of the game nears).Ea
h routine provides up to 10 
andidate moves. Merging these lists results intypi
ally 20-30 unique 
andidate moves to 
onsider. In the early game only theS
ore and Ra
k generator is used. In the pre-endgame there are four: the threelisted above plus a pre-endgame evaluator that \took years to tune to the pointwhere it didn't blunder nearly always" [101℄. In the endgame, all possible movesare 
onsidered.The move generation routines are highly e�e
tive at �ltering the hundredsor thousands of possible moves [101℄:It is important to note that simply sele
ting the one move preferredby the S
ore and Ra
k evaluator plays 
hampionship 
aliber S
rab-ble. My pra
ti
e of 
ombining 10 moves from multiple generators is56



eviden
e of developing paranoia on my part. \Massive overkill" isthe 
enterpie
e of Maven's design philosophy.Sheppard points out that his program is missing a �shing move generator.Sometimes it is better to pass a move or play a small word (one or two letters),so that you 
an ex
hange some of your tiles. For example, with the openingra
k of AEINQST, you 
an play QAT for 24 points. Instead, you 
an �sh by notplaying a word and ex
hanging the Q. Of the 93 remaining tiles, 90 will make abingo.For the simulations, Maven does a two-ply sear
h to evaluate ea
h 
andidatemove (in e�e
t, this is a three-ply sear
h). It 
ould use a four-ply sear
h for theevaluation, but this results in fewer simulation data points. Sheppard dis
ussesthe trade-o�s:If you 
ompare a four-ply horizon and a two-ply horizon, you �ndthat ea
h iteration of the four-ply horizon takes twi
e as long, andthe varian
e is twi
e as large, so you need 2 � p2 times as mu
htime to simulate to equal levels of statisti
al a

ura
y. Sin
e S
rab-ble has only limited long-term issues, it makes sense to do shallowlookaheads.The limited long-term issues mentioned are a 
onsequen
e of the rapid turnoverin the ra
k. Maven averages playing 4.5 tiles per turn. After a two-ply looka-head, there are few (if any) tiles left from the original ra
k. Consequently,positions being evaluated at the leaves of a two-ply sear
h are very di�erentthan the root node.Typi
ally, 1,000 two-ply simulations are done when making a move de
ision.The move leading to the highest average point di�erential is sele
ted. After afew simulations, it may be
ome statisti
ally obvious that some of the 
andidatemoves have little or no 
han
e of being sele
ted be
ause their expe
ted valuesare too low. If a move's s
ore is at least two standard deviations below that ofthe best move, and at least 17 simulation iterations have been performed thenthe low-s
oring move is eliminated from 
onsideration. The assignment of tilesto opponent hands is done in a way that guarantees a uniform distribution. Aminimum of 14 iterations are needed to pla
e all tiles in an opponent's ra
k atleast on
e. The 17 iterations 
omes from 14 being rounded up to a power of two(16) and then an inadvertent o�-by-one error giving 17.Other pruning s
hemes are used to re�ne the move list. First, nearly identi
alplays usually lead to almost identi
al s
ores. For example, an opening move of\PLAY" versus \PALY" makes no di�eren
e in the simulation results. After101 simulations, the lower rated of almost-identi
al moves is pruned. Se
ondly,if it be
omes impossible for a low-s
oring move to 
at
h up to the best-s
oringmove given the number of trials remaining, then that move is pruned withoutany risk.In the pre-endgame, the program's emphasis 
hanges from s
oring pointsto s
oring wins. With fewer moves to 
onsider, the simulations are extendedto rea
h the end of the game to determine whi
h side wins. The simulations57




