Rediscovering *-Minimax Search

Thomas Hauk, Michael Buro, and Jonathan Schaeffer

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{hauk,mburo,jonathan}@cs.ualberta.ca

Abstract. The games research community has devoted little effort to
investigating search techniques for stochastic domains. The predominant
method used in these domains is based on statistical sampling. When
full search is required, EXPECTIMAX is often the algorithm of choice.
However, EXPECTIMAX is a full-width search algorithm. A class of algo-
rithms were developed by Bruce Ballard to improve on EXPECTIMAX’s
runtime. They allow for cutoffs in trees with chance nodes similar to how
ALPHA-BETA allows for cutoffs in MINIMAX trees. These algorithms were
published in 1983—and then apparently forgotten. This paper “rediscov-
ers” Ballard’s *-MINIMAX algorithms (STAR1 and STAR2).

1 Introduction

Games can be classified as requiring skill, luck, or a combination of both. There
are many games which involve both skill and chance, but often simple games of
chance do not involve much strategy. For example, chess is clearly a game of skill,
but luck only factors into the equation when we hope that our opponent makes a
mistake. On the other hand, games of chance like roulette offer little opportunity
to use skill, besides, perhaps, knowing when to quit. Games that involve chance
usually involve dice or cards. Competitive card games combine skill and chance
by requiring players to use strategic thinking, while they manage the uncertainly
involved; since card decks are shuffled, the game’s outcome is not certain. Since
a player’s cards tend to be hidden in card games, each player will have imperfect
information about the game state. There are few perfect information games
which blend skill and chance — games where nothing is hidden, yet nothing is
certain. Backgammon is one such game.

For games where chance is a critical component of the game, statistical sam-
pling has been often used to factor the random element out of the search. The
method involves repeated trials where the outcome of the chance events are ran-
domly decided before the search begins, and then search is run normally on the
resulting tree. Since each chance event has one successor, they just become inter-
mediary nodes in the tree. For example, for games that involve dice, the chance
events can be determined in advance or on-demand when a chance node is met
in the tree. To get a good statistical sample, the number of trials must be high
enough to approximate the true distribution (for backgammon, this is often in
the tens or hundreds of thousands of trials). Although the method is popular (it

is easy to implement), it is not without its limitations (see, for example, [3]). The
technique has been successfully used in backgammon (for post-mortem roll-outs
[8]), bridge (for the play of the hand [3]), poker (computing expected values for
betting decisions [2]), and Scrabble (anticipating opponent responses [7]).

Perfect information games without chance benefit from deep search. A nat-
ural question is whether there is a counterpart to the ALPHA-BETA algorithm
for perfect information games with chance. Backgammon programs typically do
almost no (or limited) search as part of their move decision process [4]. Would
these programs benefit from an ALPHA-BETA-like algorithm?

Bruce Ballard enhanced ALPHA-BETA search to traverse trees consisting of
min, max and chance nodes [1]. The ideas centered around a family of algorithms
that he called *-MINIMAX, with STAR] and STAR2 being the main variants. His
work was published in 1983, but has received very little attention. Indeed, it
appears that his work has been all but forgotten (there are few references to it,
and the paper is not online).

The main contributions in this paper are as follows:

. Re-introducing Ballard’s ideas to the research community.

. Negamax pseudo-code for STAR2.

. Updating the algorithms to reflect non-uniform probabilities for chance nodes.

. An understanding of the relative strengths of STAR1 and STAR2.

. Updating the algorithms to take advantage of 20 years of ALPHA-BETA
search enhancements.

U LN =

This paper “re-discovers” Ballard’s work. The algorithms are important enough
that they need to be updated and re-introduced to the games research commu-
nity. This work shows that STAR1 and STAR2 are worthy of consideration as
a full-width search-based approach to dealing with stochastic domains. A com-
panion work presents experimental results for these algorithms for the game of
backgammon [5].

2 Search in Stochastic Domains

Most games extensively studied in the AI literature are non-stochastic games of
perfect information. With the addition of a random element (roll of the dice;
dealing of cards), chance events are introduced into the game tree. Hence, we
need to add a new kind of node to our game tree: a chance node. A chance node
will have successor states like minimization (min) or maximization (max) nodes,
but each successor is associated with a probability of that state being reached.
For example, a chance node in a game involving a single dice would have six
successor nodes below it, each representing the state of the game after one of
the possible rolls of the dice, and each reachable with the same probability of %.

