
Learning Partial-Order Macros from Solutions

Adi Botea and Martin Müller and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{adib,mmueller,jonathan}@cs.ualberta.ca

Abstract

Despite recent progress in AI planning, many problems re-
main challenging for current planners. In many domains, the
performance of a planner can greatly be improved by discov-
ering and exploiting information about the domain structure
that is not explicitly encoded in the initial PDDL formulation.
In this paper we present an automated method that learns rel-
evant information from previous experience in a domain and
uses it to solve new problem instances. Our approach pro-
duces a small set of useful macro-operators as a result of
a training process. For each training problem, a structure
called a solution graph is built based on the problem solution.
Macro-operators with partial ordering of moves are extracted
from the solution graph. A filtering and ranking procedure se-
lects the most useful macro-operators, which will be used in
future searches. We introduce a heuristic technique that uses
only the most promising instantiations of a selected macro
for node expansion. Our results indicate an impressive reduc-
tion of the search effort in complex domains where structure
information can be inferred.

Introduction
AI planning has recently made great advances. The evolu-
tion of the international planning competition over its four
editions accurately reflects this. Successive editions intro-
duced more and more complex and realistic benchmarks, or
harder problem instances for the same domain. Still, the top
performers could successfully solve many of the problems
each time. Many hard domains, including benchmarks used
in the latest competition, still remain a great challenge for
the current capabilities of automated planning systems.

In many domains, the performance of a planner can be
improved by inferring and exploiting information about the
domain structure that is not explicitly encoded in the initial
PDDL formulation. In this paper we present an automated
method that learns such implicit domain knowledge and uses
it to simplify planning for new problem instances. This “hid-
den” information that a domain encodes is, arguably, propor-
tional to how complex the domain is, and how realistically
this models the world. Consider driving a truck between
two locations. This operation has many details in the real
world. To name just a few, the truck should be fueled and

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

have a driver assigned. In a detailed planning formulation,
we would define several operators such as FUEL, ASSIGN-
DRIVER, or DRIVE. This representation already contains
implicit information about the domain structure. It is quite
obvious for a human that driving a truck between two re-
mote locations would be a macro-action where we first fuel
the truck and assign a driver (with no ordering constraints
between these two actions) and next we apply the drive op-
erator. In a simpler formulation, we can remove the oper-
ators FUEL and ASSIGN-DRIVER and consider that, in our
model, a truck needs neither fuel nor a driver. Now driving a
truck is modeled as a single action, and the structured detail
described above is removed from the model.

Our method first learns a set of useful macro-operators,
and then uses them in new searches. The learning is based
on several training problems from a domain. In traditional
planning, the main use of the solving process is to obtain
the solution of a given problem instance. In addition, we
use both the search process and the solution plan to extract
new information about the domain structure. We assume
that searching for a plan can provide valuable domain infor-
mation that could be hard to obtain with only static analysis
and no search. For example, it is hard to evaluate before-
hand how often a given sequence of actions would occur in
a solution, or how many nodes the search algorithm would
expand on average in order to discover that action sequence.

For each training problem, a structure called a solution
graph is built starting from the linear solution sequence that
the planner produces. The solution graph contains one node
for each step in the solution. Edges model the causal ef-
fects that a solution step has on subsequent steps of the lin-
ear plan. Analysis of a small set of solution graphs produces
a set of partial-order macro-operators (i.e., macros with par-
tial ordering of operators) that are likely to be useful in the
future. A set of macros is extracted from the solution graphs
of all training problems. Then the set is filtered and sorted
such that only the most promising macros will be used in the
future.

After completing the training, the selected macro-
operators are used to speed up future searches in the same
domain. Using macro-actions at run-time can potentially in-
troduce the utility problem, which appears when the savings
are dominated by the extra costs of macros. The potential
savings come from the ability to generate a useful action



sequence with no search. On the other hand, macros can
increase both the branching factor and the processing cost
per node. Many instantiations of a selected macro-operator
schema could be applicable to a state, but only a few would
actually be shortcuts towards a goal state. If all these in-
stantiations are considered, the induced overhead can be
larger than the savings achieved by the useful instantiations.
Therefore, the challenge is to utilize for state expansion only
a small number of “good” macro instantiations.

To address the utility problem, which is crucial of the
overall performance of a search algorithm, we define heuris-
tic techniques such as helpful macro pruning. Helpful macro
pruning is based on the relaxed plan RP (s) used in FF
(Hoffmann & Nebel 2001). In FF, the relaxed plan is used
to heuristically evaluate problem states and prune low-level
actions in the search space (helpful action pruning). In ad-
dition, we use the relaxed plan to prune the set of macro-
instantiations that will be used for node expansion. Since
actions of the relaxed plan are often useful in the real world,
we require that a macro-instantiation m will be used to ex-
pand a state s only if m has a minimal number of actions
common with RP (s).

The contributions of this paper include an automated tech-
nique that learns a small set of useful macro-operators in a
domain, and uses them to speed up the search for new prob-
lem instances. We introduce a structure called a solution
graph that encodes information about the structure of a given
problem instance and its domain, and we use this structure
to build macro-operators. Using macro-operators in AI plan-
ning and search algorithms is by no means a new idea. In our
work, we combine the use of macro-operators with modern
and powerful techniques such as the relaxed graphplan com-
putation implemented in FF and other top-level planners.
We provide experimental results, performance analysis and
a detailed discussion of our approach.