ontain additional pruning. If a 
andidate move is generating signi�
antly fewerpoints than the best move and its frequen
y of wins is less, then that move iseliminated.Using the simulations to 
ount the frequen
y of wins and points 
an 
ausea dilemma. It may be ambiguous as to what the best move to play is [101℄:Sometimes one move is the winner both on points and wins, so the
hoi
e is 
lear. But sometimes it is not 
lear, be
ause wins andpoints do not agree. In that 
ase Maven \mixes" wins and pointson a linear basis. There are two important pra
ti
al reason for this.First, the simulation might not be representative of the a
tual playof the game, either be
ause the opponent is in
apable of playingas well as Maven (the good 
ase), or be
ause Maven's simulationsare mishandling the situation (the bad 
ase). In either of these
ases extra points may 
ome in handy. Se
ond, in tournaments itis important to have a high point di�erential, sin
e that is used tobreak ties. My 
al
ulation shows that a 1% higher 
han
e of winninga game is worth roughly a three to four point sa
ri�
e of point spread.We don't want to go overboard on defensive gestures at the end ofa game. It is better to lose o

asionally to keep a high di�erential.A spe
ial 
ase o

urs when there are only eight unknown tiles. In this 
ase,the opponent 
an have only one of eight possible tile holdings, soMaven sear
hesea
h 
ase to the end of the game to determine the �nal result. Sheppard hasre
ently extended his program to handle up to 12 unknown tiles (924 
ombina-tions).When there are no tiles left to be drawn, S
rabble reverts to a game ofperfe
t information (all missing tiles are in the opponent's ra
k). Alpha-betawould take too long to exhaustively sear
h this, sin
e the bran
hing fa
tor islarge, and the program (move generation) is slow. Instead, Maven uses theB* algorithm (see Se
tion 2.1.6). The su

ess of B* hinges on assigning goodupper and lower bounds to the moves. Considerable heuristi
 
ode is devotedto determining these bounds. Although Maven is 
apable of making an error inthe sear
h (e.g. poor bounds, or limits on spa
e), in pra
ti
e this is rarely seen.This may be the only example of a real system where B* is to be preferred toalpha-beta.The S
rabble 
ommunity has extensively analysed Maven's play and founda few minor errors in the program's play. Postmortem analysis of the Loganmat
h showed that Maven made mistakes that averaged nine points per game.Logan's average was 40 points per game. Maven missed seven �shing moves(69 points lost), some programming errors (48 points lost), and several smallermistakes (6 points lost). The programming errors have have been 
orre
ted.If a future version of Maven in
luded �shing, the points per game error ratewould drop to less than one per game. Maven would be playing nearly perfe
tS
rabble.Of the points lost due to programming errors, Brian Sheppard writes:58



