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Abstract

The seminal works of Nilsson and Pearl in the 1970's and eBB0’s pro-
vide a formal basis for splitting the field of heuristic sdainto two subfields:
single-agent and two-agent search. The subfields are dtirdielative isolation
from each other; each having its own distinct character.pieshe separation, a
close inspection of the research shows that the two areasadtavally been con-
verging. This paper argues that the single/two-agentndittin is no longer of
central importance for heuristic search anymore. The siaaee is characterized
by a number of key properties that are defined by the appdicasingle-agent
versus two-agent is just one of many. Both subfields havelaleee many search
enhancements; they are shown to be surprisingly similagenéral. Given their
importance for creating high-performance search apjplicsf it is these enhance-
ments that form the essence of our field. Focusing on theiergéity emphasizes
the opportunity for reuse of the enhancements, allows the dfeheuristic search
to be redefined as a single unified field, and points the wayrtisre modern the-
ory of search based on the taxonomy proposed here.

1 Introduction

Heuristic search is one of the oldest fields in artificial iigence. Nilsson and Pearl
wrote the classic introductions to the field [34, 36]. In thesrks (and others) search
algorithms are typically classified by the kind of problenasp they explore. Two
classes of problem spaces are identified: state spaces ablémrreduction spaces.
Many problems can be conveniently represented as a state;gb@se are typically



problems that seek a path from the root to the goal state.r@tioblems are a more
natural fit for problem reduction spaces, typically proldawhose solution is a strat-
egy. Sometimes both representations are viable optiooblén reduction spaces are
AND/OR graphs; AO* is the best-known framework for creatsagrch algorithms for
this class of problems [3, 34]. State spaces are OR graphgy*thlgorithm can find
optimal solutions to this class of problems [17]. Note thatate space (OR graph) is
technically just a special case of a problem reduction spal®/OR graph).

Since their inception, the notions of OR graphs and AND/O&obs have found
widespread use in artificial intelligence and operatiossaech. Both areas have active
research communities which continue to evolve and refinesgasch algorithms and
enhancements. Of the two representations, the state spa@sentation has proven
to be the more popular. It appears that many real-world prokdolving tasks can
be modeled naturally as OR graphs. Well-known examplesidtecthe shortest path
problems, sliding-tile puzzles, and NP-complete problésush as the traveling sales-
person, bin packing and job-shop scheduling).

One application domain that fits the AND/OR graph model battewo-agent
(two-player) games such as chess. In these games, one plaases moves to maxi-
mize a payoff function (the chance to win) while the opporatttoses moves to min-
imize it. Thus, the AND/OR graphs become MIN/MAX graphs, dhd algorithms
to search these spaces are known as minimax algorithmsouBly; it appears that
two-player games are thanly applications for which AND/OR algorithms have found
widespread use. To contrast A*-like OR graph algorithmswito-player minimax
algorithms, they are often referred to as single-agentrifermlayer) search algorithms.

With the advent of Nilsson’s AND/OR framework, two-agerdage has been given
a firm place within the larger field of heuristic search. SIAND/OR graphs subsume
OR graphs, there is a satisfying conceptual unification efttto subfields. However,
the impact of this unified view on the practice of research hgturistic search methods
has been minor. The two subfields have continued to develpaiallel, with little
interaction between them. Few scientists have studieddretrs.

This article has the following contributions:

¢ Single-agent and two-agent search algorithms both trasarch graphs. The
difference between the two algorithms is not in the graph,jfthe semantics
imposed by the application. Much of the research done ineiagent and two-
agent search does not depend on the search algorithm, bhegrdperties of
the search space. In fact, by matching basic graph travaggaithms from both
fields, it is shown how similar, if not identical, single-agend two-agent search
really are.

e Nilsson’s [34] and Pearl's [36] dichotomy—the OR versus AR choice—
is misleading. Heuristic search consists of identifyingparties of the search
space and implementing a number of search techniques that effective use
of these properties. There are many such properties, anchtiiee of backup
rule (minimaxing in two-agent search; maximization or mirgation in single-
agent search) is but one. The implication of Nilsson’s anarRemodel is that
the choice of backup rule is in some way fundamental; it is bts paper argues
for viewing heuristic search as the process in which progedf a search space



are specified. Once that has been done, the relevant seahstigiees (basic
algorithm and enhancements) follow naturally.

e Over the years researchers have uncovered an impressaye @drsearch en-
hancements that can have a dramatic effect on search efficierhe typical
scenario is that the idea is developed in one of the domaidgassibly later
reinvented in the other. In this paper we list search-spemgarties under which
many search enhancements are applicable, showing thastireetion between
single-agent and two-agent search is not essential. Byingetige work done
in these two areas, the commonalities and differences cademified. This
provides the basis for constructing a generic search frarevor designing
high performance search algorithms — given the properfieeeodomain, an
appropriate set of search enhancements can be automasiebdtted for con-
sideration.

The message of this article is that single-agent and twoitagarch can and should
be considered as a single undivided field. It can, becausedbence of search is
enhancementsot algorithms as is usually thought. It should, becausearchers
can benefit by taking advantage of work done in a related figithout reinventing
the technology, if they would only realize its applicalyilitGiven all the similarities
between the two areas, one has to ask the question: why isntmmtant to make a
distinction based on the backup rule?

