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Abstract - Many enhancements to the alpha-beta algorithm have been proposed to help reduce the size of

minimax trees. A recent enhancement, the history heuristic, is described that improves the order in which

branches are considered at interior nodes. A comprehensive set of experiments is reported which tries all

combinations of enhancements to determine which one yields the best performance. Previous work on

assessing their performance has concentrated on the benefits of individual enhancements or a few combina-

tions. However, each enhancement should not be taken in isolation; one would like to find the combination

that provides the greatest reduction in tree size. Results indicate that the history heuristic and transposition

tables significantly out-perform other alpha-beta enhancements in application generated game trees. For

trees up to depth 8, when taken together, they account for over 99% of the possible reductions in tree size,

with the other enhancements yielding insignificant gains.

Index Terms - Alpha-beta search, minimax search, game trees, history heuristic, transposition tables,

minimal window search, killer heuristic.
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1. Introduction

Many modifications and enhancements to the alpha-beta (αβ) algorithm have been proposed

to increase the efficiency of minimax game tree searching. Some of the more prominent ones in

the literature include iterative deepening [1], transposition tables [2], refutation tables [3],

minimal window search [4], aspiration search [5] and the killer heuristic [3]. Some of these

search aids seem to be beneficial while others appear to have questionable merit. However, each

enhancement should not be taken in isolation; one would like to find the combination of features

that provides the greatest reduction in tree size. Several experiments assessing the relative merits

of some of these features have been reported in the literature, using both artificially constructed

[6] and application generated [1, 7, 8] trees.

The size of the search tree built by a depth-first αβ search largely depends on the order in

which branches are considered at interior nodes. The minimal αβ tree arises if the branch leading

to the best minimax score is considered first at all interior nodes. Examining them in worst to

best order results in the maximal tree. Since the difference between the two extremes is large, it

is imperative to obtain a good ordering of branches at interior nodes. Typically, application

dependent knowledge is applied to make a "best guess" decision on an order to consider them in.

In this paper, a recent enhancement to the αβ algorithm, the history heuristic, is described

[9, 10]. The heuristic achieves its performance by improving the order in which branches are con-

sidered at interior nodes. In game trees, the same branch, or move, will occur many times at dif-

ferent nodes, or positions. A history is maintained of how successful each move is in leading to

the highest minimax score at an interior node. This information is maintained for every different

move, regardless of the originating position. At interior nodes of the tree, moves are examined in

order of their prior history of success. In this manner, previous search information is accumulated

and distributed throughout the tree.

A series of experiments is reported that assess the performance of the history heuristic and

the prominent αβ search enhancements. The experiments consisted of trying all possible combi-

nations of enhancements in a chess program to find out which provides the best results. The
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reductions in tree size achievable by each of these enhancements is quantified, providing evidence

of their (in)significance. This is the first comprehensive test performed in this area; previous

work has been limited to a few select combinations [1, 7, 8]. Further, this work takes into account

the effect on tree size of ordering branches at interior nodes, something not addressed by previous

work.

The results show that the history heuristic combined with transposition tables provides more

than 99% of the possible reductions in tree size; the others combining for an insignificant

improvement. The history heuristic is a simple, mechanical way to order branches at interior

nodes. It has none of the implementation, debugging, execution time and space overheads of the

knowledge-based alternatives. Instead of using explicit knowledge, the heuristic uses the implicit

knowledge of the "experience" it has gained from visiting other parts of the tree. This gives rise

to the apparent paradox that less knowledge is better in that an application dependent knowledge-

based ordering method can be approximated by the history heuristic.

2. αβ and its Enhancements

An adversary or game tree is one in which two players alternate making moves. Two types

of nodes in the tree are distinguished. Nodes at the bottom of the tree are called lea f nodes while

those with successors are interior nodes. An interior or leaf node may be referred to as a position.

An evaluator is used at leaf nodes to assign a score measuring the merit of the position. A move is

the operation by which a position is transformed into a successor position.