The element of chance completely changes the landscape that search algo-
rithms work on. In games of chance, we cannot say for certain what set of legal
moves the opponent will have available on their turn, so we cannot be certain to
avoid certain outcomes. The introduction of chance nodes means that we can no

longer directly apply standard ALPHA-BETA to games of chance. Chance nodes
act as intermediaries, by specifying the state the game will take before a choice
of actions becomes available. Before we can search trees with chance nodes, we
have to figure out how to handle them.

2.1 Expectimax

The baseline algorithm for trees with chance nodes (analogous to MINIMAX
for games without chance nodes) is the EXPECTIMAX algorithm [6]. Just like
MINIMAX, EXPECTIMAX is a full-width, brute-force algorithm. EXPECTIMAX
behaves exactly like MINIMAX except it adds an extra component for dealing
with chance nodes (in addition to min and max nodes). At chance nodes, the
heuristic value of the node (or EXPECTIMAX value) is equal to the weighted sum
of the heuristic values of its successors. For a state s, its EXPECTIMAX value is
calculated with the function:

Ezxpectimazx(s) = Z P(child;) x U(child;)

where child; represents the ith child of s, P(c) is the probability that state ¢ will
be reached, and U (c) is the utility of reaching state c¢. Evaluating a chance node
in this way is directly analogous to finding the utility of a state in a Markov
Decision Process.

EXPECTIMAX is given in Figure 1, which makes use of the following functions:

1. terminal () that returns true if and only if a given state is terminal,

. evaluate() that returns the heuristic evaluation of a state,

3. numChanceEvents () to specify how many different values the chance event
can take,

4. applyChanceEvent () to apply the chance event to the state,

5. eventProb() to determine the probability of the chance event taking that
value, and

6. search() calls the appropriate search function depending on the type of
node that follows the chance node (min, max, or chance).

[\]

float Expectimax(Board board, int depth, int is_max_node) {
if (terminal(board) || depth == 0) return (evaluate(board));
N = numChanceEvents (board) ;
for(sum = 0, i = 1; i <= N; i++) {
succ = applyChanceEvent (board,i);
sum += eventProb(board,i) #* search(succ, depth-1, is_max_node);
}

return (sum);

Fig. 1. The EXPECTIMAX algorithm

Max

Chance

Min

Chance

Fig.2. An EXPECTIMAX tree

For games where chance nodes alternate with player turns, we can use MIN-
IMAX for searching, with the modification that MINIMAX’s recursive call uses
ExpeEcTIMAX instead of itself. We also use floating point numbers instead of
integers for return values, since probabilities are real numbers and the sum may
have a fractional component.

Figure 2 illustrates how EXPECTIMAX works. If we assume that each of the
6 branches at the chance node have the same probability (such as would be the
case for a single dice), then each child contributes 1/6th of the value of the node:
value = =5X g+ -10X g +0X g +1x g+ —-10x § +3x ¢ = —3.5.

Assume that the search tree has a fixed branching factor B, and a search is
being conducted to depth D (where a depth, or ply, consists of a min, max, or
chance node). While the worst-case time complexity for MINIMAX is O(BP), the
worst-case for EXPECTIMAX (for trees with alternating levels of chance nodes)
is O(B x BT x N %) (for D odd), where N is the branching factor at chance
nodes (for example, in backgammon’s case, N = 21 since there are twenty-one
distinct rolls). As an example of the explosive effect of chance nodes even on
shallow searches, there would be approximately 3.5 million nodes in a 3-ply
search of an arbitrary backgammon position. If an evaluation function took 0.05
ms to complete (about the speed of GNU backgammon’s neural network on a
modern computer), then a 3-ply search would take about 3 minutes to complete,
a 4-ply search would take about 21 hours, and a 5-ply search would be roughly
a year.

2.2 *_-Minimax

Bruce Ballard was the first to develop a technique, called *-MINIMAX, for en-
abling chance node cutoffs [1]. He proposed two versions of his algorithm, called
STAR1 and STAR2. He also further refined the second algorithm to handle more
general cases and have parameters to control functionality, and called the new

version STAR2.5. All the experiments that Ballard performed were in a rather
abstract domain. He did not use a real domain to validate his results.