We extend our previous work (Botea, Müller, & Schaef-
fer 2004b) in several directions. First, we increase the appli-
cability from STRIPS domains to ADL domains (Botea et
al. 2004). Second, the old method generates macros based
on component abstraction, which is limited to domains with
static predicates in their definition. The current method gen-
erates macros from the solution graph, increasing its gener-
ality. Third, we increase the size of macros from 2 moves
to arbitrary values. Fourth, we generalize the definition of
macros allowing partially ordered sequences.

The rest of the paper is structured as follows: The next
two sections provide details about building a solution graph,
and how to extract and use macro-operators. Next is exper-
imental results and an evaluation of our system. We then
briefly review related work and discuss the similarities and
differences with our work. The last section shows our con-
clusions and future work ideas.

Solution Graph
In this section, we describe how to build the solution graph
for a problem, starting from the solution plan and exploit-
ing the effects that an action has on the following plan se-
quence. We first set our discussion framework with some
preliminary comments and definitions. Then we present a

high-level description of the method, show how this works
on an example, and provide the algorithm in pseudo-code.

In the general case, the solution of a planning problem is
a partially ordered sequence of steps. When actions have
conditional effects, a step in the plan should be a pair (state,
action) rather than only an action. This allows us to precisely
determine what effects a given action has in the local con-
text. Our implementation handles domains with conditional
effects in their actions and can be extended to partial-order
plans. However, for simplicity, we assume in the follow-
ing discussion that the initial solution is a totally-ordered
sequence of actions. When an action occurs several times in
a solution, each occurrence is a distinct solution step.

To introduce the solution graph, we need to define the
causal links in the solution.

Definition 1 A structure (a1, p, a2) is a positive causal link
in the solution if: (1) a1 and a2 are steps in the solution with
a1 applied earlier than a2, (2) p is a precondition of a2 and
a positive effect of a1, and (3) a1 is the most recent action
before a2 that adds p. We write a positive causal link as
a1

+p
−→ a2.

A structure (a1, p, a2) is a negative causal link in the solu-
tion if: (4) a1 and a2 are steps in the solution with a1 applied
earlier than a2, (5) p is a precondition of a2 and a delete ef-
fect of a1, and (6) a1 is the most recent action before a2 that
deletes p. We write a negative causal link as a1

−p
−→ a2.

We write a1→a2 if there is at least a causal link (either
positive or negative) from a1 to a2.

A positive causal link is similar to a causal link in partial-
order planning (Nguyen & Kambhampati 2001).

The solution graph is a graph structure that explicitly
stores relevant information about the problem extracted from
the linear solution. For each step in the linear solution, we
define a node in the solution graph. The graph edges model
causal links between the solution actions. We define an edge
between two nodes a1 and a2 if a1 → a2. An edge has two
labels: The ADD label is the (possibly empty) list of all facts
p so that a1

+p
−→ a2. The DEL label is obtained similarly

from the negative causal links.
Figure 1 shows the solution graph for problem 1 in the

Satellite benchmark. The graph has 9 nodes, one for each
step in the linear solution. Each node contains a numerical
label showing the step in the linear solution, the action name
and arguments, the preconditions and the effects. We safely
ignore static preconditions: no causal link can be generated
by a static fact, since such a fact is never part of an action’s
effects. Graph edges have their ADD labels shown as square
boxes, and DEL labels as circles. Consider the edge from
node 0 to node 8. Step 0 adds the first precondition of step
8, and deletes the third. Therefore, the ADD label of this
edge is 1 (the index of the first precondition), and the DEL
label is 3.

A brief analysis of this graph reveals interesting insights
about the problem and the domain structure. The action se-
quence TURN TO TAKE IMAGE occurs three times (between
steps 3–4, 5–6, and 7–8), which takes 6 out of a total of 9 ac-
tions. For each occurrence of this sequence, there is a graph



Figure 1: The solution graph for problem 1 in the Satellite benchmark.

edge that shows the causal connection between the actions:
applying operator TURN TO satisfies a precondition of oper-
ator TAKE IMAGE.

Second, the sequence SWITCH ON TURN TO CALIBRATE
(steps 0–2) is important for repeatedly applying macro
TURN TO TAKE IMAGE. This sequence makes true two pre-
conditions for each occurrence of operator TAKE IMAGE.
The graph also shows that, after SWITCH ON has been ap-
plied, CALIBRATE should follow, since the latter restores the
fact (CALIBRATED INSTR0) which is deleted by the first.
Finally, there is no ordering constraint between SWITCH ON
and TURN TO, so we have a partial ordering of the actions
of this sequence.

In this paper we propose automated methods to perform
this type of analysis and learn useful information about a
domain. The next sections will focus on this idea.

The pseudo-code of building the solution graph is given in
Figure 2. The complexity is linear with L, the length of the
solution at hand. The methods are in general self explana-
tory, and follow the high level description provided before.
The method findAddActionId(p, id, s) returns the most re-
cent action before the current step id that adds precondition
p. The method addEdgeInfo(n1, n2, t, f, g) creates a new
edge between nodes n1 and n2 (if one didn’t exist) and con-
catenates the fact f to the label of type t ∈ {ADD,DEL}.
The data piece nodes(a) that is used in method buildNodes
provides information extracted from the search tree gener-
ated while looking for a solution. A search tree has states
as nodes and actions as transitions. For each action a in
the tree, nodes(a) is the number of nodes expanded in the
search right before exploring action a. We further introduce
the node heuristic (NH) associated to an instantiated macro

sequence m = a1...ak as follows:

NH(m) = nodes(ak) − nodes(a1).

NH measures the effort to dynamically discover the given
sequence at run-time. As we show in the next section, the
node heuristic is used to rank macro-operators in a list.

