Pattern-based AI Scripting using ScriptFEase

Matthew McNaughton, James Redford, Jonathan Schaeffer and Duane Szafron

Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada T6G 2E8
{mcnaught,redford,jonathan,duane}@cs.ualberta.ca

Abstract. Creating realistic artificially-intelligent characters is seen as
one of the major challenges of the commercial games industry. Histori-
cally, character behavior has been specified using simple finite state ma-
chines and, more recently, by AI scripting languages. These languages
are relatively “simple”, in part because the language has to serve three
user communities: game designers, game programmers, and consumers —
each with different levels of programming experience. The scripting often
becomes unwieldy, given that potentially hundreds (thousands) of char-
acters need to be defined, the characters need non-trivial behaviors, and
the characters have to interface with the plot constraints. In this paper,
the ScriptEase model for Al scripting is presented. The model is pattern-
template based, allowing designers to quickly build complex behaviors
without doing explicit programming. This paper describes ScriptEase’s
behavior patterns and user interface. This is demonstrated by generating
code for BioWare’s Neverwinter Nights game. In addition to behaviors,
the model is being extended to include encounter, dialog, and plot pat-
terns.

1 Introduction

The commercial games industry is currently worth $15 billion. In the past, better
computer graphics have been the major technological sales feature of games.
With faster processors, larger memories, and better graphics cards, this has
reached a saturation point. The perceived need for better graphics has been
replaced by the demand for a more realistic gaming experience. All the major
computer games companies are making big commitments to artificial intelligence
(AI). This activity has been accelerated by the recent success of Al-based games
like The Sims and Black and White.

Historically, the artificial intelligence research community has ignored the
commercial games industry. However, the AI challenges that this industry faces
are daunting. For a number of years, John Laird has been advocating commercial
games as a fruitful venue for AI research (AI’s “killer application”) [10].

Computer games are the ideal application for developing characters that ap-
pear to have realistic, artificially-intelligent behavior. There is already a need
for it, since human game players are dissatisfied with computer characters. The
characters are shallow, too easy to predict, and, all too often, exhibit artificial
stupidity. This has led to the success of on-line games where players compete

against other humans. The current state of the art in developing artificially intel-
ligent characters can be described as rather primitive. The lack of sophistication
is due to the lack of research effort [1] (Laird’s group being a notable exception).
This is changing, as more researchers recognize the value of the research prob-
lems facing the commercial games industry. Artificial intelligence allows us to
create simulated environments where the human has the feeling that they are
interacting in the real world. While an immediate application of this technology
is games, the technology has wider applications (for example, training [8]).

As a first step, it is necessary only to create the illusion of intelligence. The
state of the art has each character scripted, usually using a rule-based system or a
finite state machine [11]. In both cases, behavior patterns are limited, repetitive,
and non-adaptive. In contrast, human-level behavior should not be prescribed,
should avoid repetition, and should adapt to changing conditions.

In designing a more ambitious, more robust system for defining behaviors,
many issues must be considered:

— Knowledge management. There can be hundreds even thousands of char-
acters in a game, each with a (possibly complex) combination of behaviors.
All this information has to be organized to simplify maintenance issues.

— Knowledge acquisition. The system must simplify the task of defining char-
acters and their behavior (especially important for game designers).

— Rapid prototyping. Game design is accomplished using an iterative approach.
Typically one wants to quickly create the desired functionality, and then
incrementally tune it to improve the quality of play.

— Simple model. The Al scripting facility will be used principally by three user
communities: game designers (who, typically, have little programming expe-
rience), consumers (who want to create their own characters, but have vari-
able programming experience), and game developers (usually programming
experts). The programming model has to be simple enough to accommodate
non-experts, but rich enough to allow developers to do anything that they
want to do.

— Testing. Any definition of AT behavior must be easy to verify for correctness.

— Non-determinism. The system must support “intelligent” (pseudo-random)
behavior selections to avoid predictability (while at the same time not hurt-
ing the testability of the system).

