
Pattern-based AI S
ripting using S
riptEaseMatthew M
Naughton, James Redford, Jonathan S
hae�er and Duane SzafronDepartment of Computing S
ien
e, University of Alberta,Edmonton, Alberta, Canada T6G 2E8fm
naught,redford,jonathan,duaneg�
s.ualberta.
aAbstra
t. Creating realisti
 arti�
ially-intelligent
hara
ters is seen asone of the major
hallenges of the
ommer
ial games industry. Histori-
ally,
hara
ter behavior has been spe
i�ed using simple �nite state ma-
hines and, more re
ently, by AI s
ripting languages. These languagesare relatively \simple", in part be
ause the language has to serve threeuser
ommunities: game designers, game programmers, and
onsumers {ea
h with di�erent levels of programming experien
e. The s
ripting oftenbe
omes unwieldy, given that potentially hundreds (thousands) of
har-a
ters need to be de�ned, the
hara
ters need non-trivial behaviors, andthe
hara
ters have to interfa
e with the plot
onstraints. In this paper,the S
riptEase model for AI s
ripting is presented. The model is pattern-template based, allowing designers to qui
kly build
omplex behaviorswithout doing expli
it programming. This paper des
ribes S
riptEase'sbehavior patterns and user interfa
e. This is demonstrated by generating
ode for BioWare's Neverwinter Nights game. In addition to behaviors,the model is being extended to in
lude en
ounter, dialog, and plot pat-terns.1 Introdu
tionThe
ommer
ial games industry is
urrently worth $15 billion. In the past, better
omputer graphi
s have been the major te
hnologi
al sales feature of games.With faster pro
essors, larger memories, and better graphi
s
ards, this hasrea
hed a saturation point. The per
eived need for better graphi
s has beenrepla
ed by the demand for a more realisti
 gaming experien
e. All the major
omputer games
ompanies are making big
ommitments to arti�
ial intelligen
e(AI). This a
tivity has been a

elerated by the re
ent su

ess of AI-based gameslike The Sims and Bla
k and White.Histori
ally, the arti�
ial intelligen
e resear
h
ommunity has ignored the
ommer
ial games industry. However, the AI
hallenges that this industry fa
esare daunting. For a number of years, John Laird has been advo
ating
ommer
ialgames as a fruitful venue for AI resear
h (AI's \killer appli
ation") [10℄.Computer games are the ideal appli
ation for developing
hara
ters that ap-pear to have realisti
, arti�
ially-intelligent behavior. There is already a needfor it, sin
e human game players are dissatis�ed with
omputer
hara
ters. The
hara
ters are shallow, too easy to predi
t, and, all too often, exhibit arti�
ialstupidity. This has led to the su

ess of on-line games where players
ompete

against other humans. The
urrent state of the art in developing arti�
ially intel-ligent
hara
ters
an be des
ribed as rather primitive. The la
k of sophisti
ationis due to the la
k of resear
h e�ort [1℄ (Laird's group being a notable ex
eption).This is
hanging, as more resear
hers re
ognize the value of the resear
h prob-lems fa
ing the
ommer
ial games industry. Arti�
ial intelligen
e allows us to
reate simulated environments where the human has the feeling that they areintera
ting in the real world. While an immediate appli
ation of this te
hnologyis games, the te
hnology has wider appli
ations (for example, training [8℄).As a �rst step, it is ne
essary only to
reate the illusion of intelligen
e. Thestate of the art has ea
h
hara
ter s
ripted, usually using a rule-based system or a�nite state ma
hine [11℄. In both
ases, behavior patterns are limited, repetitive,and non-adaptive. In
ontrast, human-level behavior should not be pres
ribed,should avoid repetition, and should adapt to
hanging
onditions.In designing a more ambitious, more robust system for de�ning behaviors,many issues must be
onsidered:{ Knowledge management. There
an be hundreds { even thousands { of
har-a
ters in a game, ea
h with a (possibly
omplex)
ombination of behaviors.All this information has to be organized to simplify maintenan
e issues.{ Knowledge a
quisition. The system must simplify the task of de�ning
har-a
ters and their behavior (espe
ially important for game designers).{ Rapid prototyping. Game design is a