Macro-Operators
A macro-operator is a structure m = (O,≺, σ) with O a
set of domain operators, ≺ a partial ordering of the elements
in O, and σ a mapping that defines the macro’s variables
from the operators’ variables. A domain operator can occur
several times in O.

In this section we focus on how our approach learns and
uses macro-operators. Our method is a three-step technique:
generation, filtering, run-time instantiation. First, a global
set of macros is generated from the solution graphs of sev-
eral training problems. Second, this set is filtered down to a
small set of selected macros, completing the learning phase.
Finally, the selected macros are used to speed up planning in
new problems.

Generating Macro-Operators
Macros are extracted from the solution graphs of one or
more training problems. Our method enumerates and se-
lects subgraphs from the solution graph(s) and builds one
macro for each selected subgraph. Two distinct subgraphs
can produce the same macro. All generated macros are in-
serted into a global list that will later be filtered and sorted.
The list contains no duplicate elements. When an extracted
macro is already part of the global list, relevant information



void buildSolutionGraph(Solution s, Graph & g)
{

buildNodes(s, g);
buildEdges(s, g);

}
void buildNodes(Solution s, Graph & g)
{

for (int id = 0; id < length(s); ++id) {
Action a = getSolutionStep(id, s);
addNode(id, a, nodes(a), g);

}
}
void buildEdges(Solution s, Graph & g)
{

for (int id = 0; id < length(s); ++id) {
Action a = getSolutionStep(id, s);
for (each precondition p ∈ precs(a)) {

idadd = findAddActionId(p, id, s);
if (idadd != NO ACTION ID)

addEdgeInfo(idadd, id, ADD, p, g);
iddel = findDeleteActionId(s, id, p);
if (iddel != NO ACTION ID)

addEdgeInfo(iddel, id, DEL, p, g);
}

}
}

Figure 2: Pseudo-code for building the solution graph.

associated to that element is updated. For instance, the al-
gorithm increments the number of occurrences, and adds the
node heuristic of the extracted instantiation to that of the el-
ement in the list.

We present the enumeration and selection process, and
then show how a macro is built starting from a given sub-
graph. Figure 3 presents our method for extracting macros
from the solution graph. Parameters MIN LENGTH and
MAX LENGTH bound the length l of a macro. We set this
range from 2 to 10. The minimal size is trivial: each macro
should have at least two actions. The upper bound is set to
speed up macro generation. In a more general setup, the up-
per bound could be the plan length of the problem at hand,
provided that the whole solution might be an useful macro.
Note that this is usually not the case in practice. Our work
focuses on identifying a few local patterns that are generally
useful, rather than caching many whole solutions of solved
problems.

Method selectSubgraphs(l, g, subgraphList) finds valid
subgraphs of size l of the original solution graph. It is im-
plemented as a backtracking procedure that produces all the
valid node combinations and early prunes incorrect partial
solutions.

To describe the validation rules, we consider a subgraph
sg with l arbitrary distinct nodes am1

, am2
, ..., aml

. Node
ami

is the mi-th step in the linear solution. Assume that the
nodes are ordered according to their position in the linear
solution: (∀i < j) : mi < mj . The rules that we impose for
sg to be valid are the following:
• The nodes of a valid subgraph are obtained from a se-

void generateAllMacros(Graph g, MacroList & macros)
{

for (int l = MIN LENGTH; l ≤ MAX LENGTH; ++l )
generateMacros(g, l, macros);

}
void generateMacros(Graph g, int l, MacroList & macros)
{

selectSubgraphs(l, g, subgraphList);
for (each subgraph s ∈ subgraphList) {

buildMacro(s, m);
int pos = findMacroInList(m, macros);
if (pos != NO POSITION)

updateInfo(pos, m, macros);
else

addMacroToList(m, macros);
}

}

Figure 3: Pseudo-code for generating macros.

quence of consecutive steps in the linear solution by skip-
ping at most k steps, where k is a parameter. Skipping ac-
tions allows irrelevant actions to be ignored for the macro
at hand. The upper bound k captures the heuristic that
good macros are likely to have their steps “close” together
in a solution. Formally, the following formula should
stand for a valid macro: ml−m1+1 <= l+k. In our ex-
ample, consider the subgraph with nodes {0, 1, 2, 6}. For
this subgraph, l = 4, ml = 6, and m1 = 0. If k = 2, then
the subgraph breaks this rule, since ml − m1 + 1 = 7 >
6 = l + k.
A small value for k speeds up the computation and re-
duces the number of generated subgraphs. Unfortunately,
occurrences of useful macros might be skipped. However,
this seldom happens in practice, as the actions of useful
macros usually concentrate together in a local sequence.
In our experiments, we set k = 2, which was empirically
shown as a good trade-off value.

• Positive and negative causal links that the sub-graph edges
model are exploited. Consider our example in Figure 1.
Nodes 2 and 3 do not form a valid subgraph, since there is
no direct link between them, and therefore this subgraph
is not connected. However, nodes 3 and 4 are connected
through a causal link, so our method will validate this
sub-graph. In the general case, we require that a valid
subgraph is connected, since we assume that two sepa-
rated connected components correspond to two indepen-
dent macros.

• When selecting a subgraph, a solution step ar (m1 < r <
ml) can be skipped only if ar is not connected to the cur-
rent subgraph: (∀i ∈ {1, .., l}) : ¬(ami

→ ar ∨ ar →
ami

).

