
REPRESENTATIONAL DIFFICULTIES WITH CLASSIFIER SYSTEMS

Dale Schuurmans
Jonathan Schaeffer

Computing Science Department,
University of Alberta,

Edmonton, Alberta
Canada T6G 2H1

dale@ai.toronto.edu
jonathan@alberta.uucp

ABSTRACT

Classifier systems are currently in vogue
as a way of using genetic algorithms to
demonstrate machine learning. How-
ever, there are a number of difficulties
with the formalization that can influence
how knowledge is represented and the
rate at which the system can learn. Some
of the problems are inherent in classifier
systems, and one must learn to cope with
them, while others are pitfalls waiting to
catch the unsuspecting implementor.
This paper identifies some of these diffi-
culties, suggesting directions for the
further evolution of classifier systems.

1. Introduction

In the last five years, genetic algorithms (GA) have become
an expanding area of research in computational models of
learning. These models are motivated by concepts from
evolutionary biology and population genetics. A recent
result of this work has been the development of classifier
systems (CS), a simple representational and computational
paradigm which uses GAs [Gol89, HHN86]. Already a
number of CS implementations have been built demonstrat-
ing the potential of this paradigm for machine learning (for
example, [Boo89, RoR89]).

At a first glance, classifier representations appear to
be a simple, effective method for implementing computa-
tional systems that are well suited to manipulation by GAs.
However, upon implementing even a simple classifier
learning system, many subtleties arise within the represen-
tation which can have a strong influence on the learning
capabilities of the system.

This paper presents and discusses some of the
representational weaknesses inherent in the classifier sys-
tem methodology which would appear, in general, to hinder
genetic search processes. These include search bias, limited
disjunction, positional semantics, and parameterization.
The intention here is to constructively criticize classifier
representation schemes, from the perspective of genetic

search algorithms, illustrating the inherent limitations and
pitfalls that one is likely to encounter. These observations
are useful in suggesting directions for the further evolution
of classifier systems.

2. An Illustrative Problem Domain

The representation of a tic-tac-toe board will be used to
illustrate many of the observations made in this paper about
classifier systems. This problem was chosen for the simpli-
city and clarity with which we can illustrate our points. We
are not addressing the problems of having a CS learn to
play perfect tic-tac-toe (a problem that is known to be diffi-
cult). None of the points raised in this paper are restricted
to our sample domain.

A tic-tac-toe board can be represented as a 2-
dimensional grid, with each square being addressed by a
row and column coordinate as follows:

0,0 0,1 0,2____________
1,0 1,1 1,2____________
2,0 2,1 2,2










Each square will contain exactly one of the marks {X, O, B
(blank)}. A simple classifier representation of a tic-tac-toe
board would encode the current state of the board as a sin-
gle input message. Squares can be represented using 2 bits
with, for example, the meanings X = 01, O = 00, and B =
11. Thus, the input message will be 18 bit long. For exam-
ple, the message "011100110100111111" would be used to
denote the following board configuration:

X B O_ _________
B X O_ _________
B B B










Note that with this representation, the square number is
implicitly encoded into the classifier.

The action string will refer to an address of a square
on the board. Were this part of a tic-tac-toe playing pro-
gram, this square would be the location of the program’s
next move. This means that we only need to consider 4 bits
of the action string. The first 2 bits specify the row and the
next 2 bits specify the column. For example, the classifier

111111111111111111 / 0101
means that if every square is empty, then place a mark in
the center square. (Strictly speaking, conditions and actions
are the same size. For brevity in our examples, we prefer
this shorter notation.)

Finally, note that there are some bit values for which
there is no attached meaning. This occurs both in our
representation of a square (row or column coordinates of
11) and the contents of a square (value of 10).

3. Difficulties with Classifier Systems

Behind the deceptive simplicity of the classifier representa-
tion there are a number of subtleties arising in the represen-
tation of knowledge which influence the rates and capabili-
ties of learning demonstratable by a CS.

