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Abstract

Perfect knowledge about a domain renders search
unnecessary and, likewise, exhaustive search obvi-
ates heuristic knowledge. In practise, a tradeoff is
found somewhere in the middle, since neither ex-
treme is feasible for interesting domains.

During the last two decades, the focus for increas-
ing the performance of two-player game-playing
programs has been on enhanced search, usually by
faster hardware and/or more efficient algorithms.
This paper revisits the issue of the relative advan-
tages of improved search and knowledge. It in-
troduces a revised search-knowledge tradeoff graph
that is supported by experimental evidence for three
different games: chess, Othello and checkers, using
a new metric: the “noisy oracle”.

Previously published results in chess seem to con-
tradict our model, postulating a linear increase in
program strength with increasing search depth. We
show that these results are misleading, and are due
to properties of chess and chess-playing programs,
not to the search-knowledge tradeoff.

1 Introduction

Many experiments have been performed in game-playing
programs that measure the benefits of improved knowledge
and/or deeper search. In particular, chess has been a pop-
ular application for these experiments. The explicit or im-
plicit message of these works is that the results for chess
are generalizable to other games. There have been few
studies that examined the impact of improved knowledge
on program performance[Schaeffer and Marsland, 1985;
Mysliwietz, 1994]. In contrast, the benefits of additional
search are well documented: deeper search provides imme-
diate performance gains (for example,[Thompson, 1982]).�This research was supported by the German Academic Ex-
change Service (DAAD), the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the Killam Foundation.
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Figure 1: Proposed Search-Knowledge Relationship

Figure 1 has been hypothesized to represent the relation-
ship between the quality of knowledge and search effort ex-
pended (first expressed in[Michie, 1977] and later refined in
[Berliner et al., 1990]). The curves represent various com-
binations of search and knowledge with equivalent perfor-
mance. The figure illustrates that by increasing the search ef-
fort, less knowledge is required by the application to achieve
the same level of performance, and vice versa.

Of the two dimensions, improvements in search are the eas-
iest to address. Gains can often be achieved with little effort.
One can redesign algorithms or rewrite code to execute faster
or, even better, do nothing and just wait for a faster computer
to become available.

The knowledge dimension, however, is nebulous. Whereas
there are well-defined metrics for measuring search effort
(such as search depth, execution time, and nodes examined),
there is nothing comparable for knowledge.

This paper makes a number of contributions to our under-
standing of the relationship between search and knowledge in
game-playing programs:� Figure 1 is a hypothesis and has not been verified. In

fact, it turns out to be misleading. Analytical and exper-
imental data (from three game-playing programs: chess,
Othello, and checkers) allows us to construct a new view
of the search-knowledge tradeoff. This is shown in Sec-
tion 2.� To do the experiments, we needed a way of assessing



the quality of a program's knowledge. To do this, we
introduce a new metric, thenoisy oracle. Section 3
presents experimental data that yields new insights into
the shapes of the curves.� Figure 1 predicts decreasing benefits for increasing
search effort—diminishing returns. This has been con-
firmed for both Othello and checkers by others. How-
ever, numerous papers suggest that for chess the rela-
tionship between search depth and performance is rel-
atively constant and non-decreasing. In Section 4, we
demonstrate that diminishing returns do indeed occur in
chess, and that the reason for this discrepancy with the
literature is rather surprising—the game length in com-
bination with relatively high error rates.

2 Search Versus Knowledge: Theory
In this section, we use an idealized definition of knowledge.
Knowledge is uniformly applicable throughout the search
tree. This allows us to avoid thorny issues such as search
pathology[Nau, 1983] and search-depth-dependent anoma-
lies.

Figure 1 shows various performance levels for differ-
ent combinations of search effort and quality of knowledge
(isocurves). This graph has been hypothesized, but never ver-
ified. The shape of the isocurves comes largely from two
known data points in the graph: no search and perfect knowl-
edge, as well as exhaustive search with no knowledge—both
yield a perfect program1. However, there is nothing in this
data that implies that the isocurves should be concave down,
or even that they should be curves at all. In fact,[Michie,
1977] and[Berlineret al., 1990] provide no justification for
their shape. However, experience suggests this shape to be
likely (unproven). For now, we assume that they are concave
down, and we examine this issue in the next section.