omplished using an iterative approa
h.Typi
ally one wants to qui
kly
reate the desired fun
tionality, and thenin
rementally tune it to improve the quality of play.{ Simple model. The AI s
ripting fa
ility will be used prin
ipally by three user
ommunities: game designers (who, typi
ally, have little programming expe-rien
e),
onsumers (who want to
reate their own
hara
ters, but have vari-able programming experien
e), and game developers (usually programmingexperts). The programming model has to be simple enough to a

ommodatenon-experts, but ri
h enough to allow developers to do anything that theywant to do.{ Testing. Any de�nition of AI behavior must be easy to verify for
orre
tness.{ Non-determinism. The system must support \intelligent" (pseudo-random)behavior sele
tions to avoid predi
tability (while at the same time not hurt-ing the testability of the system).{ Adaptive. The language must support learning {
hara
ters must adapt totheir
ir
umstan
es. Few
ommer
ial games do more than non-trivial typesof learning.{ Ri
h set of behaviors. Realism demands that any AI behavior spe
i�
ationsystem must support a large and varied sele
tion of behaviors.{ Complex behaviors. The system must support the
reation of
omplex be-haviors, either individual behaviors or a
ombination of simpler behaviors.{ Extensibility. The basi
 tool must support the addition of new behaviors and
apabilities.In e�e
t AI s
ripting for a non-trivial game has all the problems of maintaining alarge evolving software repository, while in
urring the
hallenges of AI knowledgea
quisition, maintenan
e, and usage.

Our experien
e with AI s
ripting languages
omes from working with BioWareprodu
ts Baldur's Gate II and Neverwinter Nights. These languages allow thegame designer to de�ne
hara
ters, and for users to
reate their own
hara
ters.The AI s
ripting has limited
apabilities, and requires a lot of programming ex-pertise to understand what is going on. As one adds more \intelligen
e" to thesystem, the s
ripts be
ome unwieldy and hard to debug.This paper introdu
es S
riptEase, a tool for de�ning
omplex behaviors.The obje
tive is to address all of the above issues in a powerful yet easy-to-usetool. Behaviors are de�ned using behavioral patterns { taking an analogy fromsoftware engineering, these are the \design patterns" [7℄ of arti�
ial intelligen
ebehavior. This work builds on our experien
e with design patterns for parallelprogramming [5℄. For example, one behavior pattern
ould be \to guard". Thedefault would have a
hara
ter stand guard over something and not allow anya

ess to it without a �ght. This behavior
ould be parameterized to, for example,allow the game designer to de�ne how to guard (stand stationary; patrol around)or who to allow to have a

ess to the obje
t. To
reate a guard involves
reating a
hara
ter, assigning the guard behavior to it, and then
ustomizing the behavior.Our vision for a s
ripting language is to have it support a ri
h set of behaviorpatterns. And, as with our parallel programming tool CO2P3S[5℄, there is toolsupport for de�ning and re�ning these patterns. It is surprising to see that ourresear
h into parallel
omputing tools
an be applied to something as seeminglyremote as de�ning AI
hara
ters. The leap is not all that surprising given thatthe fundamental nature of both appli
ations { de�ning and using patterns { isthe same.Note that there are multiple audien
es for a s
ripting language, ranging fromnon-programmers to experts (this
an be a serious issue in language design [4℄).The former needs a

ess to a simpler more intuitive interfa
e to the languagethan the latter. Indeed, most users are not programmers, and exposing a textualprogramming language to them is undesirable. Hen
e, a visual representation {one that abstra
ts away textual programming { is important. Again, a CO2P 3S-like approa
h seems to work here { parameterized behaviors
an be de�nedgraphi
ally.This paper des
ribes the behavioral patterns in S
riptEase, and introdu
esthe reader to our behavior patterns. Additional patterns, in
luding those foren
ounters, dialogs and plot, are only brie
y mentioned. We are fortunate to havea

ess to industrial
ode to work with. S
riptEase is used to generate
ode forBioWare's multi-award-winning role-playing fantasy game Neverwinter Nights.Unfortunately, using a real appli
ation limits the expressiveness of behavior. TheNeverwinter Nights s
ripting language does not support fa
ilities for learning {something we want to see added to the language. Our hope is that our work willin
uen
e the future design of AI s
ripting languages.Se
tion 2 des
ribes our patterns-based model. Se
tion 3 illustrates our toolS
riptEase that implements the model. Se
tion 4 dis
usses ongoing work, whileSe
tion 5 presents the
on
lusions.

