
Sokoban:Improving the Search with Relevance Cuts?Andreas Junghanns, Jonathan Schae�erDepartment of Computing ScienceUniversity of AlbertaEdmonton, AlbertaCANADA T6G 2H1fandreas, jonathang@cs.ualberta.caAbstract. Humans can e�ectively navigate through large search spaces,enabling them to solve problems with daunting complexity. This is largelydue to an ability to successfully distinguish between relevant and irrele-vant actions (moves). In this paper we present a new single-agent searchpruning technique that is based on a move's in
uence. The in
uencemeasure is a crude form of relevance in that it is used to di�erentiatebetween local (relevant) moves and non-local (irrelevant) moves, withrespect to the sequence of moves leading up to the current state. Ourpruning technique uses the m previous moves to decide if a move is rel-evant in the current context and, if not, to cut it o�. This techniqueresults in a large reduction in the search e�ort required to solve Sokobanproblems.Keywords: single-agent search, heuristic search, Sokoban, local search,IDA*.1 Introduction and MotivationIt is commonly acknowledged that the human's ability to successfully navigatethrough large search spaces is due to their meta-level reasoning [4]. The relevanceof di�erent actions when composing a plan is an important notion in that process.Each next action is viewed as one logically following in a series of steps toaccomplish a (sub-)goal. An action judged as irrelevant is not considered.When searching small search spaces, the computer's speed at base-level rea-soning can e�ectively overcome the lack of meta-level reasoning by simply enu-merating large portions of the search space. However, it is easy to identify aproblem that is simple for a human to solve (using reasoning) but is exponen-tially large for a computer to solve using standard search algorithms. We needto enhance computer algorithms to be able to reason at the meta-level if theyare to successfully tackle these larger search tasks. In the world of computergames (two-player search), a number of meta-level reasoning algorithmic en-hancements are well known, such as null-move searches [5] and futility cut-o�s[15]. For single-agent search, macro moves [11] are an example.? This is a revised and enhanced version of an earlier paper [9].

In this paper, we introduce relevance cuts, a meta-level reasoning enhance-ment for single-agent search. The search is restricted in the way it chooses itsnext action. Only actions that are relevant to previous actions can be performed,with a limited number of exceptions being allowed. The exact de�nition of rele-vance is application dependent.Consider an artist drawing a picture of a wildlife scene. One way of drawingthe picture is to draw the bear, then the lake, then the mountains, and �nallythe vegetation. An alternate way is to draw a small part of the bear, then drawa part of the mountains, draw a single plant, work on the bear again, anotherplant, maybe a bit of lake, etc. The former corresponds to how a human woulddraw the picture: concentrate on an identi�able component and work on it untila desired level of completeness has been achieved. The latter corresponds toa typical computer method: the order in which the lines are drawn does notmatter, as long as the �nal result is achieved.Unfortunately, most search algorithms do not follow the human example. Ateach node in the search, the algorithm will consider all legal moves regardless oftheir relevance to the preceding play. For example, in chess, consider a passed\a" pawn and a passed \h" pawn. The human will analyze the sequence of movesto, say, push the \a" pawn forward to queen. The computer will consider dubious(but legal) lines such as push the \a" pawn one square, push the \h" pawn onesquare, push the \a" pawn one square, etc. Clearly, considering alternatives likethis is not cost-e�ective.What is missing in the above examples is a notion of relevance. In the chessexample, having pushed the \a" pawn and then decided to push the \h" pawn,it seems silly to now return to considering the \a" pawn. If it really was nec-essary to push the \a" pawn a second time, why weren't both \a" pawn movesconsidered before switching to the \h" pawn? Usually this switching back andforth (or \ping-ponging") does not make sense but, of course, exceptions can beconstructed.In other well-studied single-agent search domains, such as the N-puzzle andRubik's Cube, the notion of relevance is not important. In both these problems,the geographic space of moves is limited, i.e. all legal moves in one position are\close" (or local) to each other. For two-player games, the e�ect of a move maybe global in scope and therefore moves almost always in
uence each other (this ismost prominent in Othello, and less so in chess). In contrast, a move in the gameof Go is almost always local. In non-trivial, real-world problems, the geographicspace might be large, allowing for moves with local and non-local implications.This paper introduces relevance cuts and demonstrates their e�ectivenessin the one-player maze-solving puzzle of Sokoban. For Sokoban we use a newin
uence metric that re
ects the structure of the maze. A move is consideredrelevant only if the previous m moves in
uence it. The search is only allowed tomake relevant moves with respect to previous moves and only a limited num-ber of exceptions are permitted. With these restrictions in place, the search isforced to spend its e�ort locally, since random jumps within the search area arediscouraged. In the meta-reasoning sense, forcing the program to consider local

He-Ge Hd-Hc-Hd Fe-Ff-Fg Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh-Rg Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qi-Ri Fc-Fd-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Qg Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Qh-Rh Hd-He-Ge-Fe-Ff-Fg-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-Pi-Qi Ch-Dh-Eh-Fh-Gh-Hh-Ih-Jh-Kh-Lh-Mh-Nh-Oh-Ph-QhFig. 1. Sokoban Problem 1 and a Solutionmoves is making it adopt a pseudo-plan; an exception corresponds to a decisionto change plans.The search tree size, and thus the search e�ort expended in solving a prob-lem, depends on the depth of the search tree and the e�ective branching factor.Relevance cuts aim at reducing the e�ective branching factor. For our Sokobanprogram Rolling Stone, relevance cuts result in a large reduction of the searchspace. These reductions are on top of an already highly e�cient searcher.1 On astandard set of 90 test problems, relevance cuts allow Rolling Stone to increasethe number of problems it can solve from 40 to 44. Given that the problemsincrease exponentially in di�culty, this relatively small increase in the numberof problems solved represents a large increase in search e�ciency.2 SokobanSokoban is a popular one-player computer game. The game originated in Japan,and was apparently developed by Thinking Rabbit in 1982. The game's appealcomes from the simplicity of the rules and the intellectual challenge o�ered bydeceptively easy problems.Figure 1 shows a sample Sokoban problem, the easiest instance of the stan-dard 90-problem suite available at http://xsokoban.lcs.mit.edu/xsokoban.html.1 Of course, \highly e�cient" here is meant in terms of a computer program. Humansshake their heads in disbelief when they see some of the ridiculous lines of playconsidered in the search.