The basic idea of EXPECTIMAX is sound, but slow. Just as we can derive a
strategy for obtaining cutoffs in MINIMAX to obtain ALPHA-BETA, so too can
we derive a strategy for obtaining cutoffs in EXPECTIMAX. Since there are three
different types of nodes in a game tree for games with chance, there are three
cases we need to consider for cutoffs. Since max and min nodes work the same
way in trees with chance nodes as they do in trees without chance nodes, we get
the cutoff strategies for those nodes for “free”. All we need to concern ourselves
with are chance nodes. If we pass alpha and beta values to chance nodes as we
do min and max nodes, and we pass alpha and beta values from chance nodes
to min and max nodes, all that is left to consider is exactly what values we can
pass, and how they will be used.

In the first case, chance nodes can have a search window just like min and
max nodes, using alpha and beta values to determine if further search below the
node is relevant. However, these alpha and beta values cannot be used just like
they are used in min or max nodes, because the child of a chance node cannot be
chosen deterministically (unless there is only one child). We can obtain a cutoff,
however, if the EXPECTIMAX value of a chance node falls outside the alpha-beta
window. The problem is that we cannot know the exact EXPECTIMAX value of
a chance node before we search all of its children. However, if we know bounds
on the range of values leaf nodes can take (called L and U, respectively, using
Ballard’s notation), we can determine bounds on the value of a chance node
based on the worst-case conditions for the alpha and beta values.

If we have reached the ith successor of a chance node, after having searched
the first i — 1 successors and obtained their backed-up values (which we will call
Vi...Vi_1), then we can determine a bound for the value of the chance node.
In the worst case, all the unsearched children will have a value of L, and in the
best case, all the unsearched children will have a value of U. Therefore, the lower
bound of a chance node’s value, where V; represents the true value of successor
i and there are IV different equally-likely chance events, is equal to

%((Vi+...+Vi_1)+V;+Lx(N—i))

and the upper bound is equal to

%((W+...+‘/¢_1)+%+Ux (N —1))

These bounds determine the range in which the EXPECTIMAX value for a
chance node must lie. We can use this range to generate cutoffs. Recall that the
chance node itself was passed alpha and beta values. We can cut off our search
if the lower bound of the EXPECTIMAX range for the chance node ever exceeds
or equals beta,

1
ﬁ((%+...+m—1)+%+LX(N—i))zbeta

or the upper bound is ever less than or equal to alpha,

1
F((Vi 4.+ Vi) + Vi +U x (N = 1)) < alpha (1)

where (Vi + ...+ V;_;) are the accurate values for the first ¢ — 1 children of a
node, V; is the value for current node being searched, and (U x (N — 7)) and
(L x (N — 1)) represent the best/worst-case assumptions for the values of the
remaining nodes. In either equation, we can solve for V;, and use the value as
either an alpha or a beta value for the next child.

Max
Chance
Min

Chance

Fig. 3. Fragment of a *-MINIMAX tree

Take the following example shown in Figure 3, where heuristic values range
from L = —10 to U = 10, inclusive. The top-most chance node, A, is entered with
a window of alpha=3 and beta=4 (we will write this as [3,4]). Because we have
not searched any of its children yet, we know its value lies in the range [-10,10],
and the alpha and beta values for the first child are equal to (3 x L) = L and
$(3x U) = U, which is also [-10,10]. Assume that the first child (B) is searched
and a value of 2 is returned. We now know the EXPECTIMAX range for the chance
node is between $(2+2 x L) = 1(—=18) = —6 and (2 + 2 x U) = 3(22) = 73.
Since —6 is not greater than 4 and 7 % is not less than 3, this child did not create
a cutoff. Before we search the next child, we need to recalculate the alpha and
beta values we want to pass down to it: (2 + V; + (1) x L) > beta = V; > 20,
and £(2+4V; + (1) x U) < alpha = V; < 3.

We will call the V; value associated with alpha A;, and the V; value associated
with beta B;, at chance nodes, and so we will pass a window of [4;, B;] to
successor ¢ when we search it.

Since the upper bound on a leaf node is 10, we will pass a window of [-3,
10] to the next child, C. Assume the next node searched at the bottom, E, has
a value of -8. This will trigger a cutoff at C, because -8 lies outside the lower

bound of the window (which is -3). The cutoff at C will also trigger a cutoff at
the topmost chance node A. In fact, this could also trigger further cutoffs along
this branch all the way up to the root; the possibility for two or more cutoffs
to occur without intervening leaf searches is unique to trees with chance nodes,
and not found in typical MINIMAX trees.