It just drives me 
razy that I 
an think up inventive ways to get 
om-puters to a
t intelligently, but I am not smart enough to implementthem 
orre
tly.And that is the soliloquy of every games programmer.3.7.2 The Best of Computer S
rabbleIn July 1998, at the annual 
onferen
e of the Ameri
an Asso
iation for Arti�
ialIntelligen
e, Maven played an exhibition mat
h against Adam Logan, one of thetop S
rabble players in North Ameri
a. Logan won three of the �rst four gamesof the mat
h, butMaven won six of the next seven games. Going into the 
riti
al12th game,Maven led by a s
ore of seven wins to four. The following annotationsare by Brian Sheppard and originally appeared in the S
rabble Players News.15The 
olumns of a S
rabble board are spe
i�ed from left-to-right by the letters ato o. Rows are spe
i�ed from top-to-bottom using the numbers 1 to 15. Movesare spe
i�ed by giving the square of the �rst letter of the word. If the 
oordinatebegins with a number, then the word is pla
ed horizontally. If the 
oordinatebegins with a letter, then the word is pla
ed verti
ally. The blank is referred toby \?". Maven | Adam LoganMaven(ACNTVYZ) plays CAVY at 8f, 24 pts, Maven=24 Logan=0. Thealternative is ZANY for 32, but the CVT ra
k is poor. Mu
h better is 24 pointswith an NTZ ra
k. As to pla
ement, a better 
hoi
e than Maven's is probablyCAVY 8G. This version of Maven was not ideal at �rst-turn pla
ement, forinex
usable internal reasons. Fortunately this is not a signi�
ant skill fa
tor
ompared to s
oring and keeping good tiles. Maven is almost ideal at those skillfa
tors.Logan(EGLNORY) plays YEARLONG at g6, 66 pts,Maven=24 Logan=66.Adam �nds the only bingo.Maven(ADNNOTZ) plays DOZY at 6d, 37 pts, Maven=61 Logan=66. It isDOZY(6d,37,ANNT) versus AZLON(10e,34,NTD) or ZOON(11e,26,ADNT).DOZY's extra points and retention of a vowel win despite dupli
ate Ns.Logan(ADEFOTV) plays OFT at h13, 21 pts, Maven=61 Logan=87.Adam's 
hoi
e is best. He also has VOTED(5A,27,AF), OVA(H13,21,DEFT),FOVEAL(10b,22,DT), and ADVENT(12
,22,FO). Adam didn't think long, andsin
e the 
hoi
es are so 
lose it doesn't pay to think long!Maven(AENNNOT) plays NEON at 5b, 15 pts, Maven=76 Logan=87.NEON(5b,15,ANT) edges ANON(5b,15,ENT). I am not sure why, but 
learlyENT and ANT are both good ra
k leaves, and there must be some bene�t toavoiding a FANON hook in the \a" 
olumn. It may also be that ANON's vowel-
onsonant-vowel-
onsonant pattern is easier to overlap than NEON.15Reprodu
ed with permission. Minor editing 
hanges have been made to 
onform with thestyle of this 
hapter. 59



Logan(ACDEEIV) plays DEVIANCE at 12b, 96 pts,Maven=76 Logan=183.Adam �nds the only bingo.Maven(AHINRTU) plays HURT at 4a, 34 pts, Maven=110 Logan=183.HUNT would usually surpass HURT, be
ause R is better than N, but here thereare three N's already on the board versus one R. It is important to note thatMaven did not 
hoose HUNT for the reason I gave; Maven 
hose HUNT be
ausein 1,000 iterations of simulation it found that HUNT s
ored more points thanHURT. The reason I am giving (that three N's have been played versus one R)is my interpretation of that same body of data.Logan(DDEEMMN) plays EMENDED at 
7, 26 pts,Maven=110 Logan=209.EMENDED is a good play, following sound prin
iples: s
ore points, undoubleletters. Simulations give a two-point edge to MEM(13a,25,EDDN), however.Possibly the 8a-8d spot weighs against EMENDED, plus keeping an E is a valu-able bene�t for MEM. These advantages outweigh the extra point and dupli
ated\D"s.Maven(ABEINNP) plays IAMB at 8a, 33 pts, Maven=143 Logan=209.IAMB is really the only play, doubled N's notwithstanding.Logan(AILMTTU) plays MATH at a1, 27 pts, Maven=143 Logan=236.MATH(a1,27,ILTU) is best, with UTA(3a,20,ILMT) se
ond. The advantage ofMATH over UTA is its seven extra points, but the disadvantage is keeping a U.These almost wash, with an edge to MATH.Maven(EFGNNPS) plays FEIGN at e10, 18 pts, Maven=161 Logan=236.FEIGN is the only good move. FENS(j9,24,GNP) is higher s
oring, but FEIGNkeeps better tiles; NPS easily makes up the s
oring de�
it plus a lot more ontop.Logan(AILORTU) plays TUTORIAL at 15h, 77 pts,Maven=161 Logan=313.Adam �nds the only bingo. (A
tually, TUTORIAL also plays at 15f, but s
oresonly 59 there.)Maven(?ABNOPS) plays BOS at j10, 26 pts, Maven=187 Logan=313. SeeFigure 16. Maven made a great draw from the bag, and then made one ofthe most diÆ
ult plays of the game. Maven has no bingos, and has to 
hoosehow to make one. Playing o� the B and P is indi
ated, so plays like BAPor BOP (7i,20) 
ome to mind. But Maven �nds two stronger, and surprising,alternatives: BOS(j10,26,?ANP) and BOPS(j9,25,?AN). These plays s
ore afew extra points as 
ompensation for playing the S, and they open the \k" 
olumnfor bingo-making. I would have thought that BOPS would win out, but BOS isbetter. BOS does show a higher point di�erential, but that is not why it is better.It is better be
ause the 
han
e of getting a big bingo is higher due to the 
reationof a spot where a bingo 
an hit two double word squares. I believe that the greatmajority of human masters would have reje
ted BOS without a se
ond thought,probably 
hoosing BOP. BOS is a fantasti
 play, and yet, there are two playsstill to 
ome in this game that are more diÆ
ult still.Logan(IILPRSU) plays PILIS at 15a, 34 pts,Maven=187 Logan=347. PILIS,PULIS, PILUS, and PURIS are all good. Adam's 
hoi
e is best be
ause thereare only two U's left, and Adam doesn't want to risk getting a bad Q. When youlead the game you have to guard against extreme out
omes.60