The playing area consists of rooms and passageways, laid out on a rectangu-lar grid of size 20� 20 or less. Littered throughout the playing area are stones(shown as circular discs) and goals (shaded squares). There is a man whose jobit is to move each stone to a goal square. The man can only push one stone ata time and must push from behind the stone. A square can only be occupiedat any time by one of a wall, stone or man. Getting all the stones to the goalsquares can be quite challenging; doing this with the minimum number of manmoves and/or stone pushes is much more di�cult.To refer to squares in a Sokoban problem, we use a coordinate notation.The horizontal axis is labeled from \A" to \T", and the vertical axis from \a"to \t" (assuming the maximum sized 20 � 20 problems), starting in the upperleft corner. A move consists of pushing a stone from one square to another. Forexample, in Figure 1 the move Fh-Eh moves the stone on Fh left one square. Weuse Fh-Eh-Dh to indicate a sequence of pushes of the same stone. A move is onlylegal if there is a valid path by which the man can move behind the stone andpush it. Thus, although we only indicate stone moves (such as Fh-Eh), implicitin this is the man's moves from its current position to the appropriate squareto do the push (for Fh-Eh the man would have to move from Li to Gh via thesquares Lh, Kh, Jh, Ih and Hh).The solution given in Figure 1 is optimal with respect to the number of stonepushes. One could also solve the problem to identify the minimal number of manmoves. In general, a single solution does not minimize both metrics. In this work,we are trying to minimize the number of stone pushes.The standard 90 problems range from easy (such as problem 1 above) todi�cult (requiring hundreds of stone pushes). A global score �le is maintainedshowing who has solved which problems and how e�cient their solution is (alsoat http://xsokoban.lcs.mit.edu/xsokoban.html). Thus solving a problem is onlypart of the satisfaction; improving on your solution is equally important. Thesehuman solutions also serve as excellent upper bounds on optimal solution lengths.2.1 The Computational Challenge of SokobanSingle-agent search (A*) has been extensively studied in the literature. Thereis a plethora of enhancements to the basic algorithm, allowing the applicationdeveloper to customize their implementation. The result is an impressive reduc-tion in the search e�ort required to solve challenging applications (see [12] fora recent example). However, the applications used to illustrate the advances insingle-agent search e�ciency are \easy" in the sense that they have some (or all)of the following properties:1. e�ective, inexpensive lower-bound estimators,2. small branching factor in the search tree,3. moderate solution lengths, and4. all moves are reversible.Sokoban is a di�cult problem domain for computers, and more challengingthan previously studied domains, because of the following reasons:

1. Sokoban has a complex lower-bound estimator (O(N3), given N goals [13]).Unfortunately, even this expensive lower bound is not very e�ective. In otherdomains, such as the sliding tile puzzles or Rubik's Cube, a table lookup isoften su�cient to deliver a high-quality lower bound.2. The branching factor for Sokoban is large and variable (potentially over 100),whereas the 15-puzzle has an e�ective branching factor of roughly 2 and inRubik's Cube it is less than 14 [12].3. The solution to a Sokoban problemmay be very long (some problems requireover 600 moves to solve optimally). In contrast, the maximumsolution lengthfor the 15-puzzle is 80, while it is a mere 18 moves for Rubik's Cube.4. The search space complexity for Sokoban is O(1098) for problems restrictedto a 20�20 area. Since the 15-puzzle and Rubik's Cube have both a smallerbranching factor and smaller solution lengths, their search space complexityis considerably less (O(1013) and O(1019), respectively).5. Sokoban problems require \sequential" solutions. Many of the subgoals in-teract, making it di�cult to divide the problem into independent subgoals.6. All moves are reversible in the 15-puzzle and Rubik's Cube. This is not truein Sokoban, where some moves are not (or not directly) reversible.The graph underlying a Sokoban problem is directed, unlike the traditionalsingle-agent search applications which have undirected graphs. Furthermore,there are parts of the graph that do not contain solutions. Both these proper-ties are necessary and su�cient conditions for the presence of deadlocks|statesthat have no solution. In Figure 1, pushing the stone Fh-Fg creates an unsolvableproblem. It requires a non-trivial analysis to verify this deadlock. This is a smallexample, since deadlock con�gurations can be large and span the entire board.Identifying deadlock is critical to prevent futile searching.For sliding-tile puzzles, there are algorithms for generating non-optimal so-lutions. In Sokoban, because of the presence of deadlock, often it is very di�cultto �nd any solution.2.2 Related WorkSokoban has been shown to be PSPACE-complete [1, 3]. Dor and Zwick showthat the game is an instance of a motion planning problem, and compare it toother motion planning problems in the literature [3]. For example, Sokoban issimilar to Wilfong's work with movable obstacles, where the man is allowed tohold on to the obstacle and move with it, as if they were one object [16]. Sokobancan be compared to the problem of having a robot in a warehouse move a numberof speci�ed goods from their current location to their �nal destination, subjectto the topology of the warehouse and any obstacles in the way. When viewed inthis context, Sokoban is an excellent example of using a game as an experimentaltest-bed for mainstream research in arti�cial intelligence.2.3 Rolling StoneOur previous attempts to solve Sokoban problems using standard single-agentsearch techniques are reported in [7]. There, using our program Rolling Stone,

we compared the di�erent techniques and their e�ect on search e�ciency. Thefollowing is a list of the major components of our program.IDA*: Rolling Stone uses the iterative-deepening A* (IDA*) search algorithm[10]. A* is potentially exponential in space. IDA* trades o� the space require-ments for time. A* and IDA* use an admissible lower bound on the distancefrom any state to the goal state. IDA* iterates by searching for a solution of aparticular length. If one is found, the search is �nished. Otherwise, the solutionlength is incremented and the search is repeated. The lower bound estimator al-lows large portions of the search tree to be eliminated by proving that a solutioncannot be found in the requisite number of moves.Lower Bound: To obtain an admissible estimate of the distance of a positionto a goal, the Minimum-Cost, Perfect Bipartite Matching algorithm is used. Thematching assigns each stone to a goal and returns the total (minimum) distanceof all stones to their goals. The algorithm is O(N3) in the number of stones N .IDA* with this lower bound cannot solve any of the test problems given onebillion search nodes.Transposition Table: The search space of Sokoban is a graph, rather than atree, implying that repeated positions and cycles are possible. A transpositiontable was implemented to avoid duplicate search e�ort. The transposition tablemaps positions using the exact stone locations and equivalent man locationstaking man reachability into account. Using this enhancement can reduce thesearch tree size by several orders of magnitude.Move Ordering: The program orders the children of a node based on theirlikelihood of leading to a solution. Move ordering may reduce the search treeonly in the last iteration.Deadlock Table: Pattern databases [2] are a recent idea that has been used suc-cessfully in domains like N�N -puzzles and Rubik's Cube [12]. An o�-line searchenumerated all possible stone/wall placements in a 4 � 5 region and searchedthem to determine if deadlock was present. These results were stored in deadlocktables. During an IDA* search, the table is queried to see if the current moveleads to a local deadlock. Thus, deadlock tables contain search results of partialproblem con�gurations and are general with respect to all Sokoban problems.They reduce the e�ective branching factor by eliminating moves that provablylead to local deadlocks.TunnelMacros: A Sokoban maze often contains \tunnels" (such as the squaresKh, Lh, Mh and Nh in Figure 1). Once a stone is pushed into a tunnel, it musteventually be pushed all the way through. Rather than search to discover this