Some might object to the preceding discussion, arguingtthaiplayer trees are
searched differently than single-agent trees. In mostdgent search applications
(such as game-playing programs), the search result is lmesadepth-limited search;
no goal is found. In contrast, single-agent searches havelijective of finding a goal
state. The traditional view then is that two-agent seardhaking for the best answer
given a time constraint (satisficing) while single-agerdrsh ignores the time con-
straints and searches for the best answer (optimality) léNhis categorization might
be an accurate reflection of research done in these areasprityi a generalization.
Consider two counter examples. First, RTA* (Real-Time A"gsndeveloped to search
single-agent trees under tight resource (time) consg§%]. Since the algorithm usu-
ally cannot find a goal state within its resource constraihtgproximates an answer
by exploring a limited amount of the search space, just lteeedtypical two-agent
search programs do. Second, when solving two-player gasuek,as Tic-Tac-Toe or
Nine Mens Morris, the aim is to find a goal node whose value egprbpagated to the
root of the search tree. Here the objective is to find an optiesalt, not a satisficing
one. These examples illustrate that the traditional viewingle-agent and two-agent
search is but a generalization, and that the charactehigfidighted here (optimality
versus satisficing) is really just a user-defined constiairthe quality of the result. It
is not fundamental to the algorithms.

In effect, single-agent and two-agent search (as well ar dthsearch algorithms)
are essentially just graph traversal algorithms. Thereoahg a few basic classes of
ideas for efficiently searching graphs. It makes more semsdasify search im-
plementations on the techniques used to efficiently sedrelgtaph, rather than the
backup-rule semantics imposed by the application. Anradidre way of looking at



this is to classify applications by the search-space ptgsathat allow certain search
enhancements to work.

A remark on how the concepédgorithm, enhancementandsearch techniquare
used. Search algorithms are the basic graph traversal misofgas found in the text
books, such as Nilsson’s and Pearl's. They form the skeletomhich the human
problem solver adds enhancements to achieve performamrevements. The term
search techniques is used in this article to indicate erdraents and algorithms to-
gether. As this article advances the view that the basicrittgo decisions are easy
and that the essence lies in the enhancements, the ternh seehaique will usually
be synonymous with search algorithm enhancement.

This article is organized as follows: Section 2 discussesriportance of search
enhancements. Section 3 pairs up most of the major searohitalgs from both
single-agent and two-agent search. Section 4 gives a taxpwd properties of the
search space as described in Section 5, which are matcheithupevapplicable search
technigues in Section 6. Section 7 puts this work in pergpecbection 8 draws some
conclusions.

The article is restricted to classical heuristic searchglsiagent and two-agent
search) although the ideas are applicable to other grapbdtsearch algorithms.

2 Algorithms vs Enhancements

Most introductory texts on artificial intelligence (Al) steoff explaining heuristic
search by differentiating between different search sgfat such as depth-first, breadth-
first, and best-first. Single-agent search is introducetthgges illustrated using a sliding-
tile puzzle. Another section is then devoted to two-plagarsh algorithms. The min-
imax principle is explained, often followed by alpha-betarpng. The focus in these
texts is on explaining the basic search algorithms and plysieir fundamental dif-
ferences (the backup rule and the decision as to which noebepand next). And that
is where most Al books stop their technical discussion.

In contrast, in real-world Al applications, it is the nextegt—the search
enhancements—that is the topic of interest, not so much &ise kalgorithm. The
algorithm decision is usually easily made. However, theahof algorithm enhance-
ments can have a dramatic effect on the efficiency of the keddthough it goes too
far to say that the underlying algorithm is of no importantalh it is fair to say that
most research and development effort for new search metivatiapplications is spent
with the enhancements.

A search enhancement relies on the presence of specifihsgaace properties to
improve the efficiency of the underlying algorithm, with pest to (a number of) re-
sources. The presence of these properties suggests ttaatithecement is applicable
and is likely to be beneficial. Some of the enhancements asedban application-
specific properties; others work over a wide range of apfiina all sharing the same
property. Examples of application-dependent enhancesrieolude the Manhattan
distance for the sliding-tile puzzle, and first searching/escthat capture a piece be-
fore considering non-capture moves in chess. Examples mfcagion-independent



enhancements are iterative deepening42id cycle detection [16, 44].

Consider the example of the transposition table enhanceMemsposition tables
rely on the search space being a graph. If the search spateés gansposition tables
yield no direct benefitd. The basic idea, caching previously computed informatien, i
obviously independent of the single-agent and two-agestindtion and its applicabil-
ity only depends on a property of the underlying graph (istitta or not). Note also
that the transposition table is often referred to as a hdsh;teve do not use the latter
terminology since this refers to the details of an impleragah.

The performance gap between search algorithms with andutitnhancements
can be large. Something as simple as removing repeated $taie the search can
lead to large reductions in the search tree (e.g. [44] uddA in sliding-tile puzzles;
[40] using alpha-beta in chess). Combinations of enhano&swan lead to reductions
of several orders of magnitude. For example, in chess tleetaféness of alpha-beta
pruning really depends on adding the right combination dfaercements [40]. In
single-agent search the same has been found, for examp#tidiag-tile puzzles [11]
and Sokoban [20]. In contrast, the choice of search alguritlas often a relatively
small effect. For example, in two-player games, many vaniaton alpha-beta have
been proposed, but in the end their performance is, at bestaliimprovement [37}.

In the traditional view, new applications are carefully lgmad until an appropriate
algorithm and collection of algorithm enhancements is tbthrat satisfies the user’s
expectations. In this view, each problem has its own unidgerigthmic solution; a
rather segmented view. In reality, most search enhancenaeatsmall variations of
general ideas. Their applicability depends on the progedf the search space. There-
fore, the basic idea behind most search enhancements amatgapplicable to both
single-agent and two-agent search. It is the search enimemte that tie single/two-
agent search together, achieving the unity that NilssardsRearl’s models strived for,
albeit of a different kind.

Focusing on properties of the search space identifies tfezelifces that one should
take into account when designing a high-performance seafoh a specific applica-
tion. A single search framework can help to identify thedéedénces. We should
realize that heuristic search is usually not about diffesdgorithms, but is mostly
about putting search techniques together like LEGO blogkgloiting the properties
of the search space. In effect we should stress the thingsteahe same, not the
differences.