— Adaptive. The language must support learning characters must adapt to
their circumstances. Few commercial games do more than non-trivial types
of learning.

— Rich set of behaviors. Realism demands that any AI behavior specification
system must support a large and varied selection of behaviors.

— Complex behaviors. The system must support the creation of complex be-
haviors, either individual behaviors or a combination of simpler behaviors.

— Extensibility. The basic tool must support the addition of new behaviors and
capabilities.

In effect Al scripting for a non-trivial game has all the problems of maintaining a
large evolving software repository, while incurring the challenges of AT knowledge
acquisition, maintenance, and usage.

Our experience with Al scripting languages comes from working with BioWare
products Baldur’s Gate II and Neverwinter Nights. These languages allow the
game designer to define characters, and for users to create their own characters.
The AT scripting has limited capabilities, and requires a lot of programming ex-
pertise to understand what is going on. As one adds more “intelligence” to the
system, the scripts become unwieldy and hard to debug.

This paper introduces ScriptEase, a tool for defining complex behaviors.
The objective is to address all of the above issues in a powerful yet easy-to-use
tool. Behaviors are defined using behavioral patterns taking an analogy from
software engineering, these are the “design patterns” [7] of artificial intelligence
behavior. This work builds on our experience with design patterns for parallel
programming [5]. For example, one behavior pattern could be “to guard”. The
default would have a character stand guard over something and not allow any
access to it without a fight. This behavior could be parameterized to, for example,
allow the game designer to define how to guard (stand stationary; patrol around)
or who to allow to have access to the object. To create a guard involves creating a
character, assigning the guard behavior to it, and then customizing the behavior.

Our vision for a scripting language is to have it support a rich set of behavior
patterns. And, as with our parallel programming tool COyP3S[5], there is tool
support for defining and refining these patterns. It is surprising to see that our
research into parallel computing tools can be applied to something as seemingly
remote as defining AT characters. The leap is not all that surprising given that
the fundamental nature of both applications — defining and using patterns — is
the same.

Note that there are multiple audiences for a scripting language, ranging from
non-programmers to experts (this can be a serious issue in language design [4]).
The former needs access to a simpler more intuitive interface to the language
than the latter. Indeed, most users are not programmers, and exposing a textual
programming language to them is undesirable. Hence, a visual representation —
one that abstracts away textual programming — is important. Again, a CO?*P3S-
like approach seems to work here parameterized behaviors can be defined
graphically.

This paper describes the behavioral patterns in ScriptFase, and introduces
the reader to our behavior patterns. Additional patterns, including those for
encounters, dialogs and plot, are only briefly mentioned. We are fortunate to have
access to industrial code to work with. ScriptFase is used to generate code for
BioWare’s multi-award-winning role-playing fantasy game Neverwinter Nights.
Unfortunately, using a real application limits the expressiveness of behavior. The
Neverwinter Nights scripting language does not support facilities for learning
something we want to see added to the language. Our hope is that our work will
influence the future design of Al scripting languages.

Section 2 describes our patterns-based model. Section 3 illustrates our tool
ScriptEase that implements the model. Section 4 discusses ongoing work, while
Section 5 presents the conclusions.

2 Using Design Patterns to Design Computer Games

Consider the situation where a game designer of a fantasy role-playing game
wants to include four icons (objects, or in this case, specifically shards), that
when gathered together form a single larger icon called a moon-stone. Each
shard is guarded, but the game designer wants the guarding done differently in
each case:

1. Shard-1 is in a guarded chest. The guard should have a patrol route near
the chest. However, if any “enemy” creature gets near the chest, the guard
should warn the enemy and then run over to the chest and stand in front
of it. If the enemy actually tries to open the chest then the guard should
attack the enemy. If the “enemy” moves away from the chest without opening
it, the guard should resume the patrol. Note that if a “friendly” creature
approaches the chest, the guard will not react. In fact, if a friendly creature
removes Shard-1 and takes it away, the guard will continue to guard the
chest (not the shard).

