Temporal Difference Learning Applied to a High-Performance
Game-Playing Program
Vili Jussila

vili@cc.hut.fi
Laboratory of Computational Engineering

Jonathan Schaeffer, Markian Hlynka
{jonathan, markian}@cs.ualberta.ca
Department of Computing Science

University of Alberta
Edmonton, Canada T6G 2H1

Abstract

The temporal difference (TD) learning algo-
rithm offers the hope that the arduous task
of manually tuning the evaluation function
weights of game-playing programs can be au-
tomated. With one exception (TD-Gammon),
TD learning has not been demonstrated to
be effective in a high-performance, world class
game-playing program. Further, there has been
doubt expressed by game-program developers
that learned weights could compete with the
best hand-tuned weights. Chinook is the World
Man-Machine Checkers Champion. Its weights
were manually tuned over 5 years. This paper
shows that TD learning is capable of competing
with the best human effort.

1 Introduction

The most time-consuming aspect of building a high-
performance game-playing program is the design, im-
plementation and tuning of the evaluation function.
Designing the knowledge-based features in the evalu-
ation function and implementing them in a fast, effi-
cient manner remains a difficult task for humans, al-
though there have been some limited successes at au-
tomating this task [Buro, 1995; van Rijswijck, 2001;
Fawcett and Utgoff, 1992]. Historically, tuning the eval-
uation function—adjusting the weight (importance) of
each feature contributing to the evaluation—has been a
tedious, manual task. There have been numerous at-
tempts to automate this (for example, [van der Muelen,
1989; Anantharaman, 1991]), but none of these tech-
niques achieved the requisite high performance. Buro
has achieved impressive results using linear regression in
his Othello program [Buro, 2001], but it is not clear that
similar techniques will work for a broader class of games.

Temporal difference (TD) learning has emerged as
a powerful reinforcement learning technique for incre-
mentally tuning parameters [Sutton and Barto, 1998].
Tesauro applied TD learning to tune the weights of
a neural net, in the process building a world class
backgammon program (TD-Gammon) [Tesauro, 1995].
For several years, this remained an isolated success story

Helsinki University of Technology
Helsinki, Finland

in the games literature, as the conditions in backgam-
mon that appeared to favor TD learning did not exist
in other high profile games, such as chess. In 1997, the
TDLeaf algorithm was introduced (TD learning applied
to minimax search) [Beal, 1997] and it achieved some
success with chess (KnightCap [Baxter et al., 1998a;
1998b; 2000]).

In none of the above cases has it been possible to com-
pare the performance of TD learning to that of the best-
tuned human weights. TD-Gammon learned through
self-play; a human-tuned version of the program does not
exist. KmnightCap learned through playing speed chess
against humans on the Internet. A human-tuned ver-
sion of the program does exist, but both it and the TD
version of the program are far below grandmaster level
in strength. Also, tuning for speed chess is not nec-
essarily representative of what needs to be learned for
tournament chess (where the search depths are greater).
In all the examples of TD learning applied to games,
there has been a nagging question: Can TD-learned
weights be successful in strong (world-championship-
calibre) game-playing programs? For challenging games,
such as chess, game developers have expressed doubt
that tuned weights would be sufficient to achieve the
highest levels of performance.

Chinook is the World Man-Machine Checkers Cham-
pion [Schaeffer, 1997]. Its evaluation function weights
were tuned manually over a period of 5 years. They
were extensively tested both in self-play games and in
hundreds of games against top human players (includ-
ing playing 96 games for the World Checkers Champi-
onship). This paper investigates whether the tuning of
evaluation function weights in Chinook can be replaced
by TDLeaf learning. The experimental data indicates
that the answer is “yes”, as well as giving new insights
into TD learning in game-playing programs. This is the
first known attempt to conduct a detailed study that
compares hand-tuned and TD-trained weights in an es-
tablished high-performance game program.

2 Temporal Difference Learning

Temporal difference learning is an unsupervised rein-
forcement learning algorithm [Sutton and Barto, 1998].
It learns from experience without a model of the en-

vironment’s dynamics, and updates its estimates based
on other, as yet unconfirmed, estimates. Thus, TD can
learn without waiting for a final outcome on a given task;
it evaluates the sub-steps between evaluations.

The TD()) algorithm can be succinctly expressed as
follows [Sutton and Barto, 1998]. Given a series of pre-
dictions, Py...Piy1 (search results from a game in this
context), then the weights in the evaluation function can
be modified as follows:

t
Awy = a(Piy1 = P) Y AN TFV, P (1)
k=1

The change in weights (Aw;) depends upon the predic-
tions (Pr) and the gradient of the predicted value of the
kth state with respect to the weights (VPy).

