
Single-Frontier Bidirectional Search

Ariel Felner
Information Systems Engineering

Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Israel 85104
felner@bgu.ac.il

Carsten Moldenhauer
Computer Science Department

University of Berlin
Berlin, Germany

carsten.moldenhauer@googlemail.com

Nathan Sturtevant Jonathan Schaeffer
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{nathanst, jonathan}@cs.ualberta.ca

Abstract

On the surface, bidirectional search (BDS) is an attractive
idea with the potential for significant asymptotic reductions
in search effort. However, the results in practice often fall
far short of expectations. We introduce a new bidirectional
search algorithm,Single-Frontier Bidirectional Search(SF-
BDS). Unlike traditional BDS which keeps two frontiers, SF-
BDS uses a single frontier. Each node in the tree can be seen
as an independent task of finding the shortest path between
the current start and current goal. At a particular node we
can decide to search from start to goal or from goal to start,
choosing the direction with the highest potential for minimiz-
ing the total work done. Theoretical results give insights as to
when this approach will work and experimental data validates
the algorithm for a broad range of domains.

Introduction
Most start-to-goal search algorithms are unidirectional,i.e.,
they search from a start state towards a goal state. Bidirec-
tional search (BDS) is a general framework where the search
is performed simultaneously from the start and from the goal
until the two search frontiers meet. BDS has proved to work
very well in domains that can fit into memory and have no
heuristic guidance. However, when heuristic guidance ex-
ists it has been shown that, in theory, traditional BDS has
little potential to outperform unidirectional search (Kaindl
& Kainz 1997). The reason is themeet in the middle prob-
lem of guaranteeing the optimality of the solution after the
search frontiers meet. A number of non-traditional BDS al-
gorithms have been proposed (Kaindl & Kainz 1997) but the
implementation of these algorithms is usually difficult and
the gains have not been impressive. Therefore, in practice,
BDS is rarely used when heuristics are available.

Problems that require more memory than is available are
usually solved with depth-first search (DFS) algorithms such
as IDA* (Korf 1985). The classical idea of searching from
both directions has not been broadly considered for DFS al-
gorithms. The notion of meeting frontiers does not apply
here since the frontiers are not kept in memory. We show
how the meeting of the frontiers can be achieved even when
DFS algorithms are considered.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We introduce a new type of bidirectional search called
Single-Frontier Bidirectional Search(SFBDS). A node in a
search tree using SFBDS consists of a pair of states,s and
g, and corresponds to the task of finding the shortest path
between them. This task is recursively decomposed by ex-
panding eithers or g and generating new tasks between (1)
the neighbors ofs andg, or (2) the neighbors ofg ands. At
every node ajumping policydecides which of the two states
to expand next, i.e., the search can proceed forward or back-
ward. Given a fixed jumping policy, a tree is induced which
can be searched using any admissible search algorithm.

We first introduce SFBDS and show that it may reduce
the size of the search tree by leveraging irregularities in the
branching factor of a search space. These irregularities may
naturally occur in a domain or appear as a result of heuris-
tic pruning of the search space. Next, we show that SFBDS
is a generalization of thedual searchconcept (Zahaviet al.
2008), a complicated algorithm which is limited to combi-
natorial puzzles with specific properties. Finally, we provide
experimental results for depth-first and best-first implemen-
tations of SFBDS confirming our analysis.

Single-frontier bidirectional search
In this paper we use the termnodeand use capital letters
(e.g.N) to indicate nodes of the search tree, while the term
stateand small letters (e.g.,s) are used to indicate states
(or vertices) of the input graph. We assume that the input
graph is undirected and that the task of the search is to find a
shortestpath from the start state to the goal state. Our ideas
can be generalized to work without these assumptions.