2. Shard-2 is in a room with a single door. The guard attacks any enemy that
gets close to the door. Again, the guard is guarding the door (not the shard)
and the guard will continue to guard the door, even if the shard is removed
from the room.

3. Shard-3 is in the possession of a creature. The guard will protect the creature
(not the shard) from harm or from stealing. If an enemy comes near, the
guard will shout and if the enemy tries to steal from the creature being
guarded or attacks the creature, the guard will attack.

4. Shard-4 is protected by a guard who will attack any enemy who tries to
possess it. Note that Shard-4 may be moved to any location by a friendly
creature and the guard will follow along to attack any enemy that obtains
it.

In addition, we want the guards in each of these scenarios to exhibit “nat-
ural” behaviors. For example, the designer wants the “chest” guard to have a
fixed patrol path around the chest. However, this path should not be exactly
identical each time around, since a real guard would have some variation. The
second guard should be mostly stationary near the door. However, he should
occasionally walk to one or more nearby objects. The third guard should stay
close to the individual that is being guarded. The fourth guard should begin by
staying near the icon. However, as time goes on without anything happening,
this guard should become bored and move farther away. However, if any creature
is spotted, the guard should immediately return to the shard and not wander
far for a while (until the guard becomes bored again).

It would take considerable effort to program the behaviors of the four guards
we have described in most computer game scripting languages. For example,
we have manually programmed these four behaviors in the Neverwinter Nights
scripting language and there are 500 lines of code (over 1,000 if you include white
space and comments). However, these four behaviors have some similarities.
They all have a common theme that something is being guarded. We should

be able to abstract this commonality and use the abstraction to generate the
game code for each of these four situations. This observation has already been
made in other domains and has led to the construction of design patterns. A
design pattern is a mechanism for encapsulating the knowledge of experienced
designers into a re-usable artifact. By definition, a design pattern is a descriptive
device that fosters re-use during the design phase of an activity. Although design
patterns have been used in architecture [2], they have also become an important
tool in software development [7].

The most common form of a design pattern is a document, such as a chapter
in a pattern catalog or a Web page. This form preserves the instructional nature
of patterns, as a cache of known solutions to recurring design problems. Patterns
in this form are easy to distribute and readily available to designers. Patterns
provide a common design lexicon, and communicate not only the structure of
the design but also the reasoning behind it. This common form of design pattern
is called descriptive. In the context of role-playing fantasy games, humans use
high-level patterns to describe characters and behaviors. For example, the notion
of “wizard” or “shop-keeper” immediately infer attributes on the character they
are ascribed to.

Until very recently, design patterns have only been applied during the de-
sign phase of software development. They have not been used to generate code.
There are several reasons why design patterns are not used as generative con-
structs that support code re-use. The most fundamental reason is that design
patterns describe a set of solutions to a family of related design problems and it
is difficult to generate a single body of code that adequately solves each problem
in the family. No adequate mechanism exists for a developer to understand the
variations in code that spans the family of solutions and to adapt this code for
an application. A second important reason is that it is difficult to construct and
edit generative design patterns. This limits the number of design patterns that
can be made generative and results in a poor selection of patterns for the end
user. Faced with a small selection of rigid generative design patterns, end-users
are reluctant to use such a limited approach for real software development.

We have created a new approach to generative design patterns that solves
these difficult problems and have embodied our approach in tools called CO, P3S
(Correct Object-Oriented Pattern-based Parallel Programming System) and
MetaCO3P5S (and their newer sequential counterparts). The first tool gener-
ates code for a wide variety of patterns that exist in the domain of general pro-
gramming and the specialized domain of parallel programming. The second tool
supports the design and implementation of new generative design patterns. Our
approach solves the adaptation problem by parameterizing each design pattern
with a fixed set of parameters. The programmer provides application domain-
specific values for each of these parameters before generating code.