2 Using Design Patterns to Design Computer GamesConsider the situation where a game designer of a fantasy role-playing gamewants to in
lude four i
ons (obje
ts, or in this
ase, spe
i�
ally shards), thatwhen gathered together form a single larger i
on
alled a moon-stone. Ea
hshard is guarded, but the game designer wants the guarding done di�erently inea
h
ase:1. Shard-1 is in a guarded
hest. The guard should have a patrol route nearthe
hest. However, if any \enemy"
reature gets near the
hest, the guardshould warn the enemy and then run over to the
hest and stand in frontof it. If the enemy a
tually tries to open the
hest then the guard shouldatta
k the enemy. If the \enemy" moves away from the
hest without openingit, the guard should resume the patrol. Note that if a \friendly"
reatureapproa
hes the
hest, the guard will not rea
t. In fa
t, if a friendly
reatureremoves Shard-1 and takes it away, the guard will
ontinue to guard the
hest (not the shard).2. Shard-2 is in a room with a single door. The guard atta
ks any enemy thatgets
lose to the door. Again, the guard is guarding the door (not the shard)and the guard will
ontinue to guard the door, even if the shard is removedfrom the room.3. Shard-3 is in the possession of a
reature. The guard will prote
t the
reature(not the shard) from harm or from stealing. If an enemy
omes near, theguard will shout and if the enemy tries to steal from the
reature beingguarded or atta
ks the
reature, the guard will atta
k.4. Shard-4 is prote
ted by a guard who will atta
k any enemy who tries topossess it. Note that Shard-4 may be moved to any lo
ation by a friendly
reature and the guard will follow along to atta
k any enemy that obtainsit.In addition, we want the guards in ea
h of these s
enarios to exhibit \nat-ural" behaviors. For example, the designer wants the \
hest" guard to have a�xed patrol path around the
hest. However, this path should not be exa
tlyidenti
al ea
h time around, sin
e a real guard would have some variation. These
ond guard should be mostly stationary near the door. However, he shouldo

asionally walk to one or more nearby obje
ts. The third guard should stay
lose to the individual that is being guarded. The fourth guard should begin bystaying near the i
on. However, as time goes on without anything happening,this guard should be
ome bored and move farther away. However, if any
reatureis spotted, the guard should immediately return to the shard and not wanderfar for a while (until the guard be
omes bored again).It would take
onsiderable e�ort to program the behaviors of the four guardswe have des
ribed in most
omputer game s
ripting languages. For example,we have manually programmed these four behaviors in the Neverwinter Nightss
ripting language and there are 500 lines of
ode (over 1,000 if you in
lude whitespa
e and
omments). However, these four behaviors have some similarities.They all have a
ommon theme that something is being guarded. We should