For each subtree, αβ maintains lower (α) and upper (β) bounds on the range of minimax

values that can be backed-up to affect the value at the root of the root. The benefits of the algo-

rithm come from the elimination of sub-trees without search once it is proven their value must lie

outside the αβ search window. Sub-trees eliminated in this manner are said to be cutoff. αβ does

not eliminate the exponential growth of the trees; it merely dampens it. In the optimal case, for

uniform trees of depth d (or d ply) and branching factor w, w d /2 + w d /2 − 1 leaf nodes need be

considered [11]. In the worst case, αβ becomes a full minimax search, evaluating w d leaf nodes.

The size of the tree depends on the order in which moves are examined at interior nodes.
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Considering the move producing the best minimax score first at each interior node in the tree pro-

duces the minimal or optimally-ordered αβ tree.

Many enhancements to αβ have been suggested in the literature. They are usually based on

one or more of the following principals:

1) ordering, improving the order in which moves are examined at interior nodes ,

2) window size, the smaller the search window (absolute difference between α and β), the greater

the chance for a cutoff to occur, and

3) re-using information, saving the results of sub-trees examined in the event that this sub-tree

re-appears at a later time.

Following is a brief discussion of the major αβ enhancements used in practice.

A) Iterative deepening [1, 8]. This technique is used to increase the probability that the best

move is searched first at the root of the tree. A series of staged searches are carried out to succes-

sively larger search depths, using the best move found for a d − 1 ply search as the first examined

in a d ply search. As the search progresses deeper, more and more confidence is gained in the

best move. The cost of an iteration is strongly influenced by the branching factor w. For chess

programs (with w typically around 35), the cost of iterating an extra ply to an odd depth is about 8

times the cost of the previous search, whereas to an even depth, about 3 times (a consequence of

the    and    operators in the minimal tree formula) [1]. Thus the cost of performing iterations

to 1 , 2 , . . . , d − 1 ply is only a small price to pay for having high confidence that the best move

is being searched first for the larger d ply search.

Iterative deepening is useful when the search is constrained by time (as, for example, in a tourna-

ment game). At any point, the search can be terminated with the best move (to that point) known.

B) Transposition tables [2, 12]. Interior nodes of game trees are not necessarily distinct; it may

be possible to reach the same position by more than one path. These tables take advantage of this

by recording information about each sub-tree searched in the event that the identical position

occurs again. The information saved would include the value of the sub-tree, the move that leads
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to this value, and the depth to which the tree was searched. Before searching a new sub-tree, the

table is interrogated to see if there is information relevant to the current node. If so, depending on

the quality of the information found, the entire sub-tree may not need to be searched.

The tables are used in two ways. If the position is found in the table and it was previously

searched to at least the desired depth, then the value for the sub-tree can be retrieved from the

table. Note that this has the potential for building trees smaller than the minimal game tree by

eliminating sub-trees without performing any search. If the information is not as reliable as

desired (was not previously searched deep enough) the best move from the previous search can be

retrieved. Since this move was previously best (albeit for a shallower search) there is a high pro-

bability it is also best for the current depth and should be tried first. Thus transposition tables

allow for the reuse of information and help improve ordering.

To minimize access time, transposition tables are typically implemented as a hash table. As the

table becomes full, collisions occur and information lost, potentially reducing their effectiveness.

As a consequence, the tables are usually as large as possible.

C) Refutation tables [3]. The major disadvantage of transposition tables is their size. Refutation

tables attempt to retain one of the advantages of transposition tables, when used with iterative

deepening, but with smaller memory requirements. For each iteration, the search yields a path for

each move from the root to a leaf node that results in either the correct minimax score or an upper

bound on its value. This path from the d − 1 ply search can be used as the basis for the search to d

ply. Often, searching the previous iteration’s path or refutation for a move as the initial path

examined for the current iteration will prove sufficient to refute the move one ply deeper.

D) Minimal window [4, 8, 13]. Minimal window searching is a variant of αβ based on the

assumption that the first move considered is best and the remaining moves are inferior until pro-

ven otherwise. At an interior node, given that the first branch has been searched with a full win-

dow (α, β) and produced a value v inside the window, the remaining moves are searched with the

minimal window (v ,v + 1). The motivation for minimal window searching is that a smaller win-

dow generates a smaller tree. Essentially, minimal window searching is a probabilistic gamble
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that most moves can be shown to be inferior with little effort. If the gamble proves incorrect,

then additional work is required to do a re-search (to encompass the range of values (v + 1 , β) ).

