Best-First Fixed-Depth Minimax Algorithms

Aske Plaat, Erasmus University, plaat@theory.lcsmitedu
Jonathan Schaeffer, University of Alberta, jonathan@cs.ualberta.ca
Wim PRijls, Erasmus University, whimp@cs.few.eur.nl
Arie de Bruin, Erasmus University, arie@cs.few.eur.nl

Erasmus University, University of Alberta,
Department of Computer Science, Department of Computing Science,
Room H4-31, PO. Box 1738, 615 Genera Services Building,
3000 DR Rotterdam, Edmonton, Alberta,

The Netherlands Canada T6G 2H1

December 14, 1995

Abstract

This article has three main contributions to our understanding of minimax
search:

First, a new formulation for Stockman’s SSS* agorithm, based on Alpha
Beta, is presented. It solves al the perceived drawbacks of SSS*, findly trans-
forming it into a practica agorithm. In effect, we show that SSS* = Alpha-Beta
+ transposition tables. The crucia step isthe realization that transposition tables
contain so-called solution trees, structures that are used in best-first search algo-
rithms like SSS*. Having created a practica version, we present performance
measurements with tournament game-playing programs for three different mini-
max games, yielding resultsthat contradict a number of publications.

Second, based on theinsights gained in our attempts at understanding SSS*,
we present aframework that facilitatesthe construction of several best-first fixed-
depth game-tree search agorithms, known and new. The framework isbased on
depth-first null-window Alpha-Betasearch, enhanced with storageto allow for the
refining of previoussearch results. It focuses attention ontheessential differences
between algorithms.

Third, a new instance of this framework is presented. It performs better
than algorithmsthat are currently used in most state-of-the-art game-playing pro-
grams. We provide experimental evidence to explain why this new agorithm,
MTD(f), performs better than other fixed-depth minimax a gorithms.

Keywords: Game-tree search, Minimax search, Alpha-Beta, SSS*, Transposi-
tion tables, Null-window search, Solution trees.

1 Introduction

TheAlpha-Betatree-searching algorithm[18] hasbeenin usesincethe1960’'s. No other
minimax search algorithm has achieved the wide-spread use in practical applications



that AlphaBeta has. Thirty years of research has found ways of improving the
algorithm’s efficiency, and variants such as NegaScout [41] and PVS [8] are quite
popular. Interesting alternatives to depth-first searching, such as breadth-first and
best-first strategies, have been largely ignored in practice.

In 1979 Stockman introduced SSS*, which looked like a radically different ap-
proach from Alpha-Betafor searching fixed-depth minimax trees [51]. It buildsatree
in a so-called best-first fashion by visiting the most promising nodes first.! Alpha-
Beta, in contrast, uses a depth-first, left-to-right traversal of the tree. Intuitively, it
would seem that a best-first strategy should prevail over arigidly ordered depth-first
one. Stockman proved that SSS* dominated Alpha-Beta; it would never evaluate more
leaf nodes than Alpha-Beta. Numerous simulations have shown that on average SSS*
evaluates considerably fewer leaf nodes (for example, [17, 24, 26, 41, 43, 45]). Why,
then, has the algorithm been shunned by practitioners?

SSS*, asformulated by Stockman, hasseveral problems. First, it takesconsiderable
effort to understand how the algorithm works, and still more to understand itsrelation
to Alpha-Beta. Second, SSS* maintains a data structure known as the OPEN list,
similar to that found in single-agent search algorithms like A* [30]. The size of this
list grows exponentialy with the depth of the search tree. This has led many authors
to concludethat SSS* iseffectively disqualified from being useful for real applications
like game-playing programs [17, 26, 45, 51]. Third, the OPEN list must be kept in
sorted order. Insert and (in particular) delete/purge operations on the OPEN list can
dominate the execution time of any program using SSS*. Despite the promise of
expanding fewer nodes, the disadvantages of SSS* have proven a significant deterrent
in practice. The genera view of SSS* then isthat:

1. itisacomplex algorithm that is difficult to understand,

2. it has large memory requirements that make the algorithm impractical for real
applications,

3. itis“slow” because of the overhead of maintaining the sorted OPEN list,

4. it has been proven to dominate Alpha-Betain terms of the number of leaf nodes
evaluated, and

5. it evaluates significantly fewer leaf nodes than Alpha-Beta.

For anumber of years, we have been trying to find out how and why SSS* works, and
whether the drawbacks can be solved. In thisarticle we report the following results:

« The obstaclesto efficient SSS* implementations have been solved, making the
algorithm a practical alternative to Alpha-Beta variants. By reformulating the
algorithm, SSS* can be expressed simply and intuitively as a series of callsto
Alpha-Betaenhanced with atranspositiontable (TT), yielding anew formulation
caled MT-SSS*. MT-SSS* does not need an expensive OPEN list; a familiar
transposition table performs aswell. In effect: SSS* = Alpha-Beta+ TT.

Thereis potential for confusion between SSS*, which selectsthe node offering the “ best” information
on bounds at the root in a fixed-depth search, and a new algorithm called Best-First Minimax Search,
which expandsthe children of the “ best” node in a variable-depth search [20].



« Inspired by the MT-SSS* reformulation, a new framework for minimax search
isintroduced. It isbased on memory-enhanced null-window Alpha-Beta search.
Wecall thisprocedure MT, after Pearl’s Test procedure[30]. We present asimple
framework of MT drivers (MTD) that make repeated callsto MT to homein on
the minimax value. Search results from previous passes are stored in memory
and re-used. MTD can be used to construct a variety of fixed-depth best-first
search algorithms using depth-first search. It iseasily incorporated into existing
game-playing programs.

« Usingour new framework, wewere ableto compare the performance of anumber
of best-first agorithms to some well-known depth-first algorithms, using three
high performance game-playing programs. The results of these experiments
were quite surprising, since they contradict the large body of published results
based on simulations: best-first searches and depth-first searches have roughly
comparable performance, with NegaScout, a depth-first algorithm, often out-
performing SSS*, a best-first agorithm.

In previously published experimental results, depth-first and best-first minimax
search algorithms were allowed different memory requirements. To our knowl-
edge, we present thefirst experiments that compare them usingidentical storage
reguirements.

« With dynamic move reordering schemes, like iterative deepening, SSS* (and
its dual DUAL* [21, 24, 41]) are no longer guaranteed to expand fewer leaf
nodes than Alpha-Beta. The conditions for Stockman’s proof [51] are not met
in practice.

« In anayzing why our results differ from simulations, we identify a number of
differences between real and artificially generated game trees. Two important
factors are transpositions and val ue interdependence between parent and child
nodes. In game-playing programs these factors are commonly exploited by
transposition tables and iterative degpening to yield large performance gains—
making it possible for depth-first agorithms to out-perform best-first. Given
that most simulations neglect to include important properties of trees built in
practice, of what value are the previously published simulation results?

« We formulate a new algorithm, MTD(f). It out-performs our best Alpha-Beta
variant, NegaScout enhanced with an aspiration window, on leaf nodes, total
nodes, and execution time for our test programs. Since MTD(f) is an instance
of the MT framework, it is easily implemented in existing programs. just add
one loop to an Alpha-Beta-based program.

« Inthe past, much research effort has been devoted to understanding how SSS*
works, and finding out what the pros and cons of SSS*’s best-first approach
are for minimax search. In the new framework, SSS* is equivalent to a specia
case of Alpha-Beta and it is out-performed by other Alpha-Beta variants (both
best-first and depth-first). In light of this, we believe that SSS* should now
become afootnotein the history of game-tree search.



In section 2 we use an example to demonstrate how a best-first search uses its
information to decide which node to select next. Specifically, this section introduces
MT-SSS*, whichisareformulation of SSS* based on Alpha-Beta. Section 3 addresses
one of the biggest drawbacks of SSS*: its memory requirements. We will show
empirical evidence using our reformulation that this problem is effectively solved
for our applications. In section 4 we introduce a framework for fixed-depth best-
first minimax algorithms based on null-window Alpha-Beta searches enhanced with a
transposition table. In section 5 we present the results of performance tests with three
tournament-level game-playing programs. One algorithm, MTD(f), is on average
consistently better. In explaining its behavior, we establish a relation between the
start value of a series of null-window searches and performance. Section 6 addresses
the reasons why our results contradict the literature: the difference between red
and artificial game trees is significant. Given that high-performance game-playing
programs are readily available, the case for ssimulationsis weak. Section 7 givesthe
conclusions. Appendix A provides a more forma treatment of why MT-SSS* and
SSS* are equivaent in the sense that they expand the same leaf nodes in the same
order. Appendix B presents an example proving that when SSS* is used with dynamic
move reordering, it no longer dominates Alpha-Beta.

To conclude this introduction, we make a remark on terminology. Sometimes the
term Alpha-Betais used to denote a single procedure which can be caled with any
search window, for example, as a building block for agorithms like MT-SSS* and
MTD(f). At other times Alpha-Betais meant as the algorithm Alpha-Beta(n, —o, +)
that finds the minimax value of atreerooted at n. Which of thetwo ismeant should be
clear from the context.

Preliminary results from this research have appeared in [38].

2 A Practical Version of SSS*

SSS* is a difficult algorithm to understand, as can be appreciated by looking at the
codein figure 1. SSS* works by manipulating a list of nodes, the OPEN list, using
six ingenious inter-locking cases of the so-called I' operator. Throughout this paper,
it is assumed that the root is of type MAX. The nodes have a status associated with
them, either live (L) or solved (S), and a merit, denoted h. The OPEN list is sorted in
descending order, so that the entry with highest merit (the “best” node) is at the front
and will be selected for expansion.

In this section we present a clearer formulation that has the added advantage
of solving a number of obstacles that have hindered SSS*'s use in practice. The
reformulation is based on the Alpha-Beta procedure. 1t examines the same leaf nodes
inthesameorder as SSS*. Itiscalled MT-SSS*, and the codeisshown later infigure 8.

Figure 2 showsthe pseudo-codefor Alpha-Beta (enchanced with storage) [18, 23].
In contrast to SSS*, the code is a tight recursive formulation. The relative simplicity
of the code has made it a popular choice for implementation by practitioners. In the
code, eval returnsthe evaluation of aleaf node, firstchild and nextbrother are used to
generate the successor nodes of a position, and storageis accessed using the store and
retrieve routines. f denotesthe minimax vaue of anode; f* isan upper bound on that
value, while f~ isalower bound. The code specifiesthefail-soft variant of Alpha-Beta
[14], where areturn value outside the search window is a bound on the minimax val ue.



Stockman’s SSS* (including Campbell’s correction [7])

(1) Placethestart state (n = root,s = LIVE, h = +«) on alist called OPEN.

(2) Removefrom OPEN statep = (n,s, ﬁ) with largest merit h. OPEN isalist kept in
non-decreasing order of merit, so p will bethefirst in thelist.

(3) Ifn=root and s= SOLVED then pisthegoa state so terminate with h= f(root) as
the minimax evaluation of the game tree. Otherwise continue.

(4) Expand state p by applying state space operator I' and queuing al output states I (p)
onthelist OPEN in merit order. Purge redundant states from OPEN if possible.
The specific actions of I are givenin the table below.

(5 Goto(2)

State space operations on state(n, s, ﬁ) (just removed from top of OPEN list)

Case of Conditions satisfied Actionsof I' in creating

operator ' by input state (n, s, ﬁ) new output states

not s=SOLVED Final state reached, exit algorithm

applicable  n=ROOT withg(n) = h.

1 s=SOLVED Stack (m = parent(n), s, h) on OPEN list.
n#Z ROOT Then purge OPEN of all states (k, s, ﬁ)
type(n) = MIN where misan ancestor of k in the game tree.