be able to abstra
t this
ommonality and use the abstra
tion to generate thegame
ode for ea
h of these four situations. This observation has already beenmade in other domains and has led to the
onstru
tion of design patterns. Adesign pattern is a me
hanism for en
apsulating the knowledge of experien
eddesigners into a re-usable artifa
t. By de�nition, a design pattern is a des
riptivedevi
e that fosters re-use during the design phase of an a
tivity. Although designpatterns have been used in ar
hite
ture [2℄, they have also be
ome an importanttool in software development [7℄.The most
ommon form of a design pattern is a do
ument, su
h as a
hapterin a pattern
atalog or a Web page. This form preserves the instru
tional natureof patterns, as a
a
he of known solutions to re
urring design problems. Patternsin this form are easy to distribute and readily available to designers. Patternsprovide a
ommon design lexi
on, and
ommuni
ate not only the stru
ture ofthe design but also the reasoning behind it. This
ommon form of design patternis
alled des
riptive. In the
ontext of role-playing fantasy games, humans usehigh-level patterns to des
ribe
hara
ters and behaviors. For example, the notionof \wizard" or \shop-keeper" immediately infer attributes on the
hara
ter theyare as
ribed to.Until very re
ently, design patterns have only been applied during the de-sign phase of software development. They have not been used to generate
ode.There are several reasons why design patterns are not used as generative
on-stru
ts that support
ode re-use. The most fundamental reason is that designpatterns des
ribe a set of solutions to a family of related design problems and itis diÆ
ult to generate a single body of
ode that adequately solves ea
h problemin the family. No adequate me
hanism exists for a developer to understand thevariations in
ode that spans the family of solutions and to adapt this
ode foran appli
ation. A se
ond important reason is that it is diÆ
ult to
onstru
t andedit generative design patterns. This limits the number of design patterns that
an be made generative and results in a poor sele
tion of patterns for the enduser. Fa
ed with a small sele
tion of rigid generative design patterns, end-usersare relu
tant to use su
h a limited approa
h for real software development.We have
reated a new approa
h to generative design patterns that solvesthese diÆ
ult problems and have embodied our approa
h in tools
alled CO2P3S(Corre
t Obje
t-Oriented Pattern-based Parallel Programming System) andMetaCO2P3S (and their newer sequential
ounterparts). The �rst tool gener-ates
ode for a wide variety of patterns that exist in the domain of general pro-gramming and the spe
ialized domain of parallel programming. The se
ond toolsupports the design and implementation of new generative design patterns. Ourapproa
h solves the adaptation problem by parameterizing ea
h design patternwith a �xed set of parameters. The programmer provides appli
ation domain-spe
i�
 values for ea
h of these parameters before generating
ode.In the
ontext of
omputer game design, the use of generative design patternshas six positive e�e
ts:

1. Pattern re-use. A pattern
an be identi�ed, designed and implemented on
eand then
an be instantiated many di�erent times a
ross the same game anddi�erent games to amortize its development
ost2. Pattern adaptation. A single pattern
an provide a ri
h texture of di�erentgame experien
es by varying its parameters.3. Pattern abstra
tion. Game designers
an dis
uss and design game
ompo-nents at a higher level of abstra
tion by dis
ussing the design of new patternsand the adaptation of existing patterns to
reate new game situations.4. Pattern
ode generation. Game designers
an generate game
ode withoutknowing anything about programming.5. Pattern prototyping. If a game designer has an idea for a novel new game
onstru
t, it
an be evaluated more qui
kly. Instead of having a programmer
ode the new
onstru
t from s
rat
h, an existing pattern
an be adapted togenerate
ode that implements a
onstru
t that is similar to the new idea,and this
ode
an be modi�ed by a programmer.6. Pattern
orre
tness. On
e a pattern has been tested, the pattern instan
esthat are generated from it will need less quality assuran
e time during gametesting.In the spe
ialized domain of role-playing
omputer games, we have identi�edseveral kinds of generative design patterns that
an be used by game designerswith little or no programming experien
e: behavior, en
ounter, dialog, and plotpatterns. In this paper, we will fo
us on behavior patterns, although we will alsodis
uss en
ounter patterns.Ea
h spe
i�
 pattern des
ribes a set of roles. A role is a pla
eholder for a gameobje
t. For example, the guard behavior pattern de�nes two roles: the guard andthe guarded. A pattern is instantiated by adapting it for a parti
ular use in thegame. For example, we will use four di�erent instantiations of the Guard Patternto generate the four di�erent s
enarios des
ribed earlier. To instantiate a pattern,ea
h role is �lled by an individual game obje
t, who is said to play the role (inthe movie sense, not the programming languages sense). For example, in the�rst s
enario, a parti
ular Or
 (a monster) may be
ast in the guard role anda parti
ular
hest may play the guarded role. In the third s
enario, a parti
ular�ghter may play the guard and a parti
ular wizard
an be
ast in the role ofguard.Ea
h game may have a di�erent ontology for
lassifying the kinds of gameobje
ts it has. In this paper, we will use a simple ontology
onsisting of a
tors(animate game obje
ts that
an perform a
tions) and props (inanimate gameobje
ts that
an be manipulated but
annot perform a
tions). Props
an befurther sub-
lassi�ed as
ontainers (that
an hold other props) and simple props(that
annot hold other props). We use the term obje
t to refer to a game obje
tthat might be an a
tor or a prop. Ea
h role is typed. For example, in the GuardPattern, the guard role must be played by an a
tor, but the guarded role maybe played by any obje
t.One of the roles of ea
h behavioral pattern is spe
ial and is
alled the prin
ipalrole of the behavioral pattern. The other roles are
alled supporting roles. An