Unidirectional search

Assume the task is to find a path betweens andg on a graph.
Regular search algorithms formalize a search tree such that
each node of the tree includes one state of the graph. The
root nodeR includes the start states. Assume that nodeN
corresponds to statex. The task atN is to find a (shortest)
path betweenx andg. When a heuristic is applied, it esti-
mates the length of the path fromx to g (h-cost) and adds
this to the accumulated path froms to x, i.e., all edges from
R to nodeN (g-cost). When the goal is reached via an opti-
mal path, we backtrack and the states of the path are passed
up the tree to construct the solution path.

a

b c

d e f g

h i j k l m n o

(a) Unidirectional tree

a, o

b, o c, o

… c, gd, o e, o

c, n c, c… …

(b) Task tree
Figure 1: Example for unidirectional and SFBDS trees.

SFBDS: Formal Definition
The main observation underlying this paper is the following:

Finding the shortest path between statesx andg can be
solved via recursive decomposition. The method used
for the decomposition (direction of the search) does not
matter as long as an optimal path is returned.

In SFBDS each node is defined as a pair of statesx and
y denoted byN(x, y). The task of such a node is to find a
shortest path betweenx andy. In other words, the task is to
close the gapbetweenx andy. This can be done by treating
x as the start andy as the goal, searching fromx to y. An
alternative is toreversethe direction of the search by treat-
ing y as the start andx as the goal, searching fromy to x.
For example, if atN(x, y) bothx andy have two neighbors,
then the children ofN of the two alternatives are:

(a) regular direction (expandx): (x1, y) and (x2, y); or
(b) reverse direction (expandy): (x, y1) and (x, y2).

Each nodeN should be expanded according to one of these
alternatives. The search terminates when agoal nodeis
reached (N(x, y) wherex = y). The choice of search di-
rection inN is reflected byN ’s children only, but no other
node in the search is influenced by this choice of direction.
Solutions or cost estimates from nodeN are naturally passed
up to the parent ofN , regardless of the direction used forN .

We use ajumping policyto choose which direction to con-
tinue the search at each node. Define thetask search tree
(task treein short) for a given jumping policy as the tree
obtained by usingR(s, g) as the root of the tree. Any ad-
missible algorithm can be used to search for a shortest path
fromR to any goal node in the task search tree.

Examples
Unidirectional search and SFBDS are illustrated using the
graphs in Figure 1. The objective is to find a shortest path
from the start state,a, to the goal state,o. Consider a unidi-
rectional search (Figure 1a). In this tree, every node implic-
itly solves the task of getting from the current node too, and
the search will proceed across the tree untilo is found.

Now, consider searching the same tree with SFBDS (Fig-
ure 1b). Nodes are labeled with the shortest-path task that
should be solved below them. The state which is chosen for
expansion by the jumping policy is marked with an under-
score. For example, at the root, the task is(a, o) resulting
in two children,(b, o) and(c, o). At node(c, o), however,
the jumping policy chooseso for expansion. This generates
nodes for all neighbors ofo, leading to(c, g) in our example.

Finally, at(c, g), stateg is chosen for expansion, generating
a goal node(c, c).

Edges in a task tree are of two types. The first type are
edges from a node(x, y) to a node(w, y) which corresponds
to an edge(x,w) in the graph (expandingx). The second
type are edges from a node(x, y) to a node(x, z) which
corresponds to an edge(y, z) in the graph (expandingy).
For example, the path in the task tree in Figure 1b indi-
cated by dotted arrows corresponds to edges(a, c), (o, g)
and(g, c). Constructing the solution path is straightforward.
When backtracking up the search tree from a goal node,
edges that correspond to forward expansions are appended
to the front of the path while edges that correspond to back-
wards expansions are appended to the end of the path. Thus,
the path of(a, c, g, o) is constructed from this branch.

Analysis
Given a specific jumping policy the task tree is determined.
Every shortest path in the task tree encodes a shortest path
in the graph and vice versa. Therefore, using any admissible
search algorithm on the task tree will return an admissible
solution for the original graph. No gains can be provided
by using any other search algorithm besides A* (or any of
its variants) because it is guaranteed to find the optimal path
and the nodes it expands are mandatory. This applies to any
type of search tree and to the task tree as well.