2 s=SOLVED Stack (next(n), LIVE, h)

n#Z ROOT on OPEN list
type(n) = MAX
next(n) # NIL

3 s=SOLVED Stack (parent(n), s, h)
n#Z ROOT on OPEN list
type(n) = MAX
next(n) = NIL

4 s=LIVE Place (n, SOLVED, min(h, f(n))) on
first(n) = NIL OPEN lit (interior) in front of all states of

lesser merit. Tiesare resolved |l eft-first.

5 s=LIVE Stack (first(n),s, h)
first(n) # NIL on (top of) OPEN list.
type(first(n)) = MAX

6 s=LIVE Reset n to first(n).

first(n) # NIL
type(first(n)) = MIN

Whilen % NIL do
queue (n,s, h) ontop of OPEN list
reset n to next(n)

Figure 1: Stockman’'s SSS* [30, 51]



function aphabeta(n,a, 8) - g;
if retrieve(n) = ok then
if nf~ = Bthenreturn n.f~;
if n.f* < a then return n.f*;
if nisaleaf nodethen g := eva(n);
eseif nisamax nodethen
g:=—-w;a:=a;
¢ :=firstchild(n);
whileg< pandc # — do
g := max(g, aphabeta(c, a, B));
a = max(a,Q);
¢ := nextbrother(c);
ese/* nisamin node*/
g:=+4w; b:=p;
¢ :=firstchild(n);
whileg> aand c# — do
g := min(g, aphabeta(c, a, b));
b :=min(b, g);
¢ := nextbrother(c);
if g< Bthen nf*:=g;
if g> athenn.f~ :=g;
storen.f~,n.f*;
return g;

Figure 2: The Alpha-Beta Function for use with Transposition Tables



41 5 12 90 101 80 20 30 34 80 36 35 50 36 25 3

Figure 3: Example Tree for MT-SSS*

Therelationship between SSS* and Alpha-Betawill bediscussed using an example
which concentrates on the higher-level concepts. Formality is deferred to appendix A.

The two key concepts in our explanation of the relationship between SSS* and
Alpha-Beta are an upper bound on the minimax value, and a max solution tree, which
isthe minimal search tree that proves an upper bound.? We will explain max solution
trees, and how SSS* constructs them, shortly.

21 Example

Figure 3 is used to illustrate how SSS* and MT-SSS* search for the minimax value.
This section contains a detailed description of how MT-SSS* works. The example
assumes some familiarity with SSS*. One of the reasons to create MT-SSS* was
the sense of confusion that the complexity of SSS* brings about. By using standard
concepts from the Alpha-Beta literature we try to alleviate this problem. Although
instructive, going through the example step-by-step is not necessary to follow the rest
of this article. For ease of reference, this tree is the same as used by Pearl in his
explanation of SSS* [30].

A number of stages, or passes, can be distinguished in the traversal of this tree.
At the end of each pass the OPEN list consists of solved nodes only. We will go to
some depth examining how Alpha-Beta can be used to traverse this tree in a best-first
fashion. For reasons of brevity we refer to to [30, 35, 39] for the details of how SSS*
traverses the tree. In the figures the nodes are numbered a to t in the order in which
SSS* first visitsthem.

First pass: (seefigure 4)

In the first pass the left-most max solution tree is constructed, creating the first non-
trivial upper bound on the minimax value of theroot. +e and —« are used as the upper
and lower bounds on the range of leaf values. In real implementations, these bounds
are suitably large finite numbers.

Ascan be seen from the examplein [30], SSS* starts by building thetree shownin
figure 4, using cases 4, 5, and 6 of the ™ operator. At max nodes, al the children were
expanded (case 6), whileat min nodes only the first child was added to the OPEN list
(case 5). Case 4 evauated the leaf nodes of the tree. Sorting the list guaranteed that

2Stockman originally used min solution trees to explain his algorithm. We explain SSS* using upper
bounds and max solution trees, since it improves the clarity of the arguments.



Figure 4: Pass 1

the entry with the highest upper bound was at the front. It isinteresting to determine
the minimax value of the sub-tree expanded thus far (see figure 4). Since only one
child of a min node is included, minimaxing the leaf values simplifies to taking the
maximum of al theleaves. The minimax vaue of thistreeis 41, the maximum of the
leaves, which is also the h value of the first entry of the OPEN list. The (Ieft-most)
leaf equal to the value at the root is called the critical leaf, while the path from the
root to the critical leaf is the principal variation. A tree which includes one child at
min nodes and al children at max nodes, is called a max solution tree (for example,
figure4). Theterm “solutiontree” wasoriginally used in the context of AND/OR trees,
where it meant, in our terminology, a min solution tree (one child at max nodes and
all children at min nodes). SSS* has shown that solution trees are a useful concept for
understanding game-tree algorithms. Solution trees are discussed in [21, 22, 31, 51].

Instead of using I cases 4, 5 and 6 and asorted OPEN list, there are other waysto
computethe “left-first” upper bound on the minimax value of a. Oneway is suggested
by the following post-condition of the Alpha-Beta procedure. Assume for node n with
minimax value f, that g is the return value of an Alpha-Beta(n, a, ) call. There are
three possible outcomes:

1. a < g< B(success). gisequa to the minimax value f of node n.
2. g<a (faling low). g isan upper bound on f, denoted f*, or f < g.
3. g =B (failing high). gisalower bound on f, denoted f~, or f = g.

Using outcome 2, we can force the Alpha-Beta procedure to return an upper bound
(fail low) by calling it with a search window greater than any possibleleaf nhode val ue.
Since both Alpha-Beta and SSS* expand nodes in a left-to-right order, Alpha-Beta
when called with this window will find the same upper bound, and expand the same
max solution tree, as SSS*. Appendix A provides a more formal treatment of this
claim.

In the special case where o = B — 1, Alpha-Beta always returns a bound on
the minimax value. This search window, the narrowest possible for integer-vaued
evaluations, iscalled aminimal or null window. The concept of anull-window search,
or proof procedure, iswell known [14, 29]. Many people have noted that null-window
search is more efficient than wide-window search, because the tighter bounds cause



41 5 skipped skipped

Figure 5: Pass 2

more cutoffs[1, 8, 9, 14, 28, 46]. Pearl introduced the procedure Test, part of his Scout
algorithm [28, 29]. NegaScout [40, 41], an enhanced version of Scout, has becomethe
algorithm of choicefor many game-playing programs. We named our proof-procedure
MT, for Memory-enhanced Test. MT returns a bound, not just a Boolean value. This
procedure is sometimes called fail-soft Test. The name MT is just shorthand for a
null-window call to AlphaBeta enhanced with storage (such as a transposition table).

A cal AlphaBeta(a, « — 1, ) will cause an apha cutoff at all min nodes, since
al interna calls return valuesg < o = « — 1. No beta cutoffs at max nodes will
occur, since all g < B. The call Alpha-Beta(a, « — 1, ©) on the tree in figure 3 will
traverse the tree in figure 4. Due to the store operation in figure 2, thistree is saved
in memory so that its backed-up values can be used in alater pass. The max solution
tree stored at the end of this pass consists of thenodes a, b, c,d, e f,g, h,i,j, k,1 and m,
yielding an upper bound of 41. For Stockman’s formulation, the leaves of this tree
are stored in the OPEN list, whichis ((e, S 41),(m, S 36), (k, S 34),(9,S 12)). Note
that theentry at thehead of thelistisalso 41, SSS*’supper bound onthe minimax value.

Second pass: (seefigure 5)

This pass lowers the upper bound on f from 41 to 36 using I' cases 2 and 4 (see [30]).
The OPEN list becomes ((m, S,36), (k, S 34), (g,S 12), (n,S 5)). Only one new node
has been expanded. The value of the upper bound is determined by a new (sharper)
max solution tree, whose leaves are contained in the OPEN list.

How can we use Alpha-Beta to lower the upper bound of the first pass? Since
the max solution tree defining the upper bound of 41 has been stored by the previous
call, we can re-traverse the nodes on the principa variation (a, b, c,d, e) to find the
critical leaf e, and see whether expanding its brother will yield a search tree with a
lower minimax value. To give AlphaBeta the task of returning a value lower than

* =41, we giveit a search window which will cause it to fail low. The old window
of {0 — 1,00) will not do, since the code in figure 2 will cause Alpha-Beta to return
from both nodes b and h with avaue of 41, lower than «. A better choice would be
the search window (f* — 1, f*), or (40,41), which prompts Alpha-Beta to descend the
principa variation and return as soon as a lower f* on node a is found. Alpha-Beta
will descend to nodes b, ¢, d, e and continue to search node n. 1t will back up value 5
to node d and cause a cutoff. The value of d is no longer determined by e but by n.



skipped skipped 36 35

Figure 6: Pass 3

Node e is no longer part of the max solution tree that determines the sharpest upper
bound. It has been proven that e can be erased from memory as long as we remember
that nisthe new best child (not shown in the Alpha-Beta code). The value5 isbacked
up to ¢. No beta cutoff occurs at ¢, so f's bound is retrieved. Since f* < a at node f,
it returns immediately with value 12. 12 is backed up to b, where it causes an apha
cutoff. Next, 12 is backed up to a. Sinceg < 3, node h is entered, which returns
immediately its value of 36. The call Alpha-Beta(a, 40,41) fails low with value 36,
the sharper upper bound. The max solution tree defining this bound consists of nodes
a,b,c,d,n, f,g,h,i,j, k1 and m(that is, node e has been replaced with n).

By storing previously expanded nodes in memory, and calling Alpha-Beta with
the right search window, we can make it traverse the principal variation. Alpha-Beta
expands brothers of the critical leaf to get a better upper bound on the minimax value
of theroot, in exactly the same way as SSS* does.

Third Pass. (see figure 6)
In this pass, the upper bound is lowered from 36 to 35. Again, only one new node is
expanded. The new OPEN listis ((0,S 35),(k,S 34),(g,S 12),(n,S5)).

In the Alpha-Beta case, a cal Alpha-Beta(a, 35, 36) is performed. From the pre-
vious search, we know that b has an f* < 35 and h does not. The agorithm follows
the principal variation leading to the leaf node with value 36 (h,i,l,m). The brother
of mis expanded. The bound on the minimax value at the root has now been im-
proved from 36 to 35. The max solution tree defining this bound consists of nodes
a,b,c,d,n, f,g,hi,j,klando.

Fourth Pass: (seefigure 7)

Thisisthe last pass of SSS*, in which the upper bound cannot be lowered. I cases 1
and 3 back up 35 to theroot. Again, werefer to [30] for the details of the SSS* part of
the example.

In the Alpha-Beta case, a call with window (f* — 1, f*), or Alpha-Beta(a, 34, 35),
isperformed. Inthispasswewill not find afail low asusual, but afail high with return
value 35. Thereturn valueisnow alower bound, backed-up by a min solution tree.

How does Alpha-Beta traverse this min solution tree? The search follows the
critical path a,h,i,l and 0. At node |, both its children immediately return without

10



skipped skipped 36 35 50 36

Figure 7: Pass 4
function MT-SSS*(n) - f; function MT-DUAL*(n) - f;

g = +oo; g:= —o;
repeat repeat

Y=g Yy =g

g :=AlphaBeta(n,y — 1,y); g :=Alpha-Beta(n,y,y + 1);
untilg=vy; untilg=vy;
return g; return g;

Figure 8: SSS* and DUAL* as a Sequence of Alpha-Beta Searches

having been evaluated; thevaueisretrieved from storage. Note that the previous pass
storedan f* vauefor |, whilethispasswill storean f~. Thevaueof | does not change,
j’'sbound of 34 precludesit from being searched, soi’svaueremainsunchanged. Node
i cannot lower h'svalue (g > a, 35 > 34, no cutoff occurs), so the search explores p.
Node p expands g which, in turn, searches sand t. Since p isa maximizing node, the
value of q (36) causes a cutoff: g € B, noder is not searched. Both of h's children
are= 35. Node h returns 35, and so does a. Node a was searched attempting to show
whether its value was < or = 35. h provides the answer: greater than or equal. This
call to Alpha-Betafails high, meaning we have alower bound of 35 on the search. The
previouscall to AlphaBetaestablished an upper bound of 35. Thusthe minimax value
of thetree isproven to be 35.