1t is important here to point out that even though an impletaon might differ substantially to accom-
modate a search enhancement, it is the difference in thetstraversal that differentiates an algorithm from
an enhancement. Therefore we feel justified in calling ilezadeepening an enhancement, even though the
implementation differences between, for example, A* and*@re significant.

2The transposition table is routinely used to store othesrinfition that can benefit the search, such as
move ordering hints. We regard these kinds of benefits agréioid.

3This holds true for other minimax search algorithms, suciB*ag8] and Conspiracy Numbers [30],
where attempts to improve on alpha-beta have been unséudceBsese innovative algorithms differ from
alpha-beta in their leaf node values and the backup rule.edexythey are still graph-traversal algorithms
and the same set of search enhancement principles apply.



3 Search Algorithms

In this section we contrast many of the single-agent andagent search algorithms.
If there is anything to the claim that the two fields of seadoblsdd be unified because
the only (artificial) difference is the backup rule, then anparison of the algorithms
used in the two fields should yield more similarities tharfedénces.

Naive (depth-first single-agent search; no depth restrictionimmax search). Both
algorithms traverse a tree in a depth-first, left-to-riglatmer. Recursion stops
when a terminal node is reached, without any depth regricihe only application-
dependent knowledge used is for assigning values to termdatkes and choos-
ing the correct backup rule. The storage requirements angoptional to the
depth of the tree.

Simple (branch-and-bound; no depth restriction alpha-beta).s&ladgorithms also
search a tree depth-first and left-to-right without any Hestriction. They
differ from their naive counterparts in that both use paréaults obtained during
the search to cut off parts of the tree that are irrelevanhéosblution. Note
that no additional application-dependent knowledge isladdere. The storage
requirements are proportional to the depth of the tree.

Breadth (breadth-first single-agent search; iterative deepeniiminmax). New nodes
are expanded one depth at a time. Both algorithms can ussgstthat is pro-
portional to the depth of the tree by using depth-limitedtidjst search. If
sufficient storage is available, these algorithms can $hareearch tree in mem-
ory, potentially eliminating the repeated node visits thetth-first search entails.
Note that single-agent search algorithms can get by withdewage, since they
need only save the frontier of the search (since the seatah isathe minimum
or maximum of the nodes); two-agent search requires acodhe previous it-
eration’s nodes (because it has to build a proof tree).

Informed (A*; SSS*). With the availability of heuristic evaluationthe notion of a
“best” or “most promising” node to expand can be defined. Ad &$S* expand
any one of the “best” nodes next. In both algorithms, a soBB&N-list keeps
track of the nodes at the frontier and allows for expandirggtibst next node.
Although conceptually A* and SSS* are similar algorithmsisiinteresting to
note that SSS* is equivalent to a depth-first search varikadpba-beta (MTD(f)
[37D).

Space efficient informed (iterative deepening A*; iterative deepening alpha-hei&)
and SSS* both suffer from exponential space requiremetasative deepening
turns traditional list-driven best-first searches into tiplé depth-first searches
that increase the “depth” limit with each iteration. “Dep#hould not be inter-
preted literally; it is synonymous with any useful critetfieat enables a guaran-
teed cutoff of each branch in the search.

Real-time informed search (RTA*; depth-limited iterative deepening alpha-beta). &ih
given resource constraints do not allow for the completeetisal of the search



space to find a solution, a (depth or time) limit is introducEhlis partial search-
space traversal backs up heuristic values about where tosois likely to be.

When resources run out, a "best” move decision is made bas#uinforma-

tion.

The above list is meant to be illustrative, not comprehaensiWhe comparison
shows that the basic graph traversal approaches are siihitat identical, between
the “different” fields. The major perceived difference beem single-agent and two-
agent search is in the choice of algorithm that is commongdusSingle-agent ap-
plications usually optimize and hence use an informed (acspefficient informed)
algorithm. Two-agent applications commonly satisfice ammcally use a real-time
informed search. However, their respective counterpaiss and are used.

4 Search Application Development

Two distinct issues play a role in the process of designingh-performance search
application: the properties of the state space, and thelsesgorithms and techniques
used to find the desired information in that space. There&march program design
consists of two parts. First, the problem solver must spehi# properties of the prob-
lem space. Second, based on this information, an apprepnigtiementation is cho-
sen.

e Phase 1Search Space DefinitioiThe characteristics of the problem space must
be specified.

1. Graph Definition: The problem definition allows one to construct a graph,
where nodes represent states, and edges are state traopgi@tors. This
is typically just a translation of the transition rules to amaformal (graph)
language. It provides the syntax of the state space.

2. Solution Definition:Goal nodes are defined and given their correctvalue. A
rule for combining the values of a node’s successors to ahterthe value
of the parent node is provided (such as minimization, or m&xing). This
adds semantics to the state space graph.

3. Resource Constraintddentify execution constraints that the search algo-
rithm must conform to.

4. Search ObjectivesThe problem solver defines the goal of the search: an
optimal or satisficing answer (the quality of the answer).

5. Domain Knowledge:Non-goal nodes may be assigned a heuristic value
(such as a lower bound estimator or an evaluation score)piidperties of
the evaluation function fundamentally influence the effestess of many
search enhancements, typically causing many iteratiotteeadesign-and-
test cycle.

e Phase 2Program Design and Implementatio®nce the search space is speci-
fied, the problem solver can design the application progim.design process
consists of three steps:



1. Search Algorithm:Typically the choice of basic algorithm is easily made
based on the problem definition. Nilsson’s and Pearl’s maddtesses the
basic graph traversal questions concerning the backupandebreadth-
first/depth-first/best-first search strategy, based on tapgtgdefinition and
the performance specifications. The single/two-ageningdisbn is usually
unambiguous (dictating the backup rule to use), and theithgoselection
is often trivial.