The A term is a decay-rate parameter. It determines
the extent to which learning is affected by subsequent
states. A A of zero is equivalent to learning only from
the next state. A A of 1 indicates learning only from the
final reinforcement signal; in the case of a game, the final
won/lost assessment. « is a step size parameter: the pro-
portion of adjustment to allow on each iteration. Thus,
the X\ parameter determines whether the algorithm is ap-
plying short or long range prediction, while a determines
how quickly this learning takes place.

TD(A) is a proven algorithm for reinforcement lean-
ing. One of its important advantages is that it can be
computed incrementally. However, to apply it to prob-
lems utilizing search, some refinements are required. The
TDLeaf algorithm is essentially TD learning applied to
minimax search. TDLeaf was originally implemented by
Beal and Smith [Beal, 1997], though not under the name
TDLeaf (which is attributed to [Baxter et al., 1998a;
1998b)]). The crux of the algorithm is not to use the po-
sition at the root of the search tree to tune the search.
Instead, tuning takes place using the position of the leaf
node at the end of the principal variation of the search.
The principal variation is the line of best play; the po-
sition at the end of this line of play has had its value
backed-up to the root of the search.

TDLeaf was implemented in the chess program
KnightCap [Baxter et al., 1998a; 1998b]. Baxter et. al
report that the program’s chess rating rose from 1650
to 2150 in three days (308 games). While this sounds
impressive, there are a few caveats that need to be
mentioned. First, the results were achieved at speed
chess; there is no indication that these results will apply
to (slower) over-the-board chess. Second, the learning
plateaued well before achieving a high level of play. Fi-
nally, despite the early promise of TDLeaf, no one has
demonstrated that it can out-perform the best set of
human-tuned weights. Many researchers active in the
computer games community (including the first author)
have publicly doubted that TD learning is capable of
achieving the high level of performance required in a
game-playing program.

3 Training

Chinook’s evaluation function is the linear combination

of 23 knowledge-based features for each of 4 game phases.
Two features cannot be modified (the value of a checker
and the value of a king) because of some search code
dependencies. Hence, a total of 84 parameters need to
be tuned.!

Chinook supports an integer evaluation function and
integer weights. TD learning is inherently a real-number
task. Thus, Chinook was modified to accept floating
point values. However, the final position evaluation
would be converted to an integer, allowing these changes
to be restricted to the evaluation function.

Chinook and the TD learning (TDL) were kept as sep-
arate programs which communicated with each other us-
ing text files. The file Chinook reads in includes informa-
tion about the opening sequence, search depth, number
of turns to play, and the weights for both sides. After
a game finishes, Chinook outputs a file containing the
result of the game and evaluations for each weight com-
ponent. TDL uses this file to adjust the weights and then
starts a new game with the revised weights. During this
process TDL also saves information about the progress
of the learning, such as the results of each played game
and the value of the weights after each game. Because
not all weights are updated every turn, we also record
the frequency at which weights are modified to discover
if some game situations happen so seldomly that the cor-
responding weight does not get much training.

The TDLeaf algorithm in TDL operates on pairs of
moves. The weights of move i are updated based in part
upon the evaluation at move ¢4 1. Not all pairs of moves
were candidates for TDLeaf updating. Capture moves
are forced in checkers, so if only one move is legal in a
position, no updating would occur. Also, occasionally
Chinook’s search algorithm was incapable of recovering
the principal variation as far as the leaf node. In this
case, TDLeaf could not be applied.

The training routine was as follows:

1. Chinook is used to play two weight files against each
other.

2. TDL modifies one or both of the weight files based
on the game played.

3. This procedure is iterated until learning is seen to
plateau (typically before 10,000 iterations).

To prevent the programs from playing the same moves
in every game, an opening book was used which included
the standard 144 checkers openings, each 3 ply long. The
learning rate a was chosen to be 0.01 and the TD pa-
rameter A was set to 0.95. These values were chosen
based on the KnightCap experience, but finding the best
settings remains an open question.

Several different approaches were attempted for learn-
ing. Each experiment involved starting with all weights
set to zero, train using TD learning, and then evaluate

'Note that the 21 tunable features are each the result of
a function that itself may contain many parameters. These
lower-level parameters are not addressed in this paper.

the learned weights by using them in a match against
the tournament version of Chinook.