We see that nothing special is needed to have Alpha-Betatraverse the min solution
tree g, h,i,I,m0,p,g,sand t. The ordinary cutoff decisions cause its traversal, when
a=f"(a-1landp = f"(a)

In the previousfour passeswe called Alpha-Betawith a special search window to have
it emulate SSS*. This sequence of calls, creating a sequence of fail lowsuntil thefinal
fail high, can be captured in a single loop, given by the pseudo-code of figure 8. The
reformulation is called MT-SSS*.

One of the problemswith Stockman’s original SSS* formulationisthat itishard to
understand what is“really” going on. It isdifficult to create an understanding in terms
of concepts above the level of which I' case happenswhen and does what. Part of the
reason is the iterative nature of the algorithm. This has been the motivation behind

11



the development of other algorithms, notably RecSSS* [4] and SSS-2 [31], which
are recursive formulations of SSS*. Although clarity is a subjective issue, it seems
simpler to express SSS* in terms of awell-understood agorithm (Alpha-Beta), rather
than inventing anew formulation. We think that comparing the codesin figures1 and 8
showswhy we believe to have made the algorithm easier to understand. Furthermore,
figure 8 aso gives the code for our reformulation of DUAL*, called MT-DUAL*,
showing the versatility of this formulation. In section 4 we will pursue this point by
presenting a generalization of these two codes.

3 All About Storage

Theliterature portrays storage as the biggest problem with SSS*. Theway it was dealt
with in Stockman’s original formulation gave rise to two points of criticism:

1. SSS isdow. Some operations on the sorted OPEN list have non-polynomial
time complexity. In particular, measurements show that the purge operation of
I" case 1 consumes about 90% of SSS*'s runtime [24].

2. SSS* has unreasonable storage demands. Stockman states that his OPEN list
needs to store at most w'%?! entries for a game tree of uniform branching factor
w and uniform depth d—the number of leaves of a max solution tree. In the
examplewe al so saw that asingle max solution treeis manipulated. (In contrast,
DUAL* requireswl9?! entries, thenumber of leavesof amin solutiontree.) This
isusually perceived as being unreasonably large storage requirements.

Severd alternatives to the SSS* OPEN list have been proposed. One solution im-
plements the storage as an unsorted array, aleviating the need for the costly purge
operation by overwriting old entries (RecSSS* [3, 4, 43]). By organizing this data as
animplicit tree, thereisno need to do any explicit sorting, sincethe principal variation
can betraversed to find the critical leaf. Another alternativeis to use a pointer-based
tree, the conventional implementation of arecursive data structure.

Our solutionisto extend Alpha-Betato include the well-known transpositiontable
(see, for example, section 3.1 or [23]). Aslong as the transposition table is large
enough to storeat least the min or max solutiontrees® that are essential for the efficient
operation of MT-SSS* and MT-DUAL*, it providesfor fast access and efficient storage.
MT-SSS* will operate when the tableistoo small, at the cost of extra re-expansions.

Theflexibility of the transposition tabl e all ows experiments with different memory
sizes. In section 3.3 wewill see how big the transpositiontable should befor MT-SSS*
to function efficiently. That section presents experimental data addressing the storage
concerns of SSS*. Many single and double agent search programs include iterative
deepening and transpositiontables[19, 42]. They are aso used in our experiments and
are briefly described below.

3.1 Transposition Tables and Iterative Deepening

In many application domains of minimax search algorithms, the search space is a
graph, whereas minimax-based algorithms are suited for tree search. Transposition

3This includes the direct children of nodes in the max solution tree. These can be skipped by
optimizations in the Alpha-Beta code, in the spirit of what Reinefeld has done for Scout [40, 41].

12



tables (TT) are used to enhance the efficiency of tree-search agorithms by preventing
the re-expansion of children with multiple parents [23, 47]. A transpositiontableisa
hash table in which searched nodes (barring collisions, the search tree) are stored. The
tree-search algorithmis modified to look in thistable beforeit searchesanode and, if it
findsthe node, usesthe valueinstead of searching. In application domainswhere there
are many paths leading to a hode, this scheme leads to a substantial reduction of the
search space. (Although technically incorrect, we will stick to the usual terminology
and keep using terms like minimax tree search.)

A potential drawback of most transposition table implementations is that they do
not handle hash-key collisionswell. In[35, 39] it is shown that thisis not a problem
in practice.

Most game-playing programs use iterative deepening [23, 47, 50]. It is based on
the assumption that a shallow search is a good approximation of a deeper search. It
starts off by doing a depth one search, which terminates almost immediately. It then
increases the search depth step by step, each time restarting the search over and over
again. Due to the exponential growth of the tree the former iterations usually take a
negligibleamount of timecompared tothelast iteration. Among the benefits of iterative
deepening (ID) in game-playing programs are better move ordering (explained in the
next paragraph), and advantages for tournament time control information. (In the area
of one player games it is mainly used as a way of reducing the space complexity of
best-first searches [19].)

Transposition tables are often used in conjunction with iterative deepening to
achieve a partial move ordering. The search value and the branch leading to the
highest score (best move) are saved for each node. When iterative degpening searches
one level deeper and revisits nodes, the move suggested by the transposition table
(if available) is searched first. Since we assumed that a shallow search is a good
approximation of a deeper search, this best move for depth d will often turn out to be
the best move for depth d + 1 too. Good move ordering increases the pruning power
of algorithmslike Alpha-Betaand SSS*.

Transposition tables in conjunction with 1D are typically used to enhance the
performance of algorithmsin two ways:

1. improvethe quality of the move ordering and

2. detect when different paths through the search space transpose into the same
state, to prevent the re-expansion of that node.

In the case of an agorithm in which each ID iteration performs multiple passes over
the search tree, like MT-SSS* and MT-DUAL*, thereis an additional use for the TT:

3. prevent the re-search of anode that has been searched in a previous pass, in the
current ID iteration.

3.2 Experiment Design

In our reformulation, MT-SSS* uses a standard transposition table to store previous
search results. If that tableistoo small, previousresultswill be overwritten, requiring
occasional re-searches. A search usingasmall tablewill still yield the correct minimax
value, although the number of leaf expansions may be high. To test the behavior of

13



our algorithm, we experimented with different transposition table sizes for MT-SSS*
and MT-DUAL*.

The questionswe want to see answered are: “Does SSS* fit in memory in practical
situations” and “How much memory is needed to out-perform Alpha-Beta?. We
used iterative deepening versions of MT-SSS* and Alpha-Beta, since these are used
in practical applications too. The experiments were conducted using game-playing
programs of tournament quality. For generality, our data has been gathered from three
programs: Chinook (checkers) [49], Keyano (Othello) [5] and Phoenix (chess) [46].
With these programs we cover the range from low to high branching factors. All three
programs are well knownin their respectivedomain. The only changeswe madetothe
programs was to disable search extensions and forward pruning, to ensure consistent
minimax valuesfor the different algorithms. For our experiments we used the original
program author’s transposition table data structures and code, without modification.
At an interior node, the move suggested by the transposition table is always searched
first (if known), and the remaining moves are ordered before being searched. Chinook
and Phoenix use dynamic ordering based on the history heuristic [47], while Keyano
uses static move ordering.

The Alpha-Beta code given in figure 2 differs from the one used in practicein that
the latter usualy includes two details, both of which are common practice in game-
playing programs. Thefirst is a search depth parameter. This parameter isinitialized
to the depth of the search tree. As Alpha-Beta descends the search tree, the depth is
decremented. Leaf nodes are at depth zero. The second is the saving of the best move
a each node. When a node is revisited, the best move from the previous search is
aways considered first.

Conventional test sets in the literature proved to be inadequate to model real-life
conditions. Positionsin test sets are usually selected to test a particular characteristic
or property of the game (such astactical combinationsin chess) and are not necessarily
indicative of typica game conditions. For our experiments, each data point was
averaged over 20 test positionsthat corresponded to move sequences from tournament
games. By sdlecting move sequences rather than isolated positions, we are attempting
to create a test set that is representative of real game search properties (including
positionswith obvious moves, hard moves, positional moves, tactical moves, different
game phases, etc.). A number of runs were performed on a larger test set to check
that the test data did not cause anomalies (the data set size is consistent with [46]).
All three programs ran to a depth so that al searched roughly for the same amount of
time. The search depthsreached by the programs vary greatly because of the differing
branching factors. In checkers, the average branching factor is approximately 3 (there
aretypically 1.2 movesin acapture positionwhileroughly 8 in anon-capture position),
in Othello 10 andin chess 36. Because of thelow branching factor Chinook wasableto
search to depth 17, iterating two ply at atime. Keyano searched to 10 ply and Phoenix
to 8, both one ply at atime.

3.3 Reaults

Figures 9 and 10 show the number of leaf nodes expanded by ID MT-SSS* and ID
MT-DUAL* relativeto ID Alpha-Betaas afunction of transpositiontable size (number
of entriesin powersof 2). The graphs show that for small transposition tables, Alpha-

14



Checkers - Sensitivity of ID MT-SSS* to Storage

Leaves Relative to ID Alpha-Beta

ID Alpha-Beta ——
| ID MT-SSS* depth 15 -+ |

| ID MT-SSS* depth 13 -+

* | ID MT-SSS* depth 11 -=
14:1 ¢ k | E
13:1+ | 1
12:1} . & i
111 . .
! \“2\
1:1 - T  SEESRREEL SRR 1
1:11 E
12 14 16 18 20 22

Ig of Entriesin Transposition Table

Othello - Sensitivity of ID MT-SSS* to Storage

Leaves Relative to ID Alpha-Beta

"‘ 8 ID Alpha-Beta ——
| ID MT-SSS* depth 9 -
i ID MT-SSS* depth 8 -+ |
ID MT-SSS* depth 7 &
14:1 .‘ 1
13:1+ | 1
" Q
o] | |
12:1} 1
11:1f i —
. X
B AN \\
1:1 *e
=] T
=
1:11f o 1

10 12 14 16 18 20 22
Ig of Entriesin Transposition Table

Chess - Sensitivity of ID MT-SSS* to Storage

ID Alpha-Beta ——
ID MT-SSS* depth 7 -o---
ID MT-SSS* depth 6 -+ ]|
ID MT-SSS* depth 5 -2

Leaves Relative to ID Alpha-Beta

14:1

13:1

12:1

11:1 ¢

Figure9: Leaf Node Count ID MT-SSS*

16 18
Ig of Entriesin Transposition Table

15




Leaves Relative to ID Alpha-Beta Leaves Relative to ID Alpha-Beta

Leaves Relative to ID Alpha-Beta

Checkers - Sensitivity of ID MT-DUAL* to Storage

13:1 T T T

| ID Alpha-Beta ——

i ID MT-DUAL* depth 15 -<---

4 ID MT-DUAL* depth 13 --+---
12:1+ ID MT-DUAL* depth 11 &
11:1 ¢ i

1:1 +
1:11 h PO SN ° i
iz} ! o] B
. é——————i—‘g: B R e oo +
T e ! |
12 14 16 18 20 22
Ig of Entriesin Transposition Table
Othello - Sensitivity of ID MT-DUAL* to Storage
13:1 T T T T T T
B ID Alpha-Beta —
ID MT-DUAL* depth9 -<---

LA ID MT-DUAL* depth8 --+---
12:1+ A ID MT-DUAL* depth 7 -
11:1F i

1:1 - —
* o
* T
1:11 o ) . e I
© R
o -
=)
10 12 14 16 18 20 22
Ig of Entriesin Transposition Table
Chess - Sensitivity of ID MT-DUAL* to Storage
13:1 T T T T T
ID Alpha-Beta ——
ID MT-DUAL* depth 7 -<--
ID MT-DUAL* depth 6 --+---
12:1 ID MT-DUAL* depth5 -~ |
11:1 ¢ i
1:1 s
o - & 153 =3 a
\ @ TR e
\\ - +
1:11 B P ,
o +7 o . <
- =
e
12 14 16 18 20 22

Ig of Entriesin Transposition Table

Figure 10: Leaf Node Count ID MT-DUAL*

16



Beta out-performs M T-SSS*, and for very small sizesit out-performs MT-DUAL* too.
However, once the storage reaches a critical level, MT-SSS*'s performance level s off
and is generaly better than Alpha-Beta. The graphs for MT-DUAL* are similar to
those of SSS*, except that the lines are shifted to the I eft.