2. Search Enhancement3he literature contains a host of search enhance-
ments to exploit specific properties of the search spacerighecombina-
tion can dramatically improve the efficiency of the basicoaidhm. Text-
book algorithms have to be revised substantially to accodateinclusion
of common enhancements. Note that an enhancement can avglif\si
the basic algorithm. For example, compare the code of iwerdeepening
A* to the original A*.

3. Implementation Choice$ziven a search enhancement, the best implemen-
tation is likely to be dependent on the application and treaghof heuris-
tics. For most applications, the majority of the design eflavolves judi-
ciously fine tuning the set of algorithm enhancements [2]), B@r these
choices we rely on the programmer’s discretion (tradingoofigramming
effort for better search performance), which is beyond ttwpe of this
paper.

The applicability of search algorithm enhancements isrdateed by the five cat-
egories of state space properties given above. Figure 1 anmes the interaction
between the state space properties (vertical axis) andIs}eyf the algorithm design
process—the search enhancements (the horizontal axispmfile of enhancements
are illustrated in the figure. The table shows how the seanblamcements match up
with the properties. An “x” means that the state space ptgpdiects the effectiveness
of the search enhancement. A “v” means that the search eeimemt (favorably) af-
fects a certain property of the search space. For exampgléyth on the row for time
constraints indicate that most search enhancements makedinch go faster. Star “*”
entries mean that a search enhancement was specificalijt@uvi® exploit a property.

A detailed description of the search-space propertiedi¢atraxis in Figure 1)
follows in the next section. Each of the enhancements (bota axis in Figure 1,
and others), as well as how they relate to the search spapeniss, are explained in
Section 6.

5 Search Space Properties

This section gives details of the fundamental search-spemgerties that search en-
hancements attempt to exploit (the vertical axis in Figyre 1
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Figure 1: Search Space Properties vs Enhancements



5.1 Graph Definition

The first part of defining a search space is the problem spatiificphase. Here the
problem has to be formulated in an unambiguous way, es#grd&fining a problem
space that is amenable for search. The problem specificdtierrules of the appli-
cation, implicitly define a graph. Following the terminologf [33], a problem space
consists of states and transition functions to go from oaite $6 another. For example,
in chess a state would be a board description (piece locatmastling rights, etc.).
The transition function implements the rules by which pgeo®ve. In the traveling
salesperson problem (TSP), a state can be a tour alongiedl,air perhaps a partial
tour. The transition function adds or replaces a city frorawa.tIn graph terminology,
a state is called a vertex or node, and a transition is callet@or edge.

The graph is treated as merely a formal representation gbriblelem, as yet de-
void of meaning. It has not yet been decided what conceps fiyoff function” and
“backup rule” mean. The problem graph is purely a syntacgcdption of the prob-
lem space. Semantics are added later. The graph has a nuinrieresting properties
that can be exploited to improve the efficiency of the seaiidie following features
characterize the properties of the basic graph. We asswahththgraph is directed and
finite.

Out Degree: The number of outgoing edges, or children, ofdene called its out
degree or branching factor. The larger the out degree, the whfficult the
search task. The 15-Puzzle has a branching factor thatsviidm 2 to 4. In
chess, the average branching factor is rougblyalthough it can range from
to 100. An N-city TSP will have nodes with a branching factor/éf- 1. Search
techniques may be able to exploit the distribution (absadite or variability) of
the out degree.

In Degree: The number of incoming edges, or parent nodesyledcthe in degree
of a node. Graphs with a constant in degreé afe called trees. Curiously, the
problem spaces of most games studied by the field of gaeeesearch are not
trees [38]. For example, in the game of chess many stateseagalshed via
multiple move sequences, so-called transpositions. Ackdachnique may be
able to exploit the variability of the in degree.

Cycles: In addition to transpositions, graphs can contaites. A cycle is a situation
where, via some path, a node is its own ancestor. The agplicatles allow
cycles in, for example, chess and the 15-Puzzle, but noeiigéme of Go.

Graph Size: As noted above, we assume finite size. Howeegg thmore to the size
of the graph than the question of whether it is finite or notcdmbination with
other properties of the problem (such as time constraip&;esconstraints, and
the computational cost of the transition function), theesf the problem graph
influences the feasibility of finding an answer. The size efsharch space, in
part, determines the effectiveness of some search teamiqu
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5.2 Solution Definition

In this part of the problem solving procesganingis attached to some of the states.
If the graph definition provides us with a syntactic desaipbf the problem, then the
solution definition associates semantics to the graph. Téening of some states in
the graph, mapped into a value, is defined by the applicatitesr For example, in
chess all checkmate states have a known value. In the TS& thad visits all cities
and ends in the original one is a possible solution. The protdpecification usually
specifies a goal, such as checkmate the opponent or findirghtreest tour among a
set of cities. The objective of the search is to find these goablution states, and
to report back how they can be reached. Solutions are a sobsetes in the search
space, and solution density, solution depth, and the batkegan be used to describe
the relationship between these sets of nodes.

Solution Density: The distribution of solution states detimes how hard searching
for them will be. When there are many solution states it weldasier to find one,
although determining whether it is a least cost solutiors¢@ne other optimality
constraint) may be harder.

Solution Depth: An important element of how solution stedes distributed in the
search space is tlepthat which they occur (the root of the graph is at deth
Search enhancements may take advantage of a particulénaisin. For exam-
ple, breadth-first search may be advantageous when thetegh &ariability in
the depth to a solution.

Solution Backup Rule: The problem description defines howt&m values should
be propagated back to the root. Two-agent games use the axninte; opti-
mization problems use minimization or maximization.

5.3 Resource Constraints

Resource constraints (space and time) permeate most od$igncand implementation
effort. They play a critical role in determining which enlcaments are feasible. There
are interesting trade-offs that can be made between the2wd p].

