
Inconsistent Heuristics
Uzi Zahavi

Computer Science
Bar-Ilan University

Ramat-Gan, Israel 92500
zahaviu@cs.biu.ac.il

Ariel Felner
Information Systems Engineering

Ben-Gurion University
Be’er-Sheva, Israel 85104

felner@bgu.ac.il

Jonathan Schaeffer and Nathan Sturtevant
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{jonathan,nathanst}@cs.ualberta.ca

Abstract
In the field of heuristic search it is well-known that im-
proving the quality of an admissible heuristic can signif-
icantly decrease the search effort required to find an op-
timal solution. Existing literature often assumes that ad-
missible heuristics areconsistent, implying that consis-
tency is a desirable attribute. To the contrary, this paper
shows that an inconsistent heuristic can be preferable to
a consistent heuristic. Theoretical and empirical results
show that, in many cases, inconsistency can be used to
achieve large performance improvements. The conven-
tional wisdom about inconsistent heuristics is wrong.

Introduction
Heuristic search algorithms such as A* and IDA* are guided
by the cost functionf(n) = g(n) + h(n), whereg(n) is the
actual distance from the initial state to staten andh(n) is a
heuristic function estimating the cost fromn to a goal state.
If h(s) is “admissible” (i.e., is always a lower bound) these
algorithms are guaranteed to find optimal paths.

It is usually assumed that admissible heuristics arecon-
sistent, implying that consistency is a desirable attribute. In
their popular AI textbookArtificial Intelligence: A Modern
Approach, Russell and Norvig write that “one has to work
quite hard to concoct heuristics that are admissible but not
consistent” (Russell & Norvig 2005). Many researches work
using the assumption that “almost all admissible heuristics
are consistent” (Korf 2000). The term “inconsistent heuris-
tic” is portrayed negatively; as something that should be
avoided. Part of this is historical: early research discovered
that inconsistency can lead to poor A* performance, how-
ever the issue has never been fully investigated, and was not
re-considered after the invention of IDA*.

The goal of this paper is to show that many of the pre-
conceived notions about inconsistent heuristics are wrong.
We first show that while there can be drawbacks to using in-
consistent heuristics with A*, these do not affect IDA*. We
then show that inconsistent (admissible) heuristics are easy
to create. Finally, we show that there are many benefits for
using inconsistent heuristics and provide a number of tech-
niques to do that.

Experimental results show that new and recent techniques
together provide a significant reduction in search effort for
IDA*-based search applications. For A*, the issue is not as
clear; inconsistency can be an asset or a liability, but the
application-dependent properties that determine this area

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

matter of future research.
Results are demonstrated primarily using permutation

puzzles, however the ideas are more general, and can be
applied in any single-agent search domain. Pattern data-
bases (Culberson & Schaeffer 1998) (PDBs) are heuristics in
the form of lookup tables which store solutions to instances
of subproblems. We use PDBs since they provide current
state-of-the-art heuristics for many applications but this re-
search is not specific to PDBs.

Background
An admissible heuristich is consistentif for any two states,
x and y, |h(x) − h(y)| ≤ dist(x, y) wheredist(x, y) is
the shortest path betweenx andy. In particular, for neigh-
boring states theh-value never changes by more than the
change in theg-value. An admissible heuristicsh is in-
consistentif for at least some pairs of nodesx and y,
|h(x) − h(y)| > dist(x, y). For example, if a parent node
p hasf(p) = g(p) + h(p) = 5 + 5 = 10, then (since the
heuristic is admissible) any path from the start node to the
goal node that passes throughp has a cost of at least 10. If
the heuristic is inconsistent, then for some childc of p, the
heuristic could return, e.g.,h(c) = 2. If operators all have
cost 1, the total cost of getting to the goal throughc will be
at leastf(c) = g(c) + h(c) = (5 + 1) + 2 = 8. This lower
bound,8, is weaker than the lower bound from the parent.
Thus the information provided by evaluatingc is inconsis-
tent with the information from its parentp.