Simple calculations and the empirical evidence leads us to disagree with authors
stating that O(w%?1) istoo much memory for practical purposes[17, 24, 26, 41, 45, 51].
Further, many applications have transpositions that can reduce the search effort by a
large factor (9 for checkers at depth 15, 4 for chess at depth 9, and 2 for Othello at
depth 9 [35]). For present-day search depthsin applicationslike checkers, Othello and
chess, using present-day memory sizes, we see that MT-SSS*’s search trees fit in the
available memory. For most real-world game-playing programs, a transposition table
size of lessthan 229 entrieswill be more than adequate for MT-SSS* under tournament
conditions.

The graphs provide a clear answer to the main question: SSS* fits in memory,
for practical search depths in games with both narrow and wide branching factors. It
out-performs Alpha-Beta when given a reasonable amount of storage. However, the
original SSS* formulation does not work when there is insufficient storage to hold
the OPEN list. The MT-SSS* reformulation benefits from the flexibility provided by
the transposition tables, alowing the program to work correctly with any amount of
memory. In other words, memory only affects efficiency, not correctness.

Thegraphs support thetheory that saysthat MT-SSS* isconstantly refining asingle
max solutiontree. Assoon asthereisenough memory to storemost of the max solution
tree, MT-SSS* runs smoothly inthat it does not have to re-expand parts of thetree that
it has searched in previous passes. The graphsalso support the notionthat MT-DUAL*
needs |ess memory, since it manipulatesa (smaller) min solution tree (O(wL%2!) versus
O(w¥?1) for max solution trees).

We can concludefrom theexperimentsthat MT-SSS* and MT-DUAL* arepractical
aternatives to Alpha-Beta, where the transposition table size is concerned. However,
the experiments also made clear that there are a number of minor issues that are not
yet fully understood. For brevity, these issues are discussed el sewhere [35].

34 MT-SS5* isa Practical Algorithm
Theintroduction cited two storage-rel ated drawbacks of SSS*. Thefirstistheexcessive
memory requirements. We have shown that thisis solved in practice.

The second drawback, the inefficiencies incurred in maintaining the OPEN list,
specificaly the sort and purge operations, was addressed in the RecSSS* algorithm
[4, 43]. Both MT-SSS* and RecSSS* store interior nodes and overwrite old entries to
solvethis. The difference is that RecSSS* uses arestrictive data structure to hold the
OPEN list that hasthe disadvantages of requiring the search depth and width be known
apriori, and having no support for transpositions. Programming effort (and ingenuity)
are required to make RecSSS* usablefor high-performance game-playing programs.

In contrast, sincemost game-playing programsal ready use Al pha-Betaand transpo-
sition tables, the effort to implement MT-SSS* consists only of adding asimple driver
routine (figure 8). Implementing MT-SSS* is as simple (or hard) as implementing
Alpha-Beta. All the familiar Alpha-Beta enhancements (such as iterative deepen-
ing, transpositions and dynamic move ordering) fit naturally into our new framework

17



with no practical restrictions (variable branching factor, search extensionsand forward
pruning, for example, cause no difficulties).

In MT-SSS*, interior nodes are accessed by fast hash table lookups, to eiminate
the slow OPEN list operations. Execution time measurements (not shown) confirm
that in general the run time of MT-SSS* and MT-DUAL* are proportiona to the leaf
count, as shown in figure 9 and 10, showing that they are a few percent faster than
Alpha-Beta. However, in some programs where interior node processing is slow, the
high number of tree traversals by MT-SSS* and MT-DUAL* can have a noticeable
adverse effect. For real applications, in addition to leaf node count, the total node
count should a so be checked (see section 5).

Keeping this point in mind, we conclude that SSS* and DUAL* have become
practical, understandabl e, algorithms, when expressed in the new formulation.

4 Memory-enhanced Test: a Framework

This section introduces a generalization of the ideas behind MT-SSS*, in theform of a
new framework for best-first minimax algorithms. To put it succinctly: thisframework
uses depth-first proceduresto implement best-first algorithms. Memory isused to pass
on previous search resultsto later passes, allowing selection of the “best” nodes based
on the availableinformation from previous passes.

We can construct a generalized driver routine to call MT repeatedly. Recall that
MT(n, y) is equivaent to AlphaBeta(n,y — 1, y) using storage. One idea for such a
driver isto start at an upper bound for the minimax vaue, f* = +«. Subsequent calls
to MT can lower this bound until the minimax valueis reached, as shown in figure 8.

Having seen the two driversfor MT in figure 8, the ideas can be encompassed in
ageneralized driver routine. The driver can be regarded as providing a series of calls
to MT to successively refine bounds on the minimax value. The driver code can be
parameterized so that one piece of code can construct a variety of algorithms. The
three parameters needed are:

* n Theroot of the search tree.
« first Thefirst starting bound for MT.

» next A search has been completed. Use its result to determine the next bound
for MT.

Using these parameters, an algorithm using our MT driver, MTD, can be expressed as
MTD(n, first, next). The last parameter is not a value but a piece of code. The corre-
sponding pseudocode can be found in figure 11. A number of interesting algorithms
can easily be constructed using MTD, of which we present the following examples.

e MTD(n,+, bound := Q)
Thisisjust MT-SSS*. For brevity we call thisdriver MTD(+).

e MTD(n, —, bound := g+ 1)
ThisisMT-DUAL*, which werefer to as MTD(— ).

« MTD(n, approximation, if g < bound then bound := g elsebound := g + 1)
Rather than arbitrarily using an extreme value as a starting point, any informa-
tion on where the value is likely to lie can be used as a better approximation.

18



function MTD(n, first, next) - f; function MTD(n, f) - f;

fri=4o; f7 1= —oo; fri=+4o; f~ 1= —oo;
bound := g :=firgt; if f = —o then bound := f + 1 else bound := f;
repeat repeat

g := MT(n, bound); g := MT(n, bound);

if g< boundthen f* :=gédsef™ :=g; if g< boundthen f* :=gdsef™ :=g;

/* The next operation must set bound */

next; if g=f~ then bound :=g+ 1 esebound :=g;
until f= = f*; until f~ = f*;
return g; return g;

Figure11: A Framework for MT Drivers, The MTD(f) instance

(This assumes a relation between start value and search effort that is discussed
in section 5.2.3.) Given that iterative deepening is used in many application
domains, the obvious approximation for the minimax vaue is the result of the
previous iteration. This agorithm, which we call MTD(f), can be viewed as
starting closeto f, and then doing either SSS* or DUAL*, skipping a large part
of their search path. The right-hand side of Figure 11 shows the pseudo-code
for MTD(f).

« MTD(n, |average(+w, —)|, bound := |average(f*, f7)|)

Since MT can be used to search from above (SSS*) as well as from below
(DUAL*), an obvioustry isto bisect the interval and start in the middle. Since
each pass produces an upper or lower bound, we can take some pivot value
in between as the next center for our search. This agorithm, called MTD(bi)
for short, bisects the range of interest, reducing the number of MT calls. To
reduce big swingsin the pivot value, some kind of aspiration searching may be
beneficia in many application domains[47].

Coplan introduced an equivaent algorithm which he named C* [9]. He does
not state the link with best-first SSS*-like behavior, but does prove that C*
dominates Alpha-Betain the number of leaf nodes evaluated, provided there is
enough storage. (Thisidea has also been discussedin[1, 52].)

« MTD(n,+w, bound := max(f;, +1,g — stepsize))
Instead of making tiny jumps from one bound to the next, asin al the above
algorithms except MTD(bi), we could make bigger jumps. By adjusting the
value of stepsizeto some suitably large value, we can reduce the number of calls
to MT. Thisalgorithmiscalled MTD(step).

Other MTD variations are possible, such as searching for the best move (not the best
value). Thisidea, put forward by Berliner in his B* agorithm [2], would require a
different termination condition for the loop, but otherwise fits straightforwardly into
the framework. In [37] we report on tests with this variant.

Note that while al the above algorithms use storage for bounds, not all of them
need to save both f* and f~ values. MTD(+w), MTD(—) and MTD(f) refine one
solution tree. MTD(bi) and MTD(step) usually refine a union of two solution trees,

19



/j
2
y

L T T
\ : iy : /‘f
) m SRR |/_
f \f \ f i/f_ " i
f_/ f_/ ' h T
|
; : ‘
1
N N N N
Dual* Ssst MTD(step) MTD(bi) MTD(f)

Figure 12: MT-based Algorithms

where nodes on theintersection (the principal variation) should store both an upper and
lower bound at the same time (see aso [33]). We refer to section 3 for dataindicating
that these memory requirements are acceptable in practice.

Some of the aboveinstancesare new, some are not, and some are small adaptations
of known ideas. The value of this framework does not lie so much in the newness
of the instances, but in the way how MT enables one to formulate the behavior of a
number of algorithms. Formulating a seemingly diverse collection of algorithmsinto
oneunifying framework alowsusto focusthe attention on the fundamental differences
in the algorithms. For each algorithm, figure 12 shows how the bounds converge from
their start valueto theminimax value. Theframework allowsthe reader to seejust how
similar SSS* and DUAL* really are; they are just special cases of calling Alpha-Beta.
The drivers concisely capture the algorithm differences. MTD offers us a high-level
paradigm that facilitates the reasoning about important issueslike algorithm efficiency
and memory usage, without the need for low-level detailslike search trees and solution
trees.

All the agorithms presented are based on MT. Since MT is equivaent to a null-
window Alpha-Betacall (plusstorage), they search lessnodesthan theinferior one-pass
Alpha-Beta(— 0, +0) algorithm. There have been other (1ess successful) attemptswith
algorithms that solely use null-window Alpha-Beta searches [27, 46]. Many people
have noted that null-window searches have a great potential, since narrow windows
usually generate more cutoffs than wider windows [1, 8, 9, 14, 28, 46]. However, it
appears that the realization that the transposition tabl e can be used to create algorithms
that retain the efficiency of null-window searches by gluing them together without any
re-expansions—and create an SSS*-like best-first expansion sequence—is new. The
notion that the value of abound on the minimax value of theroot of atreeisdetermined
by a solution tree was not widely known among researchers. In thislight, it should not
be too surprising that the idea of using depth-first null-window Alpha-Beta searches
to model best-first algorithms like SSS* is new, despite their widespread use by the
game-tree search community.

20



5 Performance

To assess the performance of the proposed algorithms, a series of experiments was
performed. We present data for the comparison of Alpha-Beta, NegaScout, MT-
SSS*/MTD(+e), MT-DUAL*/MTD(—) and MTD(f). Results for MTD(bi) and
MTD(step) are not shown; they are inferior to MTD(f).