Space: Most algorithms used for solving real-world prolderse storage to speed up
their search. Space constraints (RAM or disk) may limit thmant of interme-
diate information that can be used by the search algorithm.

One could argue that with the steady decline in memory arldmtises, these
space constraints are felt much less. While this is true,ynadgorithms are
emerging that exploit the memory hierarchy to, for exampleximize cache
usage. Algorithms should still be carefully designed toehasmall working set
to achieve best performance.

Time: In search, time is the single most important resoutsestraint. True, it can
be traded off for space, but only up to a point. An unlimitecoaimt of space is
useless if one doesn't have the time to compute the data g filhd since the

11



problem graph is normally specified implicitly, it has to bdalbup during the
search, which takes time that cannot be traded off.

Time constraints are the driving force for all the choiceslmduring the differ-
ent phases of the problem solving process.

5.4 Search Objectives

One of the most important decisions to be made is the obgofithe search. This
decision is influenced by the size of the problem graph, emldensity and depth, and
resource constraints. The choice of search objective defirglobal stop condition.
We distinguish two basic global stop conditions:

Optimization: The basic optimization question is to find teast cost solution to a
problem. Optimization involves finding the best (optimadjue for the search
problem. As soon as a solution has been found that is guaditdeéoe optimal,
the search stops (e.g. A*). (A small variation of this stopdtition is to find all
optimal solutions.) Given a problem graph, the propertiasdetermine whether
optimization is feasible are solution density, solutiopttieand in/out degrees.

Satisficing: Sometimes optimization is too expensive arg rmeeds to get the best-
quality answer possible subject to the resources availabiés is the case in
most two-agent problems where it is not possible to seardhdcend of the
game, and in single-agent search where it is usually p@ssilduickly achieve
a good solution, but considerably more expensive to find fitienal solution. In
many other situations finding solutions is expensive, famegle in many real-
time situations, such as autonomous vehicle navigationefRéy there has been
much interestin real-time algorithms that continue to fiettdr solutions as their
search time increases. Dean and Boddy have termed this gfaalgorithms
anytime algorithms [13].

For satisficing searchers, a payoff, or evaluation funci®mapplied to each state
encountered in the search. The evaluation function is aisteuapproximation
of the true value of the state. The search progresses, ttgirigpd the best
approximation to the true solution, subject to the avadakkources.

The choice for global stop condition is influenced by compatel efficiency—
the faster the evaluation function the more states can braiaga per time unit—
and by the space and time that are available for the compntati

5.5 Domain Knowledge

The domain knowledge is at the heart of a high-performaraebkepplication, since
the quality of the knowledge will significantly influence tk#iciency of the search.
At one extreme the application of perfect domain knowlediyeiates the need for
search. At the other extreme, a lack of domain knowledgeredilt in an ineffective
(exhaustive) search.

12



Heuristic Evaluation Function: The heuristic evaluationdtion encodes application-
dependent domain knowledge about the search. Typicallytlite most impor-
tant component of a search application. Unfortunatelya# to be redeveloped
anew for each problem domain. Since the function is apptinaiependent,
most of its internals cannot be discussed in a general wag.eXternal charac-
teristics, however, can.

There are many different types of information that can berretd by a heuristic
evaluation. Some examples include: lower/upper boundnestis on the dis-
tance to solution (as is typically seen in most single-ag@piications), point
estimates on the quality of a state (as is typically seen istinm-agent applica-
tions), ranges of values (for example, B* [7]), and probigbdistributions (for

example, BPIP [6]).

Backup Rule: The solution as defined in the problem spedificaypically gives
a backup rule for propagating solutions back to the root efgkarch. This is
often a simple minimizing or minimaxing operation. It is dpstract rule that
is defined by the problem specification. In satisficing sitret, however, the
choice of heuristics used can change the semantics of ttk@ibagle.

For example, in an AND/OR graph the cost of a solution couldaeked up
according to the MIN/SUM rule (for example, Conspiracy Nwer®[30]). If
the heuristic produces a scalar probability, then the backie will typically
be product propagation. In some situations multiple vaklresreturned, for
example an upper and a lower bound, or the merit of a state andntuch
it costs to get there. Backing up a probability distributie@quires even more
elaborate processing.

Quality of Heuristics: The most important aspect of the migrevaluation function
is the inherent error. For a given statethe application designer wants to min-
imize |h(s) — h * (s)|, whereh(s) is the heuristic estimate ofs true value,
andh x (s) is the perfect-information value (if known). In generalethetter
the quality ofh(s), the more efficient the search. Typically, heuristic fuos
are good at estimating the true value of certain featuresewrey fail at others.
The construction of good heuristic functions typicallyuegs a lot of effort and
ingenuity.

Satisficing and anytime algorithms are built on the premisd the error of
search results diminishes with deeper searches. Thereskassbme study into
the pathological case when this assumption does not hold3[g2 Typically,
real-world applications do not exhibit pathology (there aumerous studies
showing this phenomenon [45, 9, 31]).

A special case that is of importance to minimization protdeisrwhere the
heuristic function is admissible, that is, it never overeates the cost of reach-
ing a solution state. Its importance stems from the observdhat the first
solution found by, for example, iterative-deepening A* isaganteed to be opti-
mal if the heuristic function is admissible. These boundsloa used to prune
irrelevant parts of the search space.
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Parent/Child Correlation of Value: Related to the qualityhe evaluation function is
the stability of the values as one walks the graph. For many best-first aisd sa
ficing successor ordering techniques it is important thatyapg the heuristics
to a parent node yields a value that is highly correlatededticked up heuristic
value of its children. Obviously, the better the generallityaf the heuristics,
that is, the smallefh(s) — h x (s)| is, the higher the correlation between parent
and child values will be. (Although, in principle, also lowality evaluation
functions can have a good heuristic stability, e.g. alwaysrning 0.) An impor-
tant special case is where the heuriétfe) is admissible and consistent.

