Experimental Computer Science in Game Plg Pagel of 5

Experimental Computer Sciencein Game
Playing

Jonathan Schaeffer
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

1 Introduction

This short article attempts to illustrate the imtfpace of experimental computer science in the
development of game-playing programs. While garagipg is no longer one of the major thrusts of
artificial intelligence research, it still remaiose of the most visible. For many areas of arsfici
intelligence, games provide a convenient domairdé@nonstrating the impact of new research results.

Game-playing programs operate under real-time caings (usually they must play a fixed number of
moves in a prescribed period of time). Since itlesn experimentally demonstrated that there igha
correlation between search effort and performamast programs are designed to maximize the
information gained in the time allotted. The imphion is obvious: practitioners want their programs
be as fast as possible. Every modification to tlogam must be judged not only by the static paper
benefits of the modification, but also by its dynamun-time costs.

Experimental work is at the heart of many aspettmme-playing program development. Game-
playing practitioners have learned to base theicksions almost exclusively on experimental data.
History has taught them that mathematical moded@r simplistic and simulations are inadequate.
Instead most practitioners combine two experimesttategies:

1. pose a hypothesis and determine the truth of @#ralyzing a statistically significant amount of
data, and

2. generate data and sift through it looking foesland patterns.

These approaches may seem rather low-level andtiperto some given the rich history of logic and
mathematics in computing. However, experience haws that these methods are effective. Although
many have tried to improve and even automate tloisgss, there is a large gap between what an
experienced experimentalist can achieve versuhegyachievable by any other approach (with cul
hardware and software technology). Many ideas patential, but unless they can be demonstrated in
practice on hard problems, the game-playing comtywvill ignore them.

In some sense, high-performance game-playing exakrimental work. For example, in chess some
would argue that the major research results haeady been obtained and now it is only a matter of
extending existing hardware and software technolmfgreDeep Blue is better than all human chess
players. Going that extra step from "one of tha'tes'the best" is the most difficult part of bdihg a
high-performance system, and it is hard to justifyased on research results. Nevertheless, quigtif
the effort required to achieve such a milestone iself an important research resieep Blue can be
viewed as an experiment demonstrating the statbes&rt capabilities (and limitations) of artifitia
intelligence and parallel processing technolc

http://webdocs.cs.ualberta.ca/~jonathan/Papersi®agpcs.htn 6/10/201(

Experimental Computer Science in Game Plg Page2 of 5

2 Research

This section highlights of few of the areas in gagta/ing where experimental research are critical t
success. This is intended to be illustrative, mbeestive.

Game-playing programs are often described as l@egambination of search and knowledge. A simple
model of such a program consists of a search #hgorisuch as alpha-beta) that considers move
sequences some number of moves ahead. When tlol seaches the end of a sequence, "knowledge”
is used to assess how good/bad the position is{thkeiation function). The evaluation result is ket

up and combined with other backed-up results antélue for the root is determined.

This is, in fact, an overly simplistic view. Theaseh algorithms can be quite sophisticated and the
knowledge can appear in many guises in the sebuether, most high-performance game-playing
programs combine many features that depend on t&blenologies, such as parallel processing,
databases, compiler optimizations, etc. These prmogiare usually complex pieces of software with all
these technologies intertwined.

2.1 Search

The game-playing community was the first to exteglyi research high-performance search algorithms.
Many search algorithms and their enhancementsreatiginated in the game-playing world, or were
first extensively assessed there. These includexample, iterative deepening, caching data waishh
tables, cycle elimination, and branch re-orderalgnow firmly established search techniques.

This work was motivated by the drive for high, reale performance. Without this constraint, thea th
issues of search disappear. In theory, given sefficesources, all minimax search algorithms (sagh
alphabeta, SSS*, conspiracy numbers, etc.) are equivalémat separates the algorithms has nothi
do with performance in the limit; it has to do witihich one can best uses its time resources most
effectively. This includes a number of things sashthe algorithm overhead (which affects the number
of positions evaluated), storage overhead, thesaers of which nodes to expand, and the order in
which nodes are expanded. These search algorithwesdifferent costs and search strategies which
means that they can produce different answers gh&same real-time constraints. There isn't alasab
theory of optimization that allows one to sciewtdily analyze the myriad of possibilities and setae
"best” one. Instead, extensive experimentatiohasonly solution. The user may use their own search
algorithm (such as hill climbing or simulated aniveg to guide them through the space of possible
experiments, but this, at best, can only guide tteean acceptable solution quickly, without ever
knowing if a better one exists.

Despite this seemingly unscientific approach, ttageea few research results that have resulted tlhem
work on games that clearly stand out since theyraditt the intuition of what many would conclude
based on their theoretical models. Perhaps the impstrtant result has been the realization thatebru
force search is a viable option. Theory would distsuch an approach, since search trees typically
grow exponentially with depth. Nevertheless, thaization that a naive search algorithm that attsmp
to exhaustively examine a search space, subjeeatdime and resource constraints, is effective ha
been a major surprise.