3.1. Search Bias

We have necessarily encoded certain classifier patterns as
being illegal. Clearly, in this type of representation, based
upon fixed length bit strings, we will always have the prob-
lem of illegal patterns (unless, of course, we are fortuitous
enough to have 2k possible values for each field). This pro-
perty of classifier representations can lead to a number of
subtle difficulties in a learning task when we begin to
search the space of possible classifiers.

Consider the representation for the contents of a
square used in the previous section. Although initially the
system will contain many classifiers with illegal values,
after time, most of them will disappear (survival of the fit-
test). Consider performing mutation in a mature population
where illegal values have been removed. Mutating a bit on
a square containing an X will result in either a B or O.
Mutating an O will yield a value of X or I (illegal). Mutat-
ing a B results in either X or I. Given that there is an equal
probability of a square containing an X, O, or B, then there
is a 33% chance of mutating to an X, 16% O, 16% B, and
33% I. Not only is there a bias towards X over O, one in 3
mutations will result in illegal square values, producing a
new classifier that is useless.

Even if our representation did not have illegal values,
the problems of search bias can still exist. The only time it
will not be a problem is when the probabilities of
occurrence of field values are equal. For example, if a field
should have a value of α 80% of the time and β only 20%,
then the mutation operator is more likely to discover an α in
that position and mutate it to a β than the other way around.
Clearly, this will not result in the proper distribution of α
and β.

Finally, the search bias arguments for mutation also
apply to cross-over and inversion.

3.2. Limited Disjunction

In any rule-learning task, the object of the system is to dis-
tinguish between world states where it is desirable to effect
a particular action from those where it is undesirable. It is
fundamental that we be able to represent a condition for
effecting an action which includes all desirable world states
and excludes undesirable ones. That this condition be
representable with a small number of rules is a useful pro-
perty. Clearly, without the ability to in some way encode
generalized rules, we would be left with the task of simply
enumerating the desirable states with their corresponding
action.

The presence of the "don’t care" symbol (#) in clas-
sifier representations is important because it allows us to
generalize classifiers by expressing disjunction in the condi-
tion parts of our classifiers. Disjunction allows conditions
to match any one of a set of possible values, thus, reducing
the number of classifiers required to implement desired
behaviors. Despite its obvious usefulness, "don’t care"s
only provide us with a limited mechanism for representing
disjunction. In fact, most of the possible disjunctive combi-
nations are unrepresentable in a single classifier.

Consider a field of information that can take on any
one of n values. For a classifier representation, typically,
we would encode this field with k =  log 2 n bits. Given
three placeholders in conditions {0, 1, #}, we can represent
3k ∼∼ 3log 2 n ∼∼ n ln 3/ln 2 possible combinations of the n
values. But there are 2n possible combinations in total.
Clearly then, for linearly increasing n there is an exponen-
tially increasing number of unrepresentable disjunctive
combinations.

It has been suggested that by utilizing illegal combi-
nations or adding extra bits to the field we could overcome
this limitation. To represent all combinations, we would
need k placeholders in our conditions, where 3k ∼∼ 2n .

Thus, k ∼∼
ln 3
ln 2_ ___ n, meaning that to be able to represent every

possible disjunctive combination of n values, we require
O(n) bits. Therefore, if we want every disjunctive combi-
nation represented, we can do little better than to allocate a
single bit for each distinct possible value!

The consequences of having unrepresentable disjunc-
tive combinations can range from providing us with benefi-
cial search biases to pruning any reasonable solutions from
the search space. What follows is a rather simple problem
which demonstrates how limited disjunction, if not taken
properly into account, can effectively remove any possibil-
ity of expressing a reasonable solution.

Example: Assume the representation X = 01, O = 10, and
B = 00. Now consider the problem of having our system
learn how to recognize a full board. That is, we want our
system to learn to respond with a special message, say
"1111", exactly when the board is full (i.e. when no square
contains a B), no matter how we arrange the Xs and Os.