Parent/Child Correlation of State: The graph-counterphthe previous property,
parent/child correlation of state, enables (or disables)successful implemen-
tation of stable heuristics. The task of constructing hetizs that exhibit good
stability becomes easier when few of the state featuresgehiara transition. In
many application domains one can choose a small numberaifvedly stable
features in the state representation and use them to conatgood heuristic.
The possible choices of a state representation can haveoa itmggact on how
easy it is to construct heuristics with a small eriofs) — h * (s)| that are com-
putationally efficient, so that the part of the problem grépdt can be searched
within the time constraints is as large as possible. It dfi&es numerous design-
and-test iterations before a satisfactory solution has beastructed.

Granularity of Values: The granularity of the heuristic ¢tion [46] is another issue
that is partly constrained by properties of the search satevhere the designer
of the heuristics has some degree of freedom.

The granularity of the heuristics can have a large influentehe choice of
search techniques. For example, iterative deepening glesamgent search is a
technique that searches for a solution whose cost does needxa threshold.
If no solution is found, the threshold is incremented, arelgbarch is restarted
from the beginning. Its effectiveness is greatly affectgdte granularity of
the heuristic function [47]. In the 15-puzzle the heurigtiamber of steps to a
solution) is coarse grained, ranging from 0 to 64, with maagles having the
same value. In TSP the values returned by the heuristiciiméfength of a
tour) are much more finely distributed, with many tours hgwandifferent cost.
Iterative deepening works well with sliding-tile puzzlesit fails in TSP because
of the high number of re-searches.

In satisficing the same phenomenon occurs with search websithat iterate
over the values returned by the heuristic. For example, gaste-playing pro-
grams have migrated to manipulating integer values insté#ite finer-grained
floating point value$.

Search techniques exploit general properties of the sepaate in an application-
independent fashion. Heuristics, on the other hand, arbcatipn-dependent
search techniques. As stated before, the choice and imptatien of heuristics

provides in many ways the glue between the properties oféhech space and

40f course, a second argument is that integer arithmetisteifahan floating point calculations.
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the search techniques. From a scientific viewpoint one wtkedto decouple
application-specific heuristics from the more generalgeéechniques. How-
ever, from an engineering viewpoint, trying everything cemable to achieve
the required performance for a certain problem, this sejparaan often seem
absurd.

Next Node to Expand: The search algorithm together with isBarinformation is
used to decide on the next node to expand in the search. Ferapptications,
the decision may be mechanical, such as depth-first, bréastbr best-first, but
heuristic information can be instrumental in ordering roffem most- to least-
likely to succeed. Search is graph traversal. The essenebatfany combina-
tion of search algorithm/technique does is influence thécehaf which node to
expand next. The next node is influenced directly when desiegrihe search
tree, and indirectly when the decision is made to stop dekoegrand backup to
a parent node.

Select (down): When descending the graph one has to chodsle éocexpand
next. This choice can have a large impact on the efficiench®fearch.
Breadth-first and depth-first are two basic strategies. Miargntive ways
for choosing the next child to expand have been tried.

Local stop (up): Criteria to stop the search at certain nodese in a multitude

of flavors. Most search methods are designed not to expantbthelete
search space. Some techniques have been devised to deeidgarts of
the search graph do not have to be visited again. Many diffgneining
techniques have been proposed, based on search-spaceipsqjpeuning
by domination, alpha-beta pruning), and on applicatiogeffit heuristics
(forward pruning in chess).
Next, properties of the search space can be used to decidernbde tem-
porarily will not be explored any deeper. Best-first nodesgbn can be
viewed as such a local stop criterion—stop when the childfea node
are no longer the best. Many other search techniques havedesésed,
some based on properties of the search space, some on tpplsecific
heuristics.

Having discussed the main properties of the search spas@gatv time to turn our
attention to the search techniques that are designed tathlantage of them. In the
next section we switch from the vertical axis of Figure 1 te biorizontal axis.

6 Search Enhancements

This section classifies various search enhancements useeénhancements have been
grouped into classes, of which a few of the more interestimgscare discussed (the
ones illustrated in Figure 1). Numerous enhancements hese tlassified, but are not
included for brevity.
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For each class, a representative technique was selectedsaapplicability to
single-agent and two-agent search is discussed. The alateimtended to be an il-
lustrative sample, not exhaustive. Each technique is odteg by the preconditions
of search domain properties that are necessary to use thatigeie. The effective-
ness of some enhancements depends solely on the propéttiesgpaph—not of the
application—while others depend on the application andomothe graph. Since in
most cases the preconditions necessary for using an emhantare not tied to any
fundamental property of an application, the search enhmants presented are appli-
cable to a wide class of applications.

The example techniques are analyzed using a number of cesgo

e Name. The commonly used name of the enhancement.

Precondition. The conditions necessary for the enhancetmée applicable.

Idea. A brief description of the idea behind the enhancement

Advantages. The benefits of using the enhancement (typioakk and/or space).

Disadvantages. The side effects of using the enhancement.

Techniques. A brief summary of the idea as used in singlevaayed two-agent
search practice.

6.1 Eliminating Redundant States

Identical states can occur in a search. There are two waysdm happen. First, the
graph may contain cycles. Second, path transpositionsaaslge (two independent
paths through the graph reaching the same state). Iddadlgtate should be searched
once, and repeated occurrences of the state should reupesthieusly computed in-
formation.

The presence of repeated states depends only on the ajgplidefinition. There-
fore the techniques for eliminating redundant states igpedident of the algorithm
selected.

Name:Cycle detection.

Precondition:In-degree is> 1. Two search paths can lead to the same state.

Idea: Repeated states encountered in the search need only beesbance. Search ef-
ficiency can (potentially) be improved dramatically by resimg these redundant states.
AdvantagesReduces the search graph (tree) size.