Figure 16: Maven plays BOS (j10) s
oring 26 points.Maven(?AKNPRS) plays SPANKER at k5, 105 pts,Maven=292 Logan=347.This is the only bingo, and a big boost to Maven's 
han
es. I saw SPANKERbut I wasn't sure it was legal, so I was sitting on the edge of my seat. Beingdown 160 points is depressing. Worse than depressing: it is nearly impossible to
ome ba
k from that far behind. The national 
hampionship tournament givesa prize to the greatest 
omeba
k, and in this 31-round, 400-player event there isoften only one game that features su
h a 
omeba
k.Logan(EEEORUS) plays OE at b1, 12 pts, Maven=292 Logan=359. Adamplays the best move again. This play s
ores well, as his highest-s
oring playis just 13 points (ERE L6). OE dumps vowels while keeping all his 
onso-nants (an edge over ERE). It also keeps the U as \Q-insuran
e," an edge overMOUE(1a,7,EERS). And it blo
ks a bingo line. Not bad value, and a goodexample of how to make something positive happen on every ra
k.Maven(?HJTTWW) plays JAW at 7j, 13 pts, Maven=305 Logan=359.Maven's draw is bad overall, but at least there is hope if Maven 
an 
leardrek. Any play that dumps two of the big tiles is worth 
onsidering, with JAW,WORTH(11i,16,?JW), and WAW(b7,19,?JHTT) as leading 
ontenders. JAWwins be
ause the WH and TH are bearable 
ombinations, and the TT isn't toobad either. Many players would ex
hange this ra
k, but Maven didn't 
onsiderdoing so. I don't know how ex
hanging (keeping ?HT, presumably) would fare,but I suspe
t it wouldn't do well; there are few good tiles remaining, and drawinga Q is a real risk.Logan(AEEGRSU) plays GREASE at m3, 31 pts, Maven=305 Logan=390.Simulations show AGER(L9,24,ESU) as three points superior to GREASE, but61