The main aim of SFBDS is to minimize search effort by
choosing an appropriate jumping policy. Regular unidirec-
tional search uses the policynever jump. Similarly, a unidi-
rectional search from the goal to the start employs the pol-
icy jump only at the root. The idea is to improve upon these
jumping policies. Unfortunately, the space of jumping poli-
cies is exponential in the number of nodes expanded and it
is out of the scope to determine an optimal jumping policy
at runtime. However, heuristic approaches can be used.

We distinguish four types of domains (shown in Figure 2)
to consider if jumping at node(a, g) can be advantageous.

Case 1: Consider domains with a uniform branching fac-
tor b. A search without heuristic guidance on the unidirec-
tional search tree will expand O(bd) nodes when the solution
is of lengthd. Consider the task trees generated by differ-
ent jumping policies. Since the branching factor is uniform
all the task trees have the same structure. Hence, searchinga
task tree of a different jumping policy will also require O(bd)
node expansions. In Figure 2a consider the policy where the
search does not change direction until it reaches node(a, g)

unidirectional search SFBDS unidirectional search SFBDS unidirectional search SFBDS

i g
a

d1 d2

i g

d1 d2

a a
gi gi

a

d/2 d/2

i
a

x
g

b

d/2d1

i
a

g

b

(a) uniform branching factor (b) non-uniform branching factor (c) dead ends

Figure 2: Case analysis when reversing the search directioncan be advantageous.

at depthd1. A unidirectional search would continue with a
search to depthd2 = d− d1, expanding O(bd2) nodes below
node(a, g). Now, assume the direction of search is reversed
at (a, g). This search continues fromg to depthd2, also
expanding O(bd2) nodes below node(a, g). Therefore, any
jumping policy, including no jumping, is optimal.

Case 2: Consider domains with a non-uniform branching
factor and without dead ends (Figure 2b). A non-uniform
branching factor can be a domain characteristic or the result
of heuristic pruning. If one area of a state space has better
heuristic values than another, the effective branching factor
(number of nodes expanded below a given node) in that area
may be smaller. Hence, there is the potential to reduce the
search effort by choosing a good jumping policy.

Case 3: Consider domains with dead ends in the search
tree (Figure 2c). Consider a unidirectional search fromi
to g. At depth d/2 only b is connected to the goal and
all other nodes (e.g.,x) are dead ends. In this search we
have two trees of depthd/2 and the total effort is O(2 ×
bd/2) =O(bd/2). SFBDS with a non-optimal jumping policy
does not recognize dead ends until at least one of the two
states of a node is a dead end. When the search direction
reverses below(a, g) it will search to an additional depth
of d − d1 before being pruned. Hence, the search tree is
of size O(bd/2 + bd/2−d1). Using the simplistic assumption
that the search always reverses at depthd1, the total effort
will be O(bd1(bd/2+ bd/2−d1)) ≫ O(bd/2) before a solution
is found. In these domains it is crucial to jump in the right
places or not to jump at all to avoid a quadratic increase in
the search effort. Good heuristic guidance can be used to
prune the unsuccessful searches earlier than at depthd− d1.

Case 4: On graphs with many cycles best-first search al-
gorithms are quite effective due to duplicate detection. If
there areV states in the graph, a best-first version of SF-
BDS can have up toV 2 unique tasks, so there is a potential
asymptotic increase in the size of the state space.

Relationship to Dual Search
The concept ofduality and an algorithm calleddual search
(DS) (Felneret al. 2005; Zahaviet al. 2008) was introduced
in the context of permutation state spaces such as Rubik’s
Cube. Assume that when applying the operator sequenceO
to s we arrive atg. The dual stateof s, denoted assd, is
defined to be the state which is reached by applyingO to
g. The distances froms andsd to g are equal. Therefore,
any admissible heuristic lookup forsd is also admissible for
s. Given a heuristich, h(s, g) is called theregular lookup
andh(sd, g) is called thedual lookup. If they differ their

maximum yields a more powerful heuristic.
DS exploits the heuristic differences of the two lookups.

