
Experimental Computer Science in Game
Playing

Jonathan Schaeffer
Department of Computing Science

University of Alberta
Edmonton, Alberta
Canada T6G 2H1

1 Introduction

This short article attempts to illustrate the importance of experimental computer science in the
development of game-playing programs. While game playing is no longer one of the major thrusts of
artificial intelligence research, it still remains one of the most visible. For many areas of artificial
intelligence, games provide a convenient domain for demonstrating the impact of new research results.

Game-playing programs operate under real-time constraints (usually they must play a fixed number of
moves in a prescribed period of time). Since it has been experimentally demonstrated that there is a high
correlation between search effort and performance, most programs are designed to maximize the
information gained in the time allotted. The implication is obvious: practitioners want their programs to
be as fast as possible. Every modification to the program must be judged not only by the static paper
benefits of the modification, but also by its dynamic run-time costs.

Experimental work is at the heart of many aspects of game-playing program development. Game-
playing practitioners have learned to base their conclusions almost exclusively on experimental data.
History has taught them that mathematical models are too simplistic and simulations are inadequate.
Instead most practitioners combine two experimental strategies:

1. pose a hypothesis and determine the truth of it by analyzing a statistically significant amount of
data, and

2. generate data and sift through it looking for clues and patterns.

These approaches may seem rather low-level and primitive to some given the rich history of logic and
mathematics in computing. However, experience has shown that these methods are effective. Although
many have tried to improve and even automate this process, there is a large gap between what an
experienced experimentalist can achieve versus anything achievable by any other approach (with current
hardware and software technology). Many ideas have potential, but unless they can be demonstrated in
practice on hard problems, the game-playing community will ignore them.

In some sense, high-performance game-playing is all experimental work. For example, in chess some
would argue that the major research results have already been obtained and now it is only a matter of
extending existing hardware and software technology before Deep Blue is better than all human chess
players. Going that extra step from "one of the best" to "the best" is the most difficult part of building a
high-performance system, and it is hard to justify it based on research results. Nevertheless, quantifying
the effort required to achieve such a milestone is in itself an important research result. Deep Blue can be
viewed as an experiment demonstrating the state-of-the-art capabilities (and limitations) of artificial
intelligence and parallel processing technology.

Page 1 of 5Experimental Computer Science in Game Playing

6/10/2010http://webdocs.cs.ualberta.ca/~jonathan/Papers/Papers/expcs.html

2 Research

This section highlights of few of the areas in game playing where experimental research are critical to
success. This is intended to be illustrative, not exhaustive.

Game-playing programs are often described as being a combination of search and knowledge. A simple
model of such a program consists of a search algorithm (such as alpha-beta) that considers move
sequences some number of moves ahead. When the search reaches the end of a sequence, "knowledge"
is used to assess how good/bad the position is (the evaluation function). The evaluation result is backed-
up and combined with other backed-up results until a value for the root is determined.

This is, in fact, an overly simplistic view. The search algorithms can be quite sophisticated and the
knowledge can appear in many guises in the search. Further, most high-performance game-playing
programs combine many features that depend on other technologies, such as parallel processing,
databases, compiler optimizations, etc. These programs are usually complex pieces of software with all
these technologies intertwined.

2.1 Search

The game-playing community was the first to extensively research high-performance search algorithms.
Many search algorithms and their enhancements either originated in the game-playing world, or were
first extensively assessed there. These include, for example, iterative deepening, caching data with hash
tables, cycle elimination, and branch re-ordering; all now firmly established search techniques.

This work was motivated by the drive for high, real-time performance. Without this constraint, then the
issues of search disappear. In theory, given sufficient resources, all minimax search algorithms (such as
alpha-beta, SSS*, conspiracy numbers, etc.) are equivalent. What separates the algorithms has nothing to
do with performance in the limit; it has to do with which one can best uses its time resources most
effectively. This includes a number of things such as the algorithm overhead (which affects the number
of positions evaluated), storage overhead, the decisions of which nodes to expand, and the order in
which nodes are expanded. These search algorithms have different costs and search strategies which
means that they can produce different answers given the same real-time constraints. There isn't a usable
theory of optimization that allows one to scientifically analyze the myriad of possibilities and select the
"best" one. Instead, extensive experimentation is the only solution. The user may use their own search
algorithm (such as hill climbing or simulated annealing) to guide them through the space of possible
experiments, but this, at best, can only guide them to an acceptable solution quickly, without ever
knowing if a better one exists.

Despite this seemingly unscientific approach, there are a few research results that have resulted from the
work on games that clearly stand out since they contradict the intuition of what many would conclude
based on their theoretical models. Perhaps the most important result has been the realization that brute-
force search is a viable option. Theory would discount such an approach, since search trees typically
grow exponentially with depth. Nevertheless, the realization that a naive search algorithm that attempts
to exhaustively examine a search space, subject to real-time and resource constraints, is effective has
been a major surprise.

