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Abstract

Human game players rely heavily on the experience gained by playing over
the games of masters. A player may recall a previous game to either obtain
the best move (if he has previously seen the identical position) or suggest a
best move (if similar to others seen). However, game-playing programs
operate in isolation, relying on the combination of search and programmed
knowledge to discover the best move, even in positions well-known to
humans. At best, programs have only a limited amount of information about
previous games. This paper discusses enhancing a chess-playing program to
discover and extract implicit knowledge from previously played grandmaster
games, and using it to improve the chess program’s performance. During a
game, a database of positions is queried looking for identical or similar posi-
tions to those on the board. Similarity measures are determined by chunking
the position and using these patterns as indices into the database. Relevant
information is subsequently passed back to the chess program and used in its
decision making process. As the number of games in the database increases,
the "experience" available to the program improves the likelihood that
relevant, useful information can be found for a given position.

1. Introduction

For many subject areas requiring skills, a large body of previous experience is usu-
ally gathered which can be used as a resource to be studied for improving one’s perfor-
mance. Unfortunately, most attempts at having machines mimic human behavior are pri-
marily concerned with trying to solve the problem in isolation (usually a difficult enough
task), without exploiting the available wealth of others’ experience. For many discip-
lines, this information is not available in machine readable form. Other than using simple
memory tables, few programs attempt to take advantage of the acquired wealth of human
experience on a particular subject.

For most games, a player’s strength can be increased by re-playing and analyzing
hundreds of master-level games. Besides the obvious skills that this can improve, a signi-
ficant side-effect is the human’s ability to remember the games or important fragments
from them. During a game, strong players are frequently able to relate the position on the
board to an identical or similar one seen in a game played by themselves or by others.
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This allows the player to draw on the experience of (possibly) more experienced players.
From these game fragments, one may recall the best move (if identical to a position seen
previously) or suggest a move to play (if similar to other games seen). From the com-
puter game-playing point of view, the finding of identical positions is not interesting;
opening books used by chess programs are an example of how this can be achieved.
However, the ability to discover similar positions has the potential for providing a signifi-
cant improvement in a game-playing program’s strength. From a set of similar positions,
a program may be able to extract such information as the move(s) played, the plan or stra-
tegy followed by the opponents, potential traps or threats, and pitfalls to avoid. If this
information could be reliably extracted, a program could build on the experience gained
by others. Of course, this problem is just a paradigm of the more general problem of
learning from experience.

With the introduction of chess database programs (such as ChessBase and New in
Chess Base), thousands of recent grandmaster games are now available in machine read-
able form. For each game, the data consists of the moves played, the names of the
players, and the result. Unfortunately, there is no indication of whether moves were good
or bad. Given this large, growing body of data, there must be some way of extracting
useful information from it.

Building on the pioneering work of Chase and Simon (1973a,b) in chess cognition,
the notion of chess position similarity is achieved through chunking, breaking positions
apart into their basic familiar patterns. By emulating the methods used by humans for
pattern recognition, chess programs can take advantage of human experience, and apply a
more knowledge-based approach to their decision making process. This is in stark con-
trast to the current brute-force search tendency.

This paper describes the design of MACH, (a Master Advisor for CHess). Briefly,
MACH uses a knowledge base of user-defined chunks to access a collection of grandmas-
ter games. The chunks have been defined by masters and correspond to familiar, fre-
quently occurring chess patterns. All the positions in the available grandmaster games
have been broken into their constituent chunks and organized into a database for quick
retrieval. When a chess program encounters a new position, MACH chunks it, and then
references the database looking for similar positions (as defined by the chunks present).
From the database, MACH can extract relevant information on what the grandmasters did
in these positions; this information can be as trivial as the move(s) played or as sophisti-
cated as the plans or strategies followed.

This work has attempted to create a prototype process that will interface with a
chess program to give it a more human-like and informed direction to playing chess. To
play chess well requires knowledge and the abilities to search and reason with that
knowledge. Current systems are largely search based; their reasoning processes are quite
simple. MACH is an attempt to strike more of a balance between them.