a
tor (not a prop) must always play the prin
ipal role of a behavior pattern sin
eit pres
ribes some a
tions that the a
tor will take. The a
tor that is
ast in theprin
ipal role is
alled the prin
ipal of the behavioral pattern. In fa
t the goalof a behavior pattern is to pres
ribe all of the potential a
tions of the prin
ipal.We say that the prin
ipal is bound to a behavioral pattern sin
e an a
tor
anonly be the prin
ipal of one behavioral pattern at any one time. The a
tionsof a behavioral pattern's prin
ipal are
ompletely determined by the behavioralpattern it is bound to. A prin
ipal stays bound to a behavioral pattern until itis unbound. This
an be done if the prin
ipal is bound to a di�erent behavioralpattern or is destroyed. Re
ently,
omplex s
hemes for allowing an a
tor to
hoose a prin
ipal role amongst several behavioral patterns have been proposedin the literature [6℄. However, it is not
lear that they will be easy to use in
aseswhere the a
tion taken by the
hara
ter is signi�
ant to the plot of the game.Although an a
tor may be
ast in only one prin
ipal role at any given time,it may be
ast in an arbitrary number of supporting roles simultaneously. Forexample, if the prin
ipal (guard role) of a Guard Pattern that is guarding some-thing (
hest, door, individual, shard, et
.) is itself being guarded by three other
reatures, then the prin
ipal plays the guarded role in three other guard instan-tiations.A pattern role is a spe
ial kind of pattern parameter. However, ea
h pattern
an have a set of other parameters as well as its roles. Every behavioral patternhas a situation list parameter that des
ribes all of the possible basi
 situationsthat
omprise the behavioral pattern. Ea
h situation
onsists of a set of
on-ditions and a set of a
tions. For example, in s
enario 1, one situation is: if anenemy
omes near the
hest and the guard is
urrently patrolling, then warn theenemy and move near the
hest. A se
ond situation is: if an enemy opens the
hest then atta
k the enemy.In general, patterns
an also have other parameters. Two other
ommonparameter types are labels that refer to spe
i�
 game obje
ts and
ompositeparameters that refer to other pattern instan
es. For example, the Guard Patternhas a list of patrols, where ea
h patrol is an instan
e of another behavior pattern
alled a Patrol Pattern. At instantiation time, the game designer must assigna value to ea
h pattern parameter. Of
ourse,
asting the roles of a pattern tospe
i�
 obje
ts is a spe
ial
ase of assigning pattern values to those parametersthat are role parameters. In the next se
tion, we provide an example of patterns,pattern parameters, and the instantiation of pattern parameters using the Shard-1
hest guard of this se
tion as an example.When patterns are used as parameters in other patterns there is sometimesa need to require roles from the two di�erent patterns to be
ast by the sameobje
t. For example, the guard in the Guard Pattern and the patroller in thePatrol Pattern that is atta
hed to it, must be
ast as the same a
tor. In thesimplest
ase, the prin
ipal role of two patterns is shared and we say that weare atta
hing a pattern to another pattern. This is the only situation where ana
tor may play the prin
ipal role in more than one behavior. It is allowed sin
e