At a node with w successors, αβ only recognizes only one best move, which implies w − 1 inferior

ones.

E) Aspiration search [5, 14]. The αβ search is usually started with a ( − ∞ , ∞) search window. If

some idea of the range in which the value of the search will fall is available, then tighter bounds

can be placed on the initial window. Aspiration search involves using a smaller initial search

window. If the value falls within the window, then the original window was adequate. Other-

wise, one must re-search with a wider window.

F) Killer Heuristic [3]. Often during a search, most moves tried in a position are quickly

refuted, usually by the same move. The killer heuristic involves remembering at each depth of

search the move(s) which seem to be causing the most cutoffs ("killers"). The next time the same

depth in the tree is reached, the killer move is retrieved and used, if valid in the current position.

Since searching the best move first at interior nodes has a dramatic effect on tree size, it is

important to have a good move ordering. Devoting resources to achieving this ordering usually

pays off. In positions where the transposition or refutation table can be used, they help order the

moves by suggesting a likely candidate for best move based on information acquired from previ-

ous searches. But they don’t tell how to order the remaining moves, nor give any information on

how to order them at nodes where the tables provide no clues. The method used by most game

playing programs is to apply application dependent heuristic knowledge to each move indicating

how good the move is likely to be and sort based on these assessments. Of course, any ordering

is probabilistic guessing since the desirability of a move usually cannot be reliably determined

without performing some search. Depending on the quality of the knowledge used, this approach

is usually superior to a random ordering.

Several studies have been performed investigating how close αβ search with its enhance-

ments can come to achieving the minimal tree. Campbell and Marsland [6] have investigated this
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question using artificially-constructed trees, while Gillogly [1] and Marsland [7, 8] experimented

using a chess program. Marsland’s experiments considered trees of depths 2 through 6 ply [8].

For even depths, the results showed that αβ, enhanced with minimal window searching (the Prin-

cipal Variation Search algorithm) and refutation and transposition tables, was able to build trees

within twice the size of the minimal tree. For odd depths, this was reduced to a factor of 1.5. The

factor of 2 for even depths is roughly the same as in Campbell and Marsland [6], but these results

were achieved without using transposition and refutation tables. This illustrates the danger of

using results from artificially-constructed trees as a guideline for how to search application gen-

erated trees. The study also showed that for shallow searches, the performance of refutation

tables was comparable to that of transposition tables, but as the search depth increased, refutation

tables out-performed transposition tables (probably because of transposition table over-loading).

A variety of studies have been performed demonstrating that minimal window search is usu-

ally superior to just αβ. The advantage is more pronounced in artificially constructed game trees

[6, 13, 15] than in application generated trees [7, 8], where the stronger ordering of moves at inte-

rior nodes results in smaller trees.

The effectiveness of the killer heuristic has been questioned. Gillogly observed no benefits

[1], whereas Hyatt claims significant reductions in tree size - as much as 80% [16]. This is a

popular αβ enhancement, yet no one really seems to know how effective it is.

3. The History Heuristic

Using the terminology of Newell and Simon [17], a problem space is a set of states and

operators that map states into states. Starting from an initial state of knowledge, one repeatedly

applies operators to states, looking for a goal state. Operators can be viewed as parameterized

functions; the parameters providing the specifics of what the operator should do to the state. In

the context of game trees, states are positions and moves, operators. The move operation could

be viewed as a function of three parameters: the initial position and the from-square and to-square

of the move, producing a new successor position.
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For many types of search trees, the parameters of an operator are not unique within the tree:

two different states can have the same operator applied yielding new states. The history heuristic

maintains information on whether there is a correlation between an operator and any success that

the operator has in achieving a goal. At an arbitrary state in the problem space, the history heuris-

tic prefers to explore operators with a history of success first.

For many types of game trees, the making of a move from one position yields a successor

position that has many of the same properties as its predecessor. It is quite likely that the impor-

tant features of the position, the ones that dictate what the good moves are, have not significantly

changed and that a move considered good in the previous position will still be good. Since the

two positions are similar, one could take a sophisticated approach and use analogies to show the

similarity (for example [18]). However, this is an expensive proposition.