MACH has been implemented and shown to provide useful advice to a performance
chess program. Ultimately, the success of grandmaster chess programs will depend on
their ability to build on others’ experience. To work in isolation, computing moves for
positions well known to humans, enhances the chance for errors. To know what has been
played before in identical or similar positions is a tremendous advantage for helping
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decide on the move to play. Although our prototype implementation of MACH does not
run in real-time for tournament use by a performance chess program, our production ver-
sion of the program will achieve this.

2. Background

Humans are very good at learning board games. After given a brief introduction to
the rules of the game, they usually play reasonably well. In fact, the moves made by a
beginner are almost always legal, most often poor but usually never random (Eisenstadt
and Kareev 1973). From the beginning, even inexperienced players generate primitive
strategies (e.g. "capture pieces").

In the chess world, part of the strength of the chess master is his ability to deter-
mine the important features and characteristics of a position and recognize that they are
similar to those of other games he has played or seen. These refined abilities allow him
to extract relevant patterns, or chunks, from each position and combine them into a
similarity measure. This measure serves as a key for searching the player’s vast mental
database of previously stored patterns and positions to find similar ones. Matching simi-
lar positions triggers moves and strategies for the player to help guide his search for the
best method of play.

This chunking hypothesis was first developed by de Groot (1965) and later
enhanced by Chase and Simon (1973a,b). Players were given 10 seconds to look at
meaningful chess positions containing 20 to 25 pieces and asked to reconstruct them.
Masters’ re-constructive abilities were 93% accurate while beginners managed only 33%.
These same players were later shown random positions, with pieces haphazardly strewn
across the board. Surprisingly, the scores of all players dropped to 20%, illustrating that
not only were the superior players subject to the same short-term memory constraints as
the weaker players, but also when faced with meaningful subject material, they truly out-
performed the less experienced.

By devising a perception task, Chase and Simon probed further into the thought
processes of the master. Players were asked to reconstruct another set of positions but
were allowed to look at each position as often as needed. Their head movements were
used to segment the chunks of the position. Pieces within a single chunk are closely
related in terms of attack/defense properties of the pieces as well as common color, type
and proximity. Moreover, these pieces were placed significantly quicker than those not
in chunks.

From these results, it is evident that the first few seconds after any move are impor-
tant. Posnyanskaya and Tikhomirov (1969) monitored the eye movements of a chess
expert as he examined a position, recording 20 different fixations that rested on pieces
important to the position. In a similar vein, Simon and Barenfeld (1969) developed a pro-
gram, called PERCEIVER, that was able to duplicate the eye movements of this expert by
adhering to the simple relations of attack and defense. Their results clearly illustrate that
an experienced chess player first examines a position for relevant information before
applying a particular strategy.

Extending PERCEIVER into a system called MAPP, Simon and Gilmartin (1973)
reinforced the chunking hypothesis by subjecting MAPP to the same board reconstruction
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experiment that the human players faced. By determining the patterns present on the
board, and restricted to the same short-term memory constraints as humans (seven plus-
or-minus two patterns per position (Miller 1956)), MAPP was able to reconstruct posi-
tions with 73% accuracy.

A key issue involved with these ideas is the derivation of chunks. Bratko, Tancig
and Tancig (1986) sought to devise a natural method for detecting positional patterns in
chess. By combining the most frequently placed pieces from reconstructed positions of a
group of masters into a collectively reconstructed position, Bratko et al., found an average
of 7.54 chunks per position. Campbell and Berliner (1984) were also able to derive
chunks from positions, though it was done artificially and not based on psychological
results.

The first chess program to apply the chunking theory and model human problem
solving more closely was developed at USC by Zobrist and Carlson (1973). It first
searched a given board position for all instances of certain patterns, recorded them inter-
nally into a snapshot, and searched ahead using these snapshots to evaluate board posi-
tions. Little additional research has followed up the USC system, though a number of
chess cognition experiments have been conducted (for example, Bratko and Michie
(1980) and Kopec, Newborn and Yu (1986)).

In the context of chess programs that use experience, two vastly different usages
can be found. Hartmann (1987a,b) has done some work on using a database of grandmas-
ter games, but only as a source of test data for tuning a program’s evaluation function.
Slate (1987) used transposition tables as a means of learning through experience. How-
ever, the experience used is only the program’s and is useful only when identical posi-
tions can be found.

