
Exploiting Graph Properties of Game Trees

Aske Plaat� ,1, Jonathan Schaeffer2, Wim Pijls1, Arie de Bruin1

plaat@theory.lcs.mit.edu, jonathan@cs.ualberta.ca, whlmp@cs.few.eur.nl, arie@cs.few.eur.nl

1 Erasmus University, Dept. CS, 2 University of Alberta, Dept. CS
Room H4-13, P.O. Box 1738 615 General Services Building

3000 DR Rotterdam, The Netherlands Edmonton, AB, Canada T6G 2H1

Abstract

The state space of most adversary games is a directed graph.
However, due to the success of simple recursive algorithms
based on Alpha-Beta, theoreticians and practitioners have
concentrated on the traversal of trees, giving the field the
name “game-tree search.” This paper shows that the focus
on trees has obscured some important properties of the under-
lying graphs. One of the hallmarks of the field of game-tree
search has been the notion of the minimal tree, the smallest
tree that has to be searched by any algorithm to find the min-
imax value. In fact, for most games it is a directed graph. As
demonstrated in chess and checkers, we show that the min-
imal graph is significantly smaller than previously thought,
proving that there is more room for improvement of current
algorithms. We exploit the graph properties of the search
space to reduce the size of trees built in practice by at least
25%. For over a decade, fixed-depth Alpha-Beta searching
has been considered a closed subject, with research moving
on to more application-dependent techniques. This work
opens up new avenues of research for further application-
independent improvements.
Content areas: Search, Game playing.

Introduction
Search is a topic of fundamental importance to artificial
intelligence (AI). The range of search strategies inves-
tigated stretch from application-independent methods to
application-dependent, knowledge-intensive methods. The
former has the promise of general applicability, the latter of
high performance.

An important experimental domain for search algorithms
has been the field of game playing. Arguably, this research
has been one of the most successful in AI, leading to impres-
sive results in chess (Deep Blue, formerly Deep Thought,
playing at Grandmaster strength (Hsu et al. 1990)), check-
ers (Chinook, the World Man-Machine Champion (Schaef-
fer et al. 1996)), Othello (Logistello, significantly stronger
than all humans (Buro 1994)), and Backgammon (TD-
Gammon, playing at World Championship level strength
(Tesauro 1995)).

Applications of two-player, adversary search was one of
the initial goals of the fledgling field of AI and continues to�Current address: MIT LCS, 545 Tech Square, Cambridge,
MA 02139, USA

be the source for many innovative ideas. The Alpha-Beta
algorithm is at the heart of most high-performance game-
playing programs. Knuth and Moore showed that there ex-
ists a minimal tree that has to be searched by any algorithm
to prove the minimax game value (Knuth & Moore 1975).
For a tree of fixed branching factor w and fixed depth d, there
is a large gap between the worst case (O(wd)) and the best
case, the minimal tree (O(wd/2)), prompting extensive re-
search on methods to come close to the best case. These are
mostly application-independent search techniques. They
are so successful that high performance programs are re-
ported to build search trees within a factor of 1.5 of the
minimal tree (Ebeling 1987). This is a surprising result,
given that the basic search structure is based on application-
independent methods that use no explicit knowledge of the
application domain.

The data structure traversed during a search is usually
mistakenly labeled as a tree in the literature, when in fact
it is a directed (acyclic) graph. That the trees are really
graphs can be seen by the use of transposition tables. These
tables cache search results in the event that the same node
is revisited, possibly via another path. When one starts
thinking of the trees as directed graphs, other application-
independent methods become possible, as the remainder of
this paper will show.

We discuss a number of application-independent search
methods for achieving significant improvements to Alpha-
Beta searching. This paper has the following contributions:
• Minimal Tree: Search efficiency is usually compared

against Alpha-Beta’s best case. By exploiting graph
properties of the search space, we show that the real
minimal graph that defines the minimax value is signifi-
cantly smaller than was previously assumed. This implies
that there is more room for improvement of fixed-depth
full-width adversary search algorithms.

• Transpositions: This paper introduces the ETC enhance-
ment to maximize the utility of cached information seen
earlier in the search. By directing the search towards
previously visited nodes, the program can maximize in-
formation reuse, and thereby reduce the number of nodes
visisted. For chess, ETC improves search efficiency by
28%.