5.1 Experiment Design
We will assess the performance of the algorithms by counting leaf nodes and total
nodes (leaf nodes, interior nodes and nodes at which a transposition occurred). For
two algorithms we a so provide data for execution time. As before, experiments were
conducted with three tournament-quality game-playing programs. All three programs
useatransposition tablewith amaximum of 22 entries. Thetestsfrom section 3 showed
that the solution trees could comfortably fit in tables of this size for the depths used
in our experiments, without any risk of noise due to collisions. We used the origina
program author’s transposition table data structures and code without modification.*

Many papersin the literature use Alpha-Beta as the base-line for comparing the
performance of other algorithms (for example, [8, 23]). The implication is that this
is the standard data point which everyone is trying to beat. However, game-playing
programs have evolved beyond simple Alpha-Beta agorithms. Most use Alpha-Beta
enhanced with null-window search (NegaScout), iterative deepening, transposition
tables, move ordering and an initial aspiration window. Since this is the typical
search algorithm used in high-performance programs (such as Chinook, Phoenix and
Keyano), it seems more reasonable to use this as our base-line standard. The worse
the base-line comparison agorithm chosen, the better other algorithms appear to be.
By choosing NegaScout enhanced with aspiration searching (Aspiration NegaScout)
as our performance metric, we are emphasizing that it is possibleto do better than the
“best” methods currently practiced and that, contrary to published simulation results,
some methods—notably SSS*—turn out to be inferior.

Because we implemented the MTD algorithmsusing M T we were ableto compare
a number of agorithms that were previously seen as very different. By using MT as
a common proof-procedure, every agorithm benefited from the same enhancements
concerning iterative deepening, transposition tables and move ordering code. To our
knowledgethisisthefirst comparison of fixed-depth depth-first and best-first minimax
search algorithmswhere al the agorithms are given identical resources. Through the
use of large transposition tables, our base line, Aspiration NegaScout, becomes for all
practical purposes as effective as Informed NegaScout [24, 44, 46].

52 Results

Figure 13 shows the performance of Chinook, Keyano and Phoenix, respectively,
using the number of leaf evaluations as the performance metric. Figure 14 shows
the performance of the programs using the total number of nodesin the search tree
as the metric (note the different scale). The graphs show the cumulative number of

4As a matter of fact, since we implemented MT using null-window alpha-beta searches, we did not
have to make any changes at all to the code other than the disabling of forward pruning and search
extensions. We only had to introduce the MTD driver code.

21



L eaves Relative to Aspiration NegaScout

N

L eaves Relative to Aspiration NegaScout

N

L eaves Relative to Aspiration NegaScout

N

1.15:
112:
1.09:
1.06:
1.03:

N N e e

:1.03
1 1.06
:1.09
1112
1115

1.15:
112:
1.09:
1.06:
1.03:

N R e e

:1.03
1 1.06
:1.09
1112
1115

1.15:
112:
1.09:
1.06:
1.03:

[ = =S S S

:1.03
1 1.06
:1.09
1112
1115

Checkers

L x A
rs N PESS
, e o |
B Ve N B <
/X o E
L N 5
5}
e
o
L o R
A fof +
| A i
e
2 4 6 10 12 14 16 18
Depth
Othello
L . . R
o
r N ST T
7 o7
<
L P x B
L /// : X B
N //' \\ a
*-___ .8 \ . o
o X (=} * . 4=
B R U i \\\ - 4 ]
e X
- ‘ . 7
e
L R 1
2 3 4 7 9 10 11
Depth
Chess
L o E
- . N o h
X
L o - B
o Te”
YT .
G, 8 ‘
L " ! o B
L o 7 B
e B
L " s i
X
L o N
L T 1
2 3 4 5 6 8 9
Depth

Figure 13: Leaf Node Count

22

APNS —
AB -o---
MTD(f) -+
MT-Dual* -=
MT-SSS* —x--

AspNS ——
AB o
MTD(f) -+
MT-Dua* -o
MT-SSS* —x--



Total nodes Relative to Aspiration NegaScout Total nodes Relative to Aspiration NegaScout

Total nodes Relative to Aspiration NegaScout

1:110

Checkers

18

11

- R

[c]
o

Figure 14: Total Node Count

23

AspNS ——
AB o
MTD(f) -+
MT-Dua* -e
MT-SSS* —x--



nodes over al previousiterations for a certain depth (which isredlistic since iterative
deepening is used) relative to Aspiration NegaScout.

521 SSS* and DUAL*

Looking at the graphs shows that SSS* examines substantially more total nodes than
Alpha-Betabut, contrary to many simulations, thedifferenceinthe number of leaf nodes
isreatively small. Since game-playing programs use many search enhancements that
reduce the search effort—we used only iterative degpening, the history heuristic, and
transpositiontables—thepotential benefits of abest-first search aregreatly reduced (see
section 6). In practice, SSS* isasmall improvement on Alpha-Betausing theleaf node
metric (depending on the branching factor). Claims that SSS* and DUAL* evauate
significantly fewer leaf nodes than Alpha-Beta are based on simplifying assumptions
that have little relation with what isused in practice. In effect, the main advantage of
SSS* (point 5 in the introduction) is wrong. Reasons for thiswill be discussed further
in section 6.

Looking at the graphsfor total nodes, we see a clear odd/even effect for MT-SSS*
and MT-DUAL*. Thereasonisthat theformer refines amax solutiontree, whereasthe
latter refinesamin solutiontree. At even depthsthe parentsof theleavesare min nodes.
With a wide branching factor, like in chess, there are many leaves that will initially
cause cutoffsfor ahighbound, causing areturn at their min parent (Alpha-Beta' s cutoff
condition a min nodes g < a is easily satisfied when o is close to +w). It islikely
that MT-SSS* will quickly find a slightly better bound to end each pass, causing it to
make many traversals through the tree, perform many hash table lookups, and make
many calls to the move generator. These traversals show up in the total node count
(figure 14) and interior node count (not shown). For MT-DUAL*, the reverse holds.
At odd depths, many leaves cause a pass to end at the max parents of the leaves when
theboundiscloseto —. (Thereisroom for improvement here by remembering which
moves have already been searched. Thiswill reduce the number of hash tablelookups,
but not the number of visitsto interior and leaf nodes.)

Asalast point concerning SSS*, we see that for certain depths the iterative deep-
ening version of SSS* expands more |eaf nodesthan iterative deepening Alpha-Betain
the case of checkers. Thisresult appearsto run counter to Stockman’s proof that Alpha-
Betais dominated by SSS*. How can thisbe? No one has questioned the assumptions
under which this proof was made. In general, game-playing programs do not perform
singlefixed-depth searches. Typically, they useiterative deepening and dynamic move
ordering to increase thelikelihood that the best moveis searched first. The SSS* proof
implicitly assumes that every time a node is visited, its successor moves will always
be considered in the same order (Coplan makes this assumption explicit in his proof of
C*’sdominance over Alpha-Beta[9]). In appendix B, an exampleisgiven that proves
the non-dominance of iterative deepening SSS* over iterative deepening Alpha-Beta.
We conclude that an advantage of SSS*, its domination of Alpha-Beta (point 4 in the
introduction) iswrong in practice.

5.2.2 Aspiration NegaScout and MTD(f)

The results show that Aspiration NegaScout is better than Alpha-Beta. Thisis consis-
tent with [47] which showed Aspiration NegaScout to be a small improvement over

24



Alpha-Beta when transposition tables and iterative deepening were used.

Over all threegames, thebest resultsarefromMTD(f). Not surprisingly, thecurrent
algorithm of choice by the game programming community, Aspiration NegaScout,
performs well too. The averaged MTD(f) leaf node counts are consistently better than
for Aspiration NegaScout, averaging a 5-10% improvement, depending on the game.
More surprising isthat MTD(f) outperforms Aspiration NegaScout on the total node
measure as well. This suggests that MTD(f) is calling MT close to the minimum
number of times. Measurements confirm that for al three programs, MTD(f) calsMT
about 3 to 6 times per iteration on average. In contrast, the MT-SSS* and MT-DUAL*
results are poor compared to Aspiration NegaScout when all nodes in the search tree
are considered. Each of these agorithms usually performs hundreds of MT searches.
Thewider therange of leaf values, the smaller the stepswith which they converge, and
the more passes they need.

Fromsection 3werecall that themany MT callsof MT-SSS* and MT-DUAL* make
those a gorithms perform badly when the transpositiontableistoo small to containthe
nodes needed to refine the solution tree. Since MTD(f) performs significantly fewer
cals, re-expansions due to insufficient storage are not as big a problem. Compared
to one-pass/wide-window Alpha-Beta, the few-pass/null-window MTD(f) performs
even better than Alpha-Betawhen given less memory than needed for the solutiontree.
An explanation for this surprising behavior, a best-first algorithm using less memory
than a depth-first agorithm, can be found in the literature on NegaScout [30, 41].
For NegaScout, the benefit of the cheaper null-window searches out-weighs afew re-
searches, even if thereis not enough memory to prevent the re-expansions|[8, 24, 28].
Thisalso holdsfor MTD(f)'s behavior in small-memory situations.

5.2.3 Sart Value and Search Effort
This subsection investigates the relation between the size of the search tree, and the
start value of asequence of MT calls.

The biggest difference in the MTD algorithms is their first approximation of the
minimax value: SSS*/MTD(+) isoptimistic, DUAL*/MTD(—w) is pessimistic and
MTD(f) isredlistic. It isclear that starting closeto f, assuming integer-valued leaves,
should result in faster convergence, simply because there are fewer discrete valuesin
the range from the start value to f. If each MT call at the root expands roughly the
same number of nodes, then doing less passes yields a better algorithm. However,
MT calls generaly do not expand the same number of nodes. Since we could not
find an analytical solution to the question, we have conducted experiments to test the
intuitively appealing idea that starting a search close to f is cheaper than starting far
away.

Figure 15 validatesthe choice of astarting parameter closeto the game value (only
the results for chess are shown; the results for Othello and checkers are similar [35]).
The figure shows the efficiency of the search as afunction of the distance of the first
guessfrom the correct minimax value. The data points are given as a percentage of the
size of the search tree built by Aspiration NegaScout. To theleft of the graph, MTD(f)
iscloser to DUAL*/MTD(—w), to theright itis closer to SSS*/MTD(+).

It appearsthat the smaller thedistortion, the smaller the search treeis. Ourintuition
that starting closeto the minimax valueisagood ideaisjustified by these experiments.

25



Chess

1:1.03

1:1.06 f
1:1.00 f i
1:112 1

1:115 | j—/f/\—{
: . . .

-40 -20 0 20 40
Difference of first guess from f

Cumulative Leaves Relative to AspNS

Figure 15: Tree Size Relative to the First Guess f

A first guess close to f makes MTD(f) perform better than the 100% Aspiration
NegaScout baseline. We also see that the guess must be quite close to f for the effect
to become significant. Thus, if MTD(f) is to be effective, the f obtained from the
previousiteration must be a good indicator of the next iteration’s value.> Comparing
thegraphsinfigures 13 and 15, we seethat MTD(f) isnot achieving itslowest point, so
thereisroom for improvement. Indeed, we found that adjusting the first guessby + 1
to 4 pointsfor each iteration can improvethe resultsfor MTD(f) in terms of leaf count
by two to three percentage points. This can be regarded as some form of application
dependent fine tuning of the MTD(f) agorithm.

In doing these experiments, the diversity of real-life game trees became apparent.
Just asiit is not hard to construct a counter-example where a bad first guess expands
less nodes than a good first guess [35], we encountered some test positions where
Aspiration NegaScout performed better than MTD(f).

5.3 Execution Time

Thebottomlinefor practitionersis executiontime. Thismetric may vary considerably
for different programs. It is nevertheless included, to give evidence of the potential
of MTD(f). We only show the deeper searches, since the relatively fast shallower
searches hamper accurate timings. The data shown is from typica runs on a Sun
SPARC. We did experience different timings when running on different machines. It
may well be that cache size plays an important role, and that tuning the program has a
considerableimpact as well.

