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Abstract
Poker is an interesting test-bed for artificial
intelligence research. It is a game of imperfect
knowledge, where multiple competing agents
must deal with risk management, opponent
modeling, unreliable information, and deception,
much like decision-making applications in the
real world. Opponent modeling is one of the
most difficult problems in decision-making
applications and in poker it is essential to
achieving high performance. This paper
describes and evaluates the implicit and explicit
learning in the poker program Lok i. L o k i
implicitly “learns” sophisticated strategies by
selectively sampling likely cards for the
opponents and then simulating the remainder of
the game. The program has explicit learning for
observing its opponents, constructing opponent
models and dynamically adapting its play to
exploit patterns in the opponents’ play. The result
is a program capable of playing reasonably
strong poker, but there remains considerable
research to be done to play at a world-class level.

1. INTRODUCTION
The artificial intelligence community has recently
benefited from the tremendous publicity generated by the
development of chess, checkers and Othello programs that
are capable of defeating the best human players. However,
there is an important difference between these board
games and popular card games like bridge and poker. In
the board games, players always have complete
knowledge of the entire game state since it is visible to
both participants. This property allows high performance
to be achieved by a brute-force search of the game tree. In
contrast, bridge and poker involve imperfect information
since the other players’ cards are not known, and search
alone is insufficient to play these games well. Dealing

with imperfect information is the main reason why
progress on developing strong bridge and poker programs
has lagged behind the advances in other games. However,
it is also the reason why these games promise higher
potential research benefits.

Poker has a rich history of scientific investigation.
Economists and mathematicians have applied a variety of
analytical techniques to certain poker-related problems.
However, since “real” poker is too complex for this
approach, they have studied simplified variants ([15] for
example). Other individuals, including expert players with
a penchant for mathematics, have gained considerable
insight about “real” poker by using partial mathematical
analyses, simulation, and ad-hoc expert experience ([18]
is a popular example).

Until recently, the computing science community has
largely ignored poker. However, poker has a number of
attributes that make it an interesting domain for artificial
intelligence (AI) research. These attributes include
imperfect knowledge, multiple competing agents, risk
management, opponent modeling, deception, and dealing
with unreliable information. All of these are challenging
dimensions to a difficult problem.

There are two ways that poker can be used as an
interesting testbed for artificial intelligence research. One
approach is to use simplified variants that are easier to
analyze. For example, Findler worked on and off for 20
years on a poker-playing program for simplified 5-card
draw poker [7]. He modeled human cognitive processes
and built a program that could learn. The danger with this
approach is that simplification can remove the challenging
components of the problem that are of interest to AI
researchers. A variant of this approach is to look at a
subset of the game, and try to address each component in
isolation. Several attempts have been made to apply
machine learning techniques to individual aspects of
poker (some examples include [19,21,6]).



The second approach, and the one that we advocate, is to
tackle the entire problem: choose a real variant of poker
and address all the considerations necessary to build a
program that performs at a level comparable to that of the
best human players. Clearly this is the most ambitious
approach, but also the one that promises the most exciting
research opportunities.

Recently, Koller and Pfeffer have been investigating
poker from a theoretical point of view [13]. They present
a new algorithm for finding optimal randomized strategies
in two-player imperfect information competitive games.
This is done in their Gala system, a tool for specifying
and solving problems of imperfect information. Their
system builds decision trees to find the optimal game-
theoretic strategy. However the tree sizes prompted the
authors to state that “...we are nowhere close to being able
to solve huge games such as full-scale poker, and it is
unlikely that we will ever be able to do so.” In theory,
their approach could be used to build an optimal poker
player for a real variant of poker. In practice, it will
require too many computational resources unless further
improvements are discovered.

We are attempting to build a program that is capable of
playing world-class poker. We have chosen to study the
game of Texas Hold'em, the poker variation used to
determine the world champion in the annual World Series
of Poker. Hold’em is considered to be the most
strategically complex poker variant that is widely played.

Our experiences with our first poker program, called Loki,
were positive [1,14]. However, we quickly discovered two
limitations to further performance gains:

1 The betting strategy—whether to fold, call, or raise in
a given situation—was defined using expert
knowledge. This became cumbersome, since it was
awkward to define rules to cover all the possible
scenarios. Furthermore, any static strategy is suspect.
A successful strategy must depend on changing game
conditions.