Disadvantagestncreases the cost per node and/or storage required.
TechniquesThe typical technique is to store positions in a hash tabédiooy for rapid
determination if a state has been previously seen. ThissMforkboth cycles and path
transpositions. An alternate technique that only detegttes but uses little memory
is to save the path used to reach a node and use it to checkdpeated state. Note
that these techniques work for both single-agent [29] arddgent [16] search. Finite
state machines have been used to detect cycles in singht-segech [44].
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6.2 State Space Enumeration

These techniques depend on the state space graph and offititeodenf the solution
space.

Name:Exhaustive search.

Precondition:Size of the state space graph and/or solution search tresniel:”

Idea: If the state space is “small” enough, then the entire graphbeaexamined and
the optimal answer for each node computed. For some agplisatraversal of the en-
tire state space may not be necessary; one need only traélierselution tree, ignoring
parts of the state space that can logically be proven iraglev

AdvantagesOptimal answer for some/all nodes in the state space.
DisadvantagesMay require large amounts of time and/or space to traveesesttite
space and save the results.

Techniques:Several games and puzzles with large state spaces have dieed by
enumeration (in conjunction with other enhancementshding single-agent applica-
tions (8-Puzzle [39] and the 12-Puzzle) and two-agent apitins (Nine Men’s Morris
[14], Qubic [1] and Go Moku [1]).

The definition of “small” may be misleading. Nine Men’s Marhias a state space
size of O(0'3), while Go Moku has a state space size of over@), a seemingly
impossibly large number. Solving a problem is a matter nd¢ ohthe search-space
size, but also the decision complexity [2].

6.3 Successor Ordering

The order in which the successors of an interior node aréedishay effect the effi-
ciency of the search.

Name:Move ordering.

Precondition: This enhancement is applicable if the order in which suaressdes
are considered in can effect the size of the search tree.

Idea: Consider branches at an interior node in the order of mosedstllikely to
achieve the best result.

Advantages:Successor ordering most benefits algorithms that use pse@ach re-
sults for additional cutoffs—the earlier good bounds ataldshed the more of the
remaining tree can be cut off (branch-and-bound and algtaibased algorithms). In
optimizing searches, searching the best move increasédikelirood that a (best) so-
lution is encountered earlier in the search.

Disadvantagestncreased processing cost per interior node.

TechniquesThere are many techniques for move ordering in the liteesitucluding
the killer heuristic [43], previous best move ordering [48rative deepening, and the
history heuristic [40]. Limited discrepancy search [18pislt around the notion of
move ordering and relies crucially on its quality.

6.4 lterative Refinement

Ideally, one should visit a state once, and only once. Onbefiajor search results
to come out of the work on computer chess was that repeatésiting a state, al-
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though seemingly wasteful, may actually prove to be berafidlumerous iterative
techniques have been used, including iterating on the lsel@uth, search window, set
of enhancements used, etc.

Name:lterative deepening.

Precondition: Information from a shallow search satisfying conditidmust provide
some useful information for a more extensive search satigty+ A.

Idea: Search down a path until a conditidiis met. If the entire tree has been searched
with conditiond, and no solution matching the search objective has beerdfand
resources are not exhausted, then repeat a more extenaich $e satisfy condition
d+ A.

Advantages:lterative deepening is primarily used because it reducessfface re-
quirements of the application [24]. For searches undertieed constraints, iterative
deepening facilitates time management, because it previdevenient places to stop
the search with a reliable indicator of the quality of thershaesult (e.g. the search
depth achieved). Results from previous iterations (storedtransposition table) may
improve move ordering and thus the potential for cutoffs.
DisadvantagesRepeated visitations cost time. The value of the infornmagjathered
must outweigh the cost of collecting it. In general, sinoe $karch trees grow expo-
nentially, the cost of the early iterations is dwarfed by ¢bst of the last iteration.
Techniques:By storing the best move for each node searched, in eachidterthe
move ordering of another level of the search tree is imprg¢2d43]. In optimizing
searches, the algorithm usually iterates on a lower (ugmemd on the solution quality
or search depth. The search either succeeds and a minimahfaiaresult has been
found, or the search fails, in which case it is repeated withrger (smaller) lower
(upper) bound. Satisficing (resource-constraint) searciseally run until resources
are exhausted and use the best result achieved so far. adetathnique is recursive
iterative deepening, which will not be discussed here.

6.5 Off-line Computations

It is becoming increasingly possible to pre-compute antedrge amounts of inter-
esting data about the search space that can be used dyrgmicahtime. There are
many well-known techniques, including pattern databas2sg1] and opening books.
The effectiveness of this technique depends ultimatelyeineuristic evaluation func-
tion, although it works for a large class of applications.

Name:Solution databases.

Precondition:One must be able to identify goal nodes in the search (tJivial

Idea: The databases define a perimeter around the goal nodes. ditth san stop
when it reaches the perimeter. In effect, the databasedseshe set of goal nodes.
AdvantagesThe search can stop when it reaches the database perimeter.
DisadvantagesThe databases may be costly to compute. Furthermore, themem
hierarchy (e.qg., registers, level | cache, level Il cach&lMRand disk) makes random
access to tables increasingly costly as their size grows.

TechniquesSolution (or endgame) databases have been built for a nuofilgames,
in some cases resulting in dramatic improvements in thecbegfficiency and in the
quality of search result. In two-player games, @t@nookprogram has taken endgame
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databases to the extreme, building a collection of 444awilfpositions [41]. These
databases are accessed at runtime, significantly reduwnggarch tree size and im-
proving the search accuracy. In single-agent applicagohgion databases have been
tried in the 15-Puzzle. An on-line version of this idea existynamically building the
databases at runtime (bi-directional [23] or perimetercef28]).