• Exploiting Irregular Branching Factor: Given that nodes



in the search space do not necessarily have the same out
degree (branching factor), it is possible to exploit this
property by directing the search in a least-work-first fash-
ion (as seen, for example, in (Allis, van der Meulen, &
van den Herik 1994; McAllester 1988)). In a way, this is
the small-is-quick approach from single-agent optimiza-
tion (Pearl 1984). This paper demonstrates the potential
for least-work-first search reductions. Initial results for
checkers show that some gains (8%) are possible.

• New Application-Independent Search Techniques: Since
the success of the work on minimal search windows
(Finkel & Fishburn 1982; Fishburn 1981; Pearl 1984;
Reinefeld, Schaeffer, & Marsland 1985) and move or-
dering (the history heuristic (Schaeffer 1983; 1989)) in
the early 1980’s, researchers have become convinced
that fixed-depth search is close to its optimum. Conse-
quently, most research has concentrated on application-
dependent techniques such as knowledge-intensive move
ordering and selective searches. Many of the application-
independent search techniques that originated in adver-
sary search have found their way to other domains (for
example, iterative deepening and transposition tables in
single-agent search (Kaindl et al. 1995; Korf 1985; 1990;
Reinefeld & Marsland 1994)). The techniques that are
introduced in this and another work (Plaat et al. 1995;
1996), are the first in more than a decade to show that
new application-independent methods can still improve
search efficiency.

Intuitively, one would expect that knowledge-intensive ap-
proaches would be effective for solving hard real-time prob-
lems, such as playing grandmaster-level chess. The success
of application-independent search techniques (brute-force)
is amazing. This paper strengthens the brute-force approach
by introducing new methods.

The Minimal Tree
For fixed-depth adversary or minimax search trees, a so-
called minimal tree exists that must be searched in order
to find the minimax value (Knuth & Moore 1975). For a
tree of uniform width w and depth d, Knuth and Moore
proved that the number of leaves in the minimal tree is
wbd/2c + wdd/2e � 1, approximately the square root of the
size of the minimax tree. The minimal tree coincides with
Alpha-Beta’s best case. Alpha-Beta achieves this best case
scenario only under the exceptional condition that at every
node where a cutoff can occur, the cutoff is achieved by
the first move considered (i.e., the children of a node are
re-ordered so that a “best” move is always considered first).

The minimal tree is a natural performance standard for
minimax search algorithms. Many researchers judge the
quality of new algorithms and heuristics by comparing the
size of the search tree built to it. Numerous simulations
of minimax search algorithms have been performed using a
comparison with the size of the minimal tree as the perfor-
mance metric. Since each node in the simulated artificial
trees has only one parent, and a fixed w and d are used,
the minimal tree is trivially calculated by the Knuth and

Moore formula. The simulations invariably conclude that,
given a good move ordering, Alpha-Beta variants are per-
forming almost perfectly, since the tree size observed is
close to the size of the minimal search tree (see for ex-
ample, (Campbell & Marsland 1983; Kaindl, Shams, &
Horacek 1991; Marsland, Reinefeld, & Schaeffer 1987;
Muszycka & Shinghal 1985)).

For real-world applications, calculating the size of the
minimal tree is complicated by the presence of transposi-
tions (nodes with more than one parent) and a variable width
w. To approximate the minimal tree (really a graph), one
can build the best-case Alpha-Beta scenario and use it as the
performance standard. This can be done using a two-stage
procedure, defined by Ebeling (Ebeling 1987):

1. Initial search: Perform an Alpha-Beta search, saving the
best move at each node in a table.

2. Re-search: Re-search the tree using the table as an oracle
that “knows” the best move to consider.

The size of this tree is a good approximation of the minimal
tree. (For the sake of consistency we will in this section
continue to call this graph the minimal tree.)

Numerous game-playing programs have been shown to
perform quite close to the best-case Alpha-Beta minimal
tree. For example, in chess, Belle is reported to be within a
factor of 2.2 of the minimal Alpha-Beta tree (Ebeling 1987),
Phoenix within 1.4 (measured in 1985) (Schaeffer 1986),
Hitech within 1.5 (Ebeling 1987) and Zugzwang within 1.2
(Feldmann 1993). These results suggest that there is little
room for improvement in fixed-depth Alpha-Beta searching.