The usage of chunking in human chess play has been firmly established but, to
date, implementations have been simple systems (Campbell’s (1984) program playing
king-and-pawn endgames being a notable exception, but without real-time constraints).

3. Similarity and Chunking

It is evident that the existence of the chunking hypothesis presupposes the ability to
extract relevant patterns from a position leading to a determination of a similarity meas-
ure. The study of cluster analysis is able to supply an application-independent algorithm
for measuring similarity but the intricacies of chess and chess-specific knowledge
discourages use of such methods. Consequently, we will follow the philosophy of
Zobrist and Carlson (1973), abandoning the use of expert programmers, and strive
towards methods which allow chess masters to easily express chunks to us.

By designing a language specific to chess, it becomes easier to express and, there-
fore, capture chess specific information. Further, if that language can be expressed
graphically, in terms of familiar chess patterns, then human experts can be used as a
source of information. Computer chess researchers have always had the difficulty of
obtaining useful research data from human experts. This knowledge acquisition
bottleneck occurs because the scientists talk one language and the domain experts,
another. Since our chunking project requires defining human familiar chess patterns, a
graphical interface would allow the experts to converse with the program in their
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language (chess) and have the interface translate this into a machine understandable form.
The following paragraphs describe the textual computer language used by MACH.
Although thought has gone into the design of a graphical interface, it remains unimple-
mented.

To determine what features the language should entail, we can use the results of
PERCEIVER and MAPP. At the very least, the positional features adhered to by these
systems (namely, attack/defense properties and commonality of piece-color, type and
proximity) should be included in our language. Along the same lines, there should exist a
set of required pieces as well as a set of optional ones. Of course, those in the required
set must exist in a position for the chunk to exist. On the other hand, those in the optional
set, if present in a given position, should be included as part of a chunk’s makeup. The
incorporation of these two sets can easily identify the pieces that were missed by the
chunking process.

Some non-positional attributes a chunk should possess include hierarchical and
instantiation features. For example, our environment should be flexible enough to allow
one chunk to be defined in terms of other, less complex, ones so that a re-specification of
the smaller chunks is not necessary. In addition, chunks should be able to have parame-
ters, reducing the need for repeating specifications.

Not only does our similarity measure rely on the quantitative characteristics just
mentioned but it also depends on a number of qualitative features - importance and
advice, in particular. The presence of some chunks may be more important than others in
determining the dominant characteristics of a position. An importance measure attached
to a chunk may help eliminate irrelevant, unimportant features when determining similar-
ity. Assuming a chunk’s presence is relevant, the system allows the user to specify
advice that is passed back to the chess program. This facility assumes that the chess pro-
gram has the capability to interpret the advice.

Figure 1 shows one of the chunks used for obtaining the results in section 5.

4. Data Structures

Given the need for real-time constraints, it is important to have the database of
grandmaster games chunked, position by position, and stored in a database that allows
quick access. Following is a brief discussion of the data structures used; further details
can be found in George (1988).

The database of games is represented as a trie (the GameTree), with nodes
representing positions and branches, moves. All redundant opening sequences of moves
have been eliminated to reduce the size of information to be processed. No attempt has
been made to eliminate transpositions (identical positions reached by different move
sequences). Conventional trie usage is for search efficiency, to look for a datum by fol-
lowing a path from the root to terminal node. For our application, index files (discussed
below) are used to point into the middle of the data structure. From an arbitrary node in
the tree, the position it represents can be re-constructed by following parent nodes to the
root. Then, from the initial starting position of a chess game, re-tracing the path back
down the tree from the root and playing the moves along the branches will yield the
desired position. Thus, our trie need only store moves (12 bits per move) rather than
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# The following lines describe a sample chunk where each ‘#’ symbol designates
# a comment line. This chunk, named ‘qgdcenter’, is described with respect to
# (wrt) white. An additional program will check for the mirror images of the
# chunk. Chunks are organized into classes; this chunk is classified as being
# a member of the ‘queens_pawn_opening’ group of chunks. The ‘require’ state-
# ments specify the piece/square combinations that must exist for the chunk to
# be present. Statements without a predicate correspond to ‘optional’ piece-
# square combinations. The symbols, ‘&’ and ‘’, refer to the logical ‘and’
# and ‘or’ operators respectively, while the symbols, ‘+’ and ‘/’, refer to
# special conjunction and disjunction operators for piece-square combinations.
# The ‘advice’ statement specifies plans frequently followed when the chunk is
# present.

chunk qgdcenter wrt white.
classification queens_pawn_opening.
require (WP on D4) & (BP on D5).
require (WP on C4) & (BP on E6/C6).
require (WP on E2/E3).