What does it mean to do no search and have perfect knowl-
edge? In fact, this implies a minimal amount of search (1 ply)
to evaluate all the moves and then choose the one leading to
the highest outcome. What does it mean to perform exhaus-
tive search (to depthGL, the maximum game length) with no
knowledge? The “no knowledge” is misleading, because to
play perfectly one must have some knowledge—in this case
being able to identify and correctly backup the scores for
wins, losses, and draws. This suggests a scale for these two
data points. We letWLD represent the knowledge about cor-
rectly backing up terminal nodes in the search. This is knowl-
edge supplied by the application domain rules. The “perfect
knowledge” program requires 100% of the domain-specific
knowledge required to play flawlessly. The above distinction
allows us to plot two data points on they-axis. We can now

1Perfect is meant to imply that the program never makes a game-
theoretic-value error. We do not consider the case where theprogram
is also required to play the move that maximizes the chances for
improving its expected outcome.

plot the isocurve for perfect programs, a concave down curve
between the points (1,+100) and (GL,WLD).

Although we are interested in programs that have high per-
formance, we can also consider the case where the quality of
a program's knowledge is worse thanWLD. The worst-case
scenario is a program whose knowledge is�100: the pro-
gram assesses positions inversely proportional to their worth.
Thus, thisanti-perfectprogram with a one-ply search will al-
ways choose the worst move on the board.
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Figure 2: Search Versus Knowledge Revisited

One other data point of interest is the 0 knowledge pro-
gram. Since the the program has no knowledge, its move
choices are random. Given an average branching factor ofw
move choices in a position, the program will make the right
move1=w of the time (w = 40 for chess, while only8 in
non-capture checkers positions). Here there are no benefits
of search; the program will play the correct move1=w of the
time regardless of the search depth2. This program is clearly
better than the anti-perfect program, but must be worse thanaWLD program. The latter follows since theWLD program
has positive knowledge about wins, losses, and draws, which
can only improve the likelihood of selecting the right move.

These arguments allow us to construct a revised version
of Figure 1, as shown in Figure 2 (ignore the dashed box
for now). Thex-axis is search depth, starting at 1 and in-
creasing. They-axis is the quality of knowledge, ranging
from perfect positive knowledge to perfect negative knowl-
edge. Each isocurve represents a fixed level of performance.
If we measure performance by the percentage of correct move
decisions made by the program, then the perfect program is
100% correct, and the anti-perfect program scores 0%. The
random program alway scores100=w% (we ignore the minor
differences that occur ifw varies during the game).

2We use the simplifying assumption of a uniform branching fac-
tor. As [Beal and Smith, 1994] showed, random evaluations can
implicitly capture concepts like mobility in non-uniform trees.
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Figure 3: Search Knowledge Behavior in Chess (left), Othello (middle) and Checkers (right)

Note that we have not included any isocurves in the 0 to
-100 range. Here the knowledge is worse than random, and
one can expect to see search pathology[Nau, 1983]. Since
this region is not of interest in practice, for reasons of brevity
we ignore it. It is interesting to note that the anti-perfect
program, which always makes the worst move with a 1-ply
search, may play the right move given a 2-ply or larger search
(albeit for the wrong reasons).

Consider the region in Figure 2 that is bounded by the
perfect curve (100%) and the random line (100=w%). All
curves start atdepth = 1, but are spaced out over a range
from +100 to 0 on the knowledge axis. They end up atdepth = GL, in the smaller range fromWLD to 0. There-
fore the curves move closer together as the search depth in-
creases. In other words, the isocurves do not have the same
slope. The lower the performance, the flatter the curve—the
extreme being the flat random line. The higher the perfor-
mance, the steeper the curve—the extreme being the perfect
performance isocurve. Hence, as one moves to higher perfor-
mance levels, the slope of the isocurves increase. This implies
that for shallow search depths, more knowledge is required to
move to a higher isocurve than for deeper search depths.