2 Initially, in games played over the Internet, Loki
performed quite well. However, some opponents
detected patterns and weaknesses in Loki’s play, and
they altered their strategy to exploit them. An
opponent can exploit any predictable strategy, both in
theory and in practice. To be a strong poker player,
one must model the opponent’s play and adjust to it.

This paper describes and evaluates two types of learning
in Loki. First, its knowledge-based betting strategy can be
viewed as a static evaluation function. In two-player
games, such as chess, the quality of the evaluation can be
improved through search. In poker, imperfect information
makes a search of the full game tree impractical. Instead, a
simulation that samples from the set of likely scenarios
can be used to enhance an evaluation. We found that a
simple evaluation function augmented by search can
uncover sophisticated strategies, as has been observed in
perfect-information games. In other words, search

compensates for a lack of knowledge. In effect, Loki uses
simulations to implicitly learn advanced strategies.

Second, Loki observes and records the actions of each
opponent and uses this information to build a simple
model of their play. This model is used to predict each
opponent’s hidden cards. The program adapts to the style
of each opponent and exploits any predictable actions.

We have experimentally assessed each of these styles of
learning, both in the laboratory and in play with human
opponents. To the best of our knowledge, Loki is the first
successful demonstration of using real-time learning to
improve performance in a high-performance game-
playing program.

This paper describes our previous work on Lok i
[1,2,3,4,14] and outlines some of the future directions we
are pursuing. Section 2 provides an overview of Texas
Hold’em. Section 3 identifies the minimal set of
requirements necessary to achieve world-class play.
Loki’s architecture is described in Section 4. Section 5
discusses the implicit learning used in the betting strategy,
while Section 6 addresses the explicit opponent modeling.
The performance of the program is assessed in Section 7.
Section 8 identifies future work, and Section 9 provides
some conclusions.

2. TEXAS HOLD’EM
A hand of Texas Hold’em begins with the pre-flop, where
each player is dealt two hole cards face down, followed
by the first round of betting. Three community cards are
then dealt face up on the table, called the flop, and the
second round of betting occurs. On the turn, a fourth
community card is dealt face up and another round of
betting ensues. Finally, on the river, a fifth community
card is dealt face up and the final round of betting occurs.
All players still in the game reveal their two hole cards for
the showdown. The best five-card poker hand formed
from the two hole cards and the five community cards
wins the pot. If a tie occurs, the pot is split. Texas
Hold’em is typically played with 8 to 10 players.

Limit Texas Hold’em uses a structured betting system,
where the order and amount of betting is strictly
controlled on each betting round.1 There are two
denominations of bets, called the small bet and the big bet
($2 and $4 in this paper). In the first two betting rounds,
all bets and raises are $2, while in the last two rounds,
they are $4. In general, when it is a player’s turn to act,
one of five betting options is available: fold, call/check, or
raise/bet. There is normally a maximum of three raises
allowed per betting round. The betting option rotates
clockwise until each player has matched the current bet or
folded. If there is only one player remaining (all others
having folded) that player is the winner and is awarded the
pot without having to reveal their cards.
                                                                        
1 In No-limit Texas Hold’em, there are no restrictions on bet sizes.



3. REQUIREMENTS FOR A WORLD-
CLASS POKER PLAYER
We have identified several key components that address
some of the required activities of a strong poker player.
However, these components are not independent. They
must be continually refined as new capabilities are added
to the program.

Hand strength assesses the strength of a hand in relation
to the other hands. The simplest hand strength
computation is a function of the cards in the hand and the
current community cards. A better hand strength
computation takes into account the number of players still
in the game, the position of the player at the table, and the
history of betting for the current game. An even more
accurate calculation considers the probabilities for each
possible opponent hand, based on the likelihood of each
hand being played to the current point in the game.

Hand potential computes the probability that a hand will
improve to win, or that a leading hand will lose, as
additional community cards appear. For example, a hand
that contains four cards in the same suit may have a low
hand strength, but has good potential to win with a flush
as more community cards are dealt. Conversely, a hand
with a high pair could decrease in strength and lose to a
flush as many cards of a common suit appear on the
board. At a minimum, hand potential is a function of the
cards in the hand and the current community cards.
However, a better calculation could use all of the
additional factors described in the hand strength
computation.