As an independent check of the effectiveness of
Alpha-Beta search, we conducted measurements using
two tournament-quality game-playing programs, Chinook
(checkers) (Schaeffer et al. 1992) and Phoenix (chess)
(Schaeffer 1986). This covers the range of high (35 in
chess) to low (3 in checkers) average branching factors.
The two programs use the NegaScout variant of Alpha-Beta
(Reinefeld 1983) enhanced with aspiration windows, the
history heuristic, iterative deepening and transposition ta-
bles (Schaeffer 1989) (221 entries—large enough to store the
minimal tree). We will refer to this search algorithm with its
enhancements as enhanced NegaScout (EnhNS). The pro-
grams were modified to search to a fixed depth, ensuring
that changes to the search parameters would not alter the
minimax value of the graph. Both programs have presum-
ably been finely tuned and achieve high performance. Data
points were averaged over a set of 20 test positions (some
data points were averaged over 40 test positions for verifi-
cation). The different branching factors of the two games
affect the depth of the search trees built within a reasonable
amount of time. For checkers, our experiments were to 17
ply deep (one ply equals one move by one player) and for
chess, 8 ply.

The results of comparing enhanced NegaScout against
the minimal tree are shown in figure 1 (based on all nodes
searched in the last iteration). The figure confirms that
the best programs are searching close to the minimal tree
(within a small factor).
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Figure 1: Efficiency of Programs Relative to the Minimal
Tree

An interesting feature is that both programs, chess in
particular, have significantly worse performance for even
depths. The reason for this can be seen if we look at the
structure of the minimal tree (the parity of the depth in-
fluences the number of nodes where a cutoff is expected).
This leads to an important point: reporting the efficiency of
a fixed-depth search algorithm based on odd-ply data is mis-
leading. The odd-ply iterations give an inflated view of the
search efficiency. For odd-ply searches, both programs are
searching with an efficiency similar to the results reported
for other programs. However, the even-ply data indicates
that, at least for chess, there is still room for improvement.

To summarize, the evidence shows that search efficiency
is close to the minimal tree. These facts have convinced
many researchers that there is almost no room left for im-
proving application-independent methods for fixed-depth
Alpha-Beta. Consequently, the field of game-tree search
has moved on to more application-dependent methods, re-
ducing the generality of the research in game-tree search.

The Minimal Graph
The previous section discussed the Knuth and Moore min-
imal tree as a metric for comparing algorithms that search
trees in a left-to-right, depth-first manner. However, this
minimal tree is not necessarily the smallest possible. Alpha-
Beta stops as soon as it has found a cutoff. It could very
well be that an alternative move could also achieve a cutoff
with less work.

In real applications, where w is not uniform, the minimal
tree defined in the previous section is not really minimal,
because at cutoff nodes no attempt has been made to achieve
the cutoff with the smallest search effort. Further, the mini-
mal tree is not really a tree; many applications allow nodes
to have more than one parent. The minimal search graph
must also try to maximize the re-use of previously visited
nodes. Ebeling’s procedure to compute a “minimal graph”
really yields a left-first minimal graph (LFMG), since only
the left-most move causing a cutoff is investigated. The real
minimal graph (RMG) must select the cutoff move leading
to the smallest search.

The preceding suggests modifying Ebeling’s method to
always get the cheapest cutoffs:

1. Initial search: Perform an Alpha-Beta search. At cutoff
nodes, continue to examine alternative moves so that the
“cheapest” cutoff (smallest search tree) is found. Save
the best move at each node in a table.

2. Re-search: Re-search the tree using the table as an oracle
that “knows” the best move to consider.

Step 1 can be optimized to stop the search of a cutoff can-
didate as soon as its subtree size exceeds the size of the
current cheapest cutoff.

A complication is that in the presence of transposi-
tions, the size of a search can be largely influenced by
the frequency of transpositions. The size of a move’s
subtree can be influenced by whether another move has
been searched or not, since the subtrees may have some
nodes in common. This problem is known as the interact-
ing sub-goal problem in AND/OR graphs (Nilsson 1980;
Pearl 1984). Thus this procedure can only compute an up-
per bound on the size of the RMG and, hence, we call it the
ARMG (approximate real minimal graph).