WN on C3.
BN on F6.
WN on F3.

advice PutRooks(white,C1,D1), Outpost(white,E5), Outpost(black,E4).
end qgdcenter.

Figure 1. Sample Chunk.

positions (roughly 20 bytes, depending on the sophistication of the encoding scheme).

The search for similar positions in the trie must be done in an efficient manner to
achieve real-time performance. Thus, all positions in the tree can be chunked beforehand
and stored in index files that allow for easy access. The simplest way of doing this
(although not the most efficient) is to have a file for each chunk which contains pointers
into the GameTree for each position containing that chunk. However, since there may be
an enormous number of chunks in a full-fledged system, it was decided to order the
chunks into a hierarchy. A group of high-level features (or chunk classes) were defined,
with each chunk classified as being a representative of a feature. For example, one of the
features is called "castled king-side". Under that heading, all chunks that represent a king
castled on the king-side would be grouped. In Figure 1, the qgdcenter chunk was classi-
fied as being part of the queens_pawn_openings feature. The list of these features is
called the FeatureIndex. For each feature M, a file (C-ClassM) was created containing
pointers into the GameTree to all positions that contained that feature.

The program build takes a database of grandmaster games, creates the GameTree,
and chunks each position. For each chunk found, a pointer into the GameTree database is
made in the corresponding C-Class file, identifying the position containing that chunk.
This is illustrated in Figure 2.
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Figure 2. Building the Databases.

During a game, it is necessary to chunk the current position and identify positions
in the GameTree that are similar to the current one. Similarity would be easy if two posi-
tions were considered similar only if they contained identical chunks. Unfortunately, any
similarity measure must be more robust. Hence, if there are M features present in a posi-
tion, our system considers a position similar if it has M − R of the same features. By hav-
ing a sub-set of the chunks to match, we allow for possible errors in chunk definitions.
When R > 0, one must be concerned with considering all possible subsets of the M − R
chunks, introducing a combinatorial complexity. In our system, R = 1 and R = 0 have
been experimented with, demonstrating that robustness (R = 1) is necessary.

The simplest way of finding all positions that have M − R features in common is to
take the M feature files for the features identified, merge them, and flag all positions that
occur M − R times in the merged file. Although in terms of execution speed this method
is not desirable, it has the advantage of being simple to implement. For our initial imple-
mentation, this method was chosen because it allowed us to quickly get a working version
of the program. The issue of identifying matching subsets is an efficiency issue and does
not affect the correctness of MACH.

The alternative is to pre-compute all the possible chunk combinations beforehand,
so that when needed, it is easy to retrieve the desired combination of chunks. Although
this allows for fast retrieval, it may require storage exponential with respect to the
number of possible chunks. We have designed data structures that address this issue but
they have not been implemented. More details can be found in George (1988).

Figure 3 illustrates the process used to access the databases during a game. The
current position is chunked and L chunks are identified in the position. The chunk
features indicate which C − Class files to access. Note that more than one chunk could be
in the same feature class, so M ≤ L files are accessed. These M files are merged and
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positions occurring M − R times are identified. This is the first filter of the system. These
positions match the current position in terms of global features. The second filter
matches the positions to the specific chunks found in the position. The positions remain-
ing after the first filter are compared for the presence of the L chunks identified as being
present in the current position. From these, a smaller set of positions is identified that
match at least L − R chunks. Finally, the remaining candidate positions pass through a
third filter. The final filter contains some ad hoc similarity measures to identify positions
with gross defects and throws them away. For example, if a position matches in every
respect except king position, we may still want to reject this position. If the king is sup-
posed to be on e1 but is in fact on h8 then there is no similarity at all! In effect, this final
filter attempts to identify inadequacies in the first two filter phases. Given sufficient
chunk information in filters 1 and 2, this third phase would be unnecessary.