Method buildMacro(s, m) builds a partially ordered
macro m based on the subgraph s which is given as an argu-
ment. For each node of the subgraph, the corresponding ac-
tion is added to the macro. Note that, at this step, actions are
instantiated (i.e., they have constant arguments rather than



generic variables). After all actions have been added, we
replace the constants by generic variables, obtaining a vari-
able identity map σ. The partial order between the operators
of the macro is computed using the positive causal links of
the subgraph. If a positive causal link exists between two
nodes a1 and a2, then a precondition of action a2 was made
true by action a1. Therefore, action a1 should come before
a2 in the macro sequence. Note that the ordering never has
cycles. The ordering constraints are determined using a sub-
graph of the solution graph, and the solution graph is acyclic.
A graph edge can exist from a1 to a2 in the solution graph
only if a1 comes before a2 in the initial linear solution.

From the solution graph in Figure 1, 24 distinct macros
are extracted. The largest contains all nodes in the solution
graph. One macro occurs 3 times (TURN TO TAKE IMAGE),
another twice (TURN TO TAKE IMAGE TURN TO), and all
remaining macros occur once.

The complexity of generating macros of length l from a
solution graph with L actions is

(

l+k

l

)

× L × I . The first
factor is the cost to enumerate macros of length l within a
window of size l + k (i.e., a subgraph with l + k nodes that
are consecutive in the initial sequential solution – see the
first validation rule). We slide the window along the solution
plan, obtaining the second factor (we assume l + k < L). I
is the cost to find/insert a macro into the global set of macros
which, in a tree implementation, is logarithmic with the set
size.

Filtering and Ranking
The goal of filtering is to address the utility problem, which
appears when the overhead of using macros is larger than the
savings. After all training problems have been processed,
the global list of macros is statically filtered and sorted, so
that only the most promising macros will be used to solve
new problems. When the selected macros are used in future
searches, they are further filtered in a dynamic process that
evaluates their run-time performance.

The static filtering is performed with the so called over-
lap rule. A macro is removed from the list when two occur-
rences of this macro overlap in a given solution (i.e., the end
of one occurrence is the beginning of the other). Consider
the following sequence in a solution:

...a1a2...ala1a2...ala1a2...al...

Assume both m1 = a1a2...al and m2 = a1a2...ala1 are
initially part of the list of macros. When m1 is used in the
search, applying this macro three times could be enough to
discover the given sequence. Consider now using m2 in
the search. This macro cannot be applied twice in a row,
since the first occurrence ends beyond the beginning of the
next occurrence. In effect, the sequence a2...al in the mid-
dle has to be discovered with low-level search. Note that a
macro that contains two instances of a smaller macro (e.g.,
m3 = m1m1 = a1a2...ala1a2...al) is still able to generate
the whole sequence with no low-level search. For this rea-
son, we do not reject a macro that is a double occurrence
of a small (i.e., of length 1 or 2) sequence. The reason
why we apply this exception only to small macros is the
following. Another important property of the overlap rule

is the capacity to automatically limit the length of a macro.
In our case, a1a2...al is kept in the final list, while larger
macros such as a1a2...ala1 or a1a2...ala1a2 are rejected.
In Satellite, the macro (TURN TO TAKE IMAGE TURN TO)
mentioned before is removed because of the overlap, but the
macro (TURN TO TAKE IMAGE TURN TO TAKE IMAGE), a
double occurrence of a short sequence, is kept.

Macros are ranked according to the total node heuristic
TNH(m) associated to each macro m, with ties broken
based on the occurrence frequency. For a generic macro m
in the list, TNH(m) is the sum of the node heuristic values
(NH) for all instantiations of that macro in the solutions of
the training problems. The average node heuristic ANH
is the total node heuristic divided by the number of occur-
rences F , and estimates the average search effort needed to
discover an instantiation of this macro at run-time:

TNH(m) = ANH(m) × F (m).

The total node heuristic is a robust ranking method, which
combines into one single rule several factors that can eval-
uate the performance of a macro. First, since TNH is pro-
portional with F , it favors macros that frequently occurred in
the training set, and therefore are more likely to be applica-
ble in the future. Second, TNH directly depends on ANH ,
which evaluates the search effort that one application of the
macro could save.

TNH depends on the search strategy. For instance,
changing the move ordering can potentially change the rank-
ing in the macro list. How much the search strategy affects
the ranking, and how a set of macros selected based on one
search algorithm would perform in a different search algo-
rithm are still open questions for us.

After ranking and filtering the list, only a few el-
ements from the top of the list are kept for fu-
ture searches. In our Satellite example, the selected
macros are (SWITCH ON TURN TO CALIBRATE TURN TO
TAKE IMAGE) and (TURN TO TAKE IMAGE TURN TO
TAKE IMAGE).

Selected macros are further filteried dynamically, based
on their run-time performance. Pathologic behaviour of
macros at run-time can have several reasons. First, a selected
macro m that is never instantiated in a search does not affect
the number of expanded nodes, but increases the cost per
node. Second, a macro that is instantiated much more often
than desired can lead the search into subtrees that contain
no goal states. To address these, the following values are
accumulated for each macro m: IN(m) is the number of
searched nodes where at least one instantiation of m is used
for node expansion. IS(m) is the number of times when an
instantiation of m is part of a solution. The efficiency rate,
ER(m), is IS(m) divided by IN(m). A first implementa-
tion of our dynamic filtering procedure evaluates each macro
after solving a number of problems NP given as a parame-
ter. If IN(m) = 0 or ER(m) does not reach a threshold T ,
m is removed from the list.

T ’s value was set based on the empirical observation
that there is a gap between the efficiency rate of successful
macros and the efficiency rate of macros that should be fil-
tered out. The efficiency rate of successful macros has been



observed to range roughly from more than 0.05 to almost
1.00. For pathological macros, ER is less than 0.01. We set
T = 0.03, which estimates the gap center.

