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Abstract

Perfect knowledge about a domain renders search
unnecessary and, likewise, exhaustive search obvi-
ates heuristic knowledge. In practise, a tradeoff is

found somewhere in the middle, since neither ex-

treme is feasible for interesting domains.

During the last two decades, the focus for increas-
ing the performance of two-player game-playing
programs has been on enhanced search, usually by -
faster hardware and/or more efficient algorithms. Search Effort

This paper revisits the issue of the relative advan-
tages of improved search and knowledge. It in-
troduces a revised search-knowledge tradeoff graph Figure 1 has been hypothesized to represent the relation-
thatis supported by experimental evidence forthree  ship between the quality of knowledge and search effort ex-
different games: chess, Othello and checkers, using  pended (first expressed iMichie, 197 and later refined in

Quality of Knowledge

Figure 1: Proposed Search-Knowledge Relationship

a new metric: the “noisy oracle”. [Berliner et al, 1994). The curves represent various com-
Previously published results in chess seem to con-  binations of search and knowledge with equivalent perfor-
tradict our model, postulating a linear increase in mance. The figure illustrates that by increasing the sedrch e

program strength with increasing search depth. We  fort, less knowledge is required by the application to aghie

show that these results are misleading, and are due  the same level of performance, and vice versa.
to properties of chess and chess-playing programs, Of the two dimensions, improvements in search are the eas-

not to the search-knowledge tradeoff. iest to address. Gains can often be achieved with littleeffo
One can redesign algorithms or rewrite code to executerfaste
] or, even better, do nothing and just wait for a faster compute
1 Introduction to become available.

Many experiments have been performed in game-playin The knowledge (jimension_, however, is ngbulous. Whereas
programs that measure the benefits of improved knowledg%—.here are well-defined metr|c§ for_ measuring search e_ffort
and/or deeper search. In particular, chess has been a poﬁ@-‘mh_as sea_rch depth, execution time, and nodes examined),
ular application for these experiments. The explicit or im-therﬁ_IS nothing cli)mparablebfor kfnowle(_jt;qer q
plicit message of these works is that the results for chess T IS paper makes a number o contributions o our un er-
are generalizable to other games. There have been feqranding of_ the relationship between search and knowledge i
studies that examined the impact of improved knowledgé;ame'IOIayIng programs.

on program performancéSchaeffer and Marsland, 1985; e Figure 1 is a hypothesis and has not been verified. In

Mysliwietz, 1994. In contrast, the benefits of additional fact, it turns out to be misleading. Analytical and exper-

search are well documented: deeper search provides imme- imental data (from three game-playing programs: chess,

diate performance gains (for exampl€hompson, 1983. Othello, and checkers) allows us to construct a new view
of the search-knowledge tradeoff. This is shown in Sec-
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tion 2.



the quality of a program's knowledge. To do this, we plot the isocurve for perfect programs, a concave down curve
introduce a new metric, thaoisy oracle Section 3 between the pointd (+100) and (G L,W L D).

presents experimental data that yields new insights into Although we are interested in programs that have high per-
the shapes of the curves. formance, we can also consider the case where the quality of

o Figure 1 predicts decreasing benefits for increasing Program's knowledge is worse thfl. D. The worst-case

search effort—diminishing returns. This has been conSceénario is a program whose knowledge-i500: the pro-

firmed for both Othello and checkers by others. How-9r2m assesses positions inversely proportional to theittwo
ever, numerous papers suggest that for chess the reld!1Us: thisanti-perfeciprogram with a one-ply search will al-

tionship between search depth and performance is relvays choose the worst move on the board.
atively constant and non-decreasing. In Section 4, we

demonstrate that diminishing returns do indeed occurin ~~ +100

chess, and that the reason for this discrepancy with the
literature is rather surprising—the game length in com-
bination with relatively high error rates.