In the context of computer game design, the use of generative design patterns
has six positive effects:

1. Pattern re-use. A pattern can be identified, designed and implemented once
and then can be instantiated many different times across the same game and
different games to amortize its development cost

2. Pattern adaptation. A single pattern can provide a rich texture of different
game experiences by varying its parameters.

3. Pattern abstraction. Game designers can discuss and design game compo-
nents at a higher level of abstraction by discussing the design of new patterns
and the adaptation of existing patterns to create new game situations.

4. Pattern code generation. Game designers can generate game code without
knowing anything about programming.

5. Pattern prototyping. If a game designer has an idea for a novel new game
construct, it can be evaluated more quickly. Instead of having a programmer
code the new construct from scratch, an existing pattern can be adapted to
generate code that implements a construct that is similar to the new idea,
and this code can be modified by a programmer.

6. Pattern correctness. Once a pattern has been tested, the pattern instances
that are generated from it will need less quality assurance time during game
testing.

In the specialized domain of role-playing computer games, we have identified
several kinds of generative design patterns that can be used by game designers
with little or no programming experience: behavior, encounter, dialog, and plot
patterns. In this paper, we will focus on behavior patterns, although we will also
discuss encounter patterns.

Each specific pattern describes a set of roles. A role is a placeholder for a game
object. For example, the guard behavior pattern defines two roles: the guard and
the guarded. A pattern is instantiated by adapting it for a particular use in the
game. For example, we will use four different instantiations of the Guard Pattern
to generate the four different scenarios described earlier. To instantiate a pattern,
each role is filled by an individual game object, who is said to play the role (in
the movie sense, not the programming languages sense). For example, in the
first scenario, a particular Orc (a monster) may be cast in the guard role and
a particular chest may play the guarded role. In the third scenario, a particular
fighter may play the guard and a particular wizard can be cast in the role of
guard.

Each game may have a different ontology for classifying the kinds of game
objects it has. In this paper, we will use a simple ontology consisting of actors
(animate game objects that can perform actions) and props (inanimate game
objects that can be manipulated but cannot perform actions). Props can be
further sub-classified as containers (that can hold other props) and simple props
(that cannot hold other props). We use the term object to refer to a game object
that might be an actor or a prop. Each role is typed. For example, in the Guard
Pattern, the guard role must be played by an actor, but the guarded role may
be played by any object.

One of the roles of each behavioral pattern is special and is called the principal
role of the behavioral pattern. The other roles are called supporting roles. An

actor (not a prop) must always play the principal role of a behavior pattern since
it prescribes some actions that the actor will take. The actor that is cast in the
principal role is called the principal of the behavioral pattern. In fact the goal
of a behavior pattern is to prescribe all of the potential actions of the principal.
We say that the principal is bound to a behavioral pattern since an actor can
only be the principal of one behavioral pattern at any one time. The actions
of a behavioral pattern’s principal are completely determined by the behavioral
pattern it is bound to. A principal stays bound to a behavioral pattern until it
is unbound. This can be done if the principal is bound to a different behavioral
pattern or is destroyed. Recently, complex schemes for allowing an actor to
choose a principal role amongst several behavioral patterns have been proposed
in the literature [6]. However, it is not clear that they will be easy to use in cases
where the action taken by the character is significant to the plot of the game.

Although an actor may be cast in only one principal role at any given time,
it may be cast in an arbitrary number of supporting roles simultaneously. For
example, if the principal (guard role) of a Guard Pattern that is guarding some-
thing (chest, door, individual, shard, etc.) is itself being guarded by three other
creatures, then the principal plays the guarded role in three other guard instan-
tiations.

A pattern role is a special kind of pattern parameter. However, each pattern
can have a set of other parameters as well as its roles. Every behavioral pattern
has a situation list parameter that describes all of the possible basic situations
that comprise the behavioral pattern. Each situation consists of a set of con-
ditions and a set of actions. For example, in scenario 1, one situation is: if an
enemy comes near the chest and the guard is currently patrolling, then warn the
enemy and move near the chest. A second situation is: if an enemy opens the
chest then attack the enemy.