Instantiating Macros at Run-Time
The learned macros are used to speed up the search in new
problem instances. A classical search algorithm expands a
node by considering low-level actions that can be applied to
the current state. In addition, our method adds to the suc-
cessor list states that can be reached by applying a sequence
of actions that compose a macro. This enhancement affects
neither the soundness nor the correctness of the original al-
gorithm. When the original search algorithm is complete,
we preserve this, since no regular successors that the algo-
rithm generates are deleted. The correctness is guaranteed
by our way of applying a macro to a state. Given a state s0

and a sequence of actions m = a1a2...ak, we say that m
is applicable to s0 if ai can be applied to si−1, i ∈ 0, ..., k,
where si = γ(si−1, ai) and γ(s, a) is the state obtained by
applying a to s.

When a given state is expanded at run-time, many instan-
tiations of a macro could be applicable, but only a few would
actually be shortcuts towards a goal state. If all these in-
stantiations are considered, the branching factor can signifi-
cantly increase and the induced overhead can be larger than
the potential savings achieved by the useful instantiations
(the utility problem). Therefore, the challenge is to select
for state expansion only a small number of good macro in-
stantiations.

To determine what a “good” instantiation of a macro is,
we propose two heuristic methods, called helpful macro
pruning and goal macro pruning. The way these methods
are combined depends upon the search strategy employed.
We developed our method on top of FF (Hoffmann & Nebel
2001), which uses two search algorithms. Planning starts
with Enforced Hill Climbing (EHC), a fast but incomplete
algorithm. When EHC fails to find a solution, the search
restarts with a complete Best First Search (BFS). In EHC,
using only the helpful macro pruning turned out to be effec-
tive. In BFS, both helpful macro pruning and goal macro
pruning are used.

The goal macro pruning keeps a macro instantiation only
if the number of satisfied goal conditions is greater in the
destination state as compared to the starting state. Helpful
macro pruning is based on the relaxed graphplan computa-
tion that FF performs for all evaluated states, and hence is
available at no additional cost. For each evaluated state s,
FF solves a relaxed problem, where the initial state is the
currently evaluated state, the goal conditions are the same
as in the real problem, and the actions are relaxed by ignor-
ing their delete effects. This computation produces a relaxed
plan RP (s), and FF returns its length as the heuristic evalu-
ation of the current state.

The relaxed plan is used to decide what macro-
instantiations to select in a given state. Since actions
from the relaxed plan are often useful in the real world,
we request that a selected macro and the relaxed plan
match partially or totally (i.e., they have common ac-
tions). To formally define the matching, consider a macro

m(v1, ..., vn), where v1, ..., vn are variables, and an instanti-
ation m(c1, ..., cn), with c1, ..., c2 constant symbols. We de-
fine Match(m(c1, ..., cn), RP (s)) as the number of actions
present in both m(c1, ..., cn) and RP (s).

If we require a total matching (i.e., each action of the
macro is mapped to an action in the relaxed plan) then we
will often end up with no selected instantiations, since the
relaxed plan can be too optimistic and miss actions needed
in the real solution. On the other hand, a loose matching
can significantly increase the number of selected instantia-
tions, with negative effects on the overall performance of
the search algorithm. Our solution is to select only the in-
stantiations with the best matching seen so far for the given
macro in the given domain. We select a macro instantiation
only if

Match(m(c1, ..., cn), RP (s)) ≥ MaxMatch(m(v1, ..., vn)),

where MaxMatch(m(v1, ..., vn)) is the largest value of
Match(m(c′1, ..., c

′

n), RP (s′)) that has been encountered
so far in this domain, for any instantiation of this
macro and for any state. Our experiments show that
MaxMatch(m(v1, ..., vn)) quickly converges to a sta-
ble value. In our example, MaxMatch(SWITCH ON
TURN TO CALIBRATE TURN TO TAKE IMAGE) converges
to 4, and MaxMatch(TURN TO TAKE IMAGE TURN TO
TAKE IMAGE) converges to 3.

Discussion
Desired properties of macros and trade-offs involved in com-
bining them into a filtering method are discussed in (Mc-
Cluskey & Porteous 1997). The authors identify five factors
that can be used to predict the performance of a macro set.
In the next paragraphs we briefly discuss how our system
deals with each factor.

TNH includes the first two factors (“the likelihood of
some macro being usable at any step in solving any given
planning problem”, and “the amount of processing (search)
a macro cuts down”). Factor 3 (“the cost of searching for an
applicable macro during planning”) mainly refers to the ad-
ditional cost per node in the search algorithm. At each node,
and for each macro-schema, a check should be performed if
instantiations of the macro-schema are applicable to the cur-
rent state, and satisfy the macro pruning tests. We greatly
cut the costs by keeping only a small list of macro-schemas,
but there often is an overhead as compared to searching with
no macros. We take no special care of factor 4 (“the cost (in
terms of solution non-optimality) of using a macro”). The
next section gives an analysis of factors 3 and 4.

Factor 5 refers to “the cost of generating and maintaining
the macro set”. Our costs to generate macros include, for
each training problem, solving the problem instance, build-
ing the solution graph, extracting macros from the solution
graph, and inserting the macros into the global list. Solv-
ing the problem instance dominates the theoretical complex-
ity of processing one training problem. The only mainte-
nance operations that our method performs are to dynami-
cally filter the list of macros and to update MaxMatch for
each macro-schema, which need no significant cost.