2.3 Starl

When we translate the ability to obtain chance node cutoffs into a procedural
representation, we end up with STAR1, Ballard’s first version of the *- MINIMAX
algorithm. By re-arranging equations (1) and (2), the alpha value for the ith
successor, A;, can be determined with

A;j=N xalpha— (V1 +...+V;_1) = U x (N —4)
and the beta value for the ith successor, B;, with
B;=Nxbeta— (Vi +...+V;_1)— Lx (N —1)

where alpha and beta are the respective values passed to the chance node. These
equations can be rewritten to be more efficient by initializing the two values as:

Ay =N x (alpha —U)+U; B; =N x (beta—L)+ L
and updating them with
A1 =A;+U-V;; By =B +L-YV;

where ¢ = 2...N. When a chance node only has one successor (N = 1), the
initial A and B values for the chance node take on the alpha and beta values
initially passed to the node.

Figure 4 shows the resulting STAR1 algorithm. The algorithm makes use of
the following additional functions:

1. numSuccessors() that returns the number of successors a state has,

2. successor () that returns a new state, and

3. search() which calls the appropriate function, either STAR1 for a chance
node or ALPHA-BETA for a min or max node.

This assumes that all values for the chance event have equal probability.

Note that our version of STAR1 extends the algorithm to include the fail-soft
ALPHA-BETA enhancement. When further search at a node is unnecessary, rather
than returning the window bound (alpha or beta) the code returns the lowest
upper bound or highest lower bound that would be achievable if the remaining
successors were searched.

An example of STAR1 cutoffs is shown in Figure 5. The uppermost chance
node is initially passed bounds of [-2,2]. The initial value for A is equal to N x
(alpha—U)+U = 6x (—2—10)+10 = —62 and B is equal to N x (beta— L)+ L =

float Starl(Board board, float alpha, float beta, int depth) {
if (terminal(board) || depth == 0) return (evaluate(board));

N = numSuccessors(board) ;
A = N*(alpha-U) + U;
B = N*(beta-L) + L;

for(vsum = 0, i = 1; i <= N; i++) {
AX = max(A, L);
BX = min(B, U);
v = search(successor(board,i), AX, BX, depth-1);
vsum += v;
if(v <= A) { vsum += U*(N-i); return (vsum/N); } // Fail soft
if(v >= B) { vsum += L*(N-i); return (vsum/N); } // Fail soft
A+=T0U - v;
B +=L - v;
}

return (vsum/N);

Fig. 4. The STARI algorithm, adapted from [1]

Max

Chance

Min

Chance

Fig.5. A STARI tree

6% (2+10)—10 = 62. After searching the root’s first successor, the A and B values
are adjusted for the second successor (C), where A becomes —62+ 10+ 5 = —47
and B becomes 62—10+5 = 57. As we continue to search the children of the root
sequentially, we can see that the root node’s [4,B] window is equal to [-8,36] by
the time it reaches its fifth child F, who gets an ALPHA-BETA window of [-8,10].
After searching P, which has a value of -10, F gets an immediate cutoff and
returns this value to its parent A, the uppermost chance node, which triggers
another cutoff because -10 falls outside its lower bound of -8. The other children
of F, as well as the sixth successor G, do not need to be searched, as we can
prove that the EXPECTIMAX value of A must be less than -2 (it is in fact —3%,
which we can read from Figure 2).

2.4 Star2

While STAR] results in an algorithm which returns the same result as EXPEC-
TIMAX, and uses fewer node expansions to obtain the same result, its results are
generally not very impressive. One reason is that STAR1 is agnostic about its
successors; it has no idea what kind of node (min, max or chance) will follow
it, but even if it did, it would not be able to take advantage of that knowledge.
However, game domains are fairly regular; for example, in a standard MINIMAX
tree, min and max nodes are on levels that strictly alternate. Min always follows
max, and max always follows min. In games like backgammon, where each player
rolls the dice, then moves, we end up with a tree like a MINIMAX tree, except
we insert a chance node immediately after any non-terminal min or max node.
In other words, we add a layer of chance nodes between each layer of nodes in
a standard MINIMAX tree. Ballard refers to trees with this structure as regular
*_MINIMAX trees, an example of which is shown in Figure 6, where +, - and *
refer to max, min and chance nodes, respectively. The regular structure assumed
for STAR2 is not essential, as any tree can be transformed into such a form.
Another drawback to STAR] is due to its pessimistic nature. We may poten-
tially search nearly all the children of a chance node before a cutoff is obtained,
because we assume that all unseen children have a worst-case evaluation. How-
ever, children of a successor of a chance node will tend to have values which
are highly correlated. Instead of searching each child of a chance node fully and
sequentially, and give a value of L to any children we haven’t seen yet, we can