Without an oracle, computing the RMG is intractable.
Even computing the ARMG is infeasible since it is asymp-
totic to full minimax search. Here we present a method for
finding some of the cheaper cutoffs, allowing us to obtain
an upper bound on the ARMG. This construction is done by
performing the ARMG algorithm on the lowest d plies of
the tree only. This variant is referred to as ARMG(d).

The approach still suffers from the interacting sub-goal
problem. Therefore, an extra search must be performed to
count the real size of the approximated minimal graph.

The results for Chinook and Phoenix are shown in fig-
ures 2 and 3 respectively. The results were obtained using
ARMG(3). The reduction in the LFMG is most notice-
able in checkers. Checkers has a variable branching factor
(averaging 1.2 moves in a capture position and 7.8 in a non-
capture position), while chess is relatively uniform at 35–40
moves per position (moving out of check is an exception,
but those positions occur relatively rarely in the search).
Thus there is more potential for cheaper cutoffs in checkers,
as the graphs show.

The conclusion is that the Knuth and Moore minimal tree
and the Ebeling approximation of the minimal graph are
loose bounds on the real minimal graph; the RMG could be
much smaller. For chess, the LFMG computed by Ebeling’s
procedure is 25% larger than our upper bound on the RMG;
for checkers it is an amazing 122% (it is 2.22 times as large).
In effect, high-performance game-playing programs are not
searching quite as efficiently as has been assumed.

Exploiting Graph Properties for Real-time
Search

The preceding section showed that the real minimal graph
is smaller than the left-first minimal graph. These results
were computed using off-line methods which, in some cases,
took many days to compute. Can some of this experience be
distilled into new methods for improving real-time, on-line
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Figure 2: LFMG Is Not Minimal, Checkers
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Figure 3: LFMG Is Not Minimal, Chess

Alpha-Beta searching? Computing the ARMG showed the
importance of two items:

1. Maximization of information reuse: The search space is
really a graph, meaning that a node can have more than
one parent. We want to encourage the search to visit
previously seen nodes to re-use available information.

2. Least work first: There may be alternative moves that
can achieve a cut-off. If possible, assess potential cutoff
moves based on the size of the search tree they are likely
to build.

Both ideas translate into practical enhancements for real-
time Alpha-Beta searching.

A simple and relatively cheap enhancement to improve
search efficiency is to try and make more effective use of the
transposition table. Consider interior node N with children
B and C (figure 4). The transposition table suggests move B
and, as long as it produces a cutoff, move C will never be ex-
plored. However, node C might transpose into a part of the
tree, node A, that has already been analyzed. Before doing
any search at an interior node, a quick check in the transpo-
sition table of all the positions arising from this node may
result in finding a cutoff. Enhanced Transposition Cutoffs,
ETC, performs transposition table lookups on successors of
a node, looking for transpositions into previously searched

A

C

B

N

Figure 4: Enhanced Transposition Cutoff

lines. In effect, in a left-to-right search, ETC encourages
subtrees in the right part of the tree to transpose into the left.

Figure 5 shows the pseudo-code of ETC embedded in
Alpha-Beta. The ETC specific part is marked by **. In the
figure, n is a node, ƒ+ is an upper bound on its value and
ƒ� is a lower bound. Retrieve(n) extracts information on
node n from the transposition table, while store(n) saves it.
Eval evaluates a leaf node in the tree. At interior nodes, the
moves are generated using generatemoves(n) and examined
using ƒirstchild and nextchild.

Figure 6 shows the results of enhancing Phoenix with
ETC. For search depth 8, ETC lowered the number of ex-
panded total nodes by 28% compared to enhanced NegaS-
cout. Figure 7 shows that for Chinook ETC improves the
search by 22%. For both programs, the reduction in search
tree size offered by ETC is, in part, offset by the increased
computation per node. Performing ETC at all interior nodes
is too expensive. A compromise, performing ETC at all in-
terior nodes that are more than 2 ply away from the leaves,
results in most of the ETC benefits with only a small compu-
tational overhead. With this modification, the percent that
ETC reduces the tree size translates into a slightly smaller
percent reduction in execution time (graphs not shown).
Thus, ETC is a practical enhancement to most Alpha-Beta
search programs.