Initially, consider only square 0,0. Here, we simply want to

express that whenever square 0,0 contains either an X or an
O (it does not contain a B) then we should respond with
"1111". But notice that given the way we have designed
our classifier representation it is impossible to represent the
condition NOT B (equivalently X OR O) using # symbols.
Considering that X = 01 and O = 10, we can see that the
only pattern matching both is ##, but this pattern neces-
sarily matches B as well! So with our present representa-
tion, the solution to this sub-problem requires two distinct
classifiers:

01################ / 1111
10################ / 1111

Now, extending this result to consider the whole board
requires that we use 29 = 512 classifiers in total (all of
which must be discovered by the system)!

If we had shown better luck (or insight) we would have
chosen a slightly different representation which would yield
a solution requiring only a single classifier. Let us alter the
representation scheme back to the original one in section 2:
X = 01, O = 00, and B = 11. Now X OR O can be
represented by the pattern 0#, yielding a single classifier
which solves the problem:

0#0#0#0#0#0#0#0#0# / 1111

Obviously the above example has been contrived to
illustrate our point as blatantly as possible. By changing
the bit pattern assignments we wish to use, we may dramat-
ically alter the size of the solution set that the system must
discover. This difficulty, we call the pattern assignment
problem, can be stated as follows:

Given a field that can take on any one of n
values, find a bit pattern representation for each
value that:
1) minimizes the number of bits used to encode
all n values (reduce the size of the search
space), and
2) minimizes the number of classifiers needed
to express a solution (reduce the size of the
solution set).

The mere existence of limited disjunction exposes us
to the possibility of requiring a solution set which is com-
binatorially larger than the minimum size attainable by
appropriately assigning bit patterns. To avoid such a threat,
a CS designer is forced to consider the potential effect of
any pattern assignment upon the representation of a suc-
cessful solution, meaning that the designer would have to
know the form of successful solutions a priori!

Of course, limited disjunction could be thought of as

Note that some of the classifier system literature includes the
provisions for the negation of condition strings [Rio86]. This
additional capability does allow for an effective solution to
our particular full board problem in an obvious way. How-
ever, this does not solve the problem of unrepresentable dis-
junctive combinations in general and, hence, does not rid us
of the pattern assignment problem (discussed shortly).

beneficial in some respects. Any way in which we reduce
the size of the search space without removing any desirable
solution states benefits us by reducing the required search
effort.

In conclusion, utilizing a representation scheme
which prohibits certain disjunctive combinations from
occurring in the search space can be either a blessing or a
curse, depending upon whether or not an optimal (or ade-
quate) solution remains representable. However we would
like to emphasize that in utilizing such a representation to
our benefit we are, in reality, supplying the learning system
with implicit domain specific knowledge. That is, we are
actually indicating beforehand which combinations are
likely to be useful and ruling out others as possible candi-
dates. It is preferable that any knowledge of the task
domain that we supply to the learning system beforehand be
explicated.

3.3. Positional Semantics

In our simple classifier representation for playing tic-tac-
toe, we can see that the semantics of the representation are
position dependent. That is, to know which particular
square a segment of a condition string is referring to, we
must know the exact position of the segment in its condi-
tion string. In the basic CS/GA framework there is no
effective mechanism by which important information can
be exchanged between classifier positions. Thus, there is
no way important generalizations can be made across posi-
tions in a classifier string. If an important pattern has been
discovered for one particular position in a classifier string,
this same pattern will have to be independently discovered
for each separate position where that pattern may be impor-
tant. This can be illustrated with a simple example from
our tic-tac-toe domain:

Example: Consider a simple learning task which requires
our CS to learn how to make legal moves, and suppose that
the system has already learned that it is legal to place an X
in square 0,0 whenever square 0,0 presently contains a B:

11################## / 0000
For a complete solution we need to have this information
generalized to all squares on the tic-tac-toe board. But
notice that to represent this generalization the system will
require 9 distinct classifiers, one for each square; and notice
further, that the presence of the above classifier in no way
helps the CS discover this identical "11" pattern for each of
the remaining squares .

In keeping with the theme of the paper, we do not
wish to remedy this problem by proposing some new ad
hoc genetic operator which transfers bit patterns between
classifier positions. The belief is that the root of this

If this particular example is not convincing, consider the
game of go. Here, given a similar CS construction we would
require 19×19 = 361 distinct classifiers just to express what
the legal moves are!

weakness lies in they way in which we have chosen to
represent the domain and not so much within the basic
search mechanisms.