The first approach involved training the weights by
playing against tournament Chinook (teacher learning).
The goal was to determine how effective the learning was
given the benefit of a high-performance teacher. The
second set of tests involved self-play (self-play learning).
Here the goal was to see if the learning could boot-strap
itself to achieve high performance. In both cases, sepa-
rate experiments were performed using 5, 9, and 13-ply
searches, generating separate weights for the black and
white sides.

Examining the output of a training session shows that
the performance of the learned weights against tourna-
ment Chinook rapidly improves at the beginning of the
session due to the poor starting values. After this initial
period, the rate of improvement slows until at roughly
4,000 games a stable state is reached.? In the experi-
ments, only 84 weights had to be learned. In contrast,
KnightCap had to learn 1,500 parameters in its first set
of experiments. This was later expanded to 6,000 pa-
rameters [Baxter et al., 1998a]. The small number of
parameters used in Chinook accounts for the relatively
fast learning phase.

4 Results

Trained weight sets were tested against the tournament
version of Chinook. Evaluation consisted of a 288-game
match (each program playing both sides of the 144 open-
ings). All versions of the program used Chinook’s 6-piece
endgame databases. Tournament Chinook has no knowl-
edge of how to play simplified endgame positions because
it assumes that the database will always be used. Using
the databases had the benefit of speeding up the exper-
iments since, once a position with 6 or fewer pieces was
reached, the databases would give the final result of the
game, thereby ending the game.

4.1 Baseline

How important are the evaluation function weights? The
obvious way to answer this question is to set all the
weights to zero and see how the program performs. In
effect, this “zero knowledge” program uses only mate-
rial for its evaluation. The result of the match is not
surprising: a 34-254 game loss to tournament Chinook
with 15-ply searches (the endgame database knowledge
salvaged many draws). Since both programs used the
same search depth, the quality of the knowledge is solely
responsible for the match score. As an additional data
point, all the weights were set to one. Now the pro-
gram “knows” how to evaluate a position, but it does
not understand the relative importance of each feature.
Having some knowledge is obviously beneficial, as this
program loses by a smaller margin (an average score of
94.5 193.5).

2KnightCap required fewer training games, but its per-
formance levels off at a playing strength that is considerably
below world-championship caliber.

4.2 Teacher Learning

Figures 1a, 1b, and 1c shows the performance of white
and black weights that were trained using 5, 9, and 13-
ply searches, respectively. The x-axis shows the search
depth used for the evaluation, and the y-axis shows the
number of wins minus losses from the learning program’s
point of view.

The 5-ply-trained weight set does well against Chi-
nook when playing games with a search depth of 5 ply,
but performance quickly tapers off as the programs play
games using larger search depths (Figure 1a). A simi-
lar pattern is seen with the 9-ply-trained weights (Fig-
ure 1b). The experiment shows the learned weights de-
feating Chinook in matches up to 9-ply, but tapering
off with deeper searches. Whereas with 5-ply searches,
the results of training using the white positions domi-
nates those for the black positions, with 9-ply searches
the difference between the two sets of weights essentially
disappears.

For the 13-ply results (Figure 1c), the data is not as
clear. As before performance seems strong around the
training search depth (13-ply) and there is the suggestion
that it is beginning to taper off for deeper searches (it
would take several weeks to get the 17-ply data). Unlike
the previous graphs, the performance of the weights us-
ing search depths shallower than the training depth are
poorer. However, the difference between the 7-ply and
13-ply results in Figure 1c represents only a 7% improve-
ment, well within the statistical variability expected.

The graphs reveal an important insight for anyone us-
ing TD learning in game-playing programs: the weights
must be trained using the depths of search expected to
be seen in practice. Deeper searches provide a more ac-
curate approximation of the root position’s true value
for the TD algorithm to learn. This suggests that the
KnightCap weights that were obtained using speed chess
will not perform well in slower tournament chess (simi-
larly, [Anantharaman, 1991] needs deeper searches to be
effective). In effect, there is no free lunch; you can’t use
shallow search results to approximate deep results.

We experimented with creating separate weight sets
for playing white and black. The purpose was to see if
the specialization of the weight sets could lead to better
play, given that white generally has an opening advan-
tage. Surprisingly, using the black weights only when
playing black, and the white weights only when playing
white, does not seem to be statistically significantly bet-
ter in our experiments. After the opening phase of the
game, the resulting types of positions seen are similar
for white and black, resulting in a similar learning ex-
perience. This is more pronounced with deeper searches
(since the search can see “beyond” the opening) than it is
with shallower searches. This would account for the large
difference between the white and black performance in
Figure 1a.