Numerous simulations of gar-tree search algorithms have been reported intdrature. In almost

every case the results have been ignored by poaetrs; they know better than to trust any simarlati
based conclusion. For example, Aske Plaat in hiB Rhesis refutes many of the conclusions in the
literature on the we-known SSS* algorithm. Most of these conclusionseagerived from simulation:

http://webdocs.cs.ualberta.ca/~jonathan/Papersi®agpcs.htn 6/10/201(

Experimental Computer Science in Game Plg Page3 of 5

Plaat writes that (Aske Plaat, "Research Re: SemrdResearch,” Ph.D. thesis, Erasmus Unive
1996, page 82):

[...] the trees generated in practice are highinglex and dynamic entities, whose structure
is influenced by the techniques that make useonfr[features of the search space].
Acquiring data on these factors and the way thiateeseems a formidable task. [...] These
causes and effects are all interconnected, yieldipigture of great complexity that does

not look very inviting to disentangle. [...]

In the light of the highly-complex nature of red&lgame trees, simulations can only be
regarded as approximations, whose results mayenatburate for real-life applications.

We feel that simulations provide a feeble basisorclusions on the relative merit of
search algorithms as used in practice. The gapdagtwhe trees searched in practice and in
simulations is large. Simulating search on artditiees that have little relationship with
real trees runs the danger of producing misleadirnigcorrect conclusions. It would take a
considerable amount of work to build a program taat properly simulate real game trees.
Since there are already a large number of quaditgyegplaying programs available, we feel
that the case for simulations of minimax searclorigms is weak.

The consequence is that the only ideas that havieiméhe community are those that are
experimentally demonstrated in a real program. W search idea must be tested over a sufficiently
large test set and either demonstrate efficienogfits (smaller tree size) and/or improved appiorat
performance (larger percent of correct moves).

Games were the first artificial-intelligence apptions to address the critical issues of real-time
performance. Real-time constraints, of necesstyires experimental work. Game-playing programs
must make dynamic decisions where to allocate theé resources during a game. The only way to
properly simulate the eventualities is extensigéing. Even then it is not enough. There is no lesab
theory on which can draw on; "what works well imgiace" is the only heuristic applicable for
practitioners. Nevertheless, the artificial ingdince community is researching this area (anytime
algorithms) and some of their results may one dagplicable to game-playing programs. So far the
work on anytime algorithms is largely theory, ahd tew experiments that test the theoretical
assumptions often show that these can be wrorgjfdot, some of the lessons learned by the game-
playing community are being rediscovered elsewhere.

2.2 Knowledge

Critical to the success of most game-playing pnogrés "knowledge." Note the qualification on the
word knowledge. While some of the information ie fhrogram is factual (for example, it follows from
the rules of the game), much of it is heuristicutigics are rules of thumb: usually right, sometsm
wrong. Many heuristics have little relationshiphteaman knowledge; they tend to be either loose
mathematical approximations of human conceptsporiuman-like terms that have proven to
empirically work well in practice. For example, &jnents in chess and checkers have shown that an
evaluation function consisting of material (pieceict) plus a small random number results in
reasonable play!

When you are designing or improving an evaluatiorction, how do you know whether a heuristic is
good or not? How often is it relevant? How impottiarthe heuristic when it is relevant? What is the
cost of computing the heuristic? All of these qisest must be answered and the results weigheddefor
anything is added to an evaluation function. Nohthese questions can be answered analyticall

http://webdocs.cs.ualberta.ca/~jonathan/Papersi®agpcs.htn 6/10/201(

Experimental Computer Science in Game Plg Page4 of 5

good theoretical models exist (yet). These questionst be answered experimentally. And, once
knowledge is in the program, experiments are tlemessary to determine whether the benefits of the
new addition (reduced search, improved evaluatfisget the costs (increased search, increased
execution time, exceptions).

The above would be simple if the effect of evergirgde to an evaluation function could be assessed
independently of the previous ones. Regrettably,ishnot the case. An evaluation function may am
hundreds of heuristics, each of which is assigmeidn@ortance measure. Adding, deleting or chang
heuristic or changing a heuristic's importance diamatically affect the dynamic co-operative baéanc
that is essential in a good evaluation functiorteBgive experimentation is necessary to understend
affect of any change on the balance. Various miaeam, artificial intelligence techniques have been
explored in attempts to automate this above proé&sgrettably, the successes are few. Building a
guality evaluation function is usually a lot of Hgmanual) work and luck.

The most common approach to improving the knowladgeprogram is to perform a large number of
experiments (play games, analyze positions), céwdugh the data, identify any deficiencies in the
program's performance and then use that informadiamprove the program's knowledge (or search).
In other words, the experiments drive the knowleelggineering.