Betting strategy determines whether to fold, call/check,
or bet/raise in any given situation. A minimum strategy is
based on hand strength. Refinements consider hand
potential, pot odds (your winning chances compared to the
expected return from the pot), bluffing, opponent
modeling and trying to play unpredictably.

Bluffing allows you to make a profit from weak hands,2

and can be used to create a false impression about your
play to improve the profitability of subsequent hands.
Bluffing is essential for successful play. Game theory can
be used to compute a theoretically optimal bluffing
frequency in certain situations. A minimal bluffing system
merely bluffs this percentage of hands indiscriminately. In
practice, you should also consider other factors (such as
hand potential) and be able to predict the probability that
your opponent will fold in order to identify profitable
bluffing opportunities.

Unpredictability  makes it difficult for opponents to form
an accurate model of your strategy. By varying your
playing strategy over time, opponents may be induced to
make mistakes based on an incorrect model.

Opponent modeling allows you to determine a likely
probability distribution for your opponent’s hidden cards.
                                                                        
2 Other forms of deception (such as calling with a strong hand) are not
considered here.

A minimal opponent model might use a single model for
all opponents in a given hand. Opponent modeling may be
improved by modifying those probabilities based on the
collected statistics and betting history of each opponent.

There are several other identifiable characteristics that
may not be necessary to play reasonably strong poker, but
may eventually be required for world-class play.

Opponent modeling is integral to successful poker play.
Koller and Pfeffer have proposed a system for
constructing a game-theoretic optimal player [13].
However, it is important to differentiate an optimal
strategy from a maximizing strategy. The optimal player
makes its decisions based on game-theoretic probabilities,
without regard to specific context. The maximizing player
takes into account the opponent’s sub-optimal tendencies
and adjusts its play to exploit these weaknesses.

In poker, a player that detects and adjusts to opponent
weaknesses will win more than a player who does not. For
example, against a strong conservative player, it would be
correct to fold the probable second-best hand. However,
against a weaker player who bluffs too much, it would be
an error to fold that same hand. In real poker it is very
common for opponents to play sub-optimally. A player
who fails to detect and exploit these weaknesses will not
win as much as a better player who does. Thus, a
maximizing program will out-perform an optimal program
against sub-optimal players.

Although a game-theoretic optimal solution for Hold’em
would be interesting and provide a good baseline for
comparing program (and human) performance, it would in
no way “solve the game.” To produce a world-class poker
program, strong opponent modeling is essential.

4. LOKI’S ARCHITECTURE
This section gives a brief overview of the important
components of Loki’s architecture [4]. Figure 1 illustrates
how these components interact. In the diagram, rectangles
are major components, rounded rectangles are major data
structures, and ovals are actions. The data follows the
arrows between components. An annotated arrow
indicates how many times data moves between the
components for each of our betting actions.

The architecture revolves around generating and using
probability triples. It is an ordered triple of values, PT =
[f,c,r], such that f + c  + r = 1.0, representing the
probability distribution that the next betting action in a
given context should be a fold, call, or raise, respectively.
The Triple Generator contains our poker knowledge, and
is analogous to an evaluation function in two-player
games. The Triple Generator calls the Hand Evaluator to
evaluate any two-card hand in the current context. It uses
the resulting hand value, the current game state, and
expert-defined betting rules to compute the triple. To
evaluate a hand, the Hand Evaluator enumerates over all
possible opponent hands and counts how many of them
would win, lose or tie the given hand.



Each time it is Loki’s turn to bet, the Action Selector uses
a single probability triple to decide what action to take.
For example, if the triple [0.0,0.8,0.2] were generated,
then the Action Selector would never fold, call 80% of the
time and raise 20% of the time. A random number is
generated to select one of these actions so that the
program varies its play, even in identical situations.
Although this is analogous to a mixed strategy in game
theory, the probability triple implicitly contains contextual
information.

After the flop, the probability for each possible opponent
hand is different. For example, the probability that Ace-
Ace hole cards are held is much higher than the cards 7-2,
since most players will fold 7-2 before the flop. There is a
weight table for each opponent. Each weight table
contains one value for each possible two-card hand that
the opponent could hold. The value is the probability that
the hand would be played exactly as that opponent has
played so far. For example, assume that an opponent
called before the flop. The updated probability value for
the hand 7-2 might be 2% since it normally should be
folded. Similarly the probability of Ace-King might be
60% since it would seldom be folded before the flop, but
is often raised. After an opponent action, the Opponent
Modeler updates the Weight Table for that opponent in a
process called re-weighting. The value for each hand is
increased or decreased to be consistent with the
opponent's action. The Hand Evaluator uses the Weight
Table in assessing the strength of each possible hand, and
these values are in turn used to update the Weight Table
after each opponent action. The absolute values of these
probabilities are of little consequence, since only the
relative weights affect the later calculations. The details
are discussed in Section 6.
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Figure 1. The architecture of Loki.