The previous experiments have not been entirely fair.
Both the training and evaluation was done using the
same 144 starting positions. The good results for the
learned weights might be a consequence of the program

Black ——
o Wf?l‘ie o
20 20
I, L,
g g
H H

5 7 9 1 13 15 5 7
Search Depth
5-ply learning

Figure 1: Teacher learning;:

' Equali‘ty
Black ——
White
55 F
g
& s
2
£
2
45 F
40
0 2 4 6 8 10 12 14 16

Search Depth

Figure 2: 786 game matches using 13-ply learning.

being trained to play the same opening positions that
are used in the evaluation. To get another indicator of
the performance of the trained data, a second experiment
was performed. From a collection of games played by for-
mer world champion Marion Tinsley, all positions 8-ply
into the games were extracted (393 positions). These po-
sitions were used as the openings for a 786-game match
between the learned weights and tournament Chinook.
Figure 2 shows the results for both the 13-ply white
and black trained weight sets, expressed as the percent-
age of total points scored (over 786 games). At deeper
search depths, the tuned weights perform slightly better
than the hand-tuned weights, although the difference is
not statistically significant. Given the match length, it
is safe to say that the performance of the TD weights is
comparable to that of the best hand-tuned effort.

4.3 Self-Play Learning

In this set of experiments, the program learned through
self-play without the benefit of having a strong oppo-
nent to train against. All the self-play results analyzed
to date are consistent with that seen in the previous sec-
tion, with the exception that the training takes longer
to plateau. The 13-ply-trained black weight sets scored
50.2% of the points in a 786-game match (using 15-
ply searches) with tournament Chinook, while the white
weights scored 48.3%.

The self-play data strongly indicates that a good
teacher is not needed for the program to learn a set
of evaluation function weights that achieves world-
championship-calibre performance. This is wonderful

Base —— Base ——
Black —— Black ——
White o White
20F
<0
g
H
20 b
a0 L
9 1 13 15 5 7 9 1 13 15
Search Depth Search Depth
9-ply learning 13-ply learning

a) 5-ply, b) 9-ply and c) 13-ply.

20

Chinook (tournameht) weights
Black (13-ply teacher) weights
White (13-ply teacher) weights

15t 1

10 q

Correct Move

5 10 15 20 25
Search Depth

Figure 3: Chinook test set data.

news for game-program developers, as it suggests that
manual weight tuning may be a thing of the past.

The KnightCap self-play results are not as good as
those reported here. This is likely a consequence of the
number of parameters being tuned; fewer parameters are
easier to fit.

4.4 Additional Data

There is a test set of 19 positions (taken from Chinook
games) that have proven to be particularly difficult for
the program to solve. In these positions, the oppo-
nents (mostly humans players) demonstrated profound
insights into the game that Chinook, at the time the
game was played, could not match. None of the po-
sitions is easily resolved by search; the quality of the
knowledge is the critical factor. Most of these positions
were the motivation for adding additional features to
the evaluation function and/or making major changes
to the feature weights. During the development of the
program, these positions were often used to benchmark
the program.

Chinook has been tested on these positions using three
weight sets: original, white teacher training at 13-ply,
and black teacher training at 13-ply. The results are
shown in Figure 3. For each of the positions, the pro-
gram versions searched 5-ply to 25-ply deep (in incre-
ments of 2 ply). The figure records which search depths
produced the correct solution to the positions. Note the
general trend that increased search depth results in more
frequent correct solutions. However, in most of the po-
sitions, the programs get the correct answer at the end

of an iteration, only to switch to a different move on
the next iteration. All versions tested were indecisive in
their move choice for most of the positions (a further in-
dication that the positions are indeed still very hard for
Chinook). Both TD weight sets perform comparably to
the original weight set in Chinook. There is nothing to
suggest that one weight set is significantly better than
the others.

4.5 Comments

One must caution that most of the experimental re-
sults have been obtained from machine-versus-machine
games.? The results may be different in machine-versus-
human play. Unfortunately, with Chinook retired and
the program significantly stronger than all human play-
ers, there are no opportunities to evaluate just how good
the weights are in play against humans.