The experiments show that for our test programs, the leaf node count is a good
indicator of execution time. For Chinook and Keyano, MTD(f) was about 5% faster
in execution time than Aspiration NegaScout; for Phoenix we found MTD(f) 9-16%
faster. (As pointed out in the previous section, application-dependent tuning can

SFor programs with a pronounced odd/even oscillation in their score, results are better if the score
from two iterations ago is used.

26



Chess
AspNStime/leaves ——

103:1 - MTD(f) time -+ |
MTD(f) leaves -+--

1:1.03 B
:1.06 " B
1:1.09 S /,*\ . B

1:1.12 + 4

CPU time ID-MTD(f) Relative to AspNS (%)
=

1:115 | o A

Figure 16: Execution Time

improve this afew percentage points.) For other programs and other machines these
results will obvioudly differ, depending in part on the quality of the start value f and
on the test positionsused. For programs of lesser quality, the performance difference
will be bigger, with MTD(f) out-performing Aspiration NegaScout by awider margin.
Also, since the tested algorithms perform quite close together, the relative differences
are quite sensitiveto variationsin input parameters. In generalizing these results, one
should keep this sensitivity in mind. Using these numbers as absolute predictors for
other situations would not do justice to the complexities of real-life game trees. The
experimental datais better suited to provideinsight on, or guide and verify hypotheses
about these complexities.

6 Performance Resultsin Perspective

The introduction summarized the general view on SSS* in five points. Three of these
pointswere drawbacksthat were solved in previoussections. Theremaining two points
were positiveones: SSS* provably dominates Alpha-Beta, and it expands significantly
fewer leaf nodes. With the disadvantages of the algorithm solved, the question that
remainsis: what about the advantagesin practice?

The first of the two advantages, theoretical domination, has disappeared. With
dynamic move reordering, Stockman's dominance proof for SSS* does not apply.
Consequently, experiments confirm that Alpha-Beta can out-search SSS*.

The second advantage was that SSS* and DUAL* expand significantly less leaf
nodesthan Alpha-Beta. However, modern game-playing programs do anearly optimal
job of move ordering, and employ other enhancements that are effective at improving
the efficiency of the search, considerably reducing the advantage of null-window-
based best-first strategies. The experiments show that SSS* offers some search tree
size advantages over Alpha-Beta for chess and Othello, but not for checkers. These
small advantages disappear when comparing to NegaScout. Both SSS* and DUAL*
compare unfavorably to Alpha-Betawhen al nodes in the search tree are considered.

27



All agorithms, including MTD(f), perform within a few percentage points of
each other’s leaf counts. For fixed-depth searches without transposition tables and
iterative deepening, simulation results show that SSS*, DUAL* and NegaScout are
major improvementsover simple Alpha-Beta[17, 24, 26, 41]. For example, one study
shows SSS* and DUAL* building trees that are about half the size of those built by
Alpha-Beta[24]. Thisisin sharp contrast to the results reported here. Why is there
such a disparity with the previously published work? The reason is the difference
between real and artificial minimax trees.

The literature on minimax search abounds with investigations into the relative
performance of algorithms. In many publications artificially-generated game trees are
used to test these algorithms. We argue that artificial trees are too simple to form a
realistic test environment.

Over the years researchers have uncovered a number of interesting features of
minimax trees as they are generated in actual application domains like game-playing
programs. The following four features of game trees can be exploited by application-
independent techniquesto increase the performance of search algorithms.

« Variable branching factor.
The number of children of a node is often not a constant. Algorithms such as
proof number and conspiracy number search use thisfact to guidethe search in
a“least-work-first” manner [1, 25, 48].

« Valueinterdependence between parent and child nodes.
A shallow search isoften agood approximation of adeeper search. Thisnotionis
used in techniques like iterative deepening, which—in conjunction with storing
previous best moves—qgreatly increases the quality of move ordering. Value
interdependence al so facilitates forward pruning based on shallow searches[6].

« Value independence of moves.
In many domains there exists a global partial move ordering: moves that are
good in one position tend to be good in another aswell. Thisfact isused by the
history heuristic and the killer heuristic [47].

 Transpositions.
Thefact that the search space is often agraph haslead to the use of transposition
tables. In some games, notably chess and checkers, they lead to a substantia
reduction of the search effort [36]. Of no less importance is the better move
ordering, which dramatically improves the effectiveness of Alpha-Beta.

There are other features which we do not address for reasons of brevity.

Theimpact of the enhancementsis significant: many state-of-the-art game-playing
programs are reported to approach their theoretical lower bound, the minimal tree
[12, 13, 36, 46]. Regrettably, this high level of performance does not imply that we
have a clear understanding of the detailed structure of real-life game trees.

Many pointsinfluence the search space in certain ways, although it is not exactly
known what the effect is. For example, transpositions, iterative deepening and the
history heuristic al cause the tree to be dynamically re-ordered based on information
that is gathered during the search. The effectiveness of iterative deepening depends
on many factors, such as the strength of the value interdependence, number of cutoffs

28



in the previous iteration, and quality of the evaluation function. The effectiveness of
transposition tabl es depends on game-specific parameters, the size of the transposition
table, the search depth, and possibly on move ordering and the phase of thegame. The
effectiveness of the history heuristic a so depends on game-specific parameters, and on
the quality of the evaluation function.

The consequence of this is that game trees remain highly complex and dynamic
entities, whose structure isinfluenced by the techniquesthat make use of (some of) the
four listed features. Acquiring data on these factors and the way they relate seems a
formidable task. It poses many problems for researchers attempting to reliably model
the behavior of agorithmson realistic minimax trees.

All of thesimulationsthat we know of includeat most one of theabovefour features
in the trees that they simulate (for example, [3, 4, 8, 10, 15, 17, 24, 26, 41, 43, 51]).
In the light of the highly complex nature of real-life game trees, simulations can
only be regarded as approximations, whose results may not be accurate for red-life
applications. We feel that simulations provide a feeble basis for conclusions on the
relative merit of search algorithms as used in practice. The gap between the trees
searched in practice and in simulationsis large. Simulating search on artificial trees
that have little relationship with real trees runs the danger of producing misleading or
incorrect conclusions. It would take a considerable amount of work to build aprogram
that can properly simulate real game trees. Since there are aready a large number
of quality game-playing programs available, we feel that the case for simulations of
minimax search agorithmsis weak.

An often used approach to have simulations approximate the efficiency of real
applications is to increase the quality of move ordering. In the light of what has
been said previously, just increasing the probability of first moves causing a cutoff
to, say, 98% can only be viewed as a naive solution, that is not sufficient to yield
realistic simulations. First, the move ordering is not uniform throughout the tree (in
[35] thisisfurther analyzed). Secondly, and more importantly, the good move ordering
is not a cause but an effect. It is caused by techniques (like the history heuristic)
making useof phenomenalikeavariablebranching factor, valueinterdependence, value
independence and transpositions. Causes and effects appear to be al interconnected,
yielding a picture of great complexity that does not look very inviting to disentangle.

Asan example of what the differences between real and artificial trees can lead to,
let us look at some statementsin the literature concerning SSS*. In the introduction
we mentioned five points describing the general view on SSS*: it is (1) difficult
to understand, (2) has unreasonable memory requirements, (3) is slow, (4) provably
dominates Alpha-Betain expanded leaves, and (5) that it expands significantly fewer
leaf nodes than Alpha-Beta. The validity of these points has been examined by
numerous researchers in the past [8, 17, 24, 26, 41, 45, 51]. All come to roughly the
same conclusion, that the answer to dl five pointsis“true:” SSS* searcheslessleaves
than Alpha-Beta, butitisnot apractical algorithm. However, two publicationscontend
that points 2 and 3 may be false, indicating that SSS* not only builds smaller trees,
but that the problem of the slow operations on the OPEN list may be solved [3, 43].
This paints a favorable picture for SSS*, since the negative points would be solved,
while the positive ones would still stand. Probably due to the complexity of the SSS*
algorithm the authors restricted themselvesto simulations. With our reformulation we
were able to use real programs to give the definitive answer on the five questions. In

29



practice all five points are wrong, making it clear that, although SSS* is practical, in
realistic programsit has no substantial advantage over Alpha-Beta, and is even worse
than Alpha-Beta-variants like Aspiration NegaScout.

This example may serveto illustrate our point that it is hard to reliably model real
trees. In the past we have performed simulationstoo [10, 24]. We were quite shocked
when we found out how easy it isto draw wrong conclusions based on what appeared
to be valid assumptions. We hope to have shown in this paper that the temptation
of oversimplifying the structure of game trees can and should be resisted. Whether
this problem only occurs in minimax search, or also in other domains of Artificial
Intelligence, is a question that we leave open.

7 Conclusions

From the origina formulation, it is hard to understand how and why SSS* works.
It takes a considerable amount of effort to see through the six interlocking I' cases.
SSS* manipulates a single max solution tree and establishes a sequence of upper
bounds on the minimax value. In our reformulation, MT-SSS*, we use the concepts
of null-window Alpha-Beta search and transposition tables to create this behavior.
Null-window searches cut off more nodes than wider-window searches. Just like for
NegaScout, the domination of SSS* over Alpha-Beta can be explained by the pruning
power of null-window searches.

Unlike NegaScout, MT-SSS* uses only null-window searches. At the root of
the tree, many repeated cals to MT are performed. Consequently, some form of
storage is needed to glue the calls together, preventing excessive node re-expansions.
Transposition tables provide an efficient way to do this. They alow for the pruning
power of null-window Alpha-Beta callsto be retained over asequence of searches, and
for subsequent Alpha-Beta cals to build on the work of previous ones, constructing a
best-first expansion sequence.

We haveformulated aframework for null-window-based best-first algorithms. One
instance of thisframework isMTD(f). It uses an approximation, such as the previous
score in an iterative deepening setting, as the start value, instead of +e or —. Inthis
way thenumber of null-window searchesisdramatically reduced, making thealgorithm
much lessdependent on storage of search results. Thefew re-expansionsare more than
offset by the efficiency of the null-window calls. Furthermore, astart value closeto the
minimax val ue createsamoreefficient search. In our experiments, using threedifferent
game-playing programs, MTD(f) is consistently the most efficient search algorithm.
The efficiency comes at no extra algorithmic complexity: just a standard Alpha-Beta-
based program plus one control loop. By doing away with wider search windows
altogether, and using a good start value, our experiments show that one can improve
on NegaScout by awider margin than NegaScout's use of null-windowsallowed it to
improve on Alpha-Beta.

Theexperiments allowed usto disspell amyth: none of the algorithmsdiscussedin
thisarticle, not even SSS*, needs too much memory for usein practical applications.
The solution trees that are traversed fit perfectly well in today’s memory sizes.

One of the most interesting outcomes of our experiments is that the performance
of al algorithms differs only by a few percentage points. The search enhancements
used in high-performance game-playing programs improve the search efficiency to

30



such a high degree that the question of which agorithm to use, be it Alpha-Beta,
NegaScout, SSS* or MTD(f), is no longer of prime importance. (For programs of
lesser quality, the performance difference will be bigger, with MTD(f) out-performing
NegaScout by awider margin.) A consequence of thisis that in practice SSS* is not
asignificant improvement over Alpha-Beta, is regularly out-performed by NegaScoult,
and is dominated by MTD(f) in every respect. Hence we believe that SSS* should
now become a footnotein the history of game-tree search.

The reason for the difference between our results and simulationsisthat the trees
generated in actual applications are complex. It is hard to create reliable models
for simulations. Using artificia trees runs the danger of producing misleading or
incorrect results. The field of minimax search is fortunate to have a large number of
game-playing programs available. These should be used in preference to artificialy-
constructed simulations. Future research should try to identify factors that are of
importance in real game trees, and use them as a guide in the construction of better
search algorithms, instead of artificial models with aweak link to reality.