As an example, consider the trees built by chess programs. A move M may be shown to be

best in one position. Later on in the search tree a similar position may occur, perhaps only differ-

ing in the location of one piece. This minor difference may not change the position enough to

alter move M from still being best. M, with its prior history of success, may now be the first move

considered in this position. This improves the ordering of moves, increasing the chances of a cut-

off occurring.

In an αβ framework, a su ff icient (or good) move at an interior node is defined as one that

1) causes a cutoff, or

2) if no cutoff occurs, the one yielding the best minimax score.

Note that this does not imply that a su ff icient move is the best move. A move causing a cutoff was

su ff icient to cause the search to stop at that node, but there is no guarantee that had the search con-

tinued, a better (but irrelevant) score might have been obtained by a latter move.

Every time a su ff icient move is found, the history score associated with that move is

increased. Moves that are consistently good quickly achieve high scores. Upon reaching an inte-

rior node, moves are ordered according to their prior history of success. Rather than using a ran-
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dom or knowledge-based approach for deciding the order to consider moves in, a move’s prior

history of success can be used as the ordering criteria. The heuristic is experienced-based, acquir-

ing information on what has been seen as an indication of what will be useful in the future. In

effect, previous search information is being accumulated and distributed throughout the tree. This

implies that the heuristic is dynamic; the ordering of branches being adaptive to previous condi-

tions seen in the search tree.

Figure 1 illustrates the history heuristic in the αβ algorithm. The lines marked with a * are

those that differ from the standard algorithm. Note that the sorting operation is not specific to the

history heuristic; the usual technique of assigning a heuristic-based score to each move requires a

sort as well. However, some applications avoid the sort by generating moves as needed in some

reasonable order. Also note that the heuristic is applied at all interior nodes, since one can never

tell in advance with certainty whether a cutoff will occur or not.

Figure 2 shows an example of how the heuristic can affect tree searching. Assuming a

depth-first, left to right, traversal of the tree, at interior node I1, move M was found to be suffi-

cient. Later on in the search, at interior node I2, move M was one of the successor branches.

Given no information, the successors of I2 would be considered in arbitrary order. With the prior

history of success of M, the successors of I2 are re-ordered, allowing M to be considered first.

Since nodes I1 and I2 are not dis-similar, there is a high probability that M will also be sufficient

at I2, thereby reducing the size of tree traversed.

The implementation is based on two parameters; the mapping of moves to history and the

weight of a su ff icient move. The mapping used in the chess program was to specify a move as a

12-bit number (6-bits from-square, 6-bits to-square). Essentially, the mapping can be viewed as

the parameters to the move operator. Although this simplistic representation hides a lot of the

move details in the operator (for example, which piece is making the move), it allows for compact

tables (212 entries) that are easily accessed. Including more context information (for example, the

piece moving) did not significantly increase performance (for a complete discussion, see [9]).

Note that if you carry the idea of including context to the extreme, the result is a transposition
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table.

What should be the history weight of a su ff icient move? There are two considerations: First,

the deeper the sub-tree searched, the more reliable the minimax value (except in pathological

trees, rarely seen in practice [19]). Therefore, one idea is to associate higher history scores for

moves successful on deep rather than shallow searches. Second, the deeper the search tree (and

hence larger), the greater the differences between two arbitrary positions in the tree and the less

they may have in common. Hence, sufficient moves near the root of the tree have more potential

for being useful throughout the tree than sufficient moves near the leaf nodes. These considera-

tions led the usage of a weight of 2depth , where depth is the depth of the sub-tree searched. This

scheme gives more weight to moves that are su ff icient closer to the root of the tree than those near

the leaves of the tree and favors moves that are roots of larger, rather than smaller, sub-trees.

Several other weights, such as 1 and depth, were tried and found to be experimentally inferior to

2depth (for a complete discussion, see [9]).

Note that the killer heuristic is just a special case of the history heuristic. Whereas the killer

heuristic keeps track of one or two successful moves per depth of search, the history heuristic

maintains the success for all moves at all depths. With the history heuristic, "killer" moves would

earn high history scores. The generality of the history mechanism provides valuable ordering

information at all nodes; not just those with "killer" moves.