At each state, it either continues to search regularly or it
“jumps” to the dual state and continues the search from
there. For pattern databases (PDBs), a good jumping pol-
icy is to “jump” if h(sd) > h(s). This was called thejump if
larger (JIL) policy. Dual IDA* (DIDA*) was shown to sig-
nificantly outperform IDA* in many combinatorial puzzles.

DS has two main limitations. First, it only works in do-
mains (e.g., combinatorial puzzles) which have the special
property that each operator corresponds to alocation-based
permutation. Similarly, it assumes that the same type of op-
erators are applicable to all states. Second, the concept ofthe
dual state and the DS algorithm are technically complicated
and hard to understand. In addition, DS was only imple-
mented on top of IDA* and the question as to whether it is
applicable to A* remains open.

SFBDS generalizes DS to all possible state spaces and is
simpler to understand. Many DS concepts, such as the dis-
tinction between “simple” and “general” duality, disappear
when viewed as a special case of SFBDS. This paper also
shows that SFBDS is suitable for search with A*.

To understand why DS and SFBDS are equivalent letO be
the location-basedpermutation that transferss into g. That
is, assume locationx ∈ s occupies objecta. O specifies
the destination locationy ∈ g for objecta. Now,O(s) = g
andO−1(g) = s. Similarly, by definitionO−1(sd) = g.
Therefore the relation betweeng and s is identical to the
relation betweensd andg. All operators are applicable in all
states so all we need to do is to find the shortest sequence of
operators that produces permutationO.

The PDB lookups are similar too. Letπ be avalue-based
permutation (“renaming”), ofs into g. That is, assume ob-
ject a is in locationx ∈ s . π specifies the name of the ob-
ject for locationx ∈ g. Now, sinceO andπ are commutable
thensd = O(g) = O(π(s)) = π(O(s)) = π(g). Hence,
h(sd, g) = h(π(g), π(s)) = h(g, s). That means all heuris-
tic lookups in DS for dual statessd are equal to the reverse
lookups in SFBDS and the two algorithms are equivalent.

SFBDS characteristics
SFBDS has the flexibility of deciding which side of the
search to expand next. In fact, any gains achieved by SF-
BDS are solely determined by the quality of the jumping
policy. In general, one wants to expand the side with the
subtree below it that can be searched most efficiently. Three
possible features for a jumping policy are considered here.
(1) Branching factor: For a nodeN(x, y), x andy may

have different branching factors. Expand the state with the
smallest branching factor. For example, consider a non-root
15-puzzle nodeN(x, y) where statex has the blank in the
center (branching factor of 3) while statey has the blank in
the corner (branching factor of 1). Now consider a depth 5
tree with a non-uniform branching factor where the branch-
ing factors at depths1 . . . 5 are fixed to 1, 4, 2, 2, and 2 re-
spectively. If we change direction based only on the branch-
ing factor, we essentially get to ‘skip’ the worst branching
factor in the tree. An optimal policy would switch direc-
tions at depth one, and expand 8 nodes total, while a forward
search would expand 16 nodes and a reverse search would
expand 32 nodes. The largest gain in this case is the ratio of
the largest to smallest branching factor in the tree.
(2) Asymmetric heuristics: Assume that the graph is undi-
rected and thus for every two states,x andy, dist(x, y) =
dist(y, x) wheredist(x, y) is the length of the shortest path
betweenx andy. In many cases, admissible heuristics are
symmetric too, meaning thath(x, y) = h(y, x) (e.g., Man-
hattan distance). However, some admissible heuristics are
not symmetric:h(x, y) 6= h(y, x). An example is a goal-
oriented PDB. Assume we build PDBs for statex (PDBx)
and statey (PDBy). Each PDB relies on different features
of the state, hencePDBx(y) likely stores a different heuris-
tic value thanPDBy(x). When an asymmetric heuristic
exists we can perform these two possible lookups for node
N(x, y). As a first step, we can take the maximum of these
two lookups as the heuristic forN(x, y). The second step
is more powerful. Assume thath(x, y) > h(y, x), that ex-
pandingx will generate nodes(x1, y) and(x2, y) and that
expandingy will generate nodes(x, y1) and(x, y2). Since
the heuristic atx is larger, we expect that nodes(x1, y) and
(x2, y) will have larger heuristics than(x, y1) and(x, y2).
Thus, we choose to expandx. This was called thejump if
larger policy (JIL) in (Zahaviet al. 2008).
(3) Side with larger heuristics: The preceding idea can be
generalized. Even if the heuristic is symmetric we can do the
following. Perform a 1-step lookahead and peek at all the
children ofx and measure their heuristic towardsy. Simi-
larly, perform a 1-step lookahead and peek at all the children
of y and measure their heuristic towardsx. If one side tends
to have larger heuristic values, choose to expand that side.
We refer to this as theJIL(k) policy, wherek is the looka-
head depth. The JIL method described above is JIL(0).