Although TD learning promises to reduce the effort
to build a high-performance game-playing program, de-
ciding on the evaluation function features still remains
largely a manual chore. Some of the features in Chi-
nook’s evaluation function came as the result of exten-
sive human analysis of the program’s play to identify
deficiencies in the program’s knowledge. Once a new
feature was added to the program, then the manual tun-
ing would begin again. TD learning makes this a less
painful process. The human identifies and adds the new
knowledge; the program learns the new weight set.

5 Examining the Weights

Table 1 shows Chinook’s original weights and those
learned from the white positions with 13-ply searches.
Not unexpectedly, there are some major differences:

1. Several of the features occur rarely in certain phases
of the game and, hence, the computer-generated
weights may be off (or irrelevant) because of insuffi-
cient training. For example, “free king”, “king cen-
ter” and “loose checker” are mainly endgame fea-
tures. Over 8,533 games (a total of 238,0403 learn-
ing updates), in phase 1 these features occurred only
177, 16, and 184 times, respectively.

2. “Value of move” is a small bonus given to the side
whose turn it is to move. In most positions, from
a human’s point of view, having the right to move
is a small advantage. From the computer’s point
of view, value of move is just a constant added
to the evaluation function. The negative value for
this weight suggests that, in general, the evaluation
scores obtained using trained weights are a bit high,
and this feature is being used to make a small linear
adjustment to the value to get a better fit.

3. The mobility terms are the most important part of
Chinook’s evaluation function, after material bal-
ance. The computer-generated weights are compa-
rable to the human weights in that they generally
have the same sign and similar magnitudes.

3[Berliner et al., 1990] mentions the pitfalls that can arise
from basing conclusions solely on self-play games.

4. The terms “frozen”, “dog hole”, “loose men”,
“d2e7”, and “free king” were late additions to the
evaluation function. These terms were added to ad-
dress problems that arose in play against human
players. Both human and machine weights are af-
fected by the infrequency with which these features
occur. It is also likely that these features are not
as common in machine-versus-machine play as they
are in human-versus-machine play.

5. The biggest surprise is the difference in value for
“trapped kings” (kings that are immobile in corners
and cannot be freed). This is a symptom of the
above problem. Against computers, some humans
play for a trapped king since, historically, that was a
major weakness in computer play (and, indeed, was
a problem with early versions of Chinook). The eval-
uation function detects this situation and penalizes
it heavily. However, since the training is from self-
play, Chinook never plays to “dupe” Chinook into
trapping its king. Consequently, the TD-learning
infrequently sees this feature arising and, when it
does, it is usually not a position where this is the
decisive factor.

The lesson here is that play against human players is
necessary to complete the training. Humans have their
own set of biases, predilections, and notion of “good” and
“bad”. The additional training will be most pronounced
in the weights of the features that infrequently occur in
machine-versus-machine play.

Despite the radical differences between the TD-learned
and the human-tuned set of weights, one cannot dispute
the success of each version. On the one hand, it is re-
markable that TD learning is as successful as it is given
that the learning is based solely on game-play feedback
with no human intervention. On the other hand, it is
a triumph of human cognitive abilities that the human
solution to a complicated optimization problem can in-
deed be competitive with a computer solution. The final
result, that the human-tuned solution and the TD-tuned
solution are roughly equivalent in performance, reflects
well on both man and machine.

6 Conclusions
There are two parts to an evaluation function: the func-
tion terms and the weighting of these terms. This paper
strengthens the case that TD learning provides an ef-
fective solution to the latter problem. Learned weights
can compete with (and perhaps exceed) the performance
of the best hand-tuned weights in a high-performance
game-playing program.

TD learning opens up new opportunities for improving
a program’s abilities. For example, the program could
have a different set of weights for each opening, or for
different classes of positions. Different weights could be
used based on the expected depth of search. In addi-
tion, the program developer can experiment with new
features, and let the learning algorithm decide what is
relevant. None of this would be practical if these weights
had to be tuned manually.