Numerous simulations of game-tree search algorithms have been reported in the literature. In almost
every case the results have been ignored by practitioners; they know better than to trust any simulation-
based conclusion. For example, Aske Plaat in his Ph.D. thesis refutes many of the conclusions in the
literature on the well-known SSS* algorithm. Most of these conclusions were derived from simulations.

Page 2 of 5Experimental Computer Science in Game Playing

6/10/2010http://webdocs.cs.ualberta.ca/~jonathan/Papers/Papers/expcs.html

Plaat writes that (Aske Plaat, "Research Re: Search and Research," Ph.D. thesis, Erasmus University,
1996, page 82):

[...] the trees generated in practice are highly complex and dynamic entities, whose structure
is influenced by the techniques that make use of [four features of the search space].
Acquiring data on these factors and the way they relate seems a formidable task. [...] These
causes and effects are all interconnected, yielding a picture of great complexity that does
not look very inviting to disentangle. [...]

In the light of the highly-complex nature of real-life game trees, simulations can only be
regarded as approximations, whose results may not be accurate for real-life applications.
We feel that simulations provide a feeble basis for conclusions on the relative merit of
search algorithms as used in practice. The gap between the trees searched in practice and in
simulations is large. Simulating search on artificial trees that have little relationship with
real trees runs the danger of producing misleading or incorrect conclusions. It would take a
considerable amount of work to build a program that can properly simulate real game trees.
Since there are already a large number of quality game-playing programs available, we feel
that the case for simulations of minimax search algorithms is weak.

The consequence is that the only ideas that have merit in the community are those that are
experimentally demonstrated in a real program. A new search idea must be tested over a sufficiently
large test set and either demonstrate efficiency benefits (smaller tree size) and/or improved application
performance (larger percent of correct moves).

Games were the first artificial-intelligence applications to address the critical issues of real-time
performance. Real-time constraints, of necessity, requires experimental work. Game-playing programs
must make dynamic decisions where to allocate their time resources during a game. The only way to
properly simulate the eventualities is extensive testing. Even then it is not enough. There is no usable
theory on which can draw on; "what works well in practice" is the only heuristic applicable for
practitioners. Nevertheless, the artificial intelligence community is researching this area (anytime
algorithms) and some of their results may one day be applicable to game-playing programs. So far the
work on anytime algorithms is largely theory, and the few experiments that test the theoretical
assumptions often show that these can be wrong. In effect, some of the lessons learned by the game-
playing community are being rediscovered elsewhere.

2.2 Knowledge

Critical to the success of most game-playing programs is "knowledge." Note the qualification on the
word knowledge. While some of the information in the program is factual (for example, it follows from
the rules of the game), much of it is heuristic. Heuristics are rules of thumb: usually right, sometimes
wrong. Many heuristics have little relationship to human knowledge; they tend to be either loose
mathematical approximations of human concepts, or non-human-like terms that have proven to
empirically work well in practice. For example, experiments in chess and checkers have shown that an
evaluation function consisting of material (piece count) plus a small random number results in
reasonable play!

When you are designing or improving an evaluation function, how do you know whether a heuristic is
good or not? How often is it relevant? How important is the heuristic when it is relevant? What is the
cost of computing the heuristic? All of these questions must be answered and the results weighed before
anything is added to an evaluation function. None of these questions can be answered analytically; no

Page 3 of 5Experimental Computer Science in Game Playing

6/10/2010http://webdocs.cs.ualberta.ca/~jonathan/Papers/Papers/expcs.html

good theoretical models exist (yet). These questions must be answered experimentally. And, once the
knowledge is in the program, experiments are then necessary to determine whether the benefits of the
new addition (reduced search, improved evaluation) offset the costs (increased search, increased
execution time, exceptions).

The above would be simple if the effect of every change to an evaluation function could be assessed
independently of the previous ones. Regrettably, this is not the case. An evaluation function may contain
hundreds of heuristics, each of which is assigned an importance measure. Adding, deleting or changing a
heuristic or changing a heuristic's importance can dramatically affect the dynamic co-operative balance
that is essential in a good evaluation function. Extensive experimentation is necessary to understand the
affect of any change on the balance. Various main-stream, artificial intelligence techniques have been
explored in attempts to automate this above process. Regrettably, the successes are few. Building a
quality evaluation function is usually a lot of hard (manual) work and luck.

The most common approach to improving the knowledge in a program is to perform a large number of
experiments (play games, analyze positions), comb through the data, identify any deficiencies in the
program's performance and then use that information to improve the program's knowledge (or search).
In other words, the experiments drive the knowledge engineering.