Pathmax (PMX) is one approach to correcting inconsis-
tent heuristics (Mero 1984). It propagates heuristic values
from a parent nodep to its child c as follows. h(p) −
dist(p, c) is a lower bound ondist(c, Goal) and therefore
can be used instead ofh(c) if it is larger. In this casec inher-
its itsf -cost fromp. Note that PMX is not needed for IDA*,
because if the parent node already exceeds the threshold than
the child node will not even be generated. Otherwise, if the
parent does not exceed the threshold then PMX will never
lift the f-cost of the child above that of its parent, which is
required for a cut-off to occur in IDA*.

G5

d

c

b

a

I 0
5

00

Figure 1: Reopening of nodes with A*

The adjective “inconsistent” has negative connotations,
implying that it is something to be avoided. The most im-
portant drawback of inconsistent heuristics is that the same

node can be expanded more than once when using A*, even
when pathmax is employed (Martelli 1977). With a con-
sistent heuristic, the first time a node is expanded by A* it
always has the minimalg value. By contrast, with inconsis-
tent heuristics the search might re-expand nodes when they
are reached via a shorter path, especially if many small cy-
cles exist. This operation is sometimes referred to as the
reopeningof nodes, since nodes from theclosed listare re-
opened and moved back to theopen list. An example is
shown in Figure 1. Assume that all edges have a weight
of 1 except edge(d, G) which has weight 5. Nodes are la-
beled with theirh-values. With A* (even with PMX) nodes
a (f(a) = 1) andb (f(b) = 6) are generated first. Next,
nodea is expanded, thenc, leading to the expansion of node
d (f(d) = 3). There is no path to the goal of cost less than
or equal to 6 so A* returns to nodeb. Expandingb results in
reopening noded (with a new cost off(d) = 6). Now the
g-value ofd is the minimal value. The optimal path to the
goal has been found, butd was expanded twice.

With IDA*, d will be expanded twice, once for each of
the paths, regardless of whether the heuristic is consistent
or inconsistent. Thus the problem of re-expanding nodes
already exists in IDA*, and using inconsistent heuristics will
not make this behavior worse. This paper concentrates on
IDA*, returning to the issues surrounding A* at the end.

In most previous work on admissible heuristics, research
concentrated on improving the quality of the heuristic as-
sessment. A heuristich1 is considered to be more informed
(better quality) thanh2 if it usually returns higher values
for arbitrary states. For a states, a more informed heuristic
generally improves thef(s) value and increases the chance
of a cutoff in the search. In the 15-puzzle, for example,
there have been massive performance gains seen through the
development of more informed heuristics (20 years of re-
search have led a reduction of four orders of magnitude in
the search effort needed).

A de factostandard usually used by researchers (e.g.,
(Korf 1997; Korf & Felner 2002; Felneret al. 2004)) for
comparing the “informedness” of heuristics is to compare
the average values of a given heuristic over the entire do-
main space or, if not practical, over a large sample of states
of the domain. This paper demonstrates that, while the av-
erage heuristic value is important, there are other considera-
tions that can influence the effectiveness of the heuristic.

Achieving Inconsistent Heuristics

As illustrated earlier, there is a perception that inconsistent
admissible heuristics are hard to create. However, inconsis-
tent heuristics have been used effectively in a number of ap-
plications, including puzzles (Zahaviet al. 2006), pathfind-
ing (Likhachev & Koenig 2005), learning real-time A* and
Moving Target Search (Shimbo & Isida 2000). Furthermore,
with PDBs it turns out to be very easy to generate inconsis-
tent heuristics. Three examples follow. The first is the most
general. It is new and is explored further in this paper. The
other two have been recently used to solve the permutation
search space applications used in this paper. These are by no
means the only ways of creating inconsistent heuristics.

1: Random selection of heuristics: A well-known
method for overcoming pitfalls of a given heuristic is to
consult a number of heuristics and use their maximum. Of
course, there is a tradeoff for doing this—each heuristic cal-
culation increases the time it takes to computeh(s). Addi-
tional heuristic consultations provide diminishing returns, in
terms of the reduction in the number of nodes generated, so
it is not always best to use them all.

Given a number of heuristics one could alternatively se-
lect which heuristic to use randomly. One benefit is that
only a single heuristic will consulted at each node. Ran-
dom selection between heuristics will produce inconsistent
heuristic values if there is no (low) correlation between the
heuristics.