Probability triples are used in three places in Loki. The
Action Selector uses a probability triple to decide on a
course of action (fold, call, raise) as previously described.
The Simulator uses probability triples to choose actions
for simulated opponent hands (see Section 5). The
Opponent Modeler uses an array of probability triples to
update the model of each opponent (see Section 6).

An important advantage of the probability triple
representation is that imperfect information is restricted to
the Triple Generator and does not affect the rest of the
program. This is similar to the way that alpha-beta search
restricts knowledge to the evaluation function. The
probability triple framework allows the “messy” elements
of the program to be amalgamated into one component,
which can then be treated as a “black box” by the rest of
the system. Thus, aspects like game-specific information,
complex expert-defined rule systems, and knowledge of
human behavior are all isolated from the engine that uses
this input.

5. IMPLICIT LEARNING
Loki's original Action Selector component consisted of
expert-defined rules that used hand strength, hand
potential, game conditions, and probabilities to decide on
an action. A professional poker player defined the system
as a first approximation of the return on investment for
each betting decision. As other aspects of Loki improved,
this simplistic betting strategy became the limiting factor
to the playing strength of the program. Unfortunately, any
rule-based system is inherently rigid, and even simple
changes were difficult to implement and verify for
correctness. A more flexible, computation-based approach
was needed.

In effect, a knowledge-based betting strategy is equivalent
to a static evaluation function. Given the current state of
the game and the hole cards, it attempts to determine the
action that yields the best result. If we use deterministic
perfect information games as a model, the obvious
extension is to add search to the evaluation function.
While this is easy to achieve in a perfect-information
game such as chess (consider all possible moves as deeply
as resources permit), the same approach is not feasible for
real imperfect information games because there are too
many possibilities to consider [13].

Having an expert identify all the betting rules necessary to
play world-class poker is time consuming and difficult.
Decisions must be based on context, within a game and
between games. Covering all eventualities is not practical.
In such a system, the expert does the learning, transferring
his knowledge into new or modified rules. We prefer a
dynamic computation-based approach, where the program
does the learning as it plays.

Loki’s improved betting strategy consists of playing out
many likely scenarios to determine how much money each
decision will win or lose. Every time it faces a decision,
Loki invokes the Simulator to get an estimate of the
expected value (EV) of each betting action (see the dashed
box in Figure 1 with the Simulator replacing the Action
Selector). A simulation consists of playing out the hand a
specified number of times, from the current state of the
game through to the end. Folding is considered to have a
zero EV, because we do not make any future profit or
loss. Each trial is played out twice—once to consider the
consequences of a check/call and once to consider a



bet/raise. In each trial, cards are dealt to each opponent
(based on the probabilities maintained in the Weight
Table), the resulting game is simulated to the end, and the
amount of money won or lost is determined. Probability
triples are used to simulate the actions of the opponents
based on the two cards they are assigned for that trial. The
average over all of the trials is taken as the EV of each
action. In the current implementation we simply choose
the action with the greatest expectation, folding if both
expectations are negative. If two actions have the same
expectation, we opt for the most aggressive one (call over
fold and raise over call). To increase the programs
unpredictability, we can randomize the selection of betting
actions whose EVs are close in value.

Enumerating all possible opponent hands and future
community cards is analogous to exhaustive game tree
search and is impractical for poker. However, simulation
is analogous to a selective expansion of some branches of
a game tree. To get a good approximation of the expected
value of each betting action, one must have a preference
for expanding and evaluating the nodes that are most
likely to occur. To obtain a correctly weighted average, all
of the possibilities must be considered in proportion to the
underlying probability distribution of the opponent hands
and future community cards. The distribution of future
community cards is uniform across unseen cards, but the
probable opponent hands are not! We use selective
sampling to select the most probable hands for each
opponent.