the atta
hed behaviors are
onsidered as
omponents of the behavior they areatta
hed to.3 Designing Chara
ters: A S
riptEase Walk ThroughConsider an example of the Guard Pattern, des
ribed as s
enario 1 (Shard-1)from Se
tion 2. As a default behavior, the guard patrols the room that the
hestis in. When an enemy approa
hes the
hest, the guard yells a warning, runsover to the
hest, and stands in front of it. When the enemy moves away fromthe
hest, the guard goes ba
k to patrolling the room. If the enemy ignores theguard's warning and opens the
hest, the guard atta
ks. Figure 1 des
ribes allof the information needed to spe
ify this instan
e of the Guard Pattern.We have developed a tool
alled S
riptEase that allows this instan
e andmany other variations of the Guard Pattern to be implemented qui
kly andeasily. All user input is menu driven, with all options for behaviors and s
enariosgiven in natural language. The user never does programming in the
onventionalsenses and, indeed, never knows the existen
e of an underlying programminglanguage. Figure 2 shows a s
reen shot of this tool.Situations
an be
onstru
ted by sele
ting
onditions and a
tions from a list.The Situations panel on the left side of Figure 2
ontains a list of all the situationsthat have been de�ned for this pattern instan
e. After a new situation has been
reated, it appears in this list and makes its
ondition and a
tion lists availableto be edited. On
e a
ondition is added, it appears in a list inside the Conditionspanel on the right side of Figure 2. A
tions appear in the
orresponding A
tionspanel. A
ondition or a
tion
an then be sele
ted to make its parameters availablefor editing. In Figure 2, the �rst
ondition in the Conditions list is highlighted.Its parameters are shown inside of the Near Condition panel underneath theSituations panel.Patrols are lower level patterns that
an be atta
hed to a Guard Pattern. Allof the patrols that are atta
hed to a Guard Pattern are listed in the Atta
hedPatrols panel at the bottom of Figure 2. There are two types of Patrol Patternsused in this example. The \Room Patrol" from Figure 2 is an instan
e of a Way-point Patrol Pattern, whi
h means the patrol is de�ned by a series of way-pointsthat the guard walks along. The \Chest Post" is an instan
e of a Post PatrolPattern, whi
h means the guard just stands at a parti
ular spot. Table 1 gives ades
ription of these two instan
es. Any number of patrols
an be atta
hed to aguard, but only one is a
tive at a time. There is a
ondition to test whi
h patrola guard is
urrently using, and an a
tion to
hange a guards patrol.On
e all of the patrols and situations have been spe
i�ed,
ode
an be gen-erated by
li
king the \Generate" button at the very bottom of Figure 2. Theuser may further
ustomize the situations using the Situation Editor tool ofS
riptEase, shown in Figure 3. Finally, S
riptEase generates Neverwinter Nightss
ripting language
ode.Figure 4 shows a game s
enario of a guard in a
tion. Part of the NeverwinterNights s
ripting
ode generated by S
riptEase for this s
enario is shown in Fig-

Pattern Type : Guard PatternInstan
e Name : Chest GuardGuard Tag :
hest_guardGuarded Obje
t Tag :
hestFriend Identifier : guard1_friendAtta
hed Patrol Patterns:1. Instan
e Name : Room Patrol2. Instan
e Name : Chest PostSituation List:Name : Spawn SituationConditions : The guard is
reatedA
tions : Set the guard's patrol to "Room Patrol"Name : Warning SituationConditions : An
reature is within 5 meters of the guarded
hest. The guard is
urrently using patrol"Room Patrol".A
tions : The guard yells "Hey! Get away from there."Set the guard's patrol to "Chest Post".Name : Continue Patrol SituationConditions : No enemy is within 5 meters of the guarded
hest. The guard is
urrently using patrol"Chest Post".A
tions : Set the guard's patrol to "Room Patrol"Name : Atta
k SituationConditions : An enemy
reature opens the guarded
hestA
tions : The guard says "I warned you!". The guardatta
ks the enemy.Fig. 1. The Chest Guard instan
e of the Guard Pattern

Fig. 2. Editing an instan
e of the Guard Pattern using S
riptEaseure 5. Noti
e that the
ode is self do
umenting, enabling the user to easily �ndwhi
h portions of
ode
orrespond with the situations spe
i�ed in S
riptEase.This is very useful if the user desires to �ne tune the
ode on the lowest level.We have also identi�ed several en
ounter patterns. Instead of des
ribing thebehaviors of a prin
iple a
tor, an en
ounter pattern de�nes a list of situationsthat des
ribe some notable event in the game. For instan
e, in Baldur's Gate II,there is an interesting en
ounter in the Shade Lord's temple. There is a pedestalwith an i
on,
alled the Sun Stone, on it. There is also a ring of lights aroundthe pedestal. When a parti
ular type of monster,
alled a Shadow, enters thering of lights, it is killed in a spe
ta
ular
ash of light. If the Sun Stone isremoved from the pedestal, the ring of lights disappears and the Shadows
anthen approa
h the pedestal without being killed. We have de�ned an en
ounterpattern
alled the I
on-Container Pattern. This pattern has 3 roles: an i
on,a
ontainer, and an optional perimeter. The i
on is a prop that
an be pla
ed