NN
ANVANRVANVAN

Fig. 6. A regular *-MINIMAX tree

get a more accurate picture just by searching a single successor of each child.
This value we get for the child then becomes a bound on the true value for the
child (a lower bound if the child is a max node, and an upper bound if the child
is a min node). It is likely that the bound will be much better than L, especially
if we chose the child well. We will therefore introduce this phase of speculative
search (which we will call the probing phase) before sequentially searching each
child, in order to obtain a quicker cutoff.

We need to modify the equations used to generate A and B in STARI1 to
reflect the new use of a probing phase in STAR2. For STAR2’s probing phase, we
derive the bounds for A and B just like we do in STAR1’s search phase, except
we do not have alpha cutoffs at chance nodes followed by min nodes (since we
can only get an upper bound on those children), and we do not have beta cutoffs
at chance nodes followed by max nodes (since we can only get a lower bound on
those children).

We obtain a cutoff in STAR2’s search phase if

V4.4 Vi) + Vit Wi + ...+ Wy)
N

< alpha

or

V4. 4+ Vi) + Vit (Wi + ...+ Wh)
N

> beta

where (W1, ..., Wy) are the probed values for the N children of a node, obtained
during the probing phase.
The alpha value for the ith successor, A; is now obtained with

A;=Nxalpha— Vi + ...+ Vie1) — (Wiz1 + ... + Wn) (2)

and the beta value for the ith successor, B; with

B,~:Nxbeta—(V1+...+V,-,1)—(W,~+1+...+WN) (3)

Like with STARI1, these equations can be rewritten:
A; = N x alpha — (Wa + ...+ Wy); By =N xbeta— (Wa+...+Wy)

and updated by
A1 =Ai+Wiu = Vs Bipi =B+ Wi =V,

where 1 =2...N.

Figure 7 shows the resulting STAR2 algorithm using a Negamax formulation
(hence, a chance node is always followed by a max node). To get values for the
probing phase, we need a procedure similar to ALPHA-BETA since successors
are min or max nodes. Figure 8 shows the Probe algorithm. Figure 9 shows the
PickSuccessor algorithm used by Probe, which is explained in more detail below.

Consider the tree in Figure 10, to see STAR2’s strength. It is the same tree
used in the previous example with STAR1. For the probing phase, the alpha

float nStar2(Board board, float alpha, float beta, int depth) {
if (terminal (board) || depth == 0) return (evaluate(board));
N = numSuccessors(board) ;
A N* (alpha-U);
B = N*(beta-L);
AX = max(A, L);
/* Probing phase */
for(vsum = 0, i = 1; i <= N; i++) {
B += L;
BX = min(B, U);
w[i] = nProbe(successor(board,i), AX, BX, depth-1);
vsum += wl[i];
if(w[i] >= B) { vsum += L*(N-i); return (vsum/N); }
B -= wl[il;

}
/* Search phase */
for(vsum = 0, i = 1; i <= N; i++) {
A += U;
B += w[i];
AX = max(A, L);
BX = min(B, U);
v = nAlphaBeta_MM(successor(board,i), AX, BX, depth-1);
vsum += v;
if(v <= A) return { vsum += Ux(N-i); return (vsum/N); }
if(v >= B) return { vsum += L*(N-i); return (vsum/N); }
A -= v;
B -= v;
}

return (vsum/N);

Fig. 7. Negamax formulation of the STAR2 algorithm

value changes just like with STAR1 but the beta value does not. In this case, we
only need to search five leaves: H, J, L, N and P, because by the time we reach
child F, we give it a window of [-8,10]. Since P has a value of -10, this causes a
cutoff at F. It also causes a cutoff at A since F returns a value of -10, which is
less than or equal to A. In this example our Probe function did a good job and
we always chose the best child for probing (fortuitously), so we obtained a cutoff
after searching about half the nodes STAR1 searches.

As the branching factor increases, probing becomes even more effective, be-
cause sequential searching of children becomes more and more time-consuming.
But even with small branching factors, probing can still be effective.