Optimal jumping policies for IDA*:
The optimal jumping policy can be computed offline for
IDA* under certain conditions. This gives us the minimum
possible search effort that can be achieved. Let(x, y) be
a task in the task tree. A jumping policy should decide
whether to expandx or y. Our optimization algorithm per-
forms the search below(x, y) for both cases until all so-
lutions are found. We then backtrack up the tree and for
each node choose the expansion with minimum search ef-
fort. This effectively doubles the branching factor. Hence,
if a unidirectional search has complexityO(bd) finding the
optimal policy has complexityO((2b)d). This is not feasi-
ble for long solution lengthsd. The space needed for the
optimal policy isO(bd).

Parent and duplicate pruning
Typically, when search algorithms expand a nodeN they
do not generate the parent ofN . This is usually done by
keeping the operator that generatedN and not applying its
inverse toN . In SFBDS two operators are kept forN(x, y),
one for each ofx andy. When a node is expanded from its
forward (backward) side, the inverse of the operator that was
used to first reachx (y) is not applied. In regular search the
one exception is the root node. In SFBDS both the start and
goal act as root nodes, slightly enlarging the tree.

DFS algorithms like IDA* do not perform duplicate de-
tection (DD). If multiple paths exist to a node, that node
and all its children may be expanded many times. Best-first
algorithms like A* store open- and closed-lists performing
DD. However, the DD problem in SFBDS is more compli-
cated than in A*. As there areO(V 2) possible tasks that
can be created out of all possible pairs of states SFBDS has
the potential to asymptotically increase the size of the search
space. We devised a method to show when a particular task
is guaranteed to be worse than similar existing tasks and can
be pruned. We do not describe this pruning in detail here, as
the gains of SFBDS in A* search are limited.

Experiments
SFBDS performance is demonstrated on the tile puzzles
of size 15 and 24, the pancake puzzle, scale-free graphs
and room maps. Puzzles have a relatively small and stable
branching factor and belong to case 1 in the analysis sec-
tion. However, heuristics can be used to diversify the sizes
of the task trees induced by different jumping policies and
relate them to the second case. Scale free graphs induce non-
uniform, high branching factors and belong to case 2 of the
domains. As an example of cases 3 and 4 we consider room
maps as a path-finding problem.

On the puzzles, SFBDS is identical to DS. We repeated
the experiments in (Zahaviet al. 2008), generating the same
numbers. The JIL(k) results are new. For the non-puzzle do-
mains duality does not exist and such searches are possible
only due to our new SFBDS formalization.