3 Search Versus Knowledge: Practise
The difficulty in experimentally verifying Figure 2 lies in
quantifying the knowledge axis. Perfect knowledge assumes
an oracle, which for most games we do not have. However,
we can approximate an oracle by using a high-quality, game-
playing program that performs deep searches. Although not
perfect, it is the best approximation available. Using this, how
can we measure the quality of knowledge in the program?

A heuristic evaluation function, as judged by an oracle, can
be viewed as a combination of two things: oracle knowledge
and noise. The oracle knowledge is beneficial and improves
the program's play. The noise, on the other hand, represents
the inaccuracies in the program's knowledge. It can be intro-
duced by several things, including knowledge that is missing,
over- or under-valued, and/or irrelevant. As the noise level
increase, the beneficial contribution of the knowledge is over-
shadowed.

By definition, an oracle has no noise. We can measure the
quality of the heuristic evaluation in a program by the amount
of noise that is added into it. To measure this, we add a ran-
dom number to each leaf node evaluation (NL).

In most games of skill, the value of a parent node is
strongly correlated with the values of its children. Hence,
our noise model should reflect this. Following the previous
work of [Iida et al., 1995], we define the noise of a leaf node
in a search to beNL = Pdi=1 ri, where�R < ri < R,R is an adjustable parameter, andd is the depth in the tree of
the leaf node. This simple representation comes closer to ap-
proximating the parent/child behavior. The resulting random
numbers at the depthd leaf nodes have a normal distribution
with mean0 and a standard deviation of

pd � (R2=3). One
should be careful: simulating tree behavior is fraught with
pitfalls [Plaatet al., 1996].

The above discussion assumed we have a perfect oracle.
For real games such as chess, Othello and checkers, the best
we can do is use a high-quality, deep-searching program as
our best approximation. In effect, this program is anoisy
oraclewith noise levelNO . We can now increase the noise
level by increasing the distribution of random scores addedto
the evaluation (NO + NL > NO).

To show the tradeoff between search and knowledge, we
conducted experiments with chess, Othello, and checkers.
The programs used wereTheTurk(chess),Keyano(Othello)
and Chinook (checkers)3. All three are well-known interna-
tionally. For each game, 256 positions from grandmaster play
were selected. The noisy oracle would determine the best
move in the position. Since the oracle is noisy, and evaluation
functions differentiate positions by insignificant margins, all
moves that were within 5 points (1/20th of a pawn/checker)
in chess/checkers or 8 disc in Othello were considered as best
moves. For each game, each position was searched to a va-
riety of search depths with a variety of noise. The programs
were searched withR = 0; 5; 10; 15;20;25;50;100;150 for

3TheTurkis a tournament chess program developed at the Uni-
versity of Alberta by Andreas Junghanns and Yngvi Bjornsson.
Keyanois one of the strongest Othello programs internationally and
developed at the University of Alberta by Mark Brockington.
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Figure 4: Self-Play Experiments in Chess (left), Othello (middle) and Checkers (right)

chess and checkers, andR = 0; 1=8; 1=4;1=2;1;2; 4; 8;16
for Othello.

Figure 3 shows the results for the three games (only some
of theR values are shown). Thex axis is the search depth,
ranging from 1 to 9-15 depending on the game. They axis
measures the quality of the noisy oracle's knowledge, begin-
ning atR = 0. The isocurves represent different levels of per-
formance, where performance is measured as the percentage
of times that the program makes the correct move selection in
the test set.

All three programs exhibit similar behavior. The isocurves
appear to be curved and concave down, although in many
cases they are almost linear. The curves are not perfectly
formed because of the statistical nature of the experiments.
All three games show the curves leveling off, suggesting that
for deeper searches, the benefits of additional knowledge (less
noise) are more significant than for additional search.