In general, patterns can also have other parameters. Two other common
parameter types are labels that refer to specific game objects and composite
parameters that refer to other pattern instances. For example, the Guard Pattern
has a list of patrols, where each patrol is an instance of another behavior pattern
called a Patrol Pattern. At instantiation time, the game designer must assign
a value to each pattern parameter. Of course, casting the roles of a pattern to
specific objects is a special case of assigning pattern values to those parameters
that are role parameters. In the next section, we provide an example of patterns,
pattern parameters, and the instantiation of pattern parameters using the Shard-
1 chest guard of this section as an example.

When patterns are used as parameters in other patterns there is sometimes
a need to require roles from the two different patterns to be cast by the same
object. For example, the guard in the Guard Pattern and the patroller in the
Patrol Pattern that is attached to it, must be cast as the same actor. In the
simplest case, the principal role of two patterns is shared and we say that we
are attaching a pattern to another pattern. This is the only situation where an
actor may play the principal role in more than one behavior. It is allowed since

the attached behaviors are considered as components of the behavior they are
attached to.

3 Designing Characters: A ScriptEase Walk Through

Consider an example of the Guard Pattern, described as scenario 1 (Shard-1)
from Section 2. As a default behavior, the guard patrols the room that the chest
is in. When an enemy approaches the chest, the guard yells a warning, runs
over to the chest, and stands in front of it. When the enemy moves away from
the chest, the guard goes back to patrolling the room. If the enemy ignores the
guard’s warning and opens the chest, the guard attacks. Figure 1 describes all
of the information needed to specify this instance of the Guard Pattern.

We have developed a tool called ScriptFase that allows this instance and
many other variations of the Guard Pattern to be implemented quickly and
easily. All user input is menu driven, with all options for behaviors and scenarios
given in natural language. The user never does programming in the conventional
senses and, indeed, never knows the existence of an underlying programming
language. Figure 2 shows a screen shot of this tool.

Situations can be constructed by selecting conditions and actions from a list.
The Situations panel on the left side of Figure 2 contains a list of all the situations
that have been defined for this pattern instance. After a new situation has been
created, it appears in this list and makes its condition and action lists available
to be edited. Once a condition is added, it appears in a list inside the Conditions
panel on the right side of Figure 2. Actions appear in the corresponding Actions
panel. A condition or action can then be selected to make its parameters available
for editing. In Figure 2, the first condition in the Conditions list is highlighted.
Its parameters are shown inside of the Near Condition panel underneath the
Situations panel.

Patrols are lower level patterns that can be attached to a Guard Pattern. All
of the patrols that are attached to a Guard Pattern are listed in the Attached
Patrols panel at the bottom of Figure 2. There are two types of Patrol Patterns
used in this example. The “Room Patrol” from Figure 2 is an instance of a Way-
point Patrol Pattern, which means the patrol is defined by a series of way-points
that the guard walks along. The “Chest Post” is an instance of a Post Patrol
Pattern, which means the guard just stands at a particular spot. Table 1 gives a
description of these two instances. Any number of patrols can be attached to a
guard, but only one is active at a time. There is a condition to test which patrol
a guard is currently using, and an action to change a guards patrol.

Once all of the patrols and situations have been specified, code can be gen-
erated by clicking the “Generate” button at the very bottom of Figure 2. The
user may further customize the situations using the Situation Editor tool of
ScriptEase, shown in Figure 3. Finally, ScriptFEase generates Neverwinter Nights
scripting language code.