Fig. 3. Situation editing using S
riptEase

Fig. 4. Neverwinter Nights guarding s
enario (using the I
on-Perimeter Pattern)

Pattern Type Way-point Patrol Pattern Pattern Type Post Patrol PatternInstan
e Name Room Patrol Instan
e Name Chest PostWay-point Pre�x room 1 Post Tag
hest postNum of Way-points 8Initial Way-point 1Table 1. Two patrol instan
es atta
hed to the Guard Pattern

Fig. 5. S
riptEase
ode generationinto the
ontainer's inventory. The
ontainer is either an a
tor or a
ontainerprop. The perimeter is a polygonal area that an a
tor
an enter and exit. Thispattern involves four situations: adding the i
on to the
ontainer, removing thei
on from the
ontainer, an a
tor enters the perimeter while the i
on is in the
ontainer, and an a
tor exits the perimeter while the i
on is in the
ontainer. Inea
h of these situations, the
ondition listed above is impli
itly in
luded in the
ondition list. The user
an add more
onditions to the list, and de�ne a
tionsto exe
ute when the
onditions are satis�ed. Figure 6 shows these four situationsinstantiated for the Sun Stone I
on example.We have identi�ed multiple instan
es of this pattern in the Shade Lord templealone, demonstrating that this pattern is useful in terms of abstra
tion, adapta-tion, and re-use. We have not yet
reated an interfa
e spe
i�
 to this parti
ular

Pattern Type : I
on-ContainerI
on : Sun StoneContainer : PedestalPerimeter : Ring of LightsSituation List:Impli
it Condition : The Sun Stone is added to the PedestalOther Conditions : NoneA
tions : A
tivate the ring of lightsImpli
it Condition : The Sun Stone is removed the PedestalOther Conditions : NoneA
tions : A
tivate the ring of lightsImpli
it Condition : The Sun Stone is on the Pedestal and a
reatureenters the ring of lights.Other Conditions : The entering
reature is a ShadowA
tions : Display an impressive visual effe
t. Kill theentering Shadow.Impli
it Condition : The Sun Stone is on the Pedestal and a
reatureexits the ring of lights.Other Conditions : NoneA
tions : NoneFig. 6. An instan
e of the I
on-Container Patternpattern, however, all of the situations de�ned in Figure 6 have been implementedin the S
riptEase Situation Editor.S
riptEase has been demonstrated to BioWare and we have re
eived positivefeedba
k. The tool is espe
ially appre
iated by the game designers, who preferto work in terms of the story and
hara
ters, not at the level of programming.The tool is evolving, as we get more feedba
k from BioWare. Indeed, the proje
tis expanding at a pa
e that is diÆ
ult to keep up with. The immediate goal is togive S
riptEase the fun
tionality so that it
an repli
ate all the
apabilities inNeverwinter Nights. To do this requires adding a few more patterns (resear
h)and a lot more s
enarios (data input). The design of S
riptEase makes bothissues easy to address.4 Ongoing WorkBehavior patterns are only the beginning. The industry needs a tool that prop-erly de�nes a
omplete game s
ript, in mu
h the same way that a s
ript is usedto outline a movie. A movie s
ript must in
lude information on ea
h s
ene, in-
luding the physi
al arrangement of the s
ene, the
hara
ters that are present,

how the
hara
ters intera
t, the dialogs, and the out
omes. A series of s
eneshas to be stit
hed together to give a
oherent plot. De�ning these
omponentsin isolation of ea
h other (as is
urrently done in
ommer
ial games) is
learlywrong. Most (but not all) of these
omponents tou
h on AI issues.To
over the gamut of issues in game design, a S
riptEase-like tool needsother
omponents, in
luding dialog and plot. We believe that both of these
analso be des
ribed by patterns. We have ideas for how to integrate these patternsinto S
riptEase, and this is the subje
t of ongoing work.The pre
eding des
ription of S
riptEase des
ribed s
ripted behavior, whereea
h
hara
ter's behavior was predi
table, modulo some random number gen-eration. The reality is that
reating realisti