When simulating a hand, we have specific information
that can be used to bias the selection of cards. For
example, a player who has been raising is more likely to
have a strong hand than a player who has just called every
bet. For each opponent, Loki maintains a probability
distribution over the entire set of possible hands (the
Weight Table), and the random generation of each
opponent’s hole cards is based on those probabilities.
Thus, we are biasing our selection of hole cards for the
opponent to the ones that are most likely to occur.

At each node in the decision tree, a player must choose
between one of three alternatives. Since the choice is
strongly correlated to the quality of the cards that they
have, we can use the Triple Generator to compute the
likelihood that the player will fold, check/call, or bet/raise
in each instance. The player’s action is then randomly
selected based on the probability distribution, and the
simulation proceeds. As shown in Figure 1, the Simulator
calls the TripleGenerator to obtain each of our betting
actions and each of our opponent actions. Where two
actions are equally viable, the resulting EVs should be
nearly equal, so there is little consequence if the “wrong”
action is chosen.

It should be obvious that the simulation approach must be
better than the static approach, since it essentially uses a
selective search to augment and refine a static evaluation
function. Barring a serious misconception (or bad luck on
a limited sample size), playing out relevant scenarios will

improve the default values obtained by heuristics,
resulting in a more accurate estimate.

As seen in other search domains, the search itself contains
implicit knowledge. A simulation contains inherent
information that improves the basic evaluation. For
example, a simulation contains implicit knowledge such
as:

• hand strength (fraction of trials where our hand is
better than the one assigned to the opponent),

• hand potential (fraction of trials where our hand
improves to the best, or is overtaken), and

• subtle implications not addressed in the simplistic
betting strategy (e.g. “implied odds”—extra bets won
after a successful draw).

It also allows complex strategies to be uncovered without
providing additional expert knowledge. For example,
simulations can result in the emergence of advanced
betting tactics like a check-raise, even if the basic strategy
without simulation is incapable of this play.

At the heart of the simulation is an evaluation function.
The better the quality of the evaluation function, the better
the simulation results will be. One of the interesting
results of work on alpha-beta has been that even a simple
evaluation function can result in a powerful program. We
see a similar situation in poker. The implicit knowledge
contained in the search improves the basic evaluation,
magnifying the quality of the search. As with alpha-beta,
there are tradeoffs to be made. A more sophisticated
evaluation function can reduce the size of the tree, at the
cost of more time spent on each node. In simulation
analysis, we can improve the accuracy of each trial, but at
the expense of the total number of trials performed in real-
time.

Variations of selective sampling have been used in other
games, including Scrabble [17], backgammon [20], and
bridge [9]. Selective sampling is similar to the idea of
likelihood weighting in stochastic simulation [8,16]. In
our case, the goal is different because we need to
differentiate between EVs (for call/check, bet/raise)
instead of counting events. Also, poker complicates
matters by imposing tight real-time constraints (typically a
maximum of two seconds). This forces us to maximize the
information gained from a limited number of samples.
Further, the problem of handling unlikely events (which is
a concern for any sampling-based result) is smoothly
handled by our re-weighting system (Section 6), allowing
Loki to dynamically adjust the likelihood of an event
based on observed actions. An unlikely event with a big
payoff figures naturally into the EV calculations.

6. EXPLICIT LEARNING
In strategic games like chess, the performance loss by
ignoring opponent modeling is small, and hence it is
usually ignored (although it has been studied [5,11,12]).
In contrast, not only does opponent modeling have
tremendous value in poker, it can be the distinguishing



feature between players at different skill levels. If a set of
players all have a comparable knowledge of poker
fundamentals, the ability to alter decisions based on an
accurate model of the opponent may have a greater impact
on success than any other strategic principle.

To assess a hand, the Hand Evaluator compares those
cards against all possible opponent holdings. Naively, one
could treat all opponent hands as equally likely, however
this skews the hand evaluations compared to more
realistic assumptions. Many weak hands are likely to have
been folded before the flop, making them less likely to be
held later in the hand. Similarly, a hand made strong by
the turn and river cards may have been folded on the flop.
Therefore, for each starting hand, we need to define a
probability that our opponent would have played that hand
in the observed manner. We call the probabilities for each
of these (52 choose 2) = 1,326 subcases weights since they
act as multipliers in the enumeration computations.3

The use of these weights is the first step toward opponent
modeling since we are changing our computations based
on the relative probabilities our opponent’s possible hole
cards. The simplest approach to determining these weights
is to treat all opponents the same, calculating a single set
of weights to reflect “reasonable” behavior, and use them
for all opponents. An initial set of weights was determined
by ranking the starting hands (as determined by off-line
simulations) and assigning a probability commensurate
with the average return on investment of each hand. These
results closely approximate the ranking of hands by strong
players [18].