How can we effectively avoid the pitfall of positional
semantics? If we want a CS that can effectively generalize
its classifiers along some particular dimension of the prob-
lem domain, we must ensure that references to instances of
that dimension are made explicitly and not through some
implicit, position-dependent mapping. So, in our tic-tac-toe
board example, we can see that our initial representation
scheme was rather naive in this respect (although this was
not obvious initially). To provide for the effective generali-
zation of acquired knowledge along the various board posi-
tions, we must make all references to board positions expli-
cit in the representation of our classifiers. This necessitates
a change in our formulation of a classifier system represen-
tation for a tic-tac-toe board:

Example: Instead of having one input message represent
the entire board configuration, we will use 9 distinct input
messages, one for each square, each representing the con-
tents of their respective squares. Thus, each message will
consist of the two fields: square and contents, requiring
4+2 = 6 bits per message. Using the pattern assignments
from section 2, the set of messages:

{000001, 000111, 001000, 010011, 010101,
011000, 100011, 100111, 101011}

would be used to denote the board configuration given in
section 2. The action is encoded using 6 bits, the first 4 bits
indicating the address of the square in which to place the
mark and the last 2 bits set to "01" indicating that an X is to
be placed. For example, the classifier "010100 / 010101 "
says that if the center square is empty then place an X in the
center square. Now we can express the concept of a legal
move with the single classifier

####11 / ####01.

By avoiding position dependent references in our represen-
tation we greatly enhance the CS’s capabilities to express
succinctly important generalizations.

The reader may have realized that even this new
representation, while avoiding one pitfall, has introduced a
new problem. Consider the case where the action string of
a tic-tac-toe board classifier yields the address of a square
where a winning move can be made. Here it is necessary,
in order to know which squares result in three-in-a-row, that
we consider the contents of more than one square at a time
when making our decisions. But with the representation
just described there is apparently no way for a particular
classifier to consider more than a single square at a time.
How can we extend the capabilities of our classifiers so that
they may consider many squares simultaneously without
reintroducing position dependent semantics to our represen-
tation? There are two ways in which these types of limita-
tions are overcome in CS implementations: by introducing
the possibility of multiple conditions, and through coordi-
nated sequences of internal actions (chaining). Both of
these mechanisms present many new issues relevant to

searching the classifier space, and each introduces new
problems and limitations.

3.4. Parameterization

We can extend the basic form of a classifier to include the
possibility of an arbitrary number of condition strings.
Now we consider the total condition of a classifier to be
satisfied only if each of the condition strings are satisfied
(i.e. the total condition is a conjunction of the condition
strings). Multiple conditioned classifiers are actually com-
mon to many CS implementations [HHN86, Rio86]. Typi-
cally, the message that matches the first of the conditions is
used by the "pass through" mechanism to construct the
action message.

With this additional capability we can utilize infor-
mation about more than one square in a straight-forward
manner for our tic-tac-toe example:
Example: Consider the following classifier:

000001,000101,001011 / 001001
It says that if square 0,0 and square 0,1 contain Xs and
square 0,2 contains a B, then place an X into square 0,2 (a
good move!). Now consider trying to generalize this partic-
ular classifier in a useful way. You may have noticed that
we were trying to be clever in the way in which the squares
are addressed. That is, by separating the references to rows
and columns the hope was to be able to effectively general-
ize useful information along these dimensions. So an obvi-
ous and apparently useful generalization of the previous
classifier would be:

##0001,##0101,##1000 / ##1001
which is intended to say that no matter what one particular
row, if there is an X in columns 0, 1 and a B in column 2,
then place an X into the square in column 2. But unfor-
tunately, this is not what the classifier actually does. For
example, the set of messages:

{000001, 100101, 101000}
will satisfy the classifier condition, but the resulting action
will not necessarily be a good move. In fact, it is impossi-
ble in this formulation to express the general concept of a
winning move without resorting to enumerating all of the
possibilities which, in fact, is all that the first formulation
provided us. So we haven’t gained anything, with respect
to representing the concept of a winning move, by introduc-
ing multiple conditions.