15-puzzle with Manhattan Distance
To show the effectiveness of SFBDS on simple heuristics,
we repeated the experiments first performed in (Korf 1985)
using the Manhattan distance (MD) heuristic; this time in-
cluding SFBDS with a number of jumping policies. The
results are in Table 1 (top). The first line uses IDA* with-
out any jumping and produces the identical node counts to
those reported in (Korf 1985). The second line uses SFBDS-
IDA* with the jumping policy of expanding the side with
the smaller branching factor (BF). The branching factor is
small, either 1, 2 or 3, (4 at the root) limiting the possi-
ble savings. Since the heuristic is symmetric, JIL(0) will
never choose to reverse the search direction and is equiva-
lent to regular IDA*. The next line reports the results for
JIL(1) using the following jumping policy. Assume that
T is the IDA* threshold, the current node isN(x, y), and
f(N(x, y)) = k. For the special case of the tile puzzle we
know that thef -cost either remains the same or increases by

H Alg. Policy Nodes Time
15 puzzle

MD IDA* Never 363,028,020 51s
MD SFBDS BF 256,819,013 37s
MD SFBDS JIL(1) 91,962,501 18s
MD SFBDS JIL(2) 71,290,100 17s

17 pancake
regular IDA* Never 342,308,368,717 284,054s
reversed IDA* Never 14,387,002,121 12,485s

max IDA* Never 2,478,269,076 3,086s
max SFBDS JIL(0) 260,506,693 362s
max SFBDS JIL(1) 17,336,052 120s

Table 1: 15 puzzle (top). 17 pancake (bottom).

two. If k = T , then only count the children withf = k
(those withf = k + 2 will be pruned immediately); expand
the side with the smaller count. Ifk < T then all the chil-
dren will be expanded and we want to estimate the number
of nodes below this node withf = k + 2. We count the
number of children but give a larger weightb (ideally b is
the heuristic branching factor) to those withf = k as they
will generate a larger number of nodes withf = k + 2.

The results show the great potential in this direction. Even
though the heuristic is symmetric, performing the JIL(1)
policy reduced the number of generated nodes by a factor
of 4 and the time overhead by almost a factor of 3. Further
lookahead, JIL(2) provided modest gains.

Pancake puzzle with PDBs
A PDB is usually built to estimate the distance to a given
goal state. However, in many permutation puzzles with the
appropriate mapping of the tiles the same PDB can be used
to estimate distances between any pairs of states. There-
fore, given a nodeN(x, y) and a PDB bothhx(y) (regular
lookup) as well ashy(x) (reverse lookup) can be calculated.
Different PDB lookups are performed and different values
can be obtained.

Table 1 (bottom) presents results averaged over 10 ran-
dom instances of the 17-pancake puzzle. We used the same
7-token PDB used by (Zahaviet al. 2008) of the largest pan-
cakes. The first line is a regular IDA* search with one PDB
lookup. The second line always uses the reverse lookup. It
produced inconsistent heuristic values because differentto-
kens are being looked up at every step. Adding BPMX on
top results in a 24-fold reduction in the number of nodes
generated. Taking the maximum of both heuristics further
improved the results. Line 4 shows the results of SFBDS
with the JIL(0) policy where another 10-fold improvement
was obtained. The first four lines already appeared in (Za-
havi et al. 2008). However, we now also applied the new
JIL(1) policy. With JIL(1), we get a further reduction by a
factor of 15 in nodes, but only a factor of 3 in time because
of the lookahead overhead. These are the state-of-the-art re-
sults for such PDBs on this domain. Similar tendencies were
obtained for smaller sizes of this puzzle.

Optimal jumping policies for the pancake puzzle
Table 2 shows the averaged results of the optimal jumping
policy for the 10, 11 and 12 pancake puzzle using 1000 ran-

pancakes 10 11 12
avg. sol. 8.683 9.66 10.699
policy nodes generated (last iteration)
regular 83 (68) 405 (286) 3,728 (2,538)
JIL(0) 73 (60) 307 (214) 2,247 (1,482)
JIL(1) 65 (54) 233 (165) 1,670 (1,108)

optimal (43) (94) (458)
Table 2: Optimal policy on the pancake puzzle

Heuristic Policy Nodes
1 r,r* - 43,454,810,045
2 r,r*,rev,rev* - 13,549,943,868
3 r,r*,rev,rev* JIL(0) 3,948,614,947
4 r,r*,rev,rev* JIL(1) 1,778,435,449

(a) SFBDS on the 24-puzzle.