Multiple heuristics often arise from domain-specific geo-
metrical symmetries, meaning that there are no additional
storage costs associated with these extra heuristics.

2: Dual heuristics: In permutation spaces, for each state
s there exists a dual statesd which shares many important
attributes withs, such as the distance to the goal (Felner
et al. 2005; Zahaviet al. 2006). Therefore, any admissi-
ble heuristic applied tosd is also admissible fors. In the
permutation space puzzles used in this paper, the role of lo-
cations and objects (values) can be reversed; the “regular”
state uses a set of objects indexed by their current location,
while the “dual” state has a set of location indexed by the
objects they contain. Both mappings can be looked up in
the same PDB and return an admissible value. Performing
only regular PDB lookups for the states generated during
the search produces consistent values. However, the values
produced by performing the dual lookup can be inconsistent
because the identity of the objects being queried can change
dramatically between two consecutive lookups.

3: Compressed PDBs:Larger PDBs tend to be more ac-
curate than smaller PDBs and thus reduce the number of
generated nodes. Lossy PDB compression, by storing the
minimum of a group of PDB entries in one entry, proved to
preserve most of the information of the larger (more accu-
rate PDB) but with less space (Felneret al. 2004). Heuristic
values obtained by compressed PDBs might be inconsistent
even if the original PDB heuristic is consistent, because the
PDB values for two neighboring nodes can be compressed
into two different entries in the compressed PDB.

In summary, there are two easy ways to generate incon-
sistency for a given domain: 1) the use of multiple differ-
ent heuristics (e.g., symmetries, dual states), and 2) using
a heuristic that has some values missing or degraded (e.g.,
lossy compression). This list is not exhaustive.

Benefits of Inconsistency
Consider a consistent heuristic that is being applied to state
s in a region of the search space where the heuristic is a
poor estimator of the true distance to the goal. Since the
heuristic is consistent, each of the children ofs have a value
that differs from that ofs by at mostc, wherec is the cost
of the operator used to reach them. In other words, the value
of a node and its children are correlated. A search algorithm
will incur significant costs before it is able to escape this
region of poor heuristic values.

3

2

15 5

4

Figure 2: Bidirectional pathmax

Consider using an inconsistent heuristic. Heuristics that
arise from random or dual lookups might have no correla-
tion or only little correlation between the heuristic valueof
s and that of the children ofs. Thus when reaching a state
with a poor heuristic estimation, a child ofs might have a
much larger heuristic value – possibly large enough to es-
cape from this region of the search space. This can be done
with bidirectional pathmax(BPMX) which we introduced
in (Felneret al. 2005) which further improves the original
pathmax method. This is illustrated in Figure 2. The left
side of the figure shows the (inconsistent) heuristic values
for a node and its two children. When the left child is gen-
erated, its heuristic (h = 5) can propagate up to the parent
and then down again to the right child. To preserve admis-
sibility, each propagation reducesh by the cost of traversing
that path (1 in this example). This results inh = 4 for the
root andh = 3 for the right child. Note that BPMX is only
applicable for undirected graphs. When using IDA*, BPMX
can cause many nodes to be pruned that would otherwise be
expanded. For example, suppose the current IDA* threshold
is 2. Without the propagation ofh from the left child, both
the root node (f = g + h = 0 + 2 = 2) and the right child
(f = g+h = 1+1 = 2) would be expanded. Using BPMX,
the left child will improve the parent’sh value to 4, resulting
in a cutoff without even generating the right child.

In summary, inconsistent heuristics are valuable when the
values are not highly correlated between neighboring nodes.
This greatly reduces the chance of entering a region of the
search space where all the heuristic values are low. Because
heuristic values can be propagated with PMX and BPMX, a
single node with a good heuristic may be sufficient to direct
the search into better parts of the search space.

Static Distribution and Korf’s Formula
The distribution of values from a heuristic function can be
used to measure the “informedness” of the function. Typi-
cally this distribution isstatically computed over the space
of all possible states or, if impractical, a large random sam-
ple of states. Doing this for admissible heuristics will usu-
ally show that if a heuristic is more informed then the distri-
bution of values will be higher, as will be the average value.