Checkers has a variable branching factor implying that
there can be large differences in the search effort required
to achieve a cutoff. The off-line version found cheaper
cutoffs by doing a partial minimax search, continuing the
search after a cutoff had been found. This is obviously too
computationally intensive for real-time usage. We explored
a number of different ways for predicting moves that lead
to cheaper cutoffs. The method reported here, called Ex-
ploiting Irregular Branching factor, EIB for short, involves
ordering moves based on the branching factor of the po-
sition that they lead to. In checkers, this means favoring
moves that lead to a capture position. Moves that yield a
position with a small branching factor are more favorably
biased than those that lead to a larger branching factor. This
bias is implemented as a bonus score added to the history
heuristic for that move. After the move suggested by the
transposition table (if available) is searched, the remain-
ing moves are considered in the order of highest to lowest



function alphabeta-ETC-EIB(n, α, β) → g;
/* Check in transposition table */
if retrieve(n) = ok then

if n.ƒ� ≥ β then return n.ƒ�;
if n.ƒ+ ≤ α then return n.ƒ+;

if n = leaf then g := eval(n);
else

m := generatemoves(n);
/* Look for ETC */

** c := firstmove(m);
** while c 6= ? do
** if retrieve(c) = ok then
** if n is a max node and c.ƒ� ≥ β then return c.ƒ�;
** if n is a min node and c.ƒ+ ≤ α then return c.ƒ+;
** c := nextmove(m);

/* Order moves using EIB */
++ ordermoves(m);

/* Standard Alpha-Beta */
if n is a max node then

g := �∞; a := α;
c := firstmove(m);
while g < β and c 6= ? do

g := max
�

g, alphabeta-ETC-EIB(c, a, β)
�

;
a := max(a, g);
c := nextmove(m);

else /* n is a min node */
g := +∞; b := β;
c := firstmove(m);
while g > α and c 6= ? do

g := min
�

g, alphabeta-ETC-EIB(c, α, b)
�

;
b := min(b , g);
c := nextmove(m);

/* Save result in transposition table */
if g < β then n.ƒ+ := g;
if g > α then n.ƒ� := g;
store n.ƒ�, n.ƒ+;
return g;

Figure 5: ETC-EIB Pseudo-Code

history heuristic score. This enhancement is hidden in the
ordermoves routine in figure 5 (indicated by a ++).

Figure 7 shows the results of exploiting the irregular
branching factor in checkers. Enhanced NegaScout ben-
efits 8% with EIB. The combination of ETC and EIB yields
a cumulative 28% reduction.

The cost of performing EIB is high, while the savings are
small. Various schemes for cutting the cost of EIB (such as
restricting the set of nodes where EIB is performed) only
result in a small improvement in execution time.

ETC and EIB are application independent, but their ef-
fectiveness is a function of the properties of the game. For
example, chess has many transpositions and, consequently,
ETC is very effective. However, the branching factor is
fairly uniform implying EIB is probably not useful. Check-
ers also has many transpositions, but also has an irregular
branching factor. Thus both ETC and EIB are effective.

We have also experimented with the game of Othello.
The LFMG is roughly 42% larger than the ARMG(2) show-
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ing that there is room for improvement. Transpositions in
the game occur relatively infrequently (because moves can
make dramatic changes to the board), limiting the benefits
of ETC (to roughly 4%). The branching factor is generally
uniform (around 10) but becomes irregular as the end of
game approaches. We have not experimented with EIB in
Othello.

Conclusions
This research reports fixed-depth searching. When search-
ing to variable depth (search extensions and forward prun-
ing), the search efficiency savings of ETC and EIB cannot
be quantified by node counting. However, tests with ETC
(in Chinook and Deep Blue) show that the increased number
of transpositions can improve the accuracy of the search.
When ETC looks in the transposition table, it may find a po-
sition that has been searched deeper than the nominal search
depth, allowing for a more accurate score to be used. On
standard benchmark test suites, the ETC-enhanced program
performs better (finds the correct move more often) than the
non-ETC version.

Our results show that there is more room for finding new
techniques in adversary search. This is in sharp contrast to
the prevailing opinion which considered fixed-depth Alpha-



Beta searching to be a closed subject. The new methods that
we introduce in this paper, together with MTD(ƒ) (Plaat et
al. 1996), are the first major improvements to fixed-depth
Alpha-Beta searching since 1983. Our results warrant more
research into application-independent methods, exploiting
graph properties of the search space.
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