(b) PDBs

Alg.
Octile Differential

nodes win nodes win
A* 7,835 N/A 1,179 N/A
BF 329,837 12.5% 4,165 18.2%
JIL(1) 804,426 1.6% 4,847 42.4%
DW 34,037 5.0% 841 67.0%

(c) SFBDS with A* on room maps.
Table 3: Results on the 24-puzzle and room maps.

dom instances each. Entries include the total number of
nodes and the last iteration nodes (in brackets). We use the
maximum of the regular and reverse lookup using the PDB
heuristic of the 7 largest tokens. BPMX is disabled. The last
row shows the minimal possible search effort for SFBDS
in the last iteration with an optimal jumping policy. Even
though our jumping policies perform well compared to uni-
directional search, the results suggest that there is potential
for further improvements. Note that JIL is a generic jumping
policy. Hence, by incorporating domain-dependent knowl-
edge it is possible to build more sophisticated policies.

24-puzzle
For the 24-puzzle, the same6− 6− 6− 6 PDB partitioning
from (Korf & Felner 2002) was used. If we only use the
traditional goal state, then the PDB of Table 3b (top) is used
as it has the blank in the corner. In (Zahaviet al. 2008) they
showed that 8 6-tile PDBs are enough to be able to perform
a 6-6-6-6 partitioning towards any possible blank location.
For example, Table 3b (bottom) shows how four 6-tile PDBs
can be used when the blank is in the center.

In (Korf & Felner 2002) 50 random instances were opti-
mally solved. Following (Zahaviet al. 2008) we only re-
port results on the 25 instances with the shortest optimal
solution in Table 3a. The first three lines are identical to
those in (Zahaviet al. 2008); the fourth line is new. Line 1
presents the benchmark results from (Korf & Felner 2002)
where the maximum between the regular PDB (r) and its re-
flection about the main diagonal (r∗) were taken. Line 2 is
the case where the maximum between all possible four PDB
lookups were used (regular, reversedand their two reflec-
tions about the main diagonal). Line 3 shows SFBDS which
used a policy based on JIL(0) (called J24 in (Zahaviet al.

Algorithm BFS BDBFS DFID SFDFID
Nodes 16,427 212 824,682 18,056
Time 35s 3ms 936ms 17ms

Nodes - 10% 56,154 1,775 - 21,142
Time - 10% 50s 18ms - 21ms

Table 4: Results on a scale-free graph.

2008)). The last line shows the new JIL(1) results where a
further reduction of a factor of 2.2 is obtained.

Scale-Free Graphs
As an example for domain of case 2 of the analysis
section we investigatescale-free graphs(or power-law
graphs) (Faloutsos, Faloutsos, & Faloutsos 1999). We used
the R-MAT (Chakrabarti, Zhan, & Faloutsos 2004) algo-
rithm to generate a scale-free graph with 100,000 nodes and
400,000 edges. The branching factor ranges from 1 to 150.

We report the results for one such graph in Table 4, al-
though other graphs gave similar results. No default heuris-
tic is available in these graphs, so we consider the follow-
ing algorithms. Breadth-first Search(BFS) finds optimal
paths by expanding nodes, best-first, based on theirg-value
(=depth). Bidirectional breadth-first search (BDBFS) ex-
pands nodes from the start and goal simultaneously, stopping
when the frontiers meet. DFID is a depth-first search with
iterative deepening cost limits. SFDFID is a single-frontier
bidirectional version of DFID with a policy that expands the
side with the lower branching factor.