I suspe
t that GREASE does at least as good a job of winning the game, sin
eit takes away S bingos o� of JAW. It also pays to s
ore extra points, whi
hprovide a 
ushion if Maven bingos. And it pays to turn over tiles, whi
h givesMaven fewer turns to 
ome ba
k.Maven(?HRTTWX) plays AX at 6m, 25 pts,Maven=330 Logan=390. Maven'smove is brilliant. Who would pi
k AX over GOX(13G,36)? Would you sa
ri�
e11 points, while at the same time 
reating a huge hook on the \o" 
olumn for anAX E play? And do so when there are two E's unseen among only 13 tilesand you don't have an E and you are only turning over one tile to draw one? Itseems 
razy, but here's the point: among the unseen tiles (AAEEIIIILOQUU)are only two 
onsonants, and one of them is the Q, whi
h severely restri
ts themoves that 
an be made on the \o" 
olumn. If Adam has EQUAL then Maven isdead, of 
ourse, but otherwise it is hard to get a de
ent s
ore on the \o" 
olumn.In e�e
t, Maven is getting a free shot at a big \o" 
olumn play. AX is at least10 points better than any other move, and gives Maven about a 20% 
han
e ofwinning the game. The best alternative is HAW(b7,19). GOX is well ba
k.Logan(EIIILQU) plays LEI at o5, 13 pts, Maven=330 Logan=403. Adamsensibly blo
ks, and this is the best play. The unseen tiles from Adam's perspe
-tive are ?AAEHIORTTUW, so Adam's vowelitis stands a good 
han
e of being
ured by the draw.Maven(?AHRTTW) playsWE at 9b, 10 pts,Maven=340 Logan=390. Againa problem move, and again Maven �nds the best play. In fa
t, it is the only playthat o�ers real winning 
han
es. Maven 
al
ulates that it will win if it draws aU, with the unseen tiles AEIIIOQUU. There may also be o

asional wins whenAdam is stu
k with the Q. This move requires fantasti
 depth of 
al
ulation.What will Maven do if it draws a U?Logan(AIIIOQU) plays QUAI at j2, 35 pts,Maven=340 Logan=438. Adam'snatural play wins unless there is an E in the bag. AQUA(N12,26), QUAIL(O11,15),QUAI(M12,26), and QUA(N13,24) also win unless there is an E in the bag, butwith mu
h, mu
h lower point di�erential than QUAI be
ause these plays do notblo
k bingos through the G in GREASE. There is no better play. If an E is inthe bag then Adam is lost.Maven(?AHRTTU) plays MOUTHPART at 1a, 92+8 pts, Maven=440 Lo-gan=438. See Figure 17. Maven s
ores 92 points for MOUTHPART, and eightpoints for the tiles remaining in Logan's ra
k. Maven was �shing for this bingowhen it played WE last turn. With this play Maven steals the game on the lastmove. Adam, of 
ourse, was stunned, as it seemed that there were no pla
esfor bingos left on this board. If I hadn't felt so bad for Adam, who played mag-ni�
ently, I would have jumped and 
heered. This game put Maven up by eightgames to four, so winning the mat
h was no longer in doubt.How often do you s
ore 438 points in a game of S
rabble... and lose?3.8 Other GamesConspi
uously absent from this 
hapter is the Oriental game of Go. It has beenresistant to the te
hniques that have been su

essfully applied to the games62



Figure 17: Maven | Logan, �nal positiondis
ussed in this 
hapter. For example, be
ause of the 19 � 19 board and theresulting large bran
hing fa
tor, alpha-beta sear
h alone has no hope of produ
-ing strong play. Instead, the programs perform small, lo
al sear
hes that useextensive appli
ation-dependent knowledge. David Fotland, the author of theMany Fa
es of Go program, identi�es over 50 major 
omponents needed by astrong Go-playing program. The 
omponents are substantially di�erent fromea
h other, few are easy to implement, and all are 
riti
al to a
hieving strongplay. In e�e
t, you have a linked 
hain, where the weakest link determines theoverall strength.Martin M�uller (author of Explorer) gives a stark assessment of the reality ofthe 
urrent situation in developing Go programs [102℄:Given the 
omplexity of the task, the supporting infrastru
ture forwriting Go programs should o�er more than is o�ered for othergames su
h as 
hess. However, the available material (publi
ationsand sour
e 
ode) is far inferior. The playing level of publi
ly avail-able sour
e 
ode ..., though improved re
ently, lags behind that ofthe state-of-the-art programs. Quality publi
ations are s
ar
e andhard to tra
k down. Few of the top programmers have an interestin publishing their methods. Whereas arti
les on 
omputer 
hess orgeneral game-tree sear
h methods regularly appear in mainstreamAI journals, te
hni
al publi
ations on 
omputer Go remain 
on�nedto hard to �nd pro
eedings of spe
ialized 
onferen
es. The most in-teresting developments 
an be learned only by dire
t 
ommuni
ation63