A final point is that there is nothing particular to the history heuristic that restricts its usage

to the αβ algorithm. Other types of search algorithms and applications may be able to use this

technique. The success depends on whether the tree type is suitable (operators are not unique to

each node and there is a correlation between using an operator and sub-tree values) and a suitable

mapping and weight can be found.

4. Experiment Design

To assess the importance of various search features, the chess program Phoenix was

enhanced to turn each one on or off selectively. Starting with a base program that performs αβ



- 11 -

with iterative deepening, a series of experiments was then performed whereby all possible combi-

nations of search features were tried on a test set of positions. The Bratko-Kopec positions [20]

have been used extensively for the benchmarking of sequential and parallel tree search perfor-

mance in chess programs [6, 21, 22]. Iterative deepening is necessary to be able to properly

evaluate refutation tables and hence is not one of the experiment parameters.

The search features used were:

1) Transposition Tables (T). The table contained 213 = 8 , 192 entries for depths 2 through 6,

and 216 = 65 , 536 for depths 7 and 8 .

2) Refutation Tables (R).

3) Minimal Window Searching (N). The NegaScout variant [13].

4) Aspiration Searching (S), using a one pawn window around the result of the previous itera-

tion.

5) Ordering using the History Heuristic (H).

A more detailed description of the implementation of each of these can be found in [9].

To assess the history heuristic as a move ordering mechanism, it is necessary to have some

basis of comparison. Most search programs apply application dependent heuristics to try and sug-

gest which moves might be good. Of course, the heuristics are only guesses; their validity often

cannot be ascertained without search. This approach has two undesirable properties. The first is

that the knowledge is (usually) static; it is unable to adapt to changing conditions on the board.

The second problem is that the knowledge does not handle exceptions well. Both problems are

symptoms of the same problem: inadequate knowledge. The real problem is that there is too

much knowledge to draw on and the designer must make important cost/benefit decisions. Most

of the knowledge one could use is not cost effective to implement and so the designer draws on

the heuristics that are effective 90% of the time and accepts the resulting consequences. For inte-

rior node move ordering, the consequences can be a poor ordering resulting in a larger search tree.

To have a means of comparison for the history heuristic, Phoenix also has a heuristic-based
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ordering mechanism (developed prior to the history heuristic). The methods used for ordering the

moves are similar to most chess programs, although it is probably more sophisticated than most.

It is, in fact, superior to the ordering mechanisms used in [7, 8]. This move ordering method will

be referred to as the knowledge heuristics since the ordering is based on well-known, human-

understandable, chess knowledge. The heuristics usually give an integral value in the range -25

to +25. When used with the history heuristic, the scores are combined, but the larger H scores

quickly swamp the smaller knowledge heuristic scores. A detailed description of the routine can

be found in [9]. Thus, the experiments have another parameter:

6) Ordering using Knowledge Heuristics (K).

This implies that a program without K or H has no explicit move ordering and just searches the

moves in the order they were generated in. In fact, this is not a completely random order, since

there is some bias in the order moves are generated. In the absence of a transposition or refuta-

tion table move, all program variants consider capture moves before non-capture ones.

Finally, for comparison purposes, the experiment has been enhanced to include the killer

heuristic. Since there seems to be considerable doubt as to its effectiveness, a controlled experi-

ment might provide insight into its effective behavior.

7) Killer Heuristic (L).

Previous experiments with αβ enhancements have neglected the issue of interior move ord-

ering. In [7, 8] since the experiments were performed using a chess program, it is reasonable to

assume that some application specific knowledge was used to order the moves and thereby reduce

tree size. One might question the conclusions they draw from their experiments, since the order-

ing will influence tree size, and tree size may influence the effectiveness of some enhancements.

Excluding the killer heuristic, there are 6 parameters resulting in 26 = 64 different sets of

enhancements that can be tried. All possible combinations were searched to depths of 2, 3, 4, and

5 ply. Since the killer heuristic is just a special case of the history heuristic, only a few of the

combinations with it present were tried just to establish the relationship between L and H. To
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depths of 6, 7, and 8 ply, experiments continued with only those combinations that showed signi-

ficant reductions in tree size through 5 ply. A total of 2000 hours of VAX 11/780 equivalent time

was required to perform the experiments.