A Equivalence of MT-SSS* and SSS*

In this appendix we will look deeper into the relation between MT-SSS* and SSS*.
The full proof that both formulations are equivaent, in the sense that they expand
the same leaf nodes in the same order, can be found in [34]. Here a sketch of the
proof is given. The notion of an explicit search history, called the search tree, can be
found in[16]. Theoretical work on agorithmsrefining this search tree can befound in
[11, 31, 32, 34].

Theideais to insert into the Alpha-Beta code extra operations that insert triples
into a List. In figure 17 the list-operations between {* and *} are inserted to show
the equivalence of MT-SSS* and Stockman’s SSS*. (In implementations of MT-SSS*
they should not beincluded.) The call List-op(i, n) means that the operations of I" case
i in figure 1 have to be executed on List. The list operationsin MT-SSS* cause the
same " operations to be applied as in Stockman’s original formulation.® These extra
operations cause exactly the same triplesto beinserted in the same order as SSS* does
for its OPEN list.

In accessing storage, most Alpha-Beta implementations descend to a child node
and retrieve any associated bounds, and check whether an immediate cutoff occurs. In
our pseudo-code, we have taken a slightly different approach. MT checks whether a
child bound will cause a cutoff before calling itself recursively. In thisway we save a
recursive cal, and it simplifies the formal treatment in this appendix. However, there
isno conceptual difference; other Alpha-Betaimplementations (for example, figure 2)
expand the same nodes, and can be used just aswell.

In thisappendix we will be lessrigorousin some places, for reasons of brevity. By
following the MT-SSS* code (see figures 8 and 17), one can easily get a feeling just
how and where MT-SSS* and SSS* are interrel ated.

In studying MT-SSS*, one can di stinguish between anew call to Alpha-Beta(n, y —
1,y) (equivaent to MT(n, y)), where node n has never been searched before, and a

5For MT-SSS* to traverse the same leaf nodes as SSS*, one bound should be stored at interior nodes.
Storing and updating two boundsyields an algorithm that will occasionally expand a few nodesless than
SSS* [33].

31



/* MT: storage enhanced null-window Alpha-Beta(n,y — 1, ). */
/* nisthe nodeto be searched, y — 1 isthe a parameter, y isthe g parameter of thecall. */
[* " Store’ saves search bound information in memory; 'retrieve’ accesses thisinformation. */
function MT(n,y) - g;
if nisaleaf nodethen

retrieven.f~,n.f*; /* non-existing bounds are + o */

if n.f~ = —w and n.f* = +w then
{* List-op(4,n); *}
g :=eva(n);

dseif nff =+ theng:=nf~- dseg:=n.f";
eseif nisamax nodethen

g:i=—o
c :=firstchild(n);
{* retrieve n.f~,n.f*;if n.f* = +e0 and n.f~ = —w then List-op(6, n); *}

/* g = y causes a beta cutoff (B = y) */
whileg< yand c ¥ — do
retrievec.f*;
if c.f*=ythen
g :=MT(c,y);
{* if g = y then List-op(,c); *}
gdseg :=cf";
g :=max(g,9);
¢ := nextbrother(c);
dseif nisaminnodethen

g = +oo;
c :=firstchild(n);
{* retrieve n.f~,n.f*;if n.f* = +e0 and n.f~ = —w then List-op(5, n); *}

/* g < y causes an dphacutoff (a =y — 1) */
whileg=yand c# — do
retrievec.f;
if c.f~ < ythen
g :=MT(c,y);
{*if g = ythen
if ¢ < lastchild(n) then List-op(2,c); else List-op(3,c); *}
dseg =cf;
g:=min(g,9)
¢ := nextbrother(c);
/* Store one bound per node. */
if g=ythenn.f~ :=g; storen.f~;
gsen.ft:=g; storen.f*;
return g;

Figure 17: Null-window Alpha-Beta Including Storage for Search Results

32



call where n has been searched before. In thelatter case, MT has previously created a
“trail” of bounds, forming a max solution tree below n, as we saw in the example of
section 2.1.

All but the last top-level call to MT fails low and builds a max solution tree. The
last call to MT, which stopsthe search, fails high and buildsa min solutiontree. These
two cases are used in the following pre-conditions.

Notation: T(n) is asolution tree rooted at node n, T*(n) isamax solution tree and
T~ (n) amin solution tree. Sometimes these are abbreviatedto T, T* and T~ when the
meaning is clear. The minimax value of agametreerooted at nodeniscaled f(n), an
upper bound on thisvalueisdenoted f*(n) and alower bound isdenoted by f~(n). We
defineg = f(T(n)). Anentry inList consistsof anode, state and merit (value) (n,s, v).
The state is either live or solved. When a node is first visited, its children are still
unexpanded. It issaid to be open. When its children are generated, it is called closed.

The proof refersto the six I operatorsin figure 1.

In the context of MT-SSS*, we can identify a property in the search tree due to
the post-condition of Alpha-Betagiven in section 2.1. In the first pass, the | eft-most
solution tree with finite g-value is constructed. For the next passes, the following
propositions hold. Each follows from an extended version of the post-condition of
Alpha-Beta, as can be found in [11, 34], and the fact that Alpha-Betais called in the
repeat-until loop of MT-SSS* (figure 8).

1. Before each pass, we havein the search tree the left-most max solutiontree with
ff(n) = o(T*) = y, where the children ¢ of min node n to the left of the current
best child have aready been searched and have f~(c) > y.

2. In each pass, every node nin the search tree that isrevisited belongsto T*, with
f*-vaue equal to y; if nisamin node, children to the left of the only child of n
inT* have f~-value> y and will never berevisited.

3. Each nested cal MT(n, y) generates a max solution tree when the search fails
low, wherethe children of min nodes havethe same propertiesasin case 1 above.

Theorem A.1 During execution of MT-SSS¥, the following conditions apply to the
callsList-op(i, n) and to the call MT(n, y):

« pre-condition of List-op(i, n):
uist includes a triple (n, state, y), being the leftmost triple with maximal merit;
therestrictionsin I' casei of SSS* are satisfied for thistriple;

« pre-condition of MT(n, y):
If nis open, then (n,live, y) isin uist and n is the leftmost node in List with
maximal merit.
If nisnot open, then nistheroot of amax solutiontree T* withy = g(T*) = f*(n)
and every leaf x of T* has status = solved and merit = f(x). One of the leaves of
T* istheleftmost nodein List with maximal merit; no other descendantsof n are
included in uisr.

* post-condition of MT(n, y):
If the return value of the MT call < y, then nisthe root of a max solution tree

33



with the return value of the MT call = g(T*) = f*(n) and every leaf x of T* has
status= solved and merit = f(x); no other descendantsof nare included in Lisr.
If the return value of the MT call = y, then (n,solved, y) isin List; no other
descendantsof n areincluded in uisr.

Proof

For the MT pre- and post-condition, we give a proof by induction. The pre-condition
of List-op is proved as a side-effect, yielding the basis for the equivalence proof of
MT-SSS* and SSS*.

Precondition of MT(n, y)

At the start of the first MT call (on an open node n, the root), the pre-condition
holds. Assume the pre-condition holds for a call MT(n, y) with n an open node. By
assumption, (n, live, g) isinList and nistheleftmost nodein List with maximal merit.

First consider node n being a max node. The restrictions of I' case 6 hold, and
List-op(6, n) replacesthetripleincluding n by a series of triples, each including a child
of n. A child c is expanded by MT, if the subcalls to brothers b to the left of ¢ have
resultedin y > ¢'. By theinduction hypothesis, after each call, b isthe root of a max
solutiontree T' and each leaf x has merit f(x). Since g(T'(b)) = g < y, each of these
meritsis < y. It follows that when ¢ has been expanded by MT, (c, live, y) is still in
List and cisthe leftmost node with maximal merit. Hence the pre-condition holdsfor
C.

Second, consider node n being a min node. The restrictions of I' case 5 hold and
List-op(5, n) causes the pre-condition to be met for the left-most child ¢ of n. Aslong
as each subcall endswith g = y, thewhileloop in figure 17 is continued. Before each
subcall, atriple (c,live, y) isin List. After the subcall, the status of thistripleissolved.
For this triple, the left-most one with highest merit, I case 2 applies and the related
operation replaces this triple by (next(c), live, y). We conclude that the pre-condition
also holdsfor the next children.

Now wetreat the case wherenisaclosed node. The pre-condition of MT holdsfor
theroot n in the subsequent passes of MT-SSS* as a consequence of the post-condition
of the preceding MT call.

Assumethe pre-condition holdsfor aninner noden. If nisamax node, then nisthe
root of amax solutiontree T* with f*(n) = g(T*) = y and every leaf x has f(X) < f*(n).
When achild c is expanded by MT, f*(c) = y, and every brother b to the left of ¢ has
f*(b) < y. Therefore, c isan ancestor of the left-most nodein List with highest merit.
If nisamin node, the only child c of nin T* isthe left-most child that is expanded by
MT. The pre-condition for this child c followsimmediately from the pre-condition of
n. O
Postcondition of MT
The assumptionismade that every subcall to MT satisfiesthe post-condition. We have
three situations. First, consider n as aleaf node. The call List-op(4, n) conforms to its
pre-condition. On exit, either nisin List with status solved and merit= f(n) = g < vy,
or merit =y < f(n) = g. In both cases, the post-condition holds.

Second, assume n is an inner max node with children c. If every call to MT(c, y)
with return value g ends with g’ < y, then g < y on exit and n is the root of a tree
T*(n). Since the leaves of T*(c) occur in List for every c, aso the leaves of T*(n) do
so. If at least one subcall endswith g’ = y, then due to the operation List-op(1,c), the

34



post-condition holdsfor n.

Third, assume n is an inner min node with children c. If at least one call MT(c, y)
return a value g with g < vy, then by the induction hypothesis the leaves of T*(c)
arein List, as are the leaves of T*(n). If al MT-cals end with g > y, then after al
children have been searched, (last(n), solved, y) isin List. Due to List-op(3, last(n)),
the post-condition of MT holds. O

Theorem A.2 MT-SSS* isequivalent to SSS*.

Proof

Each list operation is always applied to the left-most node in List with highest merit.
So the operations performed on List conform with those of SSS*. The notion live is
equivalent to open in SSS*. Expanding in SSS* is performed by I case 4, 5, and 6.
The MT-code shows that expanding an open node coincides with acal to list-op 4, 5
or 6. We concludethat MT-SSS* and SSS* expand open nodes in the same order. O

B Non-dominance of Iterative Deepening SSS*

This appendix presents an example to prove that SSS* with dynamic move reordering
does not dominate Alpha-Beta. Iterative deepening and move reordering are part of
al state-of-the-art game-playing programs. While building atree to depth d, anoden
might consider the movesin the order 1,2, 3, ...,w. Assume move 3 causes a cutoff.
Whenthetreeisre-searched todepth d+1, thetranspositiontablecan retrievetheresults
of the previous search. Since move 3 was successful at causing a cutoff previously,
albeit for a shallower search depth, there is a high probability it will aso work for the
current depth. Now move 3 will be considered first and, if it fail s to cause a cutoff, the
remaining moves will be considered in the order 1, 2,4, ..., w (depending on any other
move ordering enhancements used). The result is that prior history is used to change
the order in which moves are considered.

Any form of move ordering violates the implicit preconditions of Stockman’s
proof. In expanding more nodes than SSS* in a previousiteration, Alpha-Beta stores
more information in the transposition table which may later be useful. In a subsequent
iteration, SSS* may have to consider a node for which it has no move ordering
information whereas Alpha-Beta does. Thus, Alpha-Beta's inefficiency in a previous
iteration can actually benefit it later in the search. With iterative degpening, it is
possiblefor Alpha-Betato expand fewer leaf nodes than SSS*.