(Korf, Reid, & Edelkamp 2001) suggested that the num-
ber of nodes expanded by IDA* with aconsistentadmissi-
ble heuristic isN(b, c, P) =

∑d

i=0 biP (c − i) whereb is
the brute-force branching factor,c is the depth of the search
andP is the static distribution function of heuristics. They
first showed that the expected number of all nodesn such
thatf(n) = g(n) + h(n) ≤ c is equal toN(b, c, P). These
nodes have thepotential to be expanded. They then proved
that all the potential nodes will eventually be expanded by
IDA* as follows. Assume thatn is a potential node. Since
the heuristic isconsistentthen any ancestor ofn, p, must
also havef(p) ≤ c and is also a potential node. Then, by a
simple induction they showed that the entire branch from the

root ton will be expanded since all the nodes of the branch
are potential nodes.

For inconsistent heuristics this is not necessarily true.
Compare, for example, the dual (or random) PDB lookup
to the regular consistent lookup of the same PDB. Since ex-
actly the same PDB is used, all heuristics will have the same
static distribution of values. Thus, according to Korf’s for-
mula, the number of potential nodes (i.e., theirf(n) ≤ c)
will again beN(b, c, P). However, Korf’s proof that given
a potential noden all its ancestors must also be potential
nodes is not true. Due to inconsistency there might exist
an ancestorp with f(p) > c. Once IDA* visits this node
the entire subtree below it is pruned andn will not even be
generated. A potential node will be expanded only if all
its ancestors are also potential nodes. This is guaranteed
for consistent heuristics but not for inconsistent heuristics.
Thus, for inconsistent heuristicN(b, c, P) is only an upper
bound on the number of generated nodes.

4

inconsistentconsistent expanded
generated

not generated4

53

3 3 3 4 6

4

3 5

3 3 36

Figure 3: Consistent versus inconsistent heuristics

An example of the difference between consistent and in-
consistent heuristics is shown in Figure 3. Nodes are marked
with their h-value. Observe that in both cases we have ex-
actly the sameh-value distribution in the various levels of
the tree. For the consistent case, if the current IDA* thresh-
old is 5, all 3 nodes at depth 2 withh-value of 3 have
f = g + h = 2 + 3 = 5 and will be expanded. The right
subtree is pruned because thef -value of the right node at
level 1 isf = g + h = 1 + 5 = 6 > 5. For the inconsistent
case, however, only one node at depth 2 will be expanded –
the leftmost node. The second node withh-value of 6 will
be generated but not expanded because itsf -value is8 and
exceeds the threshold. Due to BPMX, its value will be prop-
agated to its parent and its right sibling (a potential node
with h = 3) will not even be generated. The right subtree
will be pruned again and, due to PMX, the rightmost node –
with h-value of 3 – will not be generated.

Dynamic Distribution of Heuristic Values
There is no guarantee that the static distribution of values
in a heuristic will have the same distribution as the values
actually considered during search. What makes a heuristic
effective is not its overallstatic distributionbut thedynamic
distributionof the values generated during search.

The idea of static and dynamic distributions of heuristic
values is not new; it has been previously used to explain why
the maximum of several weak heuristics can outperform one
stronger heuristic (Holteet al. 2006). In this paper we ex-
amine the distributions generated by inconsistent heuristics
and analyze their influence on the search.

The Rubik’s Cube puzzle is used to illustrate the impact
of inconsistent heuristics on the search. The puzzle has

No Lookup Nodes Time
One PDB lookup

1 1 Regular 90,930,662 28.18
2 1 Dual 19,653,386 7.38
3 1 Dual + BPMX 8,315,116 3.24
4 1 Random 9,652,138 3.30
5 1 Random + BPMX 3,829,138 1.25