5. Experiment Results

One measure for comparing search algorithm performance is elapsed CPU time. From the

implementor’s point of view, this is the most important consideration. However, any timing

results are machine and implementation dependent. Another measure is the number of bottom

positions (leaf nodes) examined (NBP), which has been used extensively in the literature

[1, 6, 23, 24]. However, NBP is an inadequate measure since it treats all leaf nodes equally and

assumes interior nodes are of negligible cost. In fact, for most applications, neither is a reason-

able assumption. NBP may be a good theoretical measure, but not a good practical one.

A better measure would be one that measures the size of the tree in a manner that is corre-

lated with program running time. The node count (NC) measure counts all nodes in the tree

where computation occurs. This includes interior, leaf, and any nodes in sub-trees built as part of

leaf node evaluation. At least for Phoenix, this count has been shown to be strongly correlated

with program running time [9]. Note that since the execution time overhead of most of the

enhancements is negligible (the cost being dominated by leaf node evaluation), NC accurately

reflects the relative running time of the program variants. The exception is the K heuristic, since

you can add as much or as little knowledge to it as you want. NC has the advantage of factoring

this out of the results. If you view the NC graphs as measuring time, it is important to note that

K’s relative time performance is over-stated since it added an additional 5% on to the execution

time. In this paper, both the NBP and NC measures will be used.

The best measure of the performance of a combination of search enhancements would be to

compare its tree sizes with that of the minimal tree. Unfortunately, it is difficult to know the size

of the minimal tree, due to the variable branching factor and presence of terminal nodes in the tree

(although Ebeling has recently devised a good method for approximating the minimal tree [25]).

Instead, performance will be measured as the percentage improvement in search efficiency as
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compared to that achievable by the best combination of search features. For each depth, all possi-

ble combinations of enhancements were tried, with the one giving the best result (using the NC or

NBP measure) being labeled N best. The program was also run with none of the enhancements (just

αβ with iterative deepening) yielding N none. For a given combination of enhancements enh, its

percentage improvements reflects how much of the reduction in tree size from N none to N best the

presence of enh achieved. The calculation is done using the formula:

reduction enh =
N none − N best

N none − N enh_ ____________ * 100

Figure 3 shows the percentage reduction in tree size attributable to the addition of a single search

enhancement for depths 3 - 8 ply using NBP as a measure. Figure 4 shows all the combinations

of two enhancements that exceed a 70% reduction.

Figure 3 shows that history heuristic performs well, but its efficiency appears to drop after

depth 7. The knowledge heuristic’s performance runs almost parallel to H, albeit with less search

efficiency. The effectiveness of transposition tables, on the other hand, increases with search

depth. Refutation tables seem to provide constant performance, regardless of depth, and appear to

be a poor substitute for transposition tables. Aspiration and minimal window search provide

small benefits. With two enhancements (Figure 4), the combination of transposition tables and

the history heuristic achieves over 99% of the possible reduction in tree size. Since transposition

tables provide a different type of search reduction than the history heuristic (eliminating sub-trees

without search and providing limited move ordering, versus more comprehensive move ordering),

it is not surprising that the two work well together. The performance of these two features indi-

cates that the other enhancements can provide at most a small percentage of improvement. Com-

bining three or more enhancements does not change this observation (details can be found in [9]).

Figures 5 and 6 present the same data using the NC measure and provide a better indication

of how tree size effects execution time. Using this measure, transposition tables and history

heuristic show up even better. Both methods have the advantage of steering the search towards

previously encountered parts of the tree, thereby increasing the computations that can be re-used.
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In both Figures 4 and 6, the performance of some enhancements appear to oscillate with

depth. This is largely attributable to the odd/even depth of the alpha-beta search. As mentioned

in section 2, the incremental cost of growing the tree an additional ply to an odd depth is greater

than for an even depth. Since some combinations of enhancements are tied to search depth, it

suggests that a different method for representing the data might be more informative. One could

separately plot the odd and even depth results, but given the paucity of depths for which results

are available, this was not done.