In his paper, Ballard did not specify how Probe should choose a successor
besides to say it could be done “at random or by appeal to a static evaluation
function” [1]. Since the domain he used was limited to a depth=3 tree, all the
probes done in his experiments were on leaf nodes. His domains also only had

float Probe_Min(Board board, float alpha, float beta, int depth) {
if (terminal (board) || depth == 0) return (evaluate(board));
choice = PickSuccessor(board);
return (AlphaBeta(successor(board,choice), alpha, beta, depth-1));

}

Fig. 8. The Probe algorithm

int PickSuccessor(Board board) {
choice = 1;
N = numSuccessors(board) ;
if (N < 2) return (1)
else {
for(i = 1; i <= N; i++) {
if (hasBestQuality (successor(board,i))) return (i);
else if(hasGoodQuality(successor(board,i))) choice = ij;
}
}

return (choice);

Fig. 9. The PickSuccessor algorithm

chance nodes at depth=1 (the nodes at depth=3 are technically chance nodes,
but since they are leaves, they are just statically evaluated), so probing was
always relatively inexpensive.

For STAR2 to be successful, Probe must search a “good” child. We can ab-
stract the selection process away from Probe and create another function, which
we will call PickSuccessor. PickSuccessor, shown in Figure 9, will take a set
of nodes and return the node it thinks is the “best”. We want this selection
process to be relatively fast and not use much overhead, so PickSuccessor may
not want to use the evaluation function used for leaf evaluations, but instead
use domain-specific knowledge to heuristically select a child. For example, in
backgammon we may first select moves that result in hitting the opponent’s
blots, moves that form primes, or moves that form points. As soon as we see a
successor that meets the best quality, we can simply exit with that successor as
the choice. Failing that, we can keep track of a successor that has the next best
quality. If no successors have either quality, then the first can just be chosen.

Even if we do not obtain a quick cutoff during the probing phase, we will have
a tighter window for the search phase, which in itself will lead to quicker cutoffs,
because we have better estimates of the values of the children. Reconsider once
more the tree we have been using, but this time we will see what happens if
Probe does a bad job. Figure 11 represents this situation. Assume that at the
min nodes, we probe with the child that has the worst score for helping obtain
a cutoff (the child with the maximum score). Now the probing phase will finish

Max

Chance

Min

Chance

Fig.10. A STAR2 tree, with good probing

before we have obtained a cutoff, and so we will end up searching almost half of
the leaves already. However, before the searching phase begins, notice that the
window has been almost halved, because we have better upper bounds for the
childrens’ values. Instead of starting with a window of [-62,62] as STAR] would,
we start searching sequentially with a window of [-8, 62]. Now, by the time we
start to search the third successor D, we have passed it a window of [3, 10]. If we
assume that the leaf node L is searched first, then we get a cutoff at D (because
0 is less than 3) as well as at A. We end up searching six leaves in the probing
phase, and an additional three leaves in the search phase, for a total of nine
leaves. In this particular situation, even the worst-case probing resulted in the
same number of leaves expanded as STARI.

2.5 Non-uniform Chance Event Probabilities

For many applications (including backgammon), the probability of each chance
event is not uniform. The formulas used to derive the equations for A and B
need to be modified to accommodate this generalization. Ballard mentions the
modifications needed but does not go into detail [1]. Note that this process
doesn’t affect EXPECTIMAX, just STAR1 and STAR2.

Recall equation 1 for obtaining A;. The entire left hand side of the inequality
is divided by N because each of the N values has an equal chance of occurring.
For non-uniform chance probabilities, this inequality changes to

PoxWVi+...4+P_1 xVi1)+ PxV;+Ux (1 —P, —... - P,) < alpha

or

6272 862

F6FH72 264
&2 [3,57]
Max
Chance
Min
Chance
Fig.11. A STAR2 tree, with bad probing
A — alpha—Ux(1—-P,—...—P)—(PLxVi+...+ P_1 xV;_1)
T PZ
where P; is the probability that the ith chance occurs, for A. Similarly,
B — beta—Lx(1—P—...—FP)—(PixVi+...4+ P_1 xV;_y)
i — Pz
We will make the substitution Y = (1 — P; — ... — P;), which can be computed

incrementally, where Yy = 1 and updates are made with ¥; = Y;_; — P;. We
will make another substitution X = (P, x V; +...+ P;_; x V;_1), which can
also be computed incrementally where X; = 0 and updates are made with
Xit1 = X; + P; x V;. We can then calculate A; and B; with
(alpha —U xY; — X;) ._(beta—LxY;—Xi)
4; = 5 . B = 2 (4)

When there is only one successor, A = alpha and B = beta, as desired.