Maxing over multiple PDB lookups
6 2 Regular 13,380,154 7.85
7 4 Regular 10,574,180 11.60
8 2 Random + BPMX 1,902,730 1.14
9 4 Random + BPMX 1,042,451 1.20
Table 1: Rubik’s Cube results for 100 instances

been used extensively for benchmarking the performance
of search algorithms. In Rubik’s Cube there are 20 mov-
able cubes (or “cubies”); 8 are corners and 12 are edges.
The 8-corners PDB (first used by (Korf 1997)) cannot be
used here because it is always consistent since all 8 cor-
ners are always examined. We experimented with a large
variety of other PDBs where inconsistency can be achieved.
For example, we added a single edge cubie to the 8-corner
PDB resulting in a large PDB with 9 cubies. Similarly,
we have experimented with PDBs for the TopSpin puzzle.
For compatibility, we chose to report the results for the
same 7-edge PDB that we used in (Felneret al. 2005;
Zahaviet al. 2006) but similar tendencies were observed
in our other experiments. There are 24 lines of geometrical
symmetries, which arise from different ways to rotate and
reflect the cube. For our 7-edge PDB, each of these sym-
metries considers a different set of edges, and thus results
in a different PDB lookup. The traditional (“regular”) and
dual state (“dual”) PDB lookups implemented in (Felneret
al. 2005) was used as the basis for comparison.

Table 1 shows the average number of generated nodes and
the average running time over the same set of 100 depth-
14 Rubik’s cube instances taken from (Felneret al. 2005).
ColumnNo gives the number of PDB lookups used. The
following PDB lookups were used for lines1 − 5:

Regular: The regular PDB lookup. This heuristic is con-
sistent because the same set of cubies is used for the PDB
lookup of both parent and child nodes.

Dual: For each node, the dual state is calculated and is
looked up in the PDB. This will produce inconsistent heuris-
tic values because the dual lookup of the parent might con-
sult different cubies than the dual lookup of the child.

Random: Randomly select one of the different 24 pos-
sible symmetric PDB lookups for the given node. This is
inconsistent because the set of cubies that are used for the
parent are not necessarily the same as for the child.

The table shows that a random lookup (with BPMX) is
much faster than either one regular lookup (a factor of 24)
or one dual lookup (a factor of 2). Lines 6-9 shows the
results of maximizing over a number of regular and ran-
dom lookups. It is interesting to note that even one ran-
dom lookup (line 5) generates just one third of the nodes
than with 4 regular lookups (line 7). Note that performing
more PDB lookups can only decrease the number of nodes
but there is a diminishing return in terms of time because
each PDB lookup incurs overhead. The best time for regular

No Lookup Nodes Time
One PDB lookup

1 1 Regular 136,289 0.081
2 1 Dual + BPMX 247,299 0.139
3 1 Random + BPMX 44,829 0.029

Maxing over multiple PDB lookups
4 2 Regular* 36,710 0.034
5 2 2 Randoms + BPMX 26,863 0.025
6 3 3 Randoms + BPMX 21,425 0.026
7 4 Regular* + Dual* + BPMX 18,601 0.022

Table 2: Random lookups on the 15-puzzle

PDB lookups (2 regular lookups, line 6) was improved by
one random lookup (line 5) by factor of 5.

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

%
 N

od
es

Heuristic Value

Dynamic Regular
Dynamic Dual
Dynamic Random
Static

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

%
 N

od
es

Heuristic Value

Dynamic Regular
Dynamic Dual
Dynamic Random
Static

Figure 4: Rubik’s Cube value distributions

Figure 4 shows the distribution of the heuristic values seen
during the searches of Table 1. We make the following ob-
servations from these results. First, note the dramatic dif-
ference between the static distribution of values and the dy-
namic distribution for the regular (consistent) heuristic. As
pointed out by others, the static distribution is a poor approx-
imation of the dynamic distribution (Holteet al. 2006). Sec-
ond, it is easy to recognize that the heuristic that performed
the best also had a higher distribution of heuristic values.
Note that all these versions used exactly the same PDB with
the same overall static distribution of values. Third, the reg-
ular heuristic did not gain from the potential of the static
distribution because it is consistent; when the heuristic for a
state is low, the children of that state will also have low val-
ues. The inconsistent heuristics do not have this problem;
a node can receive any value, meaning that the distribution
of values seen is closer to the potential of the static distrib-
ution. Finally, inconsistency has the effect of improving the
dynamic runtime distribution towards that of the static dis-
tribution. The greater the level of inconsistency, the closer
the dynamic distribution approaches the static distribution.