Figure 4 shows a game scenario of a guard in action. Part of the Neverwinter
Nights scripting code generated by ScriptEase for this scenario is shown in Fig-

Pattern Type
Instance Name
Guard Tag
Guarded Object Tag
Friend Identifier

Attached Patrol Patterns:
1. Instance Name
2. Instance Name

Situation List:
Name
Conditions
Actions

Name
Conditions

Actions

Name
Conditions

Actions
Name

Conditions
Actions

Guard Pattern
Chest Guard
chest_guard
chest
guardl_friend

Room Patrol
Chest Post

Spawn Situation
The guard is created
Set the guard’s patrol to "Room Patrol"

Warning Situation

An creature is within 5 meters of the guarded
chest. The guard is currently using patrol
"Room Patrol".

The guard yells "Hey! Get away from there."
Set the guard’s patrol to "Chest Post".

Continue Patrol Situation

No enemy is within 5 meters of the guarded
chest. The guard is currently using patrol
"Chest Post".

Set the guard’s patrol to "Room Patrol"

Attack Situation

An enemy creature opens the guarded chest
The guard says "I warned you!". The guard
attacks the enemy.

Fig. 1. The Chest Guard instance of the Guard Pattern

Instance nameichese Guard |
Guartd Tagichest.guard |
Guarded COhjéct Tagichest
Fricnd iduntilieriguardl friend |

~Conditions

someone s near the Guarded Object
The Quard is using a specific patrol

r5|-l“ﬁ“ﬂ|l-'
Spawn Situation
Warning Situation
Continue Pacral Siteation
atzack Situation

Addd | Mear guarded v || Rremove |
Mear guarded -
=i way from g“ard:ed &

Speak Guarded is apened
Cuard cGuarded is acquired
Guard perceives

New || Remaove || Rename

-Mear Condition
Creaturs an enemy w
Distance 5.0

Guirﬁéﬂ:lls_stulen fram
Guard spawns

add |Guard attacks || Remove
Artéched Patrals
Roorm Patral
Chest Post
| Add || Remove || Edit |
| Generate |

Fig. 2. Editing an instance of the Guard Pattern using ScriptEase

ure 5. Notice that the code is self documenting, enabling the user to easily find
which portions of code correspond with the situations specified in ScriptFase.
This is very useful if the user desires to fine tune the code on the lowest level.
We have also identified several encounter patterns. Instead of describing the
behaviors of a principle actor, an encounter pattern defines a list of situations
that describe some notable event in the game. For instance, in Baldur’s Gate 11,
there is an interesting encounter in the Shade Lord’s temple. There is a pedestal
with an icon, called the Sun Stone, on it. There is also a ring of lights around
the pedestal. When a particular type of monster, called a Shadow, enters the
ring of lights, it is killed in a spectacular flash of light. If the Sun Stone is
removed from the pedestal, the ring of lights disappears and the Shadows can
then approach the pedestal without being killed. We have defined an encounter
pattern called the Icon-Container Pattern. This pattern has 3 roles: an icon,
a container, and an optional perimeter. The icon is a prop that can be placed

Fick Aclions

= J—

Cancel

) (RFGATIEN COnsTPRCTION Wirard
This wizard will help youta build & game situation,

ﬂﬁ”ﬁ“ﬁm Pick Conditions

- Choose the conditions that will trigger this situation.

a1

Conditions

On the heartbeat of the person tagged “chest_guard®, referred to as Guard.
Test a custom condition: Find creatures near guarded

Test a custom condition: Is Enemy an enemy 7 J
Test a custom condition: Guard himsell does not count as being near
|Test a custom condition: See if the ouard is doing patrol "Room Patrol®

i

=< Back . Hext == l T

Fig. 3. Situation editing using ScriptEase

Fig. 4. Neverwinter Nights guarding scenario (using the Icon-Perimeter Pattern)

Pattern Type |[Way-point Patrol Pattern” Pattern Type |Post Patrol Pattern

Instance Name Room Patrol Instance Name Chest Post

Way-point Prefix room 1 Post Tag chest _post
Num of Way-points 8
Initial Way-point 1

Table 1. Two patrol instances attached to the Guard Pattern

“chest_guard".OnSpawn “chest_guard®.OnHeartheat "chest”.OnOpen

=

t

¥
teturn 0;
¥

/* Check sach way that the conditions for
+ ‘Continue Patrol Situation’
+ could become true in this event acript.