From this final set of positions, MACH determines the advice to give. This advice
could be as simple as the moves made in that position or as detailed as the plans used by
the opponents in the subsequent play. Currently, MACH only provides the list of moves
made in the similar positions. Of course, some of those moves may even be illegal in the
current position. Increasing the sophistication of the advice requires more chess
knowledge for identifying items of interest in the subsequent play from the similar posi-
tions.

Figure 3. Finding Similar Positions.
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5. Results

MACH’s abilities to find similar positions was tested on a variety of data including
a test suite of 20 positions, 10 each arising from well known openings†. The positions
were generally 7 to 15 moves into the game. Twelve chunk definitions were used which,
with reflections, gave 34 different chunks. To speed up our testing, only those games that
began with our two selected openings were added to the GameTree. This resulted in a
total of 8526 positions out of the roughly 60,000 positions we had available (from 850
games).

For each of the test positions used in this experiment, MACH found an average of 5
similar positions in the GameTree. Chunking each of the GameTree positions resulted in
64.4% (5490) of the positions containing at least one chunk. The other 35.6% not
covered by our chunks consisted mainly of late middlegame and endgame positions.

Figure 4 gives the experimental data for the 20 positions using the similarity cri-
terion that M − 1 chunks must be present for a match to occur. On average, each of the 20
test positions contained 6.1 chunks. This number is amazingly similar to the 5.75 chunks
per position of Simon and Gilmartin’s MAPP (1973) and confirms their results. Our 6.7
pieces/chunk average is significantly higher than MAPP’s 3.9 figure and De Groot’s aver-
age of between 3 and 4 (de Groot 1965). This is a result of the optional piece specifica-
tion, something that Simon and Gilmartin did not use. If we check the number of
required pieces only, this value drops to 3.4.

On the memory test, MACH is able to re-construct an average of 80% of the pieces
on the board, close to the 73% figure of MAPP, again confirming their results.

_ __________________________________________________________
Summary of MACH’s Performance_ ___________________________________________________________ __________________________________________________________

# pieces Pieces Chunks Suggested
Position in position found found Moves_ __________________________________________________________

Ruy Lopez (10) 310 241 56 22
Queen’s Gambit (10) 312 257 66 20_ __________________________________________________________
Total 622 498 122 42
Average 31.1 24.9 6.1 2.1_ __________________________________________________________ 
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Figure 4. MACH’s Performance on 20 Positions.

MACH has been used to give advice to the chess program Phoenix†, and has been
useful in overcoming a well-known problem in computer chess. The first few moves in a
game made by a chess program come from a file or book. Once these moves are
exhausted, the program is on its own and usually has no idea how to proceed. Often at
this juncture, programs make critical (even fatal) mistakes. MACH eliminates this prob-
lem by providing useful advice that is consistent with the previous play.
__________________
† The Ruy Lopez and Queen’s Gambit Declined.
† A frequent competitor in the world computer chess championship.
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Phoenix has played game fragments incorporating MACH’s advice. To do this,
Phoenix’s position evaluation function was modified to take into consideration the list of
moves suggested by MACH. If a position is reached via a suggested move, the evaluation
function score for that position is increased, making it more desirable. The moves pro-
vided by MACH are not guaranteed to be chosen; rather the probability is simply
increased. Since Phoenix has its own expertise on what constitutes a good move, and
there is no assurance that MACH’s suggestions are worthwhile, the program should not
blindly follow the advice.

Figure 5. Phoenix using MACH’s Advice.

The relationship between MACH and Phoenix is shown in Figure 5. MACH has
identified similar positions and returned the set of moves made in these positions to
Phoenix. During Phoenix’s search of the current position, if it plays a move (such as a)
that MACH suggests, then the leaf node evaluation of that line is incremented by a weight
associated with that move (w). In this way, evaluations that are a result of moves sug-
gested by MACH have higher scores and, therefore, a better chance of forming the princi-
pal variation.

MACH is frequently able to suggest moves better than what Phoenix would nor-
mally play, leading to a noticeable improvement in performance. We have several exam-
ples where MACH’s advice has even saved Phoenix from making a losing move.