Table 2 shows similar results for the 15-puzzle based
based on the four possible lookups of the 7-8 additive PDBS
from (Korf & Felner 2002). In the table, the “*” indicates
the use of the state and its reflection. Again, the benefit of
random is shown. A single random lookup (line 3) clearly
outperforms a single regular lookup (line 1) but it is also
faster than the best results of (Korf & Felner 2002) (line 4).

Inconsistency Rate
An inconsistent heuristic is most useful if there is a low cor-
relation between heuristic values in adjacent states. To better
understand the behavior of the different heuristics, two new
terms are introduced:

1) Inconsistency rate of an edge (IRE): The inconsis-
tency rate of a heuristich and an edgee = (m, n) is the
difference in the heuristic value for the two nodes incident
to this edge.IRE(h, e) = |h(m) − h(n)|. The IRE of the
entire domain is defined as the average IRE over the entire
set of edges of the state space.

2) Inconsistency rate of a node (IRN): For a given node,
choose the incident edge with the maximum inconsistency
rate.IRN(h, n) = maxm∈adj(n) |h(m) − h(n)|. The IRN
of the entire domain is defined as the average IRN over the
entire set of nodes of the state space.

For a consistent heuristic with a uniform edge cost of 1
(as in Rubik’s Cube), both the IRN and IRE for all edges
and nodes are less than or equal to 1.

The performance of a search can also be characterized by
its branching factor. The dynamic branching factor (DBF) is
defined to be the average number of children that are gener-
ated for each node that is expanded in the search. When the
heuristic function is inconsistent and BPMX is employed,
the dynamic branching factor can dramatically decrease.

IRE IRN DBF Nodes BPMX Cuts
1 0.434 1.000 13.355 90,930,662 0
2 0.490 1.237 9.389 17,098,875 717,151
3 0.510 1.306 9.388 14,938,502 623,554
5 0.553 1.424 7.152 5,132,396 457,253
8 0.571 1.467 7.043 4,466,428 402,560
12 0.597 1.527 7.036 3,781,716 337,114
16 0.607 1.552 6.867 3,822,422 356,327
20 0.608 1.558 6.852 3,819,699 357,436
24 0.609 1.561 6.834 3,829,139 360,067

dual 0.441 1.358 7.681 8,315,117 796,849

Table 3: Rubik’s Cube: random heuristic with BPMX

Table 3 presents results for these new measurements on
Rubik’s Cube obtained using the 7-edges PDB. There are
24 possible symmetric lookups that could be used. We var-
ied the number of possible symmetries that random could
choose from to perform a single lookup. The first column
gives this number. The next columns present the IRE and
IRN averaged over 100 Million random states. The last three
columns show results averaged over the same set instances
of table 1 for searches with the particular random heuristic.
We report the DBF, the number of nodes that were generated
and the number of times that BPMX was used in the search.

In the first row, only one symmetry was allowed and thus
the same PDB lookup was performed at all times. This is the
benchmark case of a single consistent regular PDB heuristic
lookup. Note that the IRE is close to 0.5, implying that the
difference in the heuristic for two neighboring nodes was
roughly 0 half the time, and 1 the other half. The IRN was
exactly 1 showing that for each node in Rubik’s Cube there
exists at least one neighbor whose heuristic is different by1.
The dynamic branching factor here is equal to 13.355, which
is consistent with the results in (Korf 1997).

As the heuristic randomly considers progressively more
symmetries, the inconsistency rates increase and the DBF
decreases. This results in a significant reduction in the num-
ber of generated nodes. It is important to note two issues
here. First, the range of heuristic values in Rubik’s Cube is

rather small, as can be seen in Figure 4. Thus, the poten-
tial for a large inconsistency rate is rather modest. However,
even in this domain, a rather small IRN of 1.5 caused a dra-
matic speedup in the search. Second, no extra overhead is
needed by these heuristics as only a single PDB lookup is
performed at each node. The constant time per node was
such that 3.2 million nodes per second were generated in all
our runs on a 3.0GHz Pentium 4 machine. Thus, the reduc-
tion in nodes is fully reflected in the running times.