In Loki, the Opponent Modeler uses probability triples to
update the Weight Table after each opponent action. To
accomplish this, the Triple Generator is called for each
possible two-card hand. It then multiplies each weight in
the Weight Table by the entry in the probability triple that
corresponds to the opponent’s action. For example,
suppose the previous weight for Ace-Ace is 0.7 (meaning
that i f  it has been dealt, there is a 70% chance the
opponent would have played it in exactly the manner
observed so far), and the opponent now calls. If the
probability triple for the current context is [0.0, 0.2, 0.8],
then the updated weight for this case would be 0.7 x 0.2 =
0.14. The relative likelihood of the opponent holding Ace-
Ace has decreased to 14% because they did not raise. 

The call value of 0.2 reflects the possibility that this
particular opponent might deliberately try to mislead us by
calling instead of raising. Using a probability distribution
allows us to account for uncertainty in our beliefs. This
process of updating the weight table is repeated for each
entry.

The above corresponds to what we call Generic Opponent
Modeling (GOM). Each hand is viewed in isolation and all
opponents are treated as the same player. Each player’s
Weight Table is initially identical, and gets modified
based on their betting action. Although rather simplistic,
                                                                        
3 The probability that an opponent holds a particular hand is the weight
of that subcase divided by the sum of the weights for all the subcases.

this model is quite powerful in that it does a good job of
skewing the hand evaluations to take into account the
most likely opponent holdings.

Obviously, treating all opponents the same is clearly
wrong. Each player has a different style, ranging from
loose (plays most hands beyond the flop) to tight (usually
plays the few hands that have a very high probability of
winning), and from aggressive to conservative. Knowing
the style of the opponents allows a player to adjust their
betting decisions. For example, if a perceived tight player
is betting aggressively, there is a good chance that they
have a strong hand. A loose player will play many
marginal hands or may bluff a lot. This is useful
information and may allow you to fold a strong hand or
call with a weak one when it is correct to do so. In
general, a bet made by a loose or aggressive player should
not be taken as seriously as one made by a tight or
conservative player.

Specific Opponent Modeling (SOM) customizes the
probability triple function to represent the playing style of
each opponent. For a given game, the reweighting factor
applied to the entries of the Weight table is adjusted by
betting frequency statistics gathered on that opponent
from previous hands. This results in a shift of the assumed
call and raise thresholds for each player. In the case of a
tight player, the call and raise thresholds will increase,
indicating fewer hands that are likely to be played.
Conversely, a loose player’s thresholds will be lowered.
During each round of a game, the history of previous
actions by the opponent is used to influence the
probability triple generated for that opponent.

In competitive poker, opponent modeling is much more
complex than portrayed here. For example, players can act
to mislead their opponents into constructing an erroneous
model. Early in a session a strong poker player may try to
create the impression of being very conservative, only to
exploit that image later in that session when the opponents
are using an incorrect opponent model. A strong player
has to adapt their model to the opponents varying their
playing style.

7. EXPERIMENTS
Self-play experiments offer a convenient method for the
comparison of two or more versions of the program. Our
experiments use a duplicate tournament system, based on
the same principle as duplicate bridge. Since each hand
can be played with no memory of preceding hands, it is
possible to replay the same deal, but with the participants
holding a different set of hole cards each time. Our
tournament system simulates a ten-player game, where
each deal is replayed ten times, shuffling the seating
arrangement so that every participant has the opportunity
to play each set of hole cards once. This arrangement
greatly reduces the “luck element” of the game, since each
player will have the same number of good and bad hands.
The differences in the performance of players will
therefore be based more strongly on the quality of the



decisions made in each situation. This reduction in natural
variance allows meaningful results to be obtained with a
smaller number of trials than in a typical game setting.
Nevertheless, it is important to not over-interpret the
results of one experiment.