over and over again, this sequence of moves can be collapsed into a single macromove. By collapsing several moves into one, the height of the search tree isreduced. Tunnel macros are identi�ed by pre-processing.Goal Macros: Prior to starting the search, a preliminary search is used to �ndan appropriate order in which to �ll in the goal squares. In many cases this is anon-trivial computation, especially when the goal area(s) has several entrances.A specialized search is used to avoid �ll sequences that lead to deadlocks in thegoal area. The knowledge about the goal area is then used to create goal macros,where stones are pushed directly from the goal area entrance(s) to their �nal goalsquare avoiding deadlocks. For example, in Figure 1, square Gh is de�ned as theentrance to the goal area; once a stone reaches it, a single macro move is used topush it to the next pre-determined goal square. These macro moves signi�cantlyreduce the search depth required to solve problems and can dramatically reducethe search tree size. Whenever a goal macro move is possible, it is the only moveconsidered; all alternatives are forward pruned.Goal Cuts: Goal cuts e�ectively push the goal macros further up the searchtree. Whenever a stone can be pushed to a goal entrance square, none of thealternative moves are considered. The idea behind these cuts is that if one iscon�dent about using macro moves, one might as well prune alternatives topushing that stone further up in the search tree.Pattern Search: Pattern searches [6] are an e�ective way to detect lower boundine�ciencies. Small, localized con
ict-driven searches uncover patterns of stonesthat interact in such a way that the lower bound estimator is o� by an arbi-trary amount (even in�nite, in the case of a deadlock). These patterns are usedthroughout the search to improve the lower bound. Patterns are speci�c to a par-ticular problem instance and are discovered on the
y using specialized searches.Patterns represent the knowledge about dynamic stone interactions that lead topoor static lower bounds, and the associated penalties are the corrective mea-sures.2.4 ConclusionsThe net e�ect of combining all of the above enhancements results in 40 of the 90problems being solved [6].2 Pattern searches are the most expensive component,but also the most bene�cial. Although they can be enhanced and made moree�cient, we concluded that this would still be inadequate to successfully solve all90 Sokoban test positions. Even with all the enhancements, and the cumulativeimprovements of several orders of magnitude in search e�ciency, the search trees2 Note that [6] reports slightly di�erent numbers than this paper, caused by subsequentre�nements to the pattern searches and bug �xes.

are still too deep and the e�ective branching factor too high. Hence, we need to�nd further ways to improve the search e�ciency33 Relevance CutsAnalyzing the trees built by an IDA* search quickly reveals that the searchalgorithm considers move sequences that no human would ever consider. Evencompletely unrelated moves are tested in every legal combination|all in ane�ort to prove that there is no solution for the current threshold. How can aprogram mimic an \understanding" of relevance? We suggest that a reasonableapproximation of relevance is in
uence. If two moves do not in
uence each other,then it is unlikely that they are relevant to each other. If a program had a good\sense" of in
uence, it could assume that in a given position all previous movesbelong to a (unknown) plan of which a continuation can only be a move that isrelevant|in our approximation, is in
uencing whatever was played previously.A move is considered relevant only if the previous m moves in
uence it. Thesearch is only allowed to make relevant moves with respect to previous moves, andonly a few exceptions are permitted. With these restrictions in place, the searchis forced to spend its e�ort locally, since random jumps within the search areaare discouraged. In the meta-reasoning sense, forcing the program to considerlocal moves is making it adopt a pseudo-plan; an exception corresponds to adecision to change plans.3.1 In
uenceAn in
uence metric can be achieved in di�erent, domain-speci�c ways. The fol-lowing shows one implementation for Sokoban. Even though the speci�cs aren'tnecessarily applicable to other domains, the basic philosophy of the approach is.We approximate the in
uence of two moves on each other by the in
uencebetween the move's from squares. The in
uence between two squares is deter-mined using the notion of a \most in
uential path" between the squares. Thiscan be thought of as a least-cost path, except that in
uence is used as the costmetric.When judging how two squares in a Sokoban maze in
uence each other,Euclidean distance is not adequate. Taking the structure of the maze into accountwould lead to a simple geographic distance which is not proportional to in
uenceeither. For example, consider two squares connected by a tunnel; the squares areequally in
uencing each other, no matter how long the tunnel is. Elongating thetunnel without changing the general topology of the problem would change thegeographic distance, but not the in
uence.The following is a list of properties we would like the in
uence measure tore
ect:3 Subsequent to this work, further re�nements have pushed the number of problemssolved to 52[8].

Fig. 2. The Number of Alternatives Changes the In
uenceFig. 3. The Location of the Goals MattersAlternatives: The more alternatives that exist on a path between two squares,the less the squares in
uence each other. That is, squares in the middle of aroom where stones can go in all 4 directions should decrease in
uence morethan squares in a tunnel, where no alternatives exist. See Figure 2 for anexample. The squares A and B are in
uencing one another less than thesquares C and D. There are many more possible ways to get from A to B,whereas squares C and D are more restricted because they are situated ona wall.Goal-Skew: For a given square sq, any squares on the optimal path from sq toa goal should have stronger in
uence than squares o� the optimal path. Forexample, in Figure 3 square B is in
uenced by C more than it is by A. Thelocation of the goals is important.Connection: Two neighboring squares connected such that a stone can movebetween them should in
uence each other more than two squares connectedsuch that only the man can move between them. In Figure 2, square Ain
uences C less than C in
uences A, because stones can only move towardsC, and not towards A.Tunnel: In a tunnel, in
uence remains the same: It does not matter how longthe tunnel is (one could, for example, collapse a tunnel into one square). Fig-ure 4 shows such an example: two problem mazes that are identical, exceptfor the length of the tunnel. In
uence values should not change because ofthe length of the tunnel.Our implementation of relevance cuts uses small o�-line searches to staticallypre-calculate a (20 � 20) � (20 � 20) table (InfluenceTable) containing thein
uence values for each square of the maze to every other square in the maze.Between every pair of squares, a breadth-�rst search is used to �nd the path(s)