6.6 Search Effort Distribution

The simplest search approach is to allocate equal effaat¢bedepth) to all children
of the root. Often there is application-dependent knowtetthgit allows the search to
make a more-informed distribution of effort. Promisingtetacan be allocated more
effort, while less promising states would receive less. eBgive experimentation in
two-player games shows that within a given time constralivé,quality of the search
answer can be significantly improved by a judicious allaratf effort [4]. In two-
agent search, numerous static methods have been used (@& foe adjusting the
search effort (sometimes called forward pruning, selecarch or selective deepen-
ing). Dynamic methods have proved more effective. Hereckearsults are used to
influence where the effort goes. Popular ideas used in peaiciclude singular exten-
sions [5], the null-move heuristic [15], and ProbCut [10].

For optimizing single-agent search, redistributing tharsle effort is of limited
value since even if an extended search finds a solution, sdiilpke non-extended nodes
must still be checked for a better solution. However, if aolyson is acceptable, then
non-admissible heuristics can be used to extend/retrasgtarch effort (both statically
[26] and dynamically [20]). It is also beneficial for reatrié single-agent search such
as RTA* [25] and other anytime algorithms. Limited discrepgsearch is a schema
with the same intent: distribute the search effort in acanoe with the move ordering
heuristic [18].

Name:Static redistribution of search effort.

Precondition:Application-dependent knowledge can be a good predicttretitility
of extending/reducing the search.

Idea: Extend promising lines in the search; reduce the effortdbtiees that appear to
have low potential. The decision is made based on staticrirdtion about the current
state.

Advantagesin optimizing search, this can increase the chances of @stw a (pos-
sibly non-optimal) solution quickly. In satisficing seardican increase the reliability
of the search result.

Disadvantagestn optimizing search, the discovery of a solution can bepastd. In
satisficing search this might result in wasted search effqtoring low utility nodes.
Techniquesin single-agent search, numerous simplistic methods heea tried. For
example, WIDA* (Weighted IDA*) scales the heuristic valug & constant (usually
greater than 1) which has the effect of reducing the seargk along lines with larger
heuristic values [26]. In two-agent games, there are nunseapplication-dependent
heuristics that have been used. For example, chess progsralty extend the search
for checking or threatening moves, while lines where one sidiown a lot of material
are usually curtailed.
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7 Analysis and Future Work

The previous sections illustrate that the same basic ideasfrch enhancements have
found their way into both single-agent and two-agent searchthat even the algo-
rithms are similar if not identical. It is often striking hoglosely related these en-
hancements are and how similar the algorithms behave wiaeatseg trees that were
thought to belong to fundamentally different classes.

Even for moderately complex domains, the current stateethrequires a large
programming, research and tuning effort to achieve higfop@ance. Application pro-
grammers are required to re-implement general searchithigmr and their enhance-
ments over and over again. Even worse, the slow and agorpraugss of debugging
and tuning a multitude of interacting and counteractingaeanhancements in search
trees of millions, even billions, of nodes can be extremihetconsuming and error
prone.

The arguments outlined in this paper support the contenltianthe search space
properties define the appropriate search algorithm/ermeants. The user defines the
properties and then queries a catalogue of establisheditpms looking for those that
match the properties of the application domain. This suigdbat it should be possible
to automate this process. One could construct a tool, a LBGOef search tech-
niques, that, given a search-space description, autoaiigtjsuts together a number
of pre-fabricated pieces of template code and adapts thehetourrently considered
problem and its properties. Specifying the backup rule wdag only one of many
different properties to consider. Even though user-sptgroperties could be used in
the beginning, this tool could ultimately detect certaiogmrties itself and enable and
disable, or even parameterize, specific enhancementsieglyr[20].

Even though a generic solver likely would not execute asdfgstfinely-tuned, cus-
tom built program, it could provide reasonable performanitk the virtual guarantee
of correctness. More importantly, a successful searchras@ment can yield orders
of magnitude in performance increase by dampening the exypaf the search-space
complexity, whereas an excellent implementation can oale s small constant fac-
tor. Such a LEGO-program could be a benchmark for both speeédarrectness for
further, more specific implementations.

8 Conclusion

For decades researchers in the fields of single-agent anddent heuristic search
have developed enhancements to the basic graph travegsatltains. Historically the
fields have developed these enhancements separatelyoriNdssl Pearl popularized
the AND/OR framework, which provided a unified formal basist also stressed the
difference between OR and AND/OR graph traversal algomsthie fields continued
their relatively separate development.

This paper advances the view that the essence of heuriatictsis not searching ei-
ther single-agent or two-agent graphs, but which searchras@gments one uses. First,
the single/two-agent property is but one of the many progedf the search space that
play a role in the design process of a high performance heusisarch application.
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Second, the single/two-agent distinction is not the domtifiactor in the design and
implementation of a high-performance search applicatisaarch enhancements are.
Third, most search enhancements are quite general; thdyeaased for many different
applications, regardless of whether they are single-agemto-agent.

The benefit of recognizing the crucial role played by seaedhniques is imme-
diate: application developers will have a larger suite @frsk enhancements at their
disposal; ideas first conceived of in two-agent search witlhave to be rediscovered
later independently for single-agent search, and viceavdrsan implementation the
best combination of techniques depends on the expectethdsamefits versus the pro-
gramming efforts, not on the single-agent or two-agentritigo.

For twenty years, most of the research community has (ettpland implicitly)
treated single-agent and two-agent search as two difféopits. Now it is time to
take stock and recognize the pivotal role that search emmagicts have come to play:
the algorithm distinction is minor, and most research anplé@mentation efforts are
directed towards the enhancemenith.the properties of the search space—not just the
single/two-agent distinction—play their role in deteringp the effectiveness of that
what heuristic search is all about: enhancing the basickeglgorithms to achieve
high performance.
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