hara
ters requires more sophis-ti
ated behavior. Ma
hine learning is the answer. Unfortunately,
ompatibilitywith existing s
ripting languages (su
h as that in Neverwinter Nights) make thisdiÆ
ult. We expe
t our work to eventually lead us to the design of a new s
ript-ing language, one that supports
ore AI fun
tionality (su
h as learning) as basi
operators in the language.Learning is a tou
hy issue in
ommer
ial games. Currently, ma
hine learningplays a limited role in the
ommer
ial games industry. "[Learning℄ takes pla
e aspart of the game development
y
le, never after the game ships" [9℄. The reasonfor this is that the program developers have no
ontrol over how a learning gameevolves; the results might be embarrassing. However, things are
hanging. Thesu

ess of games like The Sims and Bla
k and White have demonstrated thepower (and
ommer
ial appeal) of games that learn.The issue of testability of a learning algorithm before the produ
t ships is ofparamount importan
e to the games industry [3℄. There are no guarantees withany learning algorithm, sin
e the user (game player)
an deliberately expose thelearner to a
ontrived set of learning experien
es. One way of addressing this isthe S
riptEase approa
h of using patterns. Patterns
an be tested individuallyand veri�ed to be
orre
t. Building on top of veri�ed patterns allows one to
reate
omposite patterns that
an have guarantees of
orre
tness.5 Con
lusionsThis paper dis
ussed one aspe
t of S
riptEase { behavioral patterns. Our re-sear
h and development e�orts
on
entrated on this aspe
t of our vision for thesimple reason that it has the highest potential for an impa
t in the short-term.Given the enormous e�ort that goes into de�ning behaviors in a
omplex gamelike Neverwinter Nights, any tool (su
h as S
riptEase) that
an
an redu
e thise�ort translates into enormous
osts savings and improved produ
t reliability.The
ommer
ial games industry is pushing AI te
hnology into new and in-novative dire
tions. The demand for realism, high-performan
e, and real-timeresponses make the problems espe
ially
hallenging. One
ould argue that thisindustry is one of the biggest re
eptors for AI te
hnology, and yet it has his-tori
ally been ignored by the AI
ommunity. There are wonderful opportunitieshere for ground-breaking innovative resear
h.

6 A
knowledgmentsFinan
ial support was provided by the Institute for Roboti
s and Intelligent Sys-tems (IRIS), the Natural S
ien
es and Engineering Resear
h Coun
il of Canada(NSERC), and Alberta's Informati
s Cir
le of Resear
h Ex
ellen
e (iCORE).This resear
h was inspired by our many friends at BioWare. We thank BioWarefor their support and en
ouragement.Referen
es1. E. Adams. In defense of a
ademe. Game Developer, pages 55{56, November 2002.2. C. Alexander, S. Ishakawa, and M. Silverstein. A Pattern Language. OxfordUniversity Press, New York, 1977.3. J. Barnes and J. Hut
hens. Testing of unde�ned behavior as a result of learning. InS. Rabin, editor, AI Game Programming Wisdom, pages 615{623. Charles River,2002.4. M. Bro
kington and M. Darrah. How not to implement a basi
 s
ripting language.In S. Rabin, editor, AI Game Programming Wisdom, pages 548{554. Charles River,2002.5. S. Bromling, D. Szafron, J. S
hae�er, S. Ma
Donald, and J. Anvik. Generalisingpattern-based parallel programming systems. Parallel Computing, 2002. To appear.6. R. Evans and T. Lamb. So
ial a
tivities: Implementing wittgenstein, 2002. http://www.gamasutra.
om/features/20020424/evans_01.htm.7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. AddisonWesley, 1995.8. R. Hill, C. Han, and M. van Lent. Applying per
eptually driven
ognitive mappingto virtual urban environments. AAAI National Conferen
e, pages 886{893, 2002.9. N. Kirby. GDC 2001 AI roundtable moderator's report, 2001.http://www.gameai.
om.10. J. Laird and M. van Lent. Human-level AI's killer appli
ation: Intera
tive
omputergames. AAAI National Conferen
e, pages 1171{1178, 2000.11. P. Tozour. The evolution of game AI. In S. Rabin, editor, AI Game ProgrammingWisdom, pages 3{15. Charles River, 2002.