Fig. 4. Tunnels and In
uencewith the largest in
uence. The algorithm is similar to a shortest-path �ndingalgorithm, except that we are using in
uence here and not geographic distance.The smaller the in
uence number, the more two squares in
uence each other.Note that in
uence is not necessarily symmetricInfluenceTable[a; b] 6= InfluenceTable[b; a]:A square close to a goal in
uences squares further away more than it is in
uencedby them. Furthermore, InfluenceTable[a; a] is not necessarily 0. A square in themiddle of a room will be less in
uenced by each of its many neighbors than asquare in a tunnel. To re
ect that, squares in the middle of a room receive alarger bias than more restricted squares.Our approach is quite simple and can undoubtably be improved. For example,in
uence is statically computed. A dynamic measure, one that takes into accountthe current positions of the stones, would undoubtedly be more e�ective.Our implementation runs a shortest-path �nding algorithm to �nd the largestin
uence between any pair of squares. The �rst is referred to as the start square;the second as the destination square. Each square on a path between the startand destination squares contributes points depending on how it in
uences thatpath. The more points associated with a pair of squares, the less the squaresin
uence each other. The exact numbers used to calculate in
uence are thefollowing:Alternatives: A square s on a path will have two neighboring squares that arenot on the path. For each of the neighboring squares, n, the following pointsare added: 2 points if it is possible to push a stone (if present) from s ton; 1 point if it is only possible to move a man from s to n; and 0 if n is awall. Thus, the maximum number of points that one square can contributefor alternatives is 4.Goal-Skew: However, if s is on an optimal path from the start square to anyof the goals in the maze, then the alternatives points are divided by two.Connection: The connection between consecutive squares along a path is usedto modify the in
uence. If a stone can be pushed in the direction of thedestination square, then 1 point is added. If only the man can traverse theconnection between the squares (moving towards the destination square),then 2 points are added.Tunnel: If the previous square on a path is in a tunnel, 0 points are added,regardless of the above properties.

Fig. 5. Example SquaresA B C D E F G H I J K L M N OA 1 6 10 18 19 21 13 17 17 24 12 12 10 18 16B 4 1 5 13 14 18 8 16 16 22 10 11 9 17 15C 7 4 1 9 10 15 9 15 15 25 13 14 12 20 18D 11 8 5 3 9 14 12 14 14 29 17 18 16 24 22E 13 10 7 7 2 7 9 7 7 26 19 12 14 18 20F 23 19 17 18 10 2 13 6 6 25 34 11 13 17 19G 12 7 9 15 14 11 1 15 15 34 23 19 17 25 23H 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8I 10 10 14 17 9 5 16 1 1 11 16 3 4 7 8J 16 16 20 27 19 15 23 11 11 1 10 11 12 11 14K 10 10 14 22 23 26 17 22 22 16 1 17 15 23 21L 8 8 12 20 14 10 15 6 6 21 14 1 2 7 8M 7 7 11 19 16 12 14 8 8 23 13 3 1 9 7N 12 12 16 24 18 14 19 10 10 16 18 5 6 3 6O 11 11 15 23 20 16 18 12 12 18 17 7 5 8 3Table 1. Example In
uence ValuesFigure 5 is used to illustrate in
uence. For a subset of squares in the �gure,Table 1 shows the in
uence numbers. In this example, the program automati-cally determines that an in
uence relationship > 8 implies that two squares aredistant with respect to each other. How this threshold is determined is describedin the next section.In this example, square A is in
uencing squares B and C. However, only Bis in
uencing A (the non-symmetric property). The table shows that there areseveral regions with high locality, whereas most of the entries indicate non-localrelationships. Given the high percentage of non-local entries in the table, onemight expect relevance cuts to eliminate most of the search tree. This is not

quite true, in that a sequence of local moves can result in the start and endsquares of the move sequence not being local with respect to each other.InfluenceTable[C;A] C ! q ! B ! p! A in
uencealternatives 1 0 2 0 0 0 4 0 0connection 1 1 2 1 0 1 4 1 0tunnel 1 1 2 1 0 0 4 1 0goal-skew 1 1 1 1 0 0 2 1 0 7InfluenceTable[A;C] A! p! B ! q ! C in
uencealternatives 2 0 4 0 0 0 1 0 1connection 2 1 4 1 0 1 1 2 1tunnel 2 0 4 1 0 0 1 2 1goal-skew 1 0 4 1 0 0 1 2 1 10Table 2. Example In
uence CalculationConsider calculating the in
uence between squares A and C, as well as Cand A (see Table 2). The table entries correspond to the contribution of each ofthe in
uence properties. The table indicates the in
uence scores for the squaresA, B, C, and the intermediate squares p and q, as well as for the connectionbetween the squares (indicated by the arrows). Each line modi�es the previousline (adding new values or changing existing values). The �nal in
uence, the sumof the preceding columns, is shown in the last column.3.2 Relevance Cut RulesGiven the above in
uence measure, we can now proceed to explain how to usethat information to cut down on the number of moves considered in each position.To do this, we need to de�ne distant moves. Given two moves,m1 and m2, movem2 is said to be distant with respect to movem1 if the from squares of the moves(m1:from and m2:from) do not in
uence each other. More precisely, two movesin
uence each other ifIn
uenceTable[m1:from;m2:from] <= infthresholdwhere infthreshold is a tunable threshold.Relevance cuts eliminate some moves that are distant from the previousmoves played (i.e. do not in
uence), and therefore are considered not relevantto the search. There are two ways that a move can be cut o�:1. If within the last m moves more than k distant moves were made. This cutwill discourage arbitrary switches between non-related areas of the maze.2. A move that is distant with respect to the previous move, but not distant toa move in the past m moves. This will not allow switches back into an areapreviously worked on and abandoned just brie
y.

Fig. 6. Example Maze With LocalityIn our experiments, we set k to 1. This way, the �rst cut criterion will entail thesecond.To re
ect di�erences in mazes, the parameters infthreshold and m are setat the beginning of the search. The maximal in
uence distance, infthreshold,is computed as follows:1. Compute the average value for all entries InfluenceTable[x; y] satisfying thecondition that square y is on an optimal path from x to any goal.2. The average is too high. Scale it back by dividing it by two.3. To ensure that the cuts are not too aggressive, infthreshold is not allowedto be less than 6.The length of history used, m, is calculated as follows:1. Compute the average value for all entries InfluenceTable[x; y] satisfying thecondition that a stone on square y can be pushed to a goal (e.g. in Figure 5,squares F and G would not be included).2. To ensure that the cuts are not too aggressive, m is not allowed to be morethan 10.By varying infthreshold and m in the de�nition of relevance, the cutting inthe search tree can be made more or less aggressive. The desired aggressivenessis application dependent, and should be chosen relative to the quality of therelevance metric used.3.3 ExampleFigure 6 shows an example where humans immediately identify that solving thisproblem involves considering two separate sub-problems. The solution to theleft and right sides of the problem are completely independent of each other. Anoptimal solution needs 82 moves; Rolling Stone's lower bound estimator returns