Experiments have been performed with Loki to measure
the performance of generic opponent modeling (GOM),
simulation (S), and both combined (GOM+S). The results
were obtained by playing a self-play tournament
containing two enhanced versions of Loki against 8
unenhanced versions. A tournament consisted of 2,500
different deals (i.e. 25,000 games). Each simulation
consisted of 500 trials, since the results obtained after 500
trials were reasonably stable.4

The metric used to measure program performance is the
average number of small bets won per hand (sb/hand), a
metric that is sometimes used by human players. For
example, in a game of $10/$20 Hold’em, an improvement
of +0.10 sb/hand translates into an extra $30 per hour
(based on 30 hands per hour). Anything above +0.05
small bets per hand is considered a large improvement. In
play on an Internet poker server against human opponents,
Loki has consistently performed at or above the +0.05
sb/hand level.

The experiments showed that GOM improved
performance by 0.031 ±0.019 sb/hand, simulations
improved by 0.093 ±0.04 sb/hand, and the combination
was worth 0.095 ±0.045 sb/hand (note that these are
newer numbers than those appearing in [2,3,4]). The
results reported here may be slightly misleading since
each experiment used two similar programs. As has been
shown in chess, one has to be careful about interpreting
the results of these types of experiments.

GOM is a significant gain as expected. Given that all
players in the tournaments were variants of Loki, the wide
variety of play that is seen in human play is missing.
Hence, GOM may be of greater benefit against typical
human opponents. Simulations, on the other hand, are a
huge win in self-play experiments against non-simulation
opponents. As expected, they have a naturally occurring
higher variance. The use of simulations represents a large
improvement in the quality and variety of the betting
strategies employed by Loki (or, possibly, overcome a
serious weakness in the older version of the program).
Whereas our initial knowledge-based betting strategy
routine [1,14] was limited by the amount of knowledge we
could code and tune, the simulation-based approach has
no such restrictions. The simulations implicitly enable
advanced betting strategies, with a degree of
unpredictability that makes it harder for the opponents to
model Loki.

Note that although each feature is a win by itself, the
combination is not necessarily additive because there may
                                                                        
4 The average absolute difference in expected value in increasing from
500 to 2,000 trials was small and seldom resulted in a significant change
to an assessment. The difference between 100 trials and 500 trials was
much more significant; the variance with 100 trials was too high.

be some interdependence between GOM and simulations
(i.e. both ideas may exploit the same weaknesses). As
well, the magnitude of the simulation improvement is
such that it hides the effects of combining it with GOM.
The larger the winning margin, the smaller the
opportunity there is for demonstrating further
improvement against the same opposition.

Each set of improvements reported over the past two years
were measured against the previous strongest versions of
Loki. As a result, the magnitude of the change may be
dampened over time, simply because it is being tested
against generally stronger opposition. For example, if you
have three generations of poker-playing programs (A, B,
and C) with B defeating A by 0.1 sb/hand and C is better
than B by 0.1 sb/hand, it does not follow that C will be .2
sb/hand better than A.

Specific opponent modeling (SOM) is harder to measure,
due in part to the nature of our self-play experiments. In
previous work we demonstrated improvements for both
GOM and SOM against a static default model [2].
However, since that time Loki has improved significantly
(for example, with improved reweighting and
simulations). A consequence is that our simplistic SOM
model has not yet added significantly to the performance
of the stronger version of Loki. Improving SOM is our
current focus, and some of the ideas we are pursuing are
discussed in the next section.

Loki has been tested in more realistic games against
human opposition. For this purpose, the program
participates in an on-line poker game, running on the
Internet Relay Chat (IRC). Human players connect to IRC
and participate in games conducted by dedicated server
programs. No real money is at stake, but bankroll statistics
on each player are maintained. The new versions of Loki
using GOM and simulations win consistently when
playing on the IRC server. Although there is a high level
of variance in this environment, there is strong evidence
that GOM is a major advance in the program’s playing
strength against human opposition (as opposed to the self-
play experiments where the advantage was not as
significant). The performance of the program depends
strongly on which players happen to be playing, and on
IRC it ranges from novices to professional players.
Consequently, it is dangerous to quantify the results of our
recent improvements to Loki.

8. ONGOING RESEARCH
The work reported here is our first experience with a
betting strategy based on simulations and opponent
modeling. Each area has numerous opportunities for
improvement, some of which are currently being
addressed. Indeed, the poker project is rich in research
opportunities. There is no shortage of good ideas to
investigate; only a shortage of time and resources.