*f
int
Ca&_situation 3() {

#* Did the conditions for this situation just hecome true because
* ‘On the heartheat of the person tagged “chest guard’, referred to as Guard. *
* just became Lrus?

.
if(!0A when situwabion 3() } |
return 0

i

return 1;
)
int
C& when situation 5() |

7/ Variahles for entities shared among conditiona and actioms:

// the ohject tagged "chest guard", referred to as Buard,
object CA pronoun 0 /* Guard #/ = OBJECT INVALID;

/* Did the folloying condition just become true?

* ‘On the heartbeat of the person tagged "chest guard', referred to as Buard *
St

CA pronoun 0 /% Guard */ = DBJECT SELF;

if{ GetTag(CA pronoun 0 /* Guacd */) == "chest gquard") {

Fig. 5. ScriptEase code generation

into the container’s inventory. The container is either an actor or a container
prop. The perimeter is a polygonal area that an actor can enter and exit. This
pattern involves four situations: adding the icon to the container, removing the
icon from the container, an actor enters the perimeter while the icon is in the
container, and an actor exits the perimeter while the icon is in the container. In
each of these situations, the condition listed above is implicitly included in the
condition list. The user can add more conditions to the list, and define actions
to execute when the conditions are satisfied. Figure 6 shows these four situations
instantiated for the Sun Stone Icon example.

We have identified multiple instances of this pattern in the Shade Lord temple
alone, demonstrating that this pattern is useful in terms of abstraction, adapta-
tion, and re-use. We have not yet created an interface specific to this particular

Pattern Type : Icon-Container

Icon : Sun Stone
Container : Pedestal
Perimeter : Ring of Lights

Situation List:
Implicit Condition : The Sun Stone is added to the Pedestal
Other Conditions : None
Actions : Activate the ring of lights

Implicit Condition : The Sun Stone is removed the Pedestal
Other Conditioms : None
Actions : Activate the ring of lights

Implicit Condition : The Sun Stone is on the Pedestal and a creature
enters the ring of lights.

Other Conditioms : The entering creature is a Shadow

Actions : Display an impressive visual effect. Kill the
entering Shadow.

Implicit Condition : The Sun Stone is on the Pedestal and a creature
exits the ring of lights.

Other Conditions : None

Actions : Nomne

Fig. 6. An instance of the Icon-Container Pattern

pattern, however, all of the situations defined in Figure 6 have been implemented
in the ScriptEase Situation Editor.

ScriptEase has been demonstrated to BioWare and we have received positive
feedback. The tool is especially appreciated by the game designers, who prefer
to work in terms of the story and characters, not at the level of programming.
The tool is evolving, as we get more feedback from BioWare. Indeed, the project
is expanding at a pace that is difficult to keep up with. The immediate goal is to
give ScriptEase the functionality so that it can replicate all the capabilities in
Neverwinter Nights. To do this requires adding a few more patterns (research)
and a lot more scenarios (data input). The design of ScriptEase makes both
issues easy to address.

4 Ongoing Work

Behavior patterns are only the beginning. The industry needs a tool that prop-
erly defines a complete game script, in much the same way that a script is used
to outline a movie. A movie script must include information on each scene, in-
cluding the physical arrangement of the scene, the characters that are present,

how the characters interact, the dialogs, and the outcomes. A series of scenes
has to be stitched together to give a coherent plot. Defining these components
in isolation of each other (as is currently done in commercial games) is clearly
wrong. Most (but not all) of these components touch on AT issues.

To cover the gamut of issues in game design, a ScriptEase-like tool needs
other components, including dialog and plot. We believe that both of these can
also be described by patterns. We have ideas for how to integrate these patterns
into ScriptEase, and this is the subject of ongoing work.