a value of 70. Standard IDA* will need 7 iterations to �nd a solution (our lower-bound estimator preserves the odd/even parity of the solution length, meaningit iterates by 2 at a time). IDA* will try every possible (legal) move combination,intermixing moves from both sides of the problem. This way IDA* proves foreach of the �rst 6 iterations (i = 0::5) that the problem cannot be solved with70 + 2 � i moves, regardless of the order of the considered moves. Clearly, thisis unnecessary and ine�cient. Solving one of the sub-problems requires only 4iterations, since the lower bound is o� by only 6. Considering this position as twoseparate problems will result in an enormous reduction in the search complexity.Our implementation considers all moves on the left side as distant from thoseon the right, and vice versa. This way only a limited number of switches is con-sidered during the search. Our parameter settings allow for only one non-localmove per 9-move sequence. For this contrived problem, relevance cuts decreasethe number of nodes searched from 32,803 nodes to 24,748 nodes while stillreturning an optimal solution (the pattern searches were turned o� for simplic-ity). The savings (25%) appear relatively small because the transposition tablecatches repeated positions (many of which may be the result of irrelevant moves)and eliminates them from the search. Although the relevance cuts provide a wel-come reduction in the search e�ort required, it is only a small step towardsachieving all the possible savings. For example, each of the sub-problems can besolved by itself in only 329 nodes! The di�erence between 329� 2 and 32,803 il-lustrates why IDA* in its current form is inadequate for solving large, non-trivialreal-world problems. Clearly, more sophisticated methods are needed.3.4 DiscussionFurther re�nement of the parameters used are certainly possible and necessaryif the full potential of relevance cuts is to be achieved. Some ideas with regardsto this issue will be discussed in Section 6.The overhead of the relevance cuts is negligible, at least for our currentimplementation. The in
uence of two moves can be established by a simple tablelookup. This is in stark contrast to our pattern searches, where the overheaddominates the cost of the search for most problems.4 A Closer Look at Relevance CutsThe goal of using relevance cuts is to reduce the search tree size. This is achievedby eliminating legal moves from the search, thereby reducing the e�ective branch-ing factor of the tree. As with many other (unsafe) forward pruning techniques,this could potentially remove solutions or postpone their discovery. Therefore,aggressive pruning can increase the search e�ort by requiring additional searchto �nd a non-pruned solution. A solution could be found in the same IDA* iter-ation, or could result in an additional iteration being started. A good heuristicfor relevance is key to �nding the right balance between tree reduction and therisk of eliminating solutions.

4.1 Relevance Cuts in TheoryTo better understand the implications of relevance cuts, we will now try to applyKorf's theoretical model [12] to our algorithm. Section 5.2 discusses how well themodel predicts the practical performance of our algorithm.The number of nodes considered in a standard IDA* search is given by thefollowing formula. This is a generalization of Korf's result [12].n � d�1Xi=h(root) bi�e| {z }complete iterations+ bd�e1 + sd| {z }last (partial) iteration (1)wheren is the total number of nodes;d is the length of optimal solutions;h(root) is the heuristic value of the root node (<= d);b is the e�ective branching factor;e is the average heuristic value of the interior nodes in the tree; andsd is the number of solutions with (optimal) length d.In this formula, the variable depth search tree is approximated as a �xeddepth tree. With no lower bound information, h(position) = 0, the search treewould be of size O(bd). An average lower bound of e reduces this exponent tod� e.The �rst part of the formula represents the sum of the sizes of all the it-erations that have no solution in them. The second part is the size of the lastiteration. It assumes that the solutions are uniformly distributed throughout theleaf nodes. Thus, if there is only one unique solution path, that solution will befound, on average, half way through the search of the last (d) iteration.Relevance cuts modify the equation in two ways. First, the iterations with-out solutions are reduced in size. This is achieved by eliminating moves fromconsideration, in e�ect reducing the branching factor. Second, there is the pos-sibility that additional search will be needed if the �rst solution happens to beeliminated by a relevance cut. Thus, on iterations >= d the savings from thereduced branching factor can be (partially) o�set by having to do extra work. Ifall solutions at depth d happen to be cut o�, then at least one more iteration isrequired (and possibly more). Equation 1 is modi�ed to re
ect both ways thatrelevance cuts a�ect the search:n � d�1Xi=h(root)(b� r(x))i�e| {z }complete iterations + d+a(x)�1Xi=d (b� r(x))i�e| {z }additional full iterations+ (b� r(x))d+a(x)�e1 + (1� p(x)) � sd+a(x)| {z }last (partial) iteration (2)

� d+a(x)�1Xi=h(root)(b� r(x))i�e| {z }complete iterations + (b� r(x))d+a(x)�e1 + (1� p(x)) � sd+a(x)| {z }last (partial) iteration (3)wherex is the aggressiveness of the cuts (in our relevance metric, this corresponds tochanging m or infthreshold);r(x) is the average branching factor reduction as a function of the aggressiveness;p(x) is the probability that a solution is cut from the search tree, assumingthese probabilities are independent. This probability also depends on theaggressiveness x of the relevance cuts;a(x) is the expected number of additional iterations. This number depends onthe aggressiveness x of the cuts, and the probability that these cuts willeliminate all solutions in an iteration; andsd+a(x) is the number of solutions at level d+ a(x).The e�ectiveness of relevance cuts in reducing the search tree size dependssolely on the aggressiveness of the cuts, which controls the branching factorreduction and the penalty incurred for missing a solution. Increasing the aggres-siveness of the cuts will decrease the number of nodes searched in the completeiterations (iterations < d), but will increase the risk of solutions being cut. Whensolutions are cut, not only can the last iteration potentially grow, but we mightactually introduce new iterations when all the solutions contained in an itera-tion are pruned. Hence, relevance cuts can introduce non-optimal solutions, orpostpone discovery of the solution beyond the resource limits.The performance tuning e�ort must therefore be directed towards �nding theright balance between savings (reduced search tree size) and cost (the overheadof having to search further than should be needed).4.2 Randomizing Relevance CutsIn a deterministic environment, where relevance cuts follow the exact same rulesfor the same situation, the search will always cut out solutions that depend ona maneuver mistakenly considered \irrelevant". Given that relevance cuts willmake mistakes (albeit, hopefully, at a very low rate), some mechanism must beintroduced to avoid worst-case scenarios, such as eliminating all solutions.A solution is to introduce randomness into the relevance cut decision. If abranch is to be pruned by a relevance cut, a random number can be generatedto decide whether to go ahead with the cut or not. The randomness re
ectsour con�dence in the relevance cuts. For example, the random decision can beused to approve 100% of all possible relevance cuts (corresponding to the schemeoutlined thus far, con�dent that not all solutions will be eliminated), down to0% (which implies no con�dence|relevance cuts will never be used). Somewherebetween these two extremes is a percentage of cuts that balances the reductionsin the search tree size with the overhead of postponing when a solution is found.