2.3 Other Aspects

Besides search and knowledge, experimental congpistirequired in many other places in the program
design. A few illustrative examples include:

1. Parallel processing. The parallelism in mostdeaftgorithms is non-deterministic. The real-time
constraint introduces more non-determinism. Thaltésthat parallel gamplaying programs a
very difficult to debug. There are usually a largember of parameters that influence parallel
performance, and deciding on the winning combimaigoonly possible by using experimental
results to guide you through the maze of posssslitin effect this is similar to the problem of
tuning the evaluation function.

Regrettably there are a large number of publistzedliel algorithms that promise high
performance in theory, but fall far short when esgubto the reality of a real implementation.
Again, mathematical analysis and simulations migsgnt what is possible.

2. Opening book. The search algorithm and knowledg@eprogram uniquely define the program's
"personality.” As with any game player, the prognaith have strength and weaknesses. The
opening moves of a game are usually retrieved figre-computed database (often called the
book). The choice of the opening moves must emphakg@rnogram's strengths, not its
weaknesses. It does not seem feasible to idehefpérsonality of the program mathematicall
must be generated by careful observation by adda@rye that examines a large sample of the
program's play. This involves considerable comgutongenerate the data and, having decided on
the opening book strategy, verify that the strategyks well in practice.

3. Compiler performance. As a pragmatic issue, pigitiormance also includes getting the most
from a compiler. Many practitioners (particularlgnemercial efforts) devote considerable
resources to restructuring code and data to magipriagram speed. An enormous number of
compute cycles are spent benchmarking various gnoghanges looking for the combination
maximizes the program's speed. This type of codkihg, while not scientific, is nevertheless an
integral part of the construction process for marggrams

http://webdocs.cs.ualberta.ca/~jonathan/Papersi®agpcs.htn 6/10/201(

Experimental Computer Science in Game Plg Page5 of 5

3 Experimental M ethodology

A major problem in the field has been a lack ofelydaccepted, standardized benchmarks. Many have
been proposed, but most suffer from one or moreidaty (too small, inadequate representation ef th
search space, biases, etc.). As well, many oféleldpers of game-playing programs have commercial
aspirations. Misrepresentations occur because soggetommercial programs are tuned to perform
well on well-known benchmarks, yet demonstrate gmsformance otherwise. The result is that there
are no universal benchmarks, and all reported teesulst be regarded with suspicion unless they have
been independently verified.

In practice, the only experimental data points thatter is program performance under tournament
conditions. Since 1970, there have been annual canphess tournaments. Most other games now
have annual machine-machine and man-machine cdropstas well. Developers must expose their
software to public scrutiny; fakery does not sueviVhese competitions are ideal, in the sensdtlibgt
provide a realistic and level playing field, yeffain, since the number of data points for a progeaien
small and the sample might not be representative.@uld argue that the annual ACM computer ¢
events represent the longest ongoing experimeasunmputing science history (Regrettably, these
tournaments have now become sporadic. The WorldpDten Chess Championship is ongoing, anc
been held triennially since its inception in 1974.)

4 Conclusions

Why is experimental work so important in the depetent of gameplaying programs? Regrettably, 1
answer is that the alternatives approaches atkismlomain, immature; the gap between theory and
practice is large. That's not to say that thinga'tnchange, but | don't see that happening fong tone
Many aspects of program development will alway$uaded by experimental results.

In February, 1996, thBeep Blue chess machine played the World Chess Champiory Basparov a
six-game match. Although the human won the mddaep Blue crowned itself in glory by winning a
single game. One could argue that this match wasibst heavily-publicized artificial-
intelligence/parallel-computing event in historjtldugh this demonstration of the capabilities of
artificial intelligence was for a "mere" game, teigent has probably done more for increasing our
awareness of the difficulty and the need for expental computing science than any previous event.

The enormous effort required to build game-playpnggrams such d3eep Blue (chess) oChinook

(the World Man-Machine Checker Champion) is wotidtdssing. | can speak personally of the
Chinook project which took six years, during which as masy200 computers were simultaneous
running computing new results, validating othexpegimentally testing hypothesis, etc. That so much
effort is required to build a "mere" check@aying program speaks volumes of the difficultycogating
machines capable of exceeding human intelligenosdder much was involved in ti@hinook project
the investment in the yet-incomplddeep Blue project is many fold greater.

As a consequence of the heavy reliance on expetaingrience in developing high-performance game-
playing programs, some people assume that this isarkscientific; a waste of effort. We contendttha
it is the only way to do this kind of science. Treal waste occurs when the experiences of the gmogr
developer aren't used to further our understandiiiige problems involved and their solutions. For
example, the experimental work could be used asr for theoretical work, to help construct madel
that would ease the work of the experimenter amefitethe scientific community

http://webdocs.cs.ualberta.ca/~jonathan/Papersi®agpcs.htn 6/10/201(