2 Search Versus Knowledge: Theory

In this section, we use an idealized definition of knowledge.
Knowledge is uniformly applicable throughout the search
tree. This allows us to avoid thorny issues such as search
pathology[Nau, 1983 and search-depth-dependent anoma-
lies.
Figure 1 shows various performance levels for differ- -100 < 0% >
ent combinations of search effort and quality of knowledge 1 Search Effort GL
(isocurves). This graph has been hypothesized, but nexer ve
ified. The shape of the isocurves comes largely from two Figure 2: Search Versus Knowledge Revisited
known data points in the graph: no search and perfect knowl-
edge, as well as exhaustive search with no knowledge—both ) ) )
yield a perfect prografn However, there is nothing in this ~ ©One other data point of interest is the 0 knowledge pro-
data that implies that the isocurves should be concave dow§ram. Since the the program has no knowledge, its move
or even that they should be curves at all. In fddljchie, choices are rar_1d0m. G_l\_/en an average bra_nchmg fact'mr_of
1977 and[Berlineret al, 1994 provide no justification for MOVve choices in a position, the program will make the right
their shape. However, experience suggests this shape to B&ve1/w of the time ¢ = 40 for chess, while only in
likely (unproven). For now, we assume that they are concav@on-capture checkers po_smons). Here there are no benefits
down, and we examine this issue in the next section. of search; the program will play the correct mavau of the
What does it mean to do no search and have perfect knowfiMe regardiess of the search deptiihis program is clearly
edge? In fact, this implies a minimal amount of search (1 p|y)petterthan the anti-perfect program, but must be worseahan

to evaluate all the moves and then choose the one leading 18 L2 Program. The latter follows since th& LD program
the highest outcome. What does it mean to perform exhaud1@S Positive knowledge about wins, losses, and draws, which
tive search (to depti L, the maximum game length) with no €an only improve the likelihood of selecting the rlght move.
knowledge? The “no knowledge” is misleading, because to These arguments allqw us to construct a revised version
play perfectly one must have some knowledge—in this cas€@f Figure 1, as shown in Figure 2 (ignore the dashed box
being able to identify and correctly backup the scores fofO NOW). Thez-axis is search depth, starting at 1 and in-
wins, losses, and draws. This suggests a scale for these t#62asing. They-axis is the quality of knowledge, ranging
data points. We lei” L D represent the knowledge about cor- from perfect_ positive knowledge to _perfect negative knowl-
rectly backing up terminal nodes in the search. This is know edge. Each isocurve represents a fixed level of performance.
edge supplied by the application domain rules. The “perfectf We measure performance by the percentage of correct move
knowledge” program requires 100% of the domain-specificd€cisions made by the program, then the perfect program is
knowledge required to play flawlessly. The above distinctio 100% correct, and the anti-perfect program scores 0%. The

allows us to plot two data points on theaxis. We can now random program alway scorég0/w% (we ignore the minor
differences that occur if varies during the game).

!perfectis meantto imply that the program never makesagame-—
theoretic-value error. We do not considerthe case whegrtdggram 2We use the simplifying assumption of a uniform branching fac
is also required to play the move that maximizes the charmres f tor. As [Beal and Smith, 1994showed, random evaluations can
improving its expected outcome. implicitly capture concepts like mobility in non-uniformees.

100%

Quality of Knowledge
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Figure 3: Search Knowledge Behavior in Chess (left), Othglliddle) and Checkers (right)

Note that we have not included any isocurves in the 0 to By definition, an oracle has no noise. We can measure the
-100 range. Here the knowledge is worse than random, anguality of the heuristic evaluation in a program by the antoun
one can expect to see search patholddggu, 1983. Since  of noise that is added into it. To measure this, we add a ran-
this region is not of interest in practice, for reasons of/tlye  dom number to each leaf node evaluatidn. §.
we ignore it. It is interesting to note that the anti-perfect In most games of skill, the value of a parent node is
program, which always makes the worst move with a 1-plystrongly correlated with the values of its children. Hence,
search, may play the right move given a 2-ply or larger searclour noise model should reflect this. Following the previous
(albeit for the wrong reasons). work of [lida et al, 1994, we define the noise of a leaf node

Consider the region in Figure 2 that is bounded by thein a search to b&/; = Zle r;, where—R < r; < R,
perfect curve (100%) and the random ling/.%). All R is an adjustable parameter, aht the depth in the tree of
curves start atlepth = 1, but are spaced out over a range the leaf node. This simple representation comes closer-to ap
from +100 to 0 on the knowledge axis. They end up at proximating the parent/child behavior. The resulting i@md
depth = G L, in the smaller range frod/ LD to 0. There- numbers at the depthleaf nodes have a normal distribution
fore the curves move closer together as the search depth inith mean0 and a standard deviation gfd * (R?/3). One
creases. In other words, the isocurves do not have the samstiould be careful: simulating tree behavior is fraught with
slope. The lower the performance, the flatter the curve—theitfalls [Plaatet al, 1994.
extreme being the flat random line. The higher the perfor- The above discussion assumed we have a perfect oracle.
mance, the steeper the curve—the extreme being the perfegbr real games such as chess, Othello and checkers, the best
performance isocurve. Hence, as one moves to higher perfoive can do is use a high-quality, deep-searching program as
mance levels, the slope of the isocurves increase. Thiseéspl our best approximation. In effect, this program isi@isy
that for shallow search depths, more knowledge is required toracle with noise levelNy. We can now increase the noise
move to a higher isocurve than for deeper search depths. |evel by increasing the distribution of random scores added

the evaluation{o + N > No).
3 Search VersusKnowledge: Practise To show the tradeoff between search and knowledge, we