5 Experimental ResultsRolling Stone has been tested using the 90-problem test set using searches lim-ited to 25,000,000 nodes.4 Our previous best version of Rolling Stone was capableof solving 40 of the test problems within this tree size limit. With the additionof relevance cuts (no random cutting), the number of problems solved has in-creased to 44. Table 3 shows a comparison of Rolling Stone with and withoutrelevance cuts for each of the 44 solved problems. For comparison purposes, the4 extra problems solved with relevance cuts had their non-relevance-cuts searchcontinued beyond 25,000,000 nodes. This resulted in 3 of the problems beingsolved, with the fourth problem's search curtailed at 100,000,000 nodes (#49).5For each program version in Table 3, the second column gives the number ofIDA* iterations that the program took to solve the problem. Note that problems#9, #11, #21, #46, #49 and #51 are now solved non-optimally, taking at leastone iteration longer than the program without relevance cuts. This con�rms theunsafe nature of the cuts. However, since none of the problems solved before islost and 4 more are solved within the 25,000,000 node limit, the gamble paido�. Long ago we abandoned our original goal of obtaining optimal solutions toSokoban problems. The size of the search space dictates radical pruning measuresif we want to have any chance of solving some of the tougher problems.Of the 4 new problems solved, #49 is of interest. Without relevance cuts,Rolling Stone is in its 11th IDA* iteration when the extended limit of 100,000,000nodes is reached. We know from human solutions that solutions can be found inthe 11th iteration. Relevance cuts allow Rolling Stone to �nd a solution usingonly 3,047,672 total nodes, but the search needs 13 iterations, producing a non-optimal solution.Table 3 shows that relevance cuts improve search e�ciency by a factor of 5.This is a lower bound. Clearly, the numbers are dominated by problem #49. Ifthe node counts for #49 are ignored, then the savings are roughly a factor of3.5.Comparing node numbers of individual searches is di�cult because of manyvolatile factors in the search. For example, a relevance cut might eliminate abranch from the search justi�ably. However, by doing so a pattern search mightnow not be done that could have uncovered valuable information that mighthave been useful for reducing the search in other parts of the tree. Problem#80 is one such example: despite the relevance cuts the node count goes up4 Although this might seem like a small search, one should keep in mind that theSokoban lower-bound function is an O(N3) algorithm. Instead of examining severalmillion positions per second (as our implementation of the 15-puzzle can achieve), theprogram can only examine roughly 10,000 positions per second on a Silicon GraphicsOrigin 2000 with a 195 MHz processor.The node counts given are total nodes. In our previous papers, we break thisnumber down into top-level and pattern search nodes [6].5 Subsequent runs have been to 300,000,000 nodes without �nding a solution. Thisinformation is not included in Table 3 since it skews the sums even more than theyare already.

without relevance cuts with relevance cutstotal nodes # iterations total nodes # iterations1 270 2 270 22 3,251 2 2,764 23 10,486 2 10,395 24 10,556 1 10,554 15 121,502 3 152,082 36 1,593 3 1,574 37 156,334 5 68,202 58 3,066,098 6 1,806,540 69 234,454 5 307,006 810 16,678,800 4 6,815,512 411 49,087,621 18 6,759,590 1917 14,891 7 14,740 719 17,829,863 9 1,814,505 921 765,392 9 970,776 1034 24,109,262 9 4,495,028 938 844,882 42 748,024 4240 37,346,264 8 6,239,163 843 2,270,703 8 1,215,022 845 14,646,623 9 5,059,596 946 44,535,166 13 20,121,052 1549 > 100,000,000 11 3,047,672 1351 2,611 1 18,368 253 3,737 1 3,740 154 4,381,171 9 3,884,844 955 3,194,830 3 1,349,908 356 34,429 6 31,388 657 1,084,732 5 797,766 560 116,103 3 24,403 362 71,578 5 46,534 563 197,922 3 390,422 364 3,900,639 10 652,857 1065 12,971 5 12,971 567 2,177,787 13 2,103,866 1368 2,651,559 11 355,306 1170 15,003,603 3 1,949,842 372 43,260 5 72,647 573 247,816 3 292,799 378 809 1 783 179 4,017 5 3,512 580 15,513 1 48,220 181 40,806 4 29,698 482 181,571 5 97,406 583 15,423 1 13,106 184 521,068 4 443,508 4> 345,637,966 72,283,961Table 3. Experimental Data

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

0 5 10 15 20 25 30 35 40 45

ef
fo

rt
 to

 s
ol

ve
 in

 n
od

es
 s

ea
rc

he
d

problems solved ordered by effort

without relevance cuts
with relevance cuts

Fig. 7. The E�ect of Relevance Cutsfrom 15,513 to 48,220; an important discovery was not made and the rest of thesearch increases. However, the overall trend is in favor of the relevance cuts. Anexcellent example is problem #19: the node count is cut by roughly a factor of10. In Figure 7, the amount of e�ort to solve a problem, with and without rele-vance cuts, is plotted. The numbers from Table 3 are used, sorted by the numberof nodes searched by the version without relevance cuts. The �gure shows thatthe exponential growth in di�culty with each additional problem solved is be-ing dampened by relevance cuts, allowing for more problems being solved withthe same search constraints. For the 25 \easiest" problems, there is very littledi�erence in e�ort required; the relevance cuts do not save signi�cant portionsof small search trees. However, as the searches become larger, the success ofrelevance cuts gets more pronounced.5.1 Randomizing Relevance CutsThe numbers presented so far deal with a version of a program that executes100% of the local cuts. A version of Rolling Stone was instrumented to simulatethe e�ects of di�erent degrees of randomization, varying from 0% (all relevancecuts are ignored) to 100% (all relevance cuts are used). Thus, the level of, say,80% corresponds to randomly accepting 80% of the cuts, while rejecting 20% ofthem.Figure 8 illustrates the search tree savings potential for relevance cuts. Thegraph presents for various degrees of randomness (from 0% to 100% in 10%increments) the percent of the search tree that can be saved by the relevancecuts. For each search, the relative savings are plotted. Only searches where the0% entry required at least 10,000 nodes were included. The small search trees(< 10,000 nodes) were excluded from this and subsequent graphs, since thesetrees tend to have very few opportunities for savings. For example, problem