In our experimental setting, we are restricted to a small
range of possible values on thex andy axis. From the shape
of the curves in Figure 3, we can approximate where this
graph fits into the Figure 2 framework (shown by the dashed
box).

When comparing the graphs for the different games, the
reader should keep in mind that neither the search nor the
knowledge axis are comparable, since it is not clear how close
we are to perfect knowledge and exhaustive search depth. Al-
though it is well-defined what it means to search an additional
ply of search, it is not clear what it means to reduce the noise
from, say, 20 to 10. In other words, although they axis is
shown as a linear scale, the effort required to improve the
program along this axis may not be linear.

4 The Chess Anomaly
The results from Sections 2 and 3 suggest that the benefits of
additional search decline as the search depth increases—so-
calleddiminishing returns. A number of papers have exper-
imentally addressed this question. Figure 4 graphs some of
those results. These graphs are the result of self-play exper-
iments, where a program searching to depthd plays matches

against the same program searching to depthd + �, where� = 1 for chess and Othello, and� = 2 for checkers. The
idea is that, for example, the winning percentage of a 3-ply
program playing against a 2-ply program should be higher
than for a 13-ply program playing a 12-ply program. At least
in Othello (experiments withKeyano, and supported by data
in [Lee and Mahajan, 1990]) and checkers[Schaefferet al.,
1993], this seems to be borne out.

However, the results for the game of chess are perplexing
because, even though there is a logical argument for stating
that the benefits obtained by deeper searching will gradually
reduce, the experimental evidence does not substantiate this.
Many publications consistently show a linear relationshipbe-
tween search depth and performance (for example,[New-
born, 1979; Thompson, 1982; Condon and Thompson, 1983;
Newborn, 1985; Berlineret al., 1990; Mysliwietz, 1994]).
Only [Condon and Thompson, 1983] shows a slight decline in
performance with increased search depth, however this trend
is still within the range of statistical noise. Intuitively, dimin-
ishing returns must exist, since eventually exhaustive search
solves the problem and additional search effort would be en-
tirely wasted.

Our new experiments with chess show that there are dimin-
ishing returns, further confirming the general shape of Figure
2. The reason that these results were not evident in previous
work is twofold; one reason having to do with the quality of
the program's knowledge, and the other having to do with a
characteristic of the game.

Decision Quality
Searching to depth(d+ 1) pays off only if the deeper search
results in a better move choice than is possible with ad-ply
search. The smaller the probability that this happens, the bet-
ter thed-ply search is a predictor of the(d + 1)-ply search.
Note that the value of the search is irrelevant; only the move
selection influences the game result (even if the right move is
played for the wrong reasons).

We conducted an experiment to measure how the move
choice changes as a function of search depth (similar to[New-
born, 1985]). One thousand opening positions were searched



by a deep (9-ply) version of CHESS (a noisy oracle) to deter-
mine the best move and value. Figure 5 shows the percent-
age of move changes in the top-most curve. A move change
might not be a significant event if the value difference be-
tween the moves is small, as judged by the noisy oracle. The
additional curves in the figure represent the percentage ofsig-
nificant move changes, according to the difference in move
values (at least 10, 15, 20, 25, 50, 100 points), where 100
points is the equivalent of a pawn.
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Figure 5: Move Changes fromd to (d+ 1) Ply (Chess)

The graph shows a reduction in error (or alternatively, an
increase in prediction accuracy) with increasing search depth,
but the error reduction slows down with deeper searches. Fig-
ure 6 shows a different view of the data. Here the change in
value in going fromd tod+1 ply is plotted versus depth. The
curves represent the percentage of moves that achieve a cer-
tain level of performance. For example, the top curve shows
that 1% of the moves result in value changes of roughly 100
points (a pawn) when you search from 8 to 9 ply. The curves
show a dramatic decrease in expected error and, again, ex-
hibits a tapering off with deeper searches—an indication of
diminishing returns.