When used with iterative deepening, SSS* does not dominate Alpha-Beta. Fig-
ures 18 and 19 prove thispoint. In the figures, the smaller depth-2 search tree causes
SSS* to missinformation that would be useful for the search of thelarger depth-3 tree.
It searches a differently ordered depth-3 tree and, in this case, missesthe cutoff at node
ofound by Alpha-Beta. If thebranching factor at node d isincreased, the improvement
of Alpha-Beta over SSS* can be made arbitrarily large.

That SSS*’s dominance proof does not hold for dynamically ordered trees does not
mean that Alpha-Betais structurally better. If SSS* expands more nodes for depth d,
it will probably have more information for the next depth, and it may well out-perform
Alpha-Beta again at depth d + 1. All it means is that under dynamic reordering the
theoretical superiority of SSS* over Alpha-Beta does not apply.

35



Alpha-BetaDepth2  After Re-ordering Alpha-Beta Depth 3

8|3 82
3 8 8 3
i i
4 3 9 8 9 3 4

8

Figure 18: Iterative Deepening Alpha-Beta

SSS* Depth 2 After Re-ordering
82 82
fr=4(b) (c)8 ()8 (b)f =4
9] ][9] 9] 9] il
4 8 9 8 9 4

Figure 19: Iterative Deepening SSS*

The smaller the branching factor, the more likely this phenomenon is observed.
The larger the branching factor, the more opportunity there is for best-first search to
offset the benefits of increased information in the transposition table.

Acknowledgments

Thiswork has benefited from discussionswith Mark Brockington (author of Keyano),
Y ngvi Bjornsson and Andreas Junghanns. An anonymous referee provided valuable
feedback. The support of Jaap van den Herik is appreciated. The financial support of
the Netherlands Organization for Scientific Research (NWO), the Tinbergen Institute,
the Natural Sciences and Engineering Research Council of Canada (grant OGP-5183)
and the University of Alberta Central Research Fund are gratefully acknowledged.

References

[1] L. Victor Allis, Maarten van der Meulen, and H. Jaap van den Herik. Proof-
number search. Artificial Intelligence, 66:91-124, March 1994.

[2] Hans J. Berliner. The B* tree search agorithm: A best-first proof procedure.
Artificial Intelligence, 12:23-40, 1979.

36



(3]

[4]

(3]

6]

[7]

8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

Subir Bhattacharyaand A. Bagchi. Unified recursive schemesfor search in game
trees. Technical Report WPS-144, Indian Institute of Management, Calcutta,
1990.

Subir Bhattacharyaand A. Bagchi. A faster alternativeto SSS* with extension to
variable memory. Information processing letters, 47:209-214, September 1993.

Mark Brockington. Improvementsto Parallel Alpha-Beta Algorithms. PhD thesis,
proposal, Department of Computing Science, University of Alberta, Edmonton,
Canada, 1994.

Michael Buro. ProbCut: A powerful selective extension of the af agorithm.
ICCA Journal, 18(2):71-81, June 1995.

Murray Campbell. Algorithms for the parale search of game trees. Master’s
thesis, Department of Computing Science, University of Alberta, Canada, August
1981.

Murray Campbell and T. Anthony Marsland. A comparison of minimax tree
search algorithms. Artificial Intelligence, 20:347—-367, 1983.

K. Coplan. A special-purposemachinefor an improved search a gorithmfor deep
chess combinations. In M.R.B. Clarke, editor, Advances in Computer Chess 3,
April 1981, pages 25-43. Pergamon Press, Oxford, 1982.

Arie de Bruin, Wim PFijls, and Aske Plaat. Solution trees as a basis for game
tree search. Technical Report EUR-CS-94-04, Department of Computer Science,
Erasmus University Rotterdam, Rotterdam, The Netherlands, May 1994.

Ariede Bruin, Wim Pijls, and Aske Plaat. Solution trees as abasisfor game-tree
search. ICCA Journal, 17(4):207—219, December 1994.

Carl Ebeling. All the Right Moves. MIT Press, Cambridge, Massachusetts, 1987.

Rainer Feldmann, Peter Mysliwietz, and Burkhard Monien. A Fully Distributed
Chess Program, pages 1-27. Ellis Horwood, 1990. Editor: Don Beal.

John P. Fishburn. Analysis of Speedup in Distributed Algorithms. PhD thesis,
University of Wisconsin, Madison, 1981.

Feng-Hsiung Hsu. Large Scale Parallelization of Alpha-Beta Search: An Al-
gorithmic and Architectural Sudy with Computer Chess. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, February 1990.

Toshihide Ibaraki. Generalization of aphabeta and SSS* search procedures.
Artificial Intelligence, 29:73-117, 1986.

Hermann Kaindl, Reza Shams, and Helmut Horacek. Minimax search a gorithms
with and without aspiration windows. |EEE Transactions on Pattern Analysis
and Machine Intelligence, 13(12):1225-1235, December 1991.

Donald E. Knuth and Ronald W. Moore. An analysis of apha-beta pruning.
Artificial Intelligence, 6(4):293-326, 1975.

37



[19] RichardE.Korf. Iterativedeepening: Anoptimal admissibletreesearch. Artificial
Intelligence, 27:97—-109, 1985.

[20] Richard E. Korf and David W. Chickering. Best-first minimax search: Othello
results. In Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI'94), volume 2, pages 1365-1370. American Association for Artificia
Intelligence, AAAI Press, August 1994.

[21] Vipin Kumar and Laveen N. Kana. Parald branch-and-bound formulations
for AND/OR tree search. |EEE Transactions on Pattern Analysis and Machine
Intelligence, 6(6):768—778, November 1984.

[22] Vipin Kumar and Laveen N. Kanal. A genera branch and bound formulation for
and/or graph and game tree search. In Search in Artificial Intelligence. Springer
Verlag, 1988.

[23] T. Anthony Marsland and Murray Campbell. Parallel search of strongly ordered
game trees. Computing Surveys, 14(4):533-551, December 1982.

[24] T. Anthony Marsland, Alexander Reinefeld, and Jonathan Schaeffer. Low over-
head aternativesto SSS*. Artificial Intelligence, 31:185-199, 1987.

[25] David Allen McAllester. Conspiracy numbers for min-max searching. Artificial
Intelligence, 35:287-310, 1988.

[26] Agata Muszycka and Rajjan Shinghal. An empirical comparison of pruning
strategies in game trees. |EEE Transactions on Systems, Man and Cybernetics,
15(3):389-399, May/June 1985.

[27] Wolfgang Nagl. Best-move-proving: A fast game-tree searching program.
In D.N.L. Levy and D.F. Beadl, editors, Heuristic Programming in Artificial
Intelligence—Thefirst computer olympiad, pages 255-272. EllisHorwood, 1989.

[28] Judea Pearl. Asymptotical properties of minimax trees and game searching
procedures. Artificial Intelligence, 14(2):113-138, 1980.

[29] JudeaPearl. The solution for the branching factor of the alpha-beta pruning al-
gorithm and its optimality. Communications of the ACM, 25(8):559-564, August
1982.

[30] Judea Pearl. Heuristics — Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Publishing Co., Reading, MA, 1984.

[31] Wim Fijlsand Arie de Bruin. Another view on the SSS* agorithm. In T. Asano,
T. Ibaraki, H. Imai, and T. Nishizeki, editors, Algorithms, SSGAL '90, Tokyo,
volume 450 of LNCS, pages 211-220. Springer-Verlag, August 1990.

[32] Wim Pijlsand Arie de Bruin. Searching informed game trees. Technical Report
EUR-CS-92-02, Erasmus University Rotterdam, Rotterdam, NL, October 1992.
Extended abstract in Proceedings CSN 92, pp. 246-256, and Algorithms and
Computation, ISAAC 92 (T. Ibaraki, ed), pp. 332—341, LNCS 650.

38



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Wim Fijlsand Arie de Bruin. SSS*-like algorithmsin constrained memory. ICCA
Journal, 16(1):18-30, March 1993.

Wim Pijls, Arie de Bruin, and Aske Plaat. Solution trees as a unifying concept
for gametree algorithms. Technical Report EUR-CS-95-01, Erasmus University,
Department of Computer Science, Rotterdam, The Netherlands, April 1995.

Aske Plaat. Research Re: search & Re-search. PhD thesis, Erasmus University,
Rotterdam, The Netherlands, 1996. Forthcoming.

Aske Plaat, Jonathan Schaeffer, Wim PFijls, and Arie de Bruin. Nearly optimal
minimax tree search? Technical Report TR-CS-94-19, Department of Computing
Science, University of Alberta, Edmonton, AB, Canada, December 1994.

Aske Plaat, Jonathan Schaeffer, Wim Fijls, and Arie de Bruin. A new paradigm
for minimax search. Technical Report TR-CS-94-18, Department of Computing
Science, University of Alberta, Edmonton, AB, Canada, December 1994.

Aske Plaat, Jonathan Schaeffer, Wim PFijls, and Arie de Bruin. Best-first fixed-
depth game-tree search in practice. In Proceedings of the 14th International
Joint Conferenceon Artificial Intelligence (IJCAI-95), volume 1, pages 273-279,
August 1995.

Aske Plaat, Jonathan Schaeffer, Wim Fijls, and Arie de Bruin. A minimax ago-
rithm better than Alpha-Beta? Noand Y es. Technical Report 95-15, University of
Alberta, Department of Computing Science, Edmonton, AB, Canada T6G 2H1,
May 1995.

Alexander Reinefeld. Animprovement of the Scout tree-search algorithm. ICCA
Journal, 6(4):4-14, 1983.

Alexander Reinefeld. Spielbaum Suchverfahren. Informatik-Fachberichte 200.
Springer Verlag, 1989.

Alexander Reinefeld and T. Anthony Marsland. Enhanced iterative-deepening
search. |EEE Transactions on Pattern Analysis and Machine Intelligence,
16(7):701-710, July 1994.

Alexander Reinefeld and Peter Ridinger. Time-efficient state space search. Arti-
ficial Intelligence, 71(2):397-408, 1994.

Alexander Reinefeld, Jonathan Schaeffer, and T. Anthony Marsland. Information
acquisition in minimal window search. In Proceedings of the International Joint
Conference on Artificial Intelligence (1JCAI-85), volume 2, pages 1040-1043,
1985.

Igor Roizen and Judea Pearl. A minimax algorithm better than alpha-beta? Yes
and No. Artificial Intelligence, 21:199-230, 1983.

Jonathan Schaeffer. Experimentsin Search and Knowledge. PhD thesis, Depart-
ment of Computing Science, University of Waterloo, Canada, 1986. Availableas
University of Albertatechnical report TR86-12.

39



[47]

[48]
[49]

[50]

[51]

Jonathan Schaeffer. The history heuristic and al pha-beta search enhancements
in practice. |EEE Transactions on Pattern Analysis and Machine Intelligence,
11(1):1203-1212, November 1989.

Jonathan Schaeffer. Conspiracy numbers. Artificial Intelligence, 43:67-84, 1990.

Jonathan Schaeffer, Joseph Culberson, Norman Treloar, Brent Knight, Paul Lu,
and Duane Szafron. A world championship caiber checkers program. Artificial
Intelligence, 53(2-3):273-290, 1992.

David Slate and Larry Atkin. Chess 4.5 — The Northwestern University chess
program. In PW. Frey, editor, Chess Skill in Man and Machine, pages 82-118,
New York, 1977. Springer-Verlag.

George C. Stockman. A minimax agorithm better than alpha-beta? Artificial
Intelligence, 12(2):179-196, 1979.

[52] Jean-Christophe Weill. The NegaC* search. ICCA Journal, 15(1):3—7, March

1992.

40