Original Weights ||

Learned Weights |

(Name [2[8] 4] 1] o[s[1]
Value of move 4 3 3 2 || -2.30 | -6.94 | -2.48 | 0.46
Free mobility 1 2 3 4 3.40 | 6.50 277 | 6.47
Some mobility 4] -6 -8]-10 0.89 | -462 | -897 | -6.08
Recapture mobility 3 3 3 3| -1.72 | 2.33 5.77 | 3.25
No-move mobility -1 -1 | -2 -4 || -2.13 | -4.45 | -4.17 | -1.30
Exception mobility 0 0 0 0| -0.47 | 0.89 5.56 | 2.47
Double-cap mobility || -6 | -6 | -6 -6 || -0.15 | -1.45 | -2.34 | -1.08
Balance 5 4 3 2 1.14 | 4.53 1.35 | -0.86
Advancement -1 0 0 0 3.59 | -3.54 | -0.39 | -0.68
Centrality 2 2 1 0] -1.91 | 8.44 1.25 | -1.86
Angle 1 1 0 0 0.79 | 3.26 3.24 | 3.23
Back row 4 3 3 2 1.93 | 8.75 | 11.77 | 6.28
Shadow 3 2 1 0 0.74 | 4.05 1.23 | -0.19
Trapped king 32 | 32|32] 32| -0.01 | -0.02 0.90 | 0.73
Loose checker 5 5 5 5 0.03 1.38 4.76 | 3.72
King center 3 3 3 3]l -0.01 | 0.89 5.65 | 5.94
D2E7 3 2 1 0 0.09 | -0.06 0.22 | 0.57
Free king 20 | 20 | 20 | 20 0.38 | 1.66 5.37 | 3.69
Dog-hole 5 5 5 5 -0.08 | 0.16 1.66 | 0.89
Loose men 15 | 15 | 15 15 0.25 1.88 5.33 | 5.56
Frozen 10 | 10 | 10| 10 0.00 | 0.05 | -0.09 | -0.12

Table 1: Comparing weights.

The dream of creating a games engine that can achieve
high performance for any board game is one step closer
to reality. High-performance black box search engines
now exist (e.g. [Brungger et al., 1999; Romein, 2000]),
as well as generic (mediocre performance) games engines
(see www.zillionsofgames.com). The last piece of the
puzzle, automatically discovering the features needed for
the evaluation function, remains elusive.

7 Acknowledgments
Financial support was provided by NSERC and iCORE.

References

[Anantharaman, 1991] T. Anantharaman. A Statisti-
cal Study of Selective Min-Max Search. PhD thesis,
Carnegie Mellon University, 1991.

[Baxter et al., 1998a] J. Baxter, A. Tridgell, and
L. Weaver. Experiments in parameter learning us-
ing temporal differences. ICCA Journal, 21(2):84-99,
1998.

[Baxter et al., 1998b] J. Baxter, A. Tridgell, and
L. Weaver. KnightCap: A chess program that learns
by combining TD(A) with game-tree search. ICML,
pages 28-36, 1998.

[Baxter et al., 2000] J. Baxter, A. Tridgell, and

L. Weaver. Learning to play chess using temporal
differences. Machine Learning, 40(3):243 263, 2000.

[Beal, 1997] D. Beal. Learning piece values using tem-
poral differences. ICCA Journal, 20(3):147 151, 1997.

[Berliner et al., 1990] H. Berliner, G. Goetsch,
M. Campbell, and C. Ebeling. Measuring the
performance potential of chess programs. Artificial

Intelligence, 43(1):7 21, 1990.

[Brungger et al., 1999] A. Brungger, A. Marzetta,
K. Fukuda, and J. Nievergelt. The parallel search
bench ZRAM and its applications. Annals of
Operations Research, 90:45-63, 1999.

[Buro, 1995] M. Buro. Statistical feature combination
for the evaluation of game positions. JAIR, 3:373—
382, 1995.

[Buro, 2001] M. Buro. Improving heuristic mini-max
search by supervised learning. Artificial Intelligence,
2001. To appear.

[Fawcett and Utgoff, 1992] T. Fawcett and P. Utgoff.
Automatic feature generation for problem solving sys-
tems. ICML, pages 144-153, 1992.

[Romein, 2000] J. Romein. Multigame An Environ-
ment for Distributed Game-Tree Search. PhD thesis,
Vrije Universiteit, 2000.

[Schaeffer, 1997] J. Schaeffer. One Jump Ahead: Chal-
lenging Human Supremacy in Checkers. Springer Ver-
lag, 1997.

[Sutton and Barto, 1998] R. Sutton and A. Barto. Re-
inforcement Learning: An Introduction. MIT Press,
1998.

[Tesauro, 1995] G. Tesauro. Temporal difference learn-
ing and TD-Gammon. CACM, 38(3):58-68, 1995.

[van der Muelen, 1989] M. van der Muelen. Weight as-
sessment in evaluation functions. Advances in Com-
puter Chess 5, pages 81 89, 1989.

[van Rijswijck, 2001] J. van Rijswijck. Learning from
perfection (a data mining approach to evaluation
function learning in awari). 2nd International Con-
ference on Computers and Games, 2001. To appear.