From 7 to 8 ply, the percentage improvement attributable to the history heuristic decreases

(although significantly less for NC than NBP). There are two reasons for this. The first is that the

trees are getting so large that, although the history heuristic is just as effective as before, its per-

formance relative to the larger tree seems poorer. Recall that the percentage reduction is relative

to the maximum possible savings. If an enhancement starts to perform well (in this case, the tran-

sposition tables), it can increase the possible savings and as a result, decrease the percentage

improvement attributable to the other enhancements.

A second reason is that the history heuristic tables are becoming over-loaded. As the search

becomes deeper, there is a greater variation in the positions that occur in the tree. Table entries

can be flooded with scores from the lower depths that affect the orderings of moves near the root

of the tree. In fact, the results reported here were constrained to only save history information

within the first depth − 1 ply of the tree, but to use the information throughout the entire tree. This

constraint provided a small improvement in performance, confirming that history tables can

become flooded with information, decreasing their usefulness.

As an interior node ordering heuristic, the history heuristic dominates the knowledge heuris-

tics approach under all scenarios. Again, this result may be a comment on the quality of the chess

specific knowledge used to order the moves and that a better routine might be written with

increased effort. An interesting feature in the diagrams is that sometimes the combination of both

H and K degrades the performance compared to H alone. This condition is caused by the two ord-

ering mechanisms disagreeing over the importance of a move. K may rate some moves highly
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that superficially appear to be good but in the current context, are not. Recall that the knowledge

heuristics statically assign scores to moves without performing any search. The history heuristic

also does not perform search, but makes use of previous search results to do its ordering. The his-

tory heuristic is adaptive to the conditions in the search tree and is insensitive to application depen-

dent pre-conceptions. The knowledge heuristics fail under conditions of exception, where excep-

tion is defined as any condition not covered by the heuristics. Consequently, inappropriate K

scores can decrease the effectiveness of ordering, resulting in larger trees.

Not surprisingly, the killer heuristic shows up as being inferior to the history heuristic.

However, a consideration is that there is less overhead in maintaining killer than history informa-

tion; in particular, no sorting. For high performance machines that implement αβ in hardware or

microcode, the simplicity of implementing the killer heuristic may make it preferable (for exam-

ple, [25]).

The performance of transposition tables consistently increases with depth. As the trees

become larger, there are potentially more transpositions and therefore more savings to be found.

However, the savings are limited by the size of the tables used and to 6 ply, it appears there were

few problems with table over-loading problems. For depths 7 and 8, over-loading became a seri-

ous problem and table sizes had to be increased. At further depths, if performance starts to

decrease, one can always increase the size of the tables, reducing the number of collisions that

occur.

In all cases, the transposition table significantly out-performs the refutation table. This is

not surprising since the refutation tables contain only a small subset of the information available

with transposition tables. Marsland [8] has published results comparing refutation and transposi-

tion tables. His experiments included 2 through 6 ply searches using transposition tables of size

8K. For all depths examined, refutation tables were found to be roughly comparable in perfor-

mance to transposition tables. When comparing these results with those reported here, it is

important to note that tree sizes obtained by Marsland’s program are 3-4 times larger than those

generated by Phoenix while using the same data set (the 24 Kopec-Bratko positions). Because of
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this, the transposition table fills up more quickly and may become over-loaded, reducing its effec-

tiveness and making refutation tables look more attractive. Marsland concludes that an 8K tran-

sposition table is too small for 6 ply searches of complex middlegame positions. In Phoenix, refu-

tation tables and 8K entry transposition have been examined to 6 ply, again showing little justifi-

cation for refutation tables. The main contribution of the refutation table is to remember an

important subset of the transposition table information. This is an important enhancement on a

memory constrained system where transposition tables are not possible. But for machines with

available memory, as long as the transposition table does not become over-loaded, refutation

tables will always be of minimal benefit.

The two search window enhancements, aspiration and minimal window, usually provide a

small improvement in performance. When used with the history heuristic and transposition

tables, both enhancements singlely and together provide a small reduction in tree size. Since both

are easy to implement and cost nothing in additional storage or computation, one might as well

include them in any real tree searching program. The benefits, however, are probably going to be

small.