Experimental Results
We use as testbeds domains that we competed in as part
of the fourth international planning competition IPC-4:
Promela Dining Philosophers – ADL (containing a total of
48 problems), Promela Optical Telegraph – ADL (48 prob-
lems), Satellite – STRIPS (36 problems), PSR Middle Com-
piled – ADL (50 problems), Pipesworld Notankage Nontem-
poral – STRIPS (50 problems), Pipesworld Tankage Non-
temporal – STRIPS (50 problems), and Airport – ADL (50
problems). See (Hoffmann et al. 2004) for details about
these domains. We present detailed performance analysis
for the first four domains, and briefly comment on the re-
maining three. The experiments ran on an AMD Athlon 2
GHz machine, with limits of 30 minutes and 1 GB of mem-
ory for each problem.

Figures 4 – 7 show three data curves each. The curves
are not cummulative: each data point shows a value corre-
sponding to one problem in the given domain. The horizon-
tal axis preserves the problem ordering as in the competition
domains. The data labeled with “Classical” are obtained
with FF version 2.3 (Hoffmann & Nebel 2001) plus sev-
eral implementation enhancements (Botea et al. 2004), but
no macro-operators. “PO Macros” corresponds to a plan-
ner that implements the ideas described in this paper on top
of “Classical”. “IPC-4” shows results with the planner that
we used in IPC-4. This planner also uses macro-operators
extracted from solutions, but it was restricted to macros of
length 2, eliminating many of the challenges that have to be
addressed for longer macros. The work we describe in this
paper is an extension of that preliminary model, and hence
it is relevant to see an empirical performance comparison.

Figures 4 and 5 show the results for Promela Dining
Philosophers and Optical Telegraph. Note that, in the com-
petition, our planner won this version of Promela Optical
Telegraph. The new extended model leads to massive im-
provement. For instance, in Dining Philosophers, each prob-
lem is solved within less than 1 second, while expanding
less than 200 nodes. In addition, in both domains, our new
system outperforms by far the top performers in the compe-
tition for the same domain versions. We found no difference
in terms of solution quality between “Classical” and “PO
Macros”.

Let the cost rate be the cost per node in “PO Macros”
divided by the cost per node in “Classical”. We collected
statistics about the cost rate from problems solved by both
planners. In Optical Telegraph, the cost rate varies between
1.40 and 1.47, with an average of 1.43. Since problems in
Dining Philosophers are solved very easily (e.g., 33 nodes in
0.01 seconds) in the “PO Macros” setup, it is hard to obtain
accurate statistics about the cost rate. The reason is that the
reported CPU time always has a small amount of noise partly
caused by truncation to two decimal places. When the total
time is small too, the noise significantly affects the statistics
accuracy.

Figure 6 summarizes our experiments in Satellite. In the
competition results for this domain, our planner Macro-FF
and YAHSP (Vidal 2004b) tied for the first place (with better
average performance for YAHSP over this problem set). Our

new model further improves our result, going up to about
one order of magnitude speedup as compared to classical
search. In Satellite, the heuristic evaluation of a state be-
comes more expensive as problems grow in size, with inter-
esting effects for the system performance. The rate of the
extra cost per node that macros induce is greater for small
problems, and gradually decreases for larger problems since,
in large problems, the heuristic evaluation dominates in cost
all remaining processing per searched node. The cost rate
varies from 0.83 to 2.04 and averages 1.14. Interestingly,
the cost rate is sometimes less than 1. This is because other
costs such as maintaining the open and closed queues grow
with the number of nodes, and the growth rate can be greater
than linear. The solution quality slightly varies in both direc-
tions, with no significant impact for the system performance.

Figure 7 shows our experiments in PSR Middle Com-
piled. Partial-order macros solve 33 problems, as compared
to 32 problems in “Classical” and 31 in “IPC-4”. In terms of
expanded nodes, partial-order macros often achieve signifi-
cant savings, but never result in more expanded nodes. For
this problem set, the number of nodes expanded in “Clas-
sical” is an upper bound for the number of nodes in “PO
Macros”. This is mainly due to the goal macro pruning
rule, which turned out to be very selective in PSR. There
are problems where the number of expanded nodes is ex-
actly the same in both setups, suggesting that no macro was
instantiated at run-time. The cost rate averages 1.39, vary-
ing between 1.01 and 1.87. There is no significant decay in
the plan quality.

Compared to the previous three testbeds, the performance
improvement in PSR is rather limited. We believe that part
of the explanation is that our definition of macro equiva-
lence is too relaxed and misses useful structural information
in PSR. When checking if two action sequences are equiv-
alent, our current algorithm considers the set of operators,
their partial ordering, and the variable binding. The algo-
rithm ignores whether conditional effects are activated cor-
respondingly in the two compared sequence instantiations.
However, in PSR, conditional effects encode a significant
part of the local structure of a solution. There are opera-
tors with zero parameters but rich lists of conditional effects
(e.g., operator AXIOM). Further exploration of this insight
is left as future work.

In Pipesworld, the generated macros have a very small
efficiency rate ER, and the dynamic filtering drops all of
them, reducing the search to the classical algorithm. We
ran no experiments in Airport. In the ADL version of this
domain, the classical algorithm quickly solves the first 20
problems, leaving little room for further improvement. The
pre-processing phase of the remaining problems is so hard
that only one more instance can be solved within the given
constraints. We could not use the STRIPS version to test our
method either. In STRIPS Airport, each problem instance
has its own domain definition, whereas our learning method
requires several training problems for one domain.