0

20

40

60

80

100

0 20 40 60 80 100

sa
vi

ng
s

in
 p

er
ce

nt
 to

 f
ir

st
 s

ol
ut

io
n

percent of relevance cuts

average percent savings
percent savingsFig. 8. Relevance Cuts Savings#1 is already a paltry 270 nodes; there is neither need nor room for furtherimprovement. Each of the data points in a column corresponds to one of the 15problems that passed our �lter. The line represents the average of all the savings.The �gure shows that roughly 80% of the search tree can be eliminated byrelevance cuts. Further, one need only perform 40% of the cuts to reduce thesearch by 70%. Thus, even a small amount of cutting can translate into largesavings. Please keep in mind that these numbers re
ect our implementation;di�erent implementations could do better or worse than portrayed here.To put this in perspective, one might suggest that the relevance cuts arejust a fancy way of randomly cutting branches in the search tree. An additionalexperiment was performed where cutting was done randomly, in line with thefrequency of relevance cuts. The result was some savings for a small amount ofcutting, but as the frequency of cutting increased, so did the search tree sizes! Bycutting randomly, more solution paths were being eliminated from the search,increasing the likelihood of having to search more iterations.Equation 3 essentially broke the relevance cuts search nodes into two compo-nents. The �rst was the search e�ort required to reach the �rst solution. Clearly,relevance cuts provably reduce this portion of the search since some branchesare not explored. In fact, Figure 8 is portraying exactly these savings. However,these savings can be o�set by the the second component, the additional e�ortneeded to �nd a non-cut-o� solution.Of the 44 problems solved, 6 have non-optimal solutions. Hence, roughly13% of the problems are non-optimal. As stated earlier, solution quality is nota concern since, given the di�culty of the problem domain, any solution iswelcome. The signi�cance of these non-optimal solutions is discussed in the nextsubsection.

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90

br
an

ch
in

g
fa

ct
or

problems ordered by branching factor

without relevance cuts (b)
with relevance cuts (b-r)Fig. 9. Measuring b and r5.2 Relevance Cuts in Theory RevisitedLet's revisit Equation 3. These generic formulas contains several assumptions,some of which are explicitly stated in [12], while others are implicit. In theory,we should be able to use our experimental data to con�rm these equations. Ofinterest in Equation 3 is that the term(b � r)d�e (4)dominates the calculation. We know d (the optimal solution length), and wecan measure b, r and e. Rolling Stone has been instrumented to measure thesequantities.Figure 9 shows the average b and r for all 44 solved problems, sorted inorder of increasing b. These statistics were gathered at nodes in the search thatwere visited by both programs (one with relevance cuts; the other without). Inother words, nodes which were visited only by the non-relevance cuts programwere not averaged in. As can be seen, the reduction in branching factor variesdramatically, depending on the problem.Measuring e, the average heuristic value of the interior nodes in the tree,showed little di�erence with/without relevance cuts.Plugging d, e, b and r into Equation 4 produced a large discrepancy betweenthe predicted tree size and the observed tree size. Since d is constant in bothversions of the program, and e is e�ectively a constant, the improvements ofrelevance cuts rests solely on r, the reduction in the branching factor. However,in most cases the observed savings are signi�cantly larger than the predictedsavings.Korf's formula, which led to Equation 3, has the implicit assumption thatthe branching factor is relatively uniform throughout the tree. Certainly thiswas true for the sliding-tile puzzle he was studying. But Sokoban has di�erent

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 20 30 40 50 60 70 80 90 100

pe
rc

en
t o

f
re

le
va

nc
e

cu
ts

 c
ut

tin
g

so
lu

tio
ns

percent of relevance cuts

percent of bad cuts
average percent of bad cuts

Fig. 10. Percent of Relevance Cuts Eliminating Solutionsproperties. In particular, the branching factor can swing wildly from move tomove. As well, our data shows that the branching factor tends to be smallernear the root of the tree (too many obstacles in the puzzle) and, as the problemsimpli�es (log jams get cleared, stones get pushed to their goal squares), thebranching factor increases until near the end of the game when there are fewstones left to move. In addition, the data shows that the relevance cuts tend tooccur early in the search, rather than later. Hence, the majority of the savingsfrom relevance cuts come from the smaller branching factor b near the root ofthe tree combined with a larger branch reduction. Korf's formula only considersaverages over the entire tree, whereas any bias towards the root of the tree canproduce larger observed reductions.The other component of Equation 3 is the additional search e�ort requiredwhen relevance cuts miss the �rst solution. Earlier, it was suggested that theprobability of searching an extra iteration was quite high (13%). This suggeststhat the relevance cuts are being too extreme in their cutting. Rolling Stone wasinstrumented to keep searching subtrees that would have been eliminated by arelevance cut to determine if a solution path lay in that subtree. Figure 10 showsthat only about 0.2% of the cuts eliminate a solution. Note that some problemshave a relatively high error rate; these results come from the problems that havesmall searches, where the total number of cuts is small and a single error canskew the percentages.A relevance cut error rate of 0.2% might seem high. However, consider thatthese cuts are done throughout the tree, including near the root. Given that acut near the root of the search will eliminate huge portions of the search space,and few of these cuts eliminate any optimal solution, the cuts must be doing agood job of identifying irrelevant portions of the search.Infrequently eliminating solutions (0.2%) may seem important if there arefew solutions. In fact, our experience with Sokoban shows that there are manyoptimal solutions for every problem. The number of solution paths grows ex-

Goal

Start

Articulation
Solution

Sequence

Fig. 11. Solution Articulation Sequenceponentially with any additional search beyond the optimal solution length. Forexample, consider a d-ply optimal solution. If we now consider solutions of lengthd+ 2,6 then we can randomly insert an irrelevant move (and its reverse move)into the solution path, giving O(d � b) more solution paths.Equation 3 assumes that the probability of a solution being cut is indepen-dent from any other solution being cut. Unfortunately, that is a simplifyingassumption that does not hold for Sokoban. Since Sokoban problems have beencomposed to be challenging to humans (and, inadvertently, computers as well),most problems in our test suite contain speci�c maneuvers that are mandatoryfor all solutions. In other words, every solution to some problems requires a spe-ci�c sequence of moves to be made. We call these maneuvers solution articulationsequences.A solution articulation sequence is illustrated in Figure 11. It shows the set ofmove sequences that are solutions to the problem of getting from the start stateto the goal state. First, there are many possible sequences of moves (possibly evenmove transpositions) until a speci�c maneuver is required. Then a �xed sequenceof moves is required (the solution articulation sequence). Having completed thesequence, then many di�erent permutations of moves can be used to reach thegoal(s). Note that a problem may have multiple solution articulation sequences.6 In general, this would be d+1. However, since Sokoban solutions preserve odd/evenparity, solutions increase by two pushes at a time.