with the programmers and never get published.Although progress has been steady, it will take many de
ades of resear
h anddevelopment before world-
hampionship-
aliber Go programs exist.At the other end of the spe
trum to Go are solved games. For some games,
omputers have been able to determine the result of perfe
t play and a sequen
eof moves to a
hieve this play.16 In these games the 
omputer 
an play perfe
tly,in the sense that the program will never make a move that fails to a
hieve thebest-possible result. Solved games in
lude Nine Men's Morris [43℄, Conne
t-4[103℄, Qubi
 [104℄, and Go Moku [104℄.This 
hapter has not addressed one-player games (or puzzles). Single-agentsear
h has been su

essfully used to optimally solve the 15-puzzle [14℄ and Ru-bik's Cube [105℄, and progress is being made on solving Sokoban problems [106℄.Re
ently, major advan
es have o

urred in building programs that 
an solve
rossword puzzles [107℄.The last few years have seen resear
h on team games be
ome popular. Theannual RoboCup 
ompetition en
ourages hardware builders and software de-signers to test their skills on the so

er �eld (www.robo
up.
om).Finally, other areas of games-related interest in
lude 
ommer
ial 
omputergames, su
h as sports and role-playing games. The arti�
ial-intelligen
e workon these games is still in its infan
y.4 Con
lusionsSamuel was writing as a pioneer, one of the �rst to realize that 
omputer games
ould be a ri
h domain for exploring the boundaries of 
omputer s
ien
e and ar-ti�
ial intelligen
e. Sin
e his 1960 paper, software and hardware advan
es haveled to signi�
ant su

ess and milestones in the history of 
omputing. With it has
ome a 
hange in people's attitudes. Whereas in Samuel's time, understandinghow to build strong game-playing program was at the forefront of arti�
ial-intelligen
e resear
h, today, 40 years later, it has been demoted to lesser status.In part this is an a
knowledgment of the su

ess a
hieved in this �eld | noother area of arti�
ial intelligen
e resear
h 
an 
laim su
h an impressive tra
kre
ord of produ
ing high-quality working systems. But it is also a re
e
tionon the nature of arti�
ial intelligen
e itself. It seems that as the solution toproblems be
ome understood, the te
hniques be
ome less \AIish".The work on 
omputer games has resulted in advan
es in numerous areasof 
omputing. One 
ould argue that the series of 
omputer-
hess tournamentsthat began in 1970 and 
ontinue to this day represents the longest runningexperiment in 
omputing s
ien
e. The games resear
h has demonstrated thebene�ts of brute-for
e sear
h, something that has be
ome a widely a

eptedtool for a number of sear
h-based appli
ations. Many of the ideas that saw the16This is in 
ontrast to the game of Hex where it is easy to prove the game to be a �rstplayer win, but 
omputers are not yet able to demonstrate that win.64



light of day in game-tree sear
h have been applied to other algorithms. Build-ing world-
hampionship-
aliber games programs has demonstrated the 
ost of
onstru
ting high-performan
e arti�
ial-intelligen
e systems. Games have beenused as experimental test beds for many areas of arti�
ial intelligen
e. And soon. Samuel's 
on
luding remarks from his 1960 
hapter are as relevant today asthey were when he wrote the paper [72℄:Just as it was impossible to begin the dis
ussion of game-playingma
hines without referring to the hoaxes of the past, it is equallyunthinkable to 
lose the dis
ussion without a prognosis. Program-ming 
omputers to play games is but one stage in the developmentof an understanding of the methods whi
h must be employed forthe ma
hine simulation of intelle
tual behavior. As we progress inthis understanding it seems reasonable to assume that these newerte
hniques will be applied to real-life situations with in
reasing fre-quen
y, and the e�ort devoted to games ... will de
rease. Perhapswe have not yet rea
hed this turning point, and we may still havemu
h to learn from the study of games.5 A
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