2.3 Other Aspects

Besides search and knowledge, experimental computing is required in many other places in the program
design. A few illustrative examples include:

1. Parallel processing. The parallelism in most search algorithms is non-deterministic. The real-time
constraint introduces more non-determinism. The result is that parallel game-playing programs are
very difficult to debug. There are usually a large number of parameters that influence parallel
performance, and deciding on the winning combination is only possible by using experimental
results to guide you through the maze of possibilities. In effect this is similar to the problem of
tuning the evaluation function.

Regrettably there are a large number of published parallel algorithms that promise high
performance in theory, but fall far short when exposed to the reality of a real implementation.
Again, mathematical analysis and simulations misrepresent what is possible.

2. Opening book. The search algorithm and knowledge in a program uniquely define the program's
"personality." As with any game player, the program will have strength and weaknesses. The
opening moves of a game are usually retrieved from a pre-computed database (often called the
book). The choice of the opening moves must emphasize the program's strengths, not its
weaknesses. It does not seem feasible to identify the personality of the program mathematically; it
must be generated by careful observation by a trained eye that examines a large sample of the
program's play. This involves considerable computing to generate the data and, having decided on
the opening book strategy, verify that the strategy works well in practice.

3. Compiler performance. As a pragmatic issue, high performance also includes getting the most
from a compiler. Many practitioners (particularly commercial efforts) devote considerable
resources to restructuring code and data to maximize program speed. An enormous number of
compute cycles are spent benchmarking various program changes looking for the combination that
maximizes the program's speed. This type of code hacking, while not scientific, is nevertheless an
integral part of the construction process for many programs.

Page 4 of 5Experimental Computer Science in Game Playing

6/10/2010http://webdocs.cs.ualberta.ca/~jonathan/Papers/Papers/expcs.html

3 Experimental Methodology

A major problem in the field has been a lack of widely-accepted, standardized benchmarks. Many have
been proposed, but most suffer from one or more deficiency (too small, inadequate representation of the
search space, biases, etc.). As well, many of the developers of game-playing programs have commercial
aspirations. Misrepresentations occur because sometimes commercial programs are tuned to perform
well on well-known benchmarks, yet demonstrate poor performance otherwise. The result is that there
are no universal benchmarks, and all reported results must be regarded with suspicion unless they have
been independently verified.

In practice, the only experimental data points that matter is program performance under tournament
conditions. Since 1970, there have been annual computer chess tournaments. Most other games now
have annual machine-machine and man-machine competitions as well. Developers must expose their
software to public scrutiny; fakery does not survive. These competitions are ideal, in the sense that they
provide a realistic and level playing field, yet unfair, since the number of data points for a program are
small and the sample might not be representative. One could argue that the annual ACM computer chess
events represent the longest ongoing experiment in computing science history (Regrettably, these
tournaments have now become sporadic. The World Computer Chess Championship is ongoing, and has
been held triennially since its inception in 1974.)

4 Conclusions

Why is experimental work so important in the development of game-playing programs? Regrettably, the
answer is that the alternatives approaches are, in this domain, immature; the gap between theory and
practice is large. That's not to say that things won't change, but I don't see that happening for a long time.
Many aspects of program development will always be fueled by experimental results.

In February, 1996, the Deep Blue chess machine played the World Chess Champion Garry Kasparov a
six-game match. Although the human won the match, Deep Blue crowned itself in glory by winning a
single game. One could argue that this match was the most heavily-publicized artificial-
intelligence/parallel-computing event in history. Although this demonstration of the capabilities of
artificial intelligence was for a "mere" game, this event has probably done more for increasing our
awareness of the difficulty and the need for experimental computing science than any previous event.

The enormous effort required to build game-playing programs such as Deep Blue (chess) or Chinook
(the World Man-Machine Checker Champion) is worth discussing. I can speak personally of the
Chinook project which took six years, during which as many as 200 computers were simultaneous
running computing new results, validating others, experimentally testing hypothesis, etc. That so much
effort is required to build a "mere" checker-playing program speaks volumes of the difficulty of creating
machines capable of exceeding human intelligence. However much was involved in the Chinook project,
the investment in the yet-incomplete Deep Blue project is many fold greater.

As a consequence of the heavy reliance on experimental science in developing high-performance game-
playing programs, some people assume that this work is unscientific; a waste of effort. We contend that
it is the only way to do this kind of science. The real waste occurs when the experiences of the program
developer aren't used to further our understanding of the problems involved and their solutions. For
example, the experimental work could be used as an input for theoretical work, to help construct models
that would ease the work of the experimenter and benefit the scientific community.

Page 5 of 5Experimental Computer Science in Game Playing

6/10/2010http://webdocs.cs.ualberta.ca/~jonathan/Papers/Papers/expcs.html