For the simulations, the major problem is variance
(standard deviation) in the results. We have identified
several ways in which the experiments could be conducted



with less noise. Nevertheless, even with these
enhancements, we expect the variance to still be high.
Faster machines and parallel computations might be
helpful since this will result in a larger sample of
simulation data points. However, this has diminishing
returns and our experiments suggest that beyond a critical
minimum number of simulation data points (in the 100-
500 range) the benefits may be small.

There are tradeoffs in doing the simulations. Currently,
each data point contains a small amount of information
about the expected value. Given the simplicity of the
calculation, one can acquire numerous data points.
Alternatively, one could do fewer simulations, but have
each return a more accurate value. The quantity versus
quality trade-off needs to be explored in more detail.

For the game of bridge, simulations have successfully
allowed computers to play hands at a world-class level
(GIB [9]). Nevertheless, limitations in the simulation-
based approach and the high variance have prompted the
author of GIB, Matt Ginsberg, to look at other solutions
(including building the entire search tree) [10]. We too
may have to look for new approaches to overcome the
limits of simulations.

In the area of opponent modeling, there are numerous
avenues that can be explored. One serious limitation of
our current work that needs to be address is the resistance
to change that is built into our system. Our opponent
modeling works well in some cases because most of the
opponents have a fixed style that does not vary over time
(certainly the computer opponents that we use in our self-
play experiments have this property). However, it does not
necessarily follow that opponent modeling will be as
successful in games against human players as it is in the
closed experiments. Humans are also very good at
opponent modeling, and can be much less predictable than
the players in our experiments. We have not yet
investigated making our opponent models quickly
responsive to perceived changes in an opponent’s style.
For a strong human player, a single data point is often
sufficient for them to set or alter their model of an
opponent. Our models are far too slow to adapt. This must
change!

A sampling of some of the ideas being investigated
include:

• Use the simulations to refine the opponent modeling.
Having done a simulation, record the expected
reaction for each opponent. If their actions frequently
differ from what is predicted, then Loki can adjust its
opponent model.

• With opponent modeling, it is easy to gather lots of
data. The problem is filtering it and attaching the
appropriate importance to it. Without this, our
modeling will be too slow to react, or base its
decisions on irrelevant information. We are
investigating condensing the data into simpler metrics
that may be better predictors of an opponent’s style
and future behavior. For example, measuring the

amount of money that a player invests per game may
be a good predictor of loose/tight play.

• Previous specific opponent modeling was hampered by
the crude method used for collecting and applying
observed statistics. Much of the relevant context was
ignored for simplicity, such as combinations of actions
within the same betting round. A more sophisticated
method for observing and utilizing opponent behavior
would allow for a more flexible and accurate opponent
model. For example, we are currently experimenting
with modifying our model based on sequences of
opponent’s actions. A check followed by a raise
(typically a show of strength) has more meaning than
looking at these two actions in isolation.

• Loki does not currently use showdown information.
The cards seen at the showdown reveal clues about
how that opponent perceived each decision during the
hand. These hindsight observations can be used to
adaptively measure important characteristics like
aggressiveness, bluffing frequency, predictability,
affinity for draws, and so forth.

• We have yet to fully explore the variety of techniques
available in the literature for learning in a noisy
domain where one must make inferences based on
limited data.

9. CONCLUSIONS
To master the game of poker, one must be adaptive. Any
form of deterministic play can and will be exploited by a
good opponent. A player must change their style based on
the dynamic game conditions observed over a series of
hands (looking at each hand in isolation is an artificial
limitation). Our work has made some progress towards
achieving a poker-playing program that can learn and
adapt. Loki successfully uses opponent modeling to
improve its play. However, it is abundantly clear that
these are only the first steps, and there is considerable
room for improvement.

Poker is a complex game. Strong play requires the player
to excel in many different aspects of the game.
Developing Loki has been a cyclic process. We improve
one aspect of the program until it becomes apparent that
another aspect is the performance bottleneck. That
problem is then tackled until it is no longer the limiting
factor, and new weaknesses in the program’s play are
revealed. We made our initial foray into opponent
modeling and were pleased with the results. With the
success of the new simulation-based betting strategy,
opponent modeling is now back on the critical path since
it will offer the biggest performance gains. We will now
refocus our efforts on that topic, until it too moves off the
critical path.
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