In conclusion, what is the best combination of alpha-beta enhancements? Clearly, the his-

tory heuristic and transposition tables provide most of the savings. One loses nothing and gains

slightly by also including aspiration and minimal window search.

Since the experiments reported here illustrate the importance of move ordering, it is difficult

to compare these results with those of other researchers. Without having addressed the issue of

interior node move ordering, some reported results may be heavily biased by a good or poor ord-

ering scheme (for example [1, 7, 8]) but it is impossible for us to know. By considering a range of

ordering schemes (from no ordering to the knowledge and history heuristics), the results reported

here illustrate the range of efficient versus inefficient alpha-beta searching and can be used to

assess the effectiveness of interior node ordering methods.

The history heuristic was added to the chess program TinkerBelle. This program used tran-

sposition tables and simple move ordering heuristics. The addition of the history heuristic
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reduced the size of the average tree by 25%.

How close are we to the minimal tree? For artificially constructed trees it is easy to calcu-

late the size of the minimal tree. Unfortunately, this is not necessarily true for application gen-

erated trees. Using an average branching factor, one can come up with a rough approximation of

the minimal tree size. Eliminating transposition tables, the NBP results show the trees being built

to be within a factor of 1.5 times that of the minimal tree. With transposition tables, the trees

become smaller than the minimal tree.

6. Conclusions

The history heuristic is an inexpensive method for ordering descendants of interior nodes

that is largely application independent. It has the advantage of being simple to implement, as

compared to the time consuming, trial-and-error, knowledge-based approach. The algorithm sub-

stitutes "experience" for explicit knowledge and, at least in the case of αβ searching applied to the

game of chess, provides a viable alternative.

The heuristic has proven useful for parallel αβ implementations. In [26] on a network of

computers, the history tables were used two ways. First, each processor would maintain its own

local history table. Second, periodically all the local tables would be merged and broadcast to all

processors to achieve global sharing. This resulted in a noticeable improvement in program per-

formance.

Given that it is relatively easy to build trees close to the minimal tree in size, there is noth-

ing of interest left to explore in terms of f ixed depth αβ searching. New research efforts are con-

centrating on variable depth searches, so called selective deepening (for example, null moves

[27, 28] and singular extensions [29] as enhancements to αβ, and conspiracy numbers [30, 31] as

a new approach to minimax search).
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Footnotes:

1. A competitor in the 1986 World Computer Chess Championship, Cologne, West Ger-
many.

2. The original experiments were conducted through to depth 6 and showed minimal signs
of over-loading. When extended to depths 7 and 8, table conflicts necessitated an increase
in table size.

3. A software predecessor of the chess machine Belle.
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AlphaBeta( p : position; α, β, depth : integer ) : integer;
var

bestmove, score, width, m, result : integer;
rating : array[ 1..MAX_WIDTH ] of integer;

begin
if depth = 0 then { At a leaf node }

return( Evaluate( p ) );

width := GenerateMoves( moves );
if width = 0 then { No moves in this position }

return( Evaluate( p ) );

{ Assign history heuristic score to each move }
for m := 1 to width do

* rating[ m ] = HistoryTable[ moves[ m ] ];
Sort( moves, rating ); { Put highest rated moves first }

score := −∞4;
for m := 1 to width do

begin
{ Recurse using nega-max variant of αβ }
result := -AlphaBeta( p.moves[m], -β, -α, depth-1 );
if result > score then

score := result;

{ Check for cut-off }
if score >= β then

begin
{ Cut-off: no further sub-trees need be examined }
bestmove := moves[ m ];
goto done;

end;

α := MAX( α, score );
end;

done:
{ Update history score for best move }

* HistoryTable[ bestmove ] = HistoryTable[ bestmove ] + 2depth;
return( score );

end.

Fig. 1. The History Heuristic and Alpha-Beta.
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Fig. 1. The History Heuristic and Alpha-Beta.

Fig. 2. History Heuristic Example.

Fig. 3. Single Search Enhancement (NBP).

Fig. 4. Two Search Enhancements (NBP).

Fig. 5. Single Search Enhancement (NC).

Fig. 6. Two Search Enhancements (NC).