An important problem that we want to address is to eval-
uate in which domains our method works well, and in which
classes of problems this approach is less effective. We iden-
tify several factors that affect our method performance in



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  5  10  15  20  25  30  35  40  45  50

N
od

es

Problem

Expanded Nodes

PO Macros
IPC-4

Classical

 0.01

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

T
im

e 
(s

ec
on

ds
)

Problem

CPU Time

PO Macros
IPC-4

Classical

Figure 4: Experimental results in Promela Dining Philosophers.

 10

 100

 1000

 10000

 100000

 1e+06

 0  5  10  15  20  25  30  35  40  45  50

N
od

es

Problem

Expanded Nodes

PO Macros
IPC-4

Classical
 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20  25  30  35  40  45  50

T
im

e 
(s

ec
on

ds
)

Problem

CPU Time

PO Macros
IPC-4

Classical

Figure 5: Experimental results in Promela Optical Telegraph.

terms of search effort in a domain. The first factor is the ef-
ficiency of the macro pruning rules, which control the set of
macro instantiations at run-time and influences the planner
performance. An efficient pruning keeps only a few instanti-
ations that are shortcuts to a goal state (a single such instan-
tiation will do). The performance drops when more instan-
tiations are selected, and many of them lead to subtrees that
contain no goal states. The efficiency of helpful macro prun-
ing directly depends on the quality of both the relaxed plan
associated with a state, and the macro-schema that is being
instantiated. Since the relaxed plan is more informative in
Promela and Satellite than in PSR or Pipesworld, the perfor-
mance of our approach is significantly better in the former
applications.

Second, our experience suggests that our method per-
forms better in “structured” domains rather than in “flat”
benchmarks. Intuitively, we say that a domain is more struc-
tured when more local details of the domain in the real world
are preserved in the PDDL formulation. In such domains,
local move sequences occur over and over again, and our
method can catch these as potential macros. In contrast, in a
“flat” domain, such a local sequence is often replaced with

one single action by the designer of the PDDL formulation.
Third, the search strategy seems to be important too.

Enforced Hill Climbing is successful in Promela Dining
Philosophers, Promela Optical Telegraph, and Satellite,
where we have achieved great performance improvement.
Best First Search has to be launched in PSR and many in-
stances of Pipesworld when hill climbing is perceived to
have failed. More analysis of this issue is left as future work.

Related Work
Early work on macro-operators in AI planning includes
(Fikes & Nilsson 1971). As in our approach, macros are
extracted after a problem was solved and the solution be-
came available. (Minton 1985) advances this work by in-
troducing techniques that filter the set of learned macro-
operators. In his approach, two types of macro-operators
are preferred: S-macros, which occur with high frequency
in problem solutions, and the T-macros, which can be use-
ful but have low-priority in the original search algorithm. In
(Iba 1989) macro-operators are generated at run-time using
the so-called peak-to-peak heuristic. A macro is a move se-
quence between two peaks of the heuristic state evaluation.



 1

 10

 100

 1000

 10000

 0  5  10  15  20  25  30  35  40

N
od

es

Problem

Expanded Nodes

PO Macros
IPC-4

Classical

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20  25  30  35  40

T
im

e 
(s

ec
on

ds
)

Problem

CPU Time

PO Macros
IPC-4

Classical

Figure 6: Experimental results in Satellite.

 100

 1000

 10000

 100000

 0  5  10  15  20  25  30  35  40  45  50

N
od

es

Problem

Expanded Nodes

PO Macros
IPC-4

Classical
 0.1

 1

 10

 100

 1000

 10000

 0  5  10  15  20  25  30  35  40  45  50

T
im

e 
(s

ec
on

ds
)

Problem

CPU Time (seconds)

PO Macros
IPC-4

Classical

Figure 7: Experimental results in PSR Middle Compiled.

Such a macro traverses a “valley” in the search space, and
using this later can correct the heuristic evaluation. A macro
filtering procedure uses both simple static rules and dynamic
statistical data. As in our work, (Mooney 1988) introduces
partial ordering of operators in a macro based on their causal
interactions. This work considers whole plans as macros,
whereas we focus on local macro-sequences.

Work on improving planning based on solutions of sim-
ilar problems includes (Veloso & Carbonell 1993; Kamb-
hampati 1993). Solutions of solved problems annotated with
additional relevant information are stored for later use. This
additional information contains explanations of successful
or failed search decisions in (Veloso & Carbonell 1993),
and the causal structure of solution plans in (Kambhampati
1993). These approaches further define several similarity
metrics between planning problems. When a new problem
is fed to the planner, the annotated solutions of similar prob-
lems are used to guide the current planning process.

(McCluskey & Porteous 1997) focus on constructing
planning domains starting from a natural language descrip-
tion. The approach combines human expertise and auto-
matic tools, and addresses both correctness and efficiency of

the obtained formulation. Using macro-operators is a major
technique that the authors propose for efficiency improve-
ment. In this work, a state in a domain is composed of local
states of several variables called dynamic objects. Macros
model transitions between the local states of a variable.

Planner Marvin (Coles & Smith 2004) generates macros
both online (as plateau-escaping sequences) and offline
(from a reduced version of the problem to be solved). No
macros are cached from one problem instance to another.

Other methods that exploit at search time the relaxed
graphplan associated to a problem state (Hoffmann & Nebel
2001) include helpful action pruning (Hoffmann & Nebel
2001) and look-ahead policies (Vidal 2004a). Helpful ac-
tion pruning considers for node expansion only actions that
occur in the relaxed plan and can be applied to the current
state. Helpful macro pruning applies the same pruning idea
for the macro-actions applicable to a state, with the notice-
able difference that helpful macro pruning does not give up
completeness of the search algorithm.