The slowest task involved with MACH’s development was the addition of chunks;
this is not surprising since knowledge acquisition is a difficult process. Without a great
deal of experimentation, one has to rely on common sense more than anything else.
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Unfortunately, Simon and Gilmartin did not provide any insight into this area; their
chunks comprised patterns that frequently occurred in "...games in the published litera-
ture" (Simon and Gilmartin 1973). Other than mentioning that their patterns adhered to
the relations of attack and defense, piece-type, piece-color, and proximity, no discussion
was provided regarding the actual development of their chunks. From our experimenta-
tion, however, a number of conclusions can be drawn which can help to expedite future
work.

It was easy to create chunk descriptions that were too general; these descriptions
would tend to encompass patterns that were not relevant at all, producing an ineffective
filter of dissimilar positions. By the same token, making these chunks too specific
resulted in MACH overlooking positions that were similar. There seemed to be a narrow
region between these two extremes.

However, incorporation of an importance factor might, indirectly, broaden this
acceptable region. By assessing the relative importance of each chunk found in a posi-
tion, general chunks may be weeded out since, typically, their broad descriptions tend to
cover pieces that are unimportant. Further work is certainly needed in this area.

Notwithstanding, a chunk can be made less general if the pieces it contains are not
spread across the board; that is, the pattern should be localized on a small portion of the
board. Simon and Gilmartin (1973) used the rule that two pieces proximate each other if
one of the pieces is within one of the eight adjoining squares of the other. Our chunk
descriptions generally adhere to this rule except when they incorporate the use of the "or"
operator. This multiplies the number of chunks that will match and has a tendency to
spread pieces apart. On the other hand, over use of the "and" operator will cause the
opposite effect. Both operators should be used carefully.

The following simple feedback methodology was used for adding chunks:

(1) Define the chunks

(2) Set up test position(s)

(3) See which positions did and did not match

(4) If satisfied, stop, else go to step (1)

To a large degree, steps (2) and (3) can be automated. As well, step (1) can be improved
by providing the chess master with a graphical interface. Since the image of the pattern is
certainly more meaningful to the expert than a 6-line description in our language, this tool
would place the expert in a more familiar environment in hopes of invoking the thought
processes that are involved in an actual game.

Although the feedback process is slow, it is necessary for the development of a use-
ful knowledge base to enable MACH to be truly effective. Of course, if MACH were
"intelligent" enough to define and re-define its own set of chunks, this bottleneck would
greatly diminish. Positions could be supplied to MACH and it could pick out which pat-
terns were relevant, piece by piece. Unfortunately, this realization is many years away
and is another topic of further study.
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6. Conclusions and Future Work

The system, as it currently stands, requires three major software projects to make it
a useful tool. First, the original design concentrated on functionality rather than effi-
ciency. A re-implementation, using chunk recognition methods similar to those used by
Simon and Gilmartin’s (1973) EPAM-like pattern learner, is necessary to achieve real-
time performance. Second, tools are needed to ease the chess masters’ difficult task of
expressing their knowledge to the system. As mentioned, a graphical interface is manda-
tory to allow the master to converse with the system in a manner natural to him. Finally,
tools to analyze chunks for being too general, too specific, or too similar to existing
chunks are needed to reduce the effort required to ensure chunk orthogonality. At
present, the above ideas are in the analysis stage.

An open research problem is building a system that can generate chunks automati-
cally. Perhaps by feeding a program hundreds of thousands of grandmaster games, such a
system could automatically detect frequently occurring patterns.

The existence of a database of useful chunks could be applied to related types of
reasoning. The use of analogies, a dominant feature in human play, has been largely
ignored in real-time game programs (Adelson-Velsky, Arlazarov and Donskoy (1975)
being an exception applied to chess tactical searches). The usage of chunking has the
promise to use knowledge in a more meaningful way in game-playing programs, by sub-
stituting for the ever-dominant exhaustive brute-force searches that are prevalent today.

Ultimately, one must utilize experience to enhance program performance. To con-
tinually confront a program with common place scenarios, which it treats as a new situa-
tion every time, is counter-productive and error prone. Utilizing experience allows a pro-
gram to improve its capabilities without additional programming effort.
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