The difficulty in experimentally verifying Figure 2 lies in conducted experiments with chess, Othello, and checkers.

quantifying the knowledge axis. Perfect knowledge assume$n€ Programs used wefgheTurk(chess) Keyano(Othello)
an oracle, which for most games we do not have. However@1d Chinook (checkers) All three are well-known interna-
we can approximate an oracle by using a high-quality, gamet_|onally. For each game, _256 positions from grand_masteyr pla
playing program that performs deep searches. Although noV€re selected. The noisy oracle would determine the best
perfect, itis the best approximation available. Usingthisy ~ MOVe in the position. Since the oracle is noisy, and evaloati
can we measure the quality of knowledge in the program? functions dlfferent|§te_p03|t|o_ns by insignificant margiall

A heuristic evaluation function, as judged by an oracle, canoVes that were within 5 points (1/20th of a pawn/checker)
be viewed as a combination of two things: oracle knowledgd" chess/checkers or 8 disc in Othello were considered as bes
and noise. The oracle knowledge is beneficial and improve810ves. For each game, each position was searched to a va-
the program's play. The noise, on the other hand, represert€ty Of search depths with a variety of noise. The programs
the inaccuracies in the program's knowledge. It can be-intro/Vere searched witlt = 0,5, 10,15, 20, 25,50, 100, 150 for

duced by S(?jveral ';hlndgs, deIIUd.mglknOthedA?e;[Eat Is_mglz‘.lsm ~ 3TheTurkis a tournament chess program developed at the Uni-
over- or under-valued, and/or irreievant. As th€ noise eVeversity of Alberta by Andreas Junghanns and Yngvi Bjornsson

increase, the beneficial contribution of the knowledge &0V Keyandis one of the strongest Othello programs internationalty an
shadowed. developed at the University of Alberta by Mark Brockington.
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Figure 4: Self-Play Experiments in Chess (left), Othelladaie) and Checkers (right)

chess and checkers, aftl= 0,1/8,1/4,1/2,1,2,4,8,16 against the same program searching to defpthd, where
for Othello. 0 = 1 for chess and Othello, and = 2 for checkers. The

Figure 3 shows the results for the three games (only somiglea is that, for example, the winning percentage of a 3-ply
of the R values are shown). The axis is the search depth, program playing against a 2-ply program should be higher
ranging from 1 to 9-15 depending on the game. Thexis  than for a 13-ply program playing a 12-ply program. At least
measures the quality of the noisy oracle's knowledge, begirin Othello (experiments witKeyang and supported by data
ning atk = 0. The isocurves represent different levels of per-in [Lee and Mahajan, 1990and checker§Schaefferet al,
formance, where performance is measured as the percentagy293, this seems to be borne out.
of times that the program makes the correct move selection in However, the results for the game of chess are perplexing
the test set. because, even though there is a logical argument for stating

All three programs exhibit similar behavior. The isocurvesthat the benefits obtained by deeper searching will gragluall
appear to be curved and concave down, although in manseduce, the experimental evidence does not substantiate th
cases they are almost linear. The curves are not perfectiylany publications consistently show a linear relationdtep
formed because of the statistical nature of the experiment¢ween search depth and performance (for examiplew-

All three games show the curves leveling off, suggesting thaborn, 1979; Thompson, 1982; Condon and Thompson, 1983;
for deeper searches, the benefits of additional knowledgs (I Newborn, 1985; Berlineet al, 1990; Mysliwietz, 1994).
noise) are more significant than for additional search. Only[Condon and Thompson, 198hows a slight decline in

In our experimental setting, we are restricted to a smalperformance with increased search depth, however thid tren
range of possible values on theandy axis. From the shape is still within the range of statistical noise. Intuitivetyimin-
of the curves in Figure 3, we can approximate where thigshing returns must exist, since eventually exhaustivechea
graph fits into the Figure 2 framework (shown by the dashedolves the problem and additional search effort would be en-
box). tirely wasted.