A lookahead policy executes parts of the relaxed plan in
the real world, as this often provides a path towards a goal
state with no search and few states evaluated. The actions in



the relaxed plan are heuristically sorted and iteratively ap-
plied as long as this is possible. When the lookahead proce-
dure cannot be continued with actions from the relaxed plan,
a plan-repair method selects a new action to be applied, so
the procedure can resume.

Application-specific implementations of macro-actions
include work on the sliding-tile puzzle (Korf 1985; Iba
1989). Using macro-moves to solving Rubik’s Cube puzzles
is proposed in (Hernádvölgyi 2001). Two of the most effec-
tive concepts used in the Sokoban solver Rolling Stone, tun-
nel and goal macros, are applications of this idea (Junghanns
& Schaeffer 2001). More recent work in Sokoban includes
decomposition of a maze into a set of rooms connected by
tunnels, with macro-moves defined for internal processing
of rooms and tunnels (Botea, Müller, & Schaeffer 2002). In
(Botea, Müller, & Schaeffer 2004a), a navigation map is au-
tomatically decomposed into a set of clusters, possibly on
several abstraction levels. For each cluster, an internal opti-
mal path is pre-computed between any two entrances of that
cluster. Path-finding is performed at an abstract level, where
a macro-move crosses a cluster from one entrance to another
in one step.

Conclusion
Despite the great progress that AI planning has recently
achieved, many domains remain challenging for current
planners. In this paper we presented a technique that au-
tomatically learns a small set of macro-operators from pre-
vious experience in a domain, and uses them to speed up
the search in future problems. We evaluated our method on
standard benchmarks, showing significant improvement for
domains where structure information can be inferred.

Exploring our method more deeply and improving the
performance in more classes of problems are major direc-
tions for future work. We also plan to extend our approach
in several directions. Our learning method can be general-
ized from macro-operators to more complex structures such
as hierarchical task networks. Little research focusing on
learning such structures has been conducted, even though
the problem is of great importance.

Another interesting topic is to use macros in the graphplan
algorithm, rather than our current framework of planning as
heuristic search. The motivation is that a solution graph can
be seen as a subset of the graphplan associated to the initial
state of a problem. Since we learn common patterns that
occur in solution graphs, it seems natural to try to use these
patterns in a framework that is similar to solution graphs.

We will explore how a heuristic evaluation based on the
relaxed graphplan can be improved with macro-operators.
Our previous work, where a STRIPS macro is added to the
original domain formulation as a regular operator, shows the
potential of this idea. In this framework, macros are consid-
ered in the relaxed graphplan computation just like any other
operator, and they may lead to more accurate evaluations.

References
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2004. Macro-FF. In 4th International Planning Competi-

tion, 15–17.
Botea, A.; Müller, M.; and Schaeffer, J. 2002. Using Ab-
straction for Planning in Sokoban. In 3rd International
Conference on Computers and Games (CG’2002).
Botea, A.; Müller, M.; and Schaeffer, J. 2004a. Near Opti-
mal Hierarchical Path-Finding. Journal of Game Develop-
ment 1(1):7–28.
Botea, A.; Müller, M.; and Schaeffer, J. 2004b. Us-
ing Component Abstraction for Automatic Generation of
Macro-Actions. In ICAPS-04, 181–190.
Coles, A., and Smith, A. 2004. Marvin: Macro Actions
from Reduced Versions of the Instance. In 4th Interna-
tional Planning Competition, 24–26.
Fikes, R. E., and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence 5(2):189–208.
Hernádvölgyi, I. 2001. Searching for Macro-operators
with Automatically Generated Heuristics. In 14th Cana-
dian Conference on Artificial Intelligence, 194–203.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search. JAIR
14:253–302.
Hoffmann, J.; Edelkamp, S.; Englert, R.; Liporace, F.;
Thiébaux, S.; and Trüg, S. 2004. Towards Realistic Bench-
marks for Planning: the Domains Used in the Classical Part
of IPC-4. In 4th International Planning Competition, 7–14.
Iba, G. A. 1989. A Heuristic Approach to the Discovery of
Macro-Operators. Machine Learning 3(4):285–317.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: Enhanc-
ing Single-Agent Search Using Domain Knowledge. Arti-
ficial Intelligence 129(1–2):219–251.
Kambhampati, S. 1993. Machine Learning Methods for
Planning. Morgan Kaufmann. chapter Supporting Flexible
Plan Reuse, 397–434.
Korf, R. E. 1985. Macro-operators: A weak method for
learning. Artificial Intelligence 26(1):35–77.
McCluskey, T. L., and Porteous, J. M. 1997. Engineer-
ing and Compiling Planning Domain Models to Promote
Validity and Efficiency. Artificial Intelligence 95:1–65.
Minton, S. 1985. Selectively Generalizing Plans for
Problem-Solving. In IJCAI-85, 596–599.
Mooney, R. 1988. Generalizing the Order of Operators
in Macro-Operators. In Fifth International Converence on
Machine Learning ICML-88, 270–283.
Nguyen, X., and Kambhampati, S. 2001. Reviving Partial
Order Planning. In Nebel, B., ed., IJCAI-01, 459–466.
Veloso, M., and Carbonell, J. 1993. Machine Learning
Methods for Planning. Morgan Kaufmann. chapter To-
ward Scaling Up Machine Learning: A Case Stydy with
Derivational Analogy, 233–272.
Vidal, V. 2004a. A Lookahead Strategy for Heuristic
Search Planning. In ICAPS-04, 150–159.
Vidal, V. 2004b. The YAHSP Planning System: Forward
Heuristic Search with Lookahead Plans Analysis. In 4th
International Planning Competition, 56–58.