Decreasing the Effective Branching Factor
When performing BPMX cutoffs the DBF decreases. As
stated previously, we can generate BPMX cutoffs when the
heuristic value of a child is larger than the heuristic of the
parent by more than 1, assuming an edge cost of 1. Thus,
if such a child exists, we would like to generate it as fast
as possible. If, in a particular domain, the operators have
different inconsistency rates, we can order the application of
operators to maximize the chance of a BPMX cutoff.

The operators on Rubiks cube are symmetric, there is no
way to order them. Thus, we demonstrate this in thepan-
cake puzzleImagine a waiter with a stack ofn pancakes.
The waiter wants to sort the pancakes ordered by size. The
only available operation is to lift a top portion of the stack
and reverse it. Here, a state is a permutation of the val-
ues0...(N − 1) and hasN − 1 successors, with thekth

successor formed by reversing the order of the firstk + 1
elements of the permutation (1 ≤ k < N). For exam-
ple, if N = 4 the successors of state< 0, 1, 2, 3 > are
< 1, 0, 2, 3 >, < 2, 1, 0, 3 > and < 3, 2, 1, 0 >. The size of
this state space isN ! and there is a uniform static branching
factor ofN −1. An important attribute of this domain is that
the number of tokens (pancakes) that change their locations
is different for each of the operators. As we noted in (Zahavi
et al. 2006), here, there are no possible geometrical symmet-
ric PDB lookups and the only way to achieve inconsistency
is with the dual lookup.

Regular Dual
Op Max IRE Max IRE

2-10 1 0.370 - 0.397 0 0
11 1 0.396 2 0.613
12 1 0.397 4 0.958
13 1 0.400 6 1.165
14 1 0.401 8 1.291
15 1 0.402 9 1.358
16 1 0.411 10 1.376
17 1 0.216 9 1.321

Table 4: IRE for operators of the 17-pancake

Table 4 shows different measurements on the operators
of the 17 pancake puzzle. Operatork refers to the operator
that reverses locations1 . . . k. To measure the inconsistency
rate of an operator, we first chose a random state,s1. We
then performed the relevant operator on this state, arriving at
states2, and measured the difference in the heuristic value
betweens1 ands2. This was repeated for 100 million dif-
ferent states. TheMaxcolumn presents the maximal heuris-
tic difference (maximal IRE) found for the specific operator.
The IRE column presents the average IRE over all instances.

Similar measurements are reported for the dual PDB lookup.
The regular PDB lookup is consistent. Indeed, the table

shows that for all the operators, the maximal IRE was 1 and
the average IRE was smaller than 0.5. For the dual PDB
lookups the results are more interesting. First, we note that
for operators 2-10 all the IRE values were exactly 0. This is
an artifact of the particular PDB used for these experiments
(which are based on locations 11-17). The dual lookup of
this PDB was not changed by operators 2-10. But, for larger
operators (13-17), the IRE for the dual lookup is more than
1. It is interesting to note that operator 16 has a larger IRE
than operator 17 even though it only changes a smaller num-
ber of locations.

Lookup Order Nodes DBF
1 Regular incr. 342,308,368,717 15.00
2 Dual incr. 27,641,066,268 15.00
3 Dual + BPMX incr. 14,387,002,121 10.11
4 Regular IRE 113,681,386,064 15.00
5 Dual IRE 13,389,133,741 15.00
6 Dual + BPMX IRE 85,086,120 4.18

Maxing over two PDB lookups
7 R + D + BPMX incr. 2,478,269,076 10.45
8 R + D + BPMX IRE 39,563,288 5.93

Table 5: 17-pancake results.