These equations can be used for STAR1 and also for STAR2’s probing phase.
When calculating A and B values in STAR2’s search phase, we can still use
equation 4 to get A, but for B we need to modify equation 3:

_ (beta=W; — X;)

(2 PZ
where W; = (W41 + ... + Wy), the sum of the probed values for nodes not yet
searched.

2.6 Star2.5

Ballard proposed variations on the probing done by STAR2. For example, having
probed one child of each node and not obtained a cutoff, additional probing effort
could be invested. For example, each child could have a second probe performed.
Ballard called the number of probes done at each node the probing factor. STAR1
can be viewed as having a probing factor of 0, while STAR2 has a probing factor
of 1. Ballard proposed several algorithm variants with probing factors greater
than 2, and called this family of algorithms STAR2.5.

2.7 Enhancements

ALPHA-BETA search has numerous enhancements that can greatly improve search
efficiency. Here we briefly mention the enhancements that will have the most im-
pact on *-MINIMAX algorithms:

— Transposition table. Besides the usual transpositions and move ordering ben-
efits, transposition tables can help by re-using the results from STAR2’s prob-
ing phase.

— Move ordering. Move ordering is always critical in any ALPHA-BETA-based
search program. For STAR2, it is even more critical since it is needed to
identify a “best” candidate for probing.

— Iterative deepening. Iterative deepening can be used to improve move order-
ing, both for the search and the probing.

— Fail soft. This is a simple enhancement that essentially comes for free (and
has been added to the STAR] and STAR2 pseudo-code). It helps narrow the
search window bounds, resulting in earlier cutoffs.

These ideas have been implemented in a backgammon program and shown to be
important enhancements to *-MINIMAX search [5].

3 Conclusions

Backgammon is the obvious domain for exploring performance issues of *-
MiINIMAX. The results are very encouraging, typically giving an extra ply or
two of search. These results are reported in a companion article [5].

Besides games, the *-MINIMAX algorithms seem to also be applicable to
Markov Decision Processes (MDPs), especially in the area of multi-agent MDPs.
While solving MDPs usually involves an EXPECTIMAX-type evaluation of states
one step away during value iteration, perhaps that component could be changed
to a depth-IV search of states, where the action at any given state would be
determined by the current policy at that iteration. This may produce quicker
convergence, or in the case of multi-agent MDPs, a better method for choosing
actions that lead to higher rewards.

A general approach to solving games that combine elements of skill and
chance will remain an open research problem for a while to come, but they pro-
vide some of the most interesting domains as they often have elements at which

computers excel but humans do not (optimization, uncertainty calculation), and
vice-versa (long-term planning, opponent modeling). Games that combine skill,
chance, imperfect information and opponent interaction are the most difficult
domains for computers, so cross-disciplinary approaches involving combining el-
ements of heuristic search, machine learning, agent theory, game theory and even
psychology may prove the most fruitful in the years to come.

Acknowledgments

This research was supported by grants from the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and Alberta’s Informatics Circle of
Research Excellence (iCORE).

References

1. Bruce Ballard. The *-Minimax search procedure for trees containing chance nodes.
Artificial Intelligence, 21(3):327-350, 1983.

2. Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The chal-
lenge of poker. Artificial Intelligence, 134(1-2):201-240, 2002.

3. Matt Ginsberg. GIB: Steps toward an expert-level bridge-playing program. In
International Joint Conference on Artificial Intelligence, pages 584-589, 1999.

4. Thomas Hauk. Search in trees with chance nodes. Master’s thesis, Computing
Science, University of Alberta, 2004.

5. Thomas Hauk, Michael Buro, and Jonathan Schaeffer. *-Minimax performance in
backgammon. In Computers and Games, 2004. Under submission.

6. Donald Michie. Game-playing and game-learning automata. In L. Fox, editor,
Advances in Programming and Non-Numerical Computation, pages 183-200. Perg-
amon, New York, 1966.

7. Brian Sheppard. Towards Perfect Play of Scrabble. PhD thesis, Computer Science,
Universiteit Maastricht, 2002.

8. Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications
of the ACM, 38(3):58-68, 1995.