When comparing the graphs for the different games, the Our new experiments with chess show that there are dimin-
reader should keep in mind that neither the search nor thishing returns, further confirming the general shape of Fgu
knowledge axis are comparable, since it is not clear hoveclos2. The reason that these results were not evident in previous
we are to perfect knowledge and exhaustive search depth. AWork is twofold; one reason having to do with the quality of
though it is well-defined what it means to search an additionathe program's knowledge, and the other having to do with a
ply of search, itis not clear what it means to reduce the noissharacteristic of the game.
from, say, 20 to 10. In other words, although thexis is
shown as a linear scale, the effort required to improve th
program along this axis may not be linear.

Decision Quality

%earching to deptfd + 1) pays off only if the deeper search
results in a better move choice than is possible withy
search. The smaller the probability that this happens, ¢he b
4 The Chess Anomaly ter thed-ply search is a predictor of the@ + 1)-ply search.
The results from Sections 2 and 3 suggest that the benefits dfote that the value of the search is irrelevant; only the move
additional search decline as the search depth increases—sgelection influences the game result (even if the right meve i
calleddiminishing returns A number of papers have exper- played for the wrong reasons).

imentally addressed this question. Figure 4 graphs some of We conducted an experiment to measure how the move
those results. These graphs are the result of self-playr-expechoice changes as a function of search depth (similtdo-
iments, where a program searching to depfiiays matches born, 198%). One thousand opening positions were searched
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but the error reduction slows down with deeper searches. Fig Figure 7: Move Changes froehto (d + 1) Ply (Checkers)
ure 6 shows a different view of the data. Here the change in
value in going fromi tod+1 ply is plotted versus depth. The Game L ength

curves represent the percentage of moves that achieve a cgfe apove suggests that the decision quality in chess is not
tain level of performance. For example, the top curve showgg good as one would like (i.e. the noisy oracle is too noisy).
that 1% of the moves result in value changes of roughly 10@5ch move played by theply program against thé+ 1-ply
points (a pawn) when you search from 8 to 9 ply. The curvegyrogram is fraught with danger, since the deeper searching
show a dramatic decrease in expected error and, again, eXrogram has less probability of making a mistake. This sug-
hibits a tapering off with deeper searches—an indication OEests that the longer the games lasts, the greater the \ginnin
diminishing returns. chances of thé + 1-ply program.

The surprising feature of Figure 6 is the magnitude of the To test this hypothesis, we conducted two experiments.
errors. In going from 8 to 9 ply, 10% of the moves result First, we measured the average length of self-play games
in at least a 25-point differential; usually a significanbe  played by CHESS. As the search depth of the programs in-
swing. In other words, the error rates of even an 8-ply searcigreased, so did the length of the game. In other words,
in CHESS are extremely high. for shallow searches, the games tended to be shorter be-

This data can be dramatically put into perspective by com¢ause the probability of an error was higher. As the search
paring it with the results of a similar experiment with Chi- depth increased, the error probability dropped and, hehee,
nook. Chinook is the world's strongest checkers playing engames lasted longer because the opponents were more evenly
tity (man or machine). With its massive endgame databasematched. Games played between 8- and 9-ply programs aver-
(444 billion positions), the program is close to being an or-aged out to be 29% longer than games between 3- and 4-ply
acle. Figure 7 shows the percentage of move changes f@rograms.
checkers. The difference is clear: the error rates are much The above suggests that game length has something to do
lower, an indication of how much better the evaluation qual-with chess self-play results. To test this hypothesis, \aged
ity of Chinookis as compared to CHESS. With such low er- a series of 80 self-play games where the game length was
ror rates, searching deeper @hinookyields little benefits.  restricted. After a specified number of moves, the game was
In CHESS, the error rates are still high enough to allow foradjudicated.
significant improvements as search depth increases, which i Figure 8 shows a constant winning percentage for games
return obscures the effect of diminishing returns in sédfyp  of unrestricted length (top line) that would lead to the con-
games. clusion that diminishing returns do not exist in chess. How-



ever, if we restrict the length of the games (to 10 through 4%nowledge, even at the expense of some search effort, could
moves), a decline in the winning percentage is visible,Jleadgreatly improve their performance.
ing to the conclusion that diminishing returns exist in ches
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The designers of the current best chess progmasep
Blue, have concentrated their efforts on the search axis. In a
typical search, 50 billion positions are considered. Dieep
Bluechess knowledge is limited because it is implemented in
silicon. Our results suggest that small improvements iir the