Table 5 shows the average number of nodes that were gen-
erated by IDA* using different heuristics and different oper-
ator ordering when optimally solving the same 10 random
instances from (Zahaviet al. 2006). TheOrder column
presents the operator ordering that was used. Rows (1-3)
are for the trivial case were the operators are ordered in in-
creasing order, the ordering we used in (Zahaviet al. 2006).
Rows (4-6) correspond to the operator ordering in the ex-
act decreasing order of IRE imposed by our measures from
Table 4. In both cases, there is a dramatic decrease when
moving from the regular to the dual lookup and when further
adding BPMX. However, operator ordering significantly in-
fluences the results. With the operator ordering based on the
IRE we get an additional 500 times reduction in nodes ex-
panded over the simple operator ordering. The new state-of
the art performance for this domain is obtained by using the
maximum of two heuristics (regular and dual) with BPMX
and operator ordering. This version outperforms the single
regular lookup by 4 orders of magnitude.

Inconsistency with A*
BPMX for A* works as follows. Assume that a nodep is
expanded and that itsk childrenv1, v2, . . . , vk are generated.
Let vmax be the node with the maximum heuristic among
all the children and lethmax = h(vmax). Assuming that
each edge has a unit cost, we can now propagatehmax to the
parent node by decreasing 1 and then to the other children
by decreasing 1 again. Thus, each of the other childrenvi

can have a heuristic of
hBPMX(vi) = max(h(vi), h(p) − 1, hmax − 2)

For example, assume that the parent node of Figure 2 is
the root node and thus itsf -value isf = g +h = 0+2 = 2.
When generating the children, the left child hasf = g+h =
1+5 = 6 and the right child hasf = g +h = 1+max(5−

2, 2 − 1, 1) = 1 + 3 = 4. Thus, the right child is inserted to
the open list withf = 4 instead off = 2.

We have performed experiments with inconsistent heuris-
tics in several domains, including the top-spin puzzle and
several different types of pathfinding grids. The results are
not conclusive. In top-spin there are large gains from using
inconsistent heuristics and BPMX. In pathfinding problems
there can be gains, but this depends on the types of maps be-
ing used. It is our conjecture that the gains from BPMX and
inconsistent heuristics with A* are related to the number and
size of cycles within the state space. A detailed exploration
of inconsistent heuristics in A* is outside the scope of this
paper and left as future work.

Conclusions and Future Work
Historically, inconsistent heuristics have been avoided be-
cause of the cost of re-expanding closed nodes with A*, but
this is not a concern with IDA*. This paper has demon-
strated that inconsistent heuristics are easy to create, and that
a large speedup can be achieved when using them with IDA*
and BPMX. This represents a significant change to the con-
ventional wisdom for heuristic search.

Exploring the possible potential gain for using inconsis-
tent heuristics with A* is the subject of on-going research.

Acknowledgments
This research was supported by the Israel Science Founda-
tion (ISF) under grant number 728/06 to Ariel Felner. We
thank Robert Holte for his help with this manuscript.

References
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases. Com-
putational Intelligence14(3):318–334.
Felner, A.; Meshulam, R.; Holte, R.; and Korf, R. 2004. Com-
pressing pattern databases. InAAAI, 638–643.
Felner, A.; Zahavi, U.; Holte, R.; and Schaeffer, J. 2005. Dual
lookups in pattern databases. InIJCAI, 103–108.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and Furcy,
D. 2006. Maximizing over multiple pattern databases speedsup
heuristic search.Artificial Intelligence170:1123–1136.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligence134:9–22.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time complexity
of ida*. Artificial Intelligence129(1-2):199–218.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. InAAAI, 700–705.
Korf, R. E. 2000. Recent progress in the design and analysis of
admissible heuristic functions. InAAAI, 1165–1170.
Likhachev, M., and Koenig, S. 2005. A generalized framework
for lifelong planning a*. InICAPS, 99–108.
Martelli, A. 1977. On the complexity of admissible search algo-
rithms. Artificial Intelligence8:1–13.
Mero, L. 1984. A heuristic search algorithm with modifiable
estimate.Artificial Intelligence23:13–27.
Russell, S., and Norvig, P. 2005.Artificial Intelligence, A Modern
Approach, Second Edition. Prentice Hall.
Shimbo, M., and Isida, T. 2000. Towards real-time search with
inadmissible heuristics. InECAI, 609–613.
Zahavi, U.; Felner, A.; Holte, R.; and Schaeffer, J. 2006. Dual
search in permutation state spaces. InAAAI, 1076–1081.