We call this particular difficulty the parameterization
problem, and it arises whenever we jointly introduce #
(don’t care) symbols and multiple condition strings. The
problem is that there exists no mechanism in classifier
representations by which we can enforce the equality or ine-
quality of the message bits which match the identical #
positions in separate condition strings. Therefore we cannot
adequately parameterize solutions which require multiple
conditions and some form of agreement between the dif-
ferent conditions about matched messages.

3.5. Chaining

We have argued that the problem of positional semantics
arises from a poor choice of problem representation. If so,
then this is a pitfall that the inexperienced designer must
avoid. Multiple conditions are not the answer. Can chain-
ing be any better?

Let us briefly deviate from our tic-tac-toe example to
consider teaching a classifier system to compare two 10-bit
numbers, determining their (in)equality. If a message is 20
bits, 10 for each number, it is not possible in this frame-
work to generalize the system to compare, for example, 30-
bit numbers. Further more, even if we allowed messages
large enough to encompass this problem, it is not clear that
knowing how to compare 10-bit numbers will in any signi-
ficant way be of benefit in learning how to compare 30-bit
numbers. The classifier system does not know how to gen-
eralize the dimension of this problem since, in this example,
the dimension is implicitly encoded as the length of the
message. Because of the problems of positional semantics
in our representation, the solution space is O(2n), n being
the length of the numbers.

A different way of looking at the problem is as a
series of ordered 1-bit comparisons. The bits can be com-
pared from high-order to low-order until the solution is
found. Because of the implied ordering of comparisons, a
different representation of the problem could build a chain
to compare successive bits. Consider representing the com-
parison of n-bit numbers with n messages. The messages
would consist of 3 parts: the bit position in the number, the
value of that bit in the first number, and the value in the
second number. The system would compare the high-order
bits and if the answer is not obtained, introduce a new mes-
sage into the system to match the next order bit. Note that
this solution requires a successor/predecessor function. The
system can either learn to count itself, or be an additional
capability of the system (as, for example, in [Rio86]).

By using these smaller messages, the dimension is
now implicitly encoded by the number of messages that
enter the system. Further, by reducing the size of the mes-
sages, it appears that the search space has been reduced.
Instead of using rules n conditions, we can try solving the
problem using chains. That is, we utilize the coordinated
action of a number of rules to realize the same behavior.
However, to compare n bit numbers we will require chains
that are O(n) in length. Building chains in a classifier sys-
tem is widely seen as a strength of the formalization, but in
practice we believe it to be difficult to achieve.

The above solution has reduced the number of rules
in the solution space to O(n). However, the solution is of a
repetitive nature and, because of the limitations of classifier
systems, must have a rule for each possible iterate. In other
words, it is impossible to arrive at a solution requiring the
number of rules independent of n.

But is it desirable that a simple problem such as com-
paring numbers have a solution requiring O(n) rules? With

a more powerful formalization, this problem can be solved
using a constant number of rules. To break the problem
into a series of 1-bit comparisons requires a variable loop-
ing construct not found in classifier systems. Classifier sys-
tems as defined by Holland have only the capabilities for
expressing boolean expressions (and, or, not) and nested if-
then-else statements (chains). Chains must be explicit and
of finite length. There is no facility for parameterizing a
rule to create a variable length chain.

3.6. Effect of solution size on search

An often discussed point in the literature is that classifier
systems are computationally universal [Gol89, HHN86].
Given this, one cannot say that there are solutions which
exist for some problems that a CS cannot express. Obvi-
ously given any rule based system that is computationally
universal, we can always compensate for limitations in our
representation of individual rules through the coordinated
actions of many rules. However, we must keep in mind that
we intend to automatically discover solutions with some
form of mechanized search over the space of possible rules
(classifiers).