As well, there may be classes of solutions, with each class having a di�erent setof articulation sequences.Relevance cuts use a sequence of moves (the pastm moves) to decide whetherto curtail the search or not. If the moves forming the solution articulation se-quence happens to meet the criterion for a relevance cut, then it will be falselyconsidered \irrelevant". Consequently, many solution paths will be eliminatedfrom the search. One can construct a scenario by which all solutions could beremoved from the search.Solution articulation sequences illustrate that the assumed solution indepen-dence property is, in fact, incorrect. Coming up with a realistic model is di�cult.The solutions tend to be distributed in clusters. Many clusters of solutions are,essentially, the same solution with minor di�erences (such as move transpositionsor, for non-optimal solutions, irrelevant moves added).Although the number of optimal solutions appears high from our experi-ments, relevance cuts are vulnerable to solution articulation sequences. Hence, asingle cut has the potential for eliminating all solutions. Randomization seemsto be an e�ective way of handling this problem.5.3 SummaryRelevance cuts have been shown experimentally to result in large reductions inthe e�ort required to solve Sokoban problems. Given the exponentially increasingnature of the search trees, solving an extra 4 problems represents a substantialimprovement.Although it would be nice to have a clean analytic model for Sokoban searchesthat could be used to predict search e�ort, this is proving elusive. Although amodel for single-agent search exists [12], it is inadequate to handle the non-uniformity of Sokoban. In the past, numerous analytic models for tree-searchingalgorithms have appeared in the literature. They are all based on simplifyingassumptions that make the analysis tractable, but result in a model that mimicsan arti�cial reality. Historically, these models correlate poorly with empiricaldata from real-world problems. An interesting recent example from two-playersearch can be found in [14].6 Conclusions and Future WorkRelevance cuts provide a crude approximation of human-like problem-solvingmethods by forcing the search to favor local moves over global moves. Thissimple idea provides large reductions in the search tree size, at the expense ofpossibly returning a longer solution. Given the breadth and depth of Sokobansearch trees, �nding optimal solutions is a secondary consideration; �nding anysolution is challenging enough.We have numerous ideas on how to improve the e�ectiveness of relevancecuts. Some of them include:

{ Use di�erent distances depending on crowding. If many stones are crowdingan area, it is likely that the relevant area is larger than it would be withfewer stones blocking each other. Dynamic in
uence measures should bebetter than static approaches.{ There are several parameters used in the relevance cuts. The setting of thoseis already dependent on properties of the maze. These parameters are criticalfor the performance of the cuts and are also largely responsible for increasedsolution lengths. More research on these details is needed to fully exploit thepossibilities relevance cuts are o�ering.{ Using the analogy from Section 1, one could characterize Rolling Stone as\painting" locally but not yet painting in an \object oriented" way. If a
owerand the bear are close, painting both at the same time is very likely. Bettermethods are needed to further understand subgoals, rather than localizingby area.Although relevance cuts introduce non-optimality, this is not an issue. Oncehumans solve a Sokoban problem, they have two choices: move on to anotherproblem (they are satis�ed with the result), or try and re-solve the same problemto get a better solution.Rolling Stone could try something similar. Having solvedthe problem once, if we want a better solution, we can reduce the probability ofintroducing non-optimality in the search by decreasing the aggressiveness of therelevance cuts. This will make the searches larger but, on the other hand, thelast iteration does not have to be searched, since a solution for that thresholdwas already found.Relevance cuts are yet another way to signi�cantly prune Sokoban searchtrees. We have no shortage of promising ideas, each of which potentially o�ersanother order of magnitude reduction in the search tree size. Although thissounds impressive, our experience suggests that each factor of 10 improvementseems to only yield another 4 or 5 problems being solved. At this rate, we willhave to do a lot of research if we want to successfully solve all 90 problems!AcknowledgementsThis research has been supported by the KillamFoundation and the Natural Sci-ences and Engineering Research Council of Canada (NSERC). Computationalresources were provided by the Multimedia Advanced Computational Infrastruc-ture initiative (MACI).References1. J. Culberson. Sokoban is PSPACE-complete. Technical Report TR97{02, Depart-ment of Computing Science, University of Alberta, Edmonton, Alberta, Canada,1997. ftp.cs.ualberta.ca/pub/TechReports/1997/TR97{02.2. J. Culberson and J. Schae�er. Searching with pattern databases. In G. McCalla,editor, AI'96 Advances in Arti�cial Intelligence, pages 402{416. Springer-Verlag,1996.

3. D. Dor and U. Zwick. SOKOBAN and other motion planning problems, 1995. At:http://www.math.tau.ac.il/~ddorit.4. M. Ginsberg. Essentials in Arti�cial Intelligence. Morgan Kaufman Publishers,San Francisco, 1993.5. G. Goetsch and M.S. Campbell. Experiments with the null-move heuristic. InT.A. Marsland and J. Schae�er, editors, Computers, Chess, and Cognition, pages159{181, New York, 1990. Springer-Verlag.6. A. Junghanns and J. Schae�er. Single-agent search in the presence of deadlock. InAAAI, pages 419{424, Madison/WI, USA, July 1998.7. A. Junghanns and J. Schae�er. Sokoban: Evaluating standard single-agent searchtechniques in the presence of deadlock. In R. Mercer and E. Neufeld, editors, AI'98Advances in Arti�cial Intelligence, pages 1{15. Springer Verlag, 1998.8. A. Junghanns and J. Schae�er. Domain-dependent single-agent search enhance-ments. In IJCAI, 1999. To appear.9. A. Junghanns and J. Schae�er. Relevance cuts: Localizing the search. In H.J.van den Herik and H. Iida, editors, Computers and Games. Springer Verlag, 1999.Lecture Notes in Computer Science, vol. 1558. To appear.10. R.E. Korf. Depth-�rst iterative-deepening: An optimal admissible tree search.Arti�cial Intelligence, 27(1):97{109, 1985.11. R.E. Korf. Macro-operators: A weak method for learning. Arti�cial Intelligence,26(1):35{77, 1985.12. R.E. Korf. Finding optimal solutions to Rubik's Cube using pattern databases. InAAAI, pages 700{705, 1997.13. H.W. Kuhn. Extensive games and the problem of information. In H.W. Kuhn andA.W. Tucker, editors, Contributions to the Theory of Games 2, pages 193{216,Princton, 1953. Princton Univ. Press.14. A. Plaat, J. Schae�er, W. Pijls, and A. de Bruin. Best-�rst �xed-depth minimaxalgorithms. Arti�cial Intelligence, 87(1{2):255{293, November 1996.15. J. Schae�er. Experiments in Search and Knowledge. PhD thesis, Univ. of Waterloo,Canada, 1986.16. G. Wilfong. Motion planning in the presence of movable obstacles. In 4th ACMSymposium on Computational Geometry, pages 279{288, 1988.