The results are averaged over 96 instances (out of 100)
that could be solved by all algorithms. The bottom two lines
are averages over the hardest 10 problems only. SFDFID
expands 46 times fewer nodes than DFID and is 55 times
faster. Over all problems, BDBFS expands the fewest nodes
and is fastest. BFS and BDBFS are very slow due to data
structure overheads. Although SFDFID expands 85 times
more nodes than BDBFS, it is only 5.7 times slower, and
on the hardest problems it is actually comparable to BDBFS
as its constant time per node is much smaller. A custom
implementation of SFDFID for this domain would likely be
even faster, as the branching factor in each direction can be
cached, an optimization we did not perform.

These results illustrate the gains that are possible in do-
mains with a variable branching factor. SFDFID outper-
forms regular DFID, and has comparable performance with
BDBFS, yet only uses memory linear in the solution depth.

SFBDS-A* on room maps
Room maps are structured by a grid of rooms with random
doors between them. This domain is an example of case
3 given in the analysis section. As A* keeps a closed-list,
searching to the edge or a corner of a room is comparable
to a dead end in the search tree because the goal can only
be reached by backtracking through previously expanded
states.

We performed experiments on 24 maps, each having
32x32 rooms of size 7x7 and random paths that connect
the rooms. Our test set consists of 11,205 pairs of start
and goal states.We experimented with the trivialoctile dis-
tanceheuristic and with the more informed memory-based

differential heuristics(DH) (Sturtevantet al. 2009) with ten
canonical states.

The results are shown in Table 3c. A vertex with branch-
ing factor two is called adoorway. The doorway policy
(DW) only reverses the search direction (jumps) at such
states, i.e., if for nodeN(x, y) x or y are doorways, search
towards it. We measure the number of nodes expanded
(nodes), averaged over the test set, and the number of in-
stances where the respective algorithm expands fewer nodes
than A* (win) as a percentage of the total number of in-
stances. The respective best results are highlighted. The
first line shows the results for regular A*.

SFBDS-A* with the octile heuristic and the branching
factor policy performs poorly, rarely beating A* and expand-
ing 40 times more nodes on average. This is due the poten-
tial V 2 blow-up in tasks versus states, particularly because
the octile heuristic is weak.

With good heuristic guidance the algorithm can avoid ex-
panding states that lead to dead ends. Therefore, SFBDS
with differential heuristic and doorway policy expands fewer
nodes than regular A* on average. Our algorithm performs
better in more than 67% of the test instances and expands 1.4
times fewer nodes. These results suggest that the gains from
SFBDS will be minimal in a highly connected graph unless
we can take advantage of special properties of a domain.

Conclusions
SFBDS is a general approach for bidirectional search which
is especially applicable to depth-first search. It is far simpler
and more general than the previous dual search ideas. We
provide new analysis that provides deeper insight into when
such an approach will work and what properties a domain
must have to benefit from a SFBDS approach.

Acknowledgments
This research was supported by the Israeli Science Founda-
tion (ISF) grants No. 728/06 and 305/09, and by iCORE.

References
Chakrabarti, D.; Zhan, Y.; and Faloutsos, C. 2004. R-mat: A
recursive model for graph mining. InSDM.

Faloutsos, M.; Faloutsos, P.; and Faloutsos, C. 1999. On power-law
relationships of the internet topology. InSIGCOMM, 251–262.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.Dual
lookups in pattern databases. InIJCAI-05, 103–108.

Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic search
reconsidered.JAIR7:283–317.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligence134(1-2):9–22.

Korf, R. E. 1985. Depth-first iterative-deepening: An optimal
admissible tree search.Artificial Intelligence27(1):97–109.

Sturtevant, N.; Felner, A.; Barer, M.; Schaeffer, J.; and Burch, N.
2009. Memory-based heuristics for explicit state spaces. In IJCAI-
09, 609–614.

Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.Duality
in permutation state spaces and the dual search algorithm.Artif.
Intell. 172(4-5):514–540.