The preceding description of ScriptEase described scripted behavior, where
each character’s behavior was predictable, modulo some random number gen-
eration. The reality is that creating realistic characters requires more sophis-
ticated behavior. Machine learning is the answer. Unfortunately, compatibility
with existing scripting languages (such as that in Neverwinter Nights) make this
difficult. We expect our work to eventually lead us to the design of a new script-
ing language, one that supports core Al functionality (such as learning) as basic
operators in the language.

Learning is a touchy issue in commercial games. Currently, machine learning
plays a limited role in the commercial games industry. ”[Learning] takes place as
part of the game development cycle, never after the game ships” [9]. The reason
for this is that the program developers have no control over how a learning game
evolves; the results might be embarrassing. However, things are changing. The
success of games like The Sims and Black and White have demonstrated the
power (and commercial appeal) of games that learn.

The issue of testability of a learning algorithm before the product ships is of
paramount importance to the games industry [3]. There are no guarantees with
any learning algorithm, since the user (game player) can deliberately expose the
learner to a contrived set of learning experiences. One way of addressing this is
the ScriptEase approach of using patterns. Patterns can be tested individually
and verified to be correct. Building on top of verified patterns allows one to
create composite patterns that can have guarantees of correctness.

5 Conclusions

This paper discussed one aspect of ScriptEase — behavioral patterns. Qur re-
search and development efforts concentrated on this aspect of our vision for the
simple reason that it has the highest potential for an impact in the short-term.
Given the enormous effort that goes into defining behaviors in a complex game
like Neverwinter Nights, any tool (such as ScriptEase) that can can reduce this
effort translates into enormous costs savings and improved product reliability.

The commercial games industry is pushing Al technology into new and in-
novative directions. The demand for realism, high-performance, and real-time
responses make the problems especially challenging. One could argue that this
industry is one of the biggest receptors for Al technology, and yet it has his-
torically been ignored by the AT community. There are wonderful opportunities
here for ground-breaking innovative research.

6

Acknowledgments

Financial support was provided by the Institute for Robotics and Intelligent Sys-
tems (IRIS), the Natural Sciences and Engineering Research Council of Canada
(NSERC), and Alberta’s Informatics Circle of Research Excellence (iCORE).
This research was inspired by our many friends at BioWare. We thank BioWare
for their support and encouragement.

References

10.

11.

. E. Adams. In defense of academe. Game Developer, pages 55-56, November 2002.
. C. Alexander, S. Ishakawa, and M. Silverstein. A Pattern Language. Oxford

University Press, New York, 1977.

J. Barnes and J. Hutchens. Testing of undefined behavior as a result of learning. In
S. Rabin, editor, AI Game Programming Wisdom, pages 615 623. Charles River,
2002.

. M. Brockington and M. Darrah. How not to implement a basic scripting language.

In S. Rabin, editor, AT Game Programming Wisdom, pages 548 554. Charles River,
2002.

. S. Bromling, D. Szafron, J. Schaeffer, S. MacDonald, and J. Anvik. Generalising

pattern-based parallel programming systems. Parallel Computing, 2002. To appear.
R. Evans and T. Lamb. Social activities: Implementing wittgenstein, 2002. http:
//wwu.gamasutra.com/features/20020424/evans_01.htm.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, 1995.

R. Hill, C. Han, and M. van Lent. Applying perceptually driven cognitive mapping
to virtual urban environments. AAAI National Conference, pages 886 893, 2002.
N. Kirby. GDC 2001 AI roundtable moderator’s report, 2001.
http://www.gameai.com.

J. Laird and M. van Lent. Human-level AT’s killer application: Interactive computer
games. AAAI National Conference, pages 1171-1178, 2000.

P. Tozour. The evolution of game Al In S. Rabin, editor, AT Game Programming
Wisdom, pages 3 15. Charles River, 2002.