The surprising feature of Figure 6 is the magnitude of the
errors. In going from 8 to 9 ply, 10% of the moves result
in at least a 25-point differential; usually a significant score
swing. In other words, the error rates of even an 8-ply search
in CHESS are extremely high.

This data can be dramatically put into perspective by com-
paring it with the results of a similar experiment with Chi-
nook. Chinook is the world's strongest checkers playing en-
tity (man or machine). With its massive endgame databases
(444 billion positions), the program is close to being an or-
acle. Figure 7 shows the percentage of move changes for
checkers. The difference is clear: the error rates are much
lower, an indication of how much better the evaluation qual-
ity of Chinookis as compared to CHESS. With such low er-
ror rates, searching deeper inChinookyields little benefits.
In CHESS, the error rates are still high enough to allow for
significant improvements as search depth increases, which in
return obscures the effect of diminishing returns in self-play
games.
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Figure 7: Move Changes fromd to (d+ 1) Ply (Checkers)

Game Length
The above suggests that the decision quality in chess is not
as good as one would like (i.e. the noisy oracle is too noisy).
Each move played by thed-ply program against thed+1-ply
program is fraught with danger, since the deeper searching
program has less probability of making a mistake. This sug-
gests that the longer the games lasts, the greater the winning
chances of thed+ 1-ply program.

To test this hypothesis, we conducted two experiments.
First, we measured the average length of self-play games
played by CHESS. As the search depth of the programs in-
creased, so did the length of the game. In other words,
for shallow searches, the games tended to be shorter be-
cause the probability of an error was higher. As the search
depth increased, the error probability dropped and, hence,the
games lasted longer because the opponents were more evenly
matched. Games played between 8- and 9-ply programs aver-
aged out to be 29% longer than games between 3- and 4-ply
programs.

The above suggests that game length has something to do
with chess self-play results. To test this hypothesis, we played
a series of 80 self-play games where the game length was
restricted. After a specified number of moves, the game was
adjudicated.

Figure 8 shows a constant winning percentage for games
of unrestricted length (top line) that would lead to the con-
clusion that diminishing returns do not exist in chess. How-



ever, if we restrict the length of the games (to 10 through 45
moves), a decline in the winning percentage is visible, lead-
ing to the conclusion that diminishing returns exist in chess
for truncated games.
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Both Othello and checkers games are limited in the number
of moves. Othello games are constrained to a maximum of 30
moves aside. Checkers, with its forced capture rule, tends to
have similarly short games. In contrast, chess has no such
limitations. Given that thed + 1-ply searching program has
an advantage over thed-ply searcher, the longer the game,
the greater the likelihood that the advantage will manifestit-
self. Essentially, self-play experiments in chess suffer from
thegambler's ruin, the reason why diminishing returns have
remained hidden for almost 20 years.

5 Conclusion and Future Work
A new graph for the search-knowledge tradeoff was proposed
and experimentally verified. This graph suggests diminishing
returns for both the knowledge and search axis. We show
that, contrary to the previous literature, there are diminishing
returns in chess. This is due to two reasons. The first, decision
quality, is not a surprise. The second, game length, is a new
result that illustrates how sensitive experimental data can be
to hidden properties of the search domain.

Diminishing returns for both increasing knowledge and
search raises the question as to what the best way is for im-
proving program performance. The answer depends on sev-
eral factors including, for example, the application domain,
the quality of the evaluation function, and the computational
resources available. Future research is needed to understand
the role played by each of these factors in program perfor-
mance.

The designers of the current best chess program,Deep
Blue, have concentrated their efforts on the search axis. In a
typical search, 50 billion positions are considered. TheDeep
Bluechess knowledge is limited because it is implemented in
silicon. Our results suggest that small improvements in their

knowledge, even at the expense of some search effort, could
greatly improve their performance.

6 Acknowledgements
This paper benefited from interactions with Yngvi Björnsson,
Tony Marsland, Aske Plaat and Manuela Schöne, special
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