Throughout the paper a recurrent theme has been to
focus on those properties of classifier representations which
impair our ability to succinctly express solutions to prob-
lems. The effectiveness of a genetic search relies on the
fact that a classifier which has demonstrated a high level of
fitness has many sub-patterns (called schemata [Hol75]) in
common with an optimal classifier. These sub-patterns
constitute the building blocks from which an optimal clas-
sifier can be constructed [De85, De87]. Consider that we
have some solution that is only expressible with, say, n
classifiers. This implies that each of the classifiers has some
important sub-pattern that is distinct from the correspond-
ing sub-patterns of the other classifiers. So, at some stage
of the overall search, our efforts must be divided among n
distinct searches, where progress towards discovering any
solution classifier in no way contributes towards finding the
other solution classifiers.

By utilizing simplified representations (and, hence,
limiting our capabilities for expressing arbitrary rule forms)
we do not inherently exclude any problem solutions from
being expressible, but we do expose ourselves to the possi-
bility of a combinatorial explosion in the number of rules
required to express these solutions. We would claim further
that such an explosion in the solution size necessarily mani-
fests itself as an explosion in the search effort required to
discover that entire solution. This creates a problem that
we, as "learning system" designers, can only avoid with cer-
tainty by having sufficient knowledge about the solution a
priori!

It is interesting to note that all of these problems
seem to disappear if we consider using a sufficiently gen-
eral representation scheme (for example, OPS type produc-
tion systems [For81]), but this comes at the expense of
vastly increasing the size of the search space. At present,

there exists no detailed analysis from the machine learning
perspective of this trade-off between solution set size and
search space size. A better understanding of this issue
would contribute a great deal towards constructing effec-
tive, domain independent learning machines.

4. Conclusions

Classifier systems are an important step in the evolution of
genetic algorithms. One cannot underestimate their contri-
bution as an analytic tool for research into adaptive sys-
tems. These representations provide an elegant, simple
model which has been used to produced a wide range of
important results, extending our basic knowledge of adap-
tive processes. In terms of implementing real, practical
learning systems, however, we believe that more principled
and general representational methodologies are needed.

There are a number of limitations that restrict the
ability of classifier systems, enhanced with genetic capabili-
ties, to learn. In this direction, we believe that capabilities
such as parameterized chaining must be available to the sys-
tem [ShS89]. As well, the system should have access to
other knowledge sources. These enhancements would only
endow classifier systems with more of the functionality
found in production systems.

Acknowledgments

This work evolved out of discussions with a number of peo-
ple including Robert Chai, Renee Elio, Keith Fenske, and
Lingyan Shu. David Goldberg provided us with valuable
feedback. This work was supported in part by the Canadian
Natural Sciences and Engineering Research Council.

References

[Boo89] L.B. Booker, Classifier Systems that Learn
Internal World Models, Machine Learning 3, 2/3
(1989), 161-192.

[De85] K. De Jong, Genetic Algorithms: A 10 Year
Perspective, ICGA, 1985, 169-177.

[De87] K. De Jong, On Using Genetic Algorithms to
Search Program Spaces, ICGA, 1987, 210-216.

[For81] C.L. Forgy, OPS5 User’s Manual, Department
of Computer Science, Carnegie-Mellon Univer-
sity, 1981.

[Gol89] D.E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, Reading, MA, 1989.

[Hol75] J.H. Holland, in Adaptation in Natural and
Artificial Systems, 1975.

[HHN86] J.H. Holland, K.J. Holyoak, R.E. Nisbett and
P.R. Thagard, in Induction: Process of Infer-
ence, Learning, and Discovery, 1986, 124-126.

[Rio86] R. Riolo, CFS-C: A Package of Domain
Independent Subroutines for Implementing

Classifier Systems in Arbitrary, User-Defined
Environments, Logic of Computers Group, Divi-
sion of Computer Science and Engineering,
University of Michigan, 1986.

[RoR89] G.G. Robertson and R.L. Riolo, A Tale of Two
Classifier Systems, Machine Learning 3, 2/3
(1989), 139-160.

[ShS89] L. Shu and J. Schaeffer, VCS - Variable Classif-
ier Systems, ICGA, 1989. To appear.

