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tThe temporal di�eren
e (TD) learning algo-rithm o�ers the hope that the arduous taskof manually tuning the evaluation fun
tionweights of game-playing programs 
an be au-tomated. With one ex
eption (TD-Gammon),TD learning has not been demonstrated tobe e�e
tive in a high-performan
e, world 
lassgame-playing program. Further, there has beendoubt expressed by game-program developersthat learned weights 
ould 
ompete with thebest hand-tuned weights. Chinook is the WorldMan-Ma
hine Che
kers Champion. Its weightswere manually tuned over 5 years. This papershows that TD learning is 
apable of 
ompetingwith the best human e�ort.1 Introdu
tionThe most time-
onsuming aspe
t of building a high-performan
e game-playing program is the design, im-plementation and tuning of the evaluation fun
tion.Designing the knowledge-based features in the evalu-ation fun
tion and implementing them in a fast, eÆ-
ient manner remains a diÆ
ult task for humans, al-though there have been some limited su

esses at au-tomating this task [Buro, 1995; van Rijswij
k, 2001;Faw
ett and Utgo�, 1992℄. Histori
ally, tuning the eval-uation fun
tion|adjusting the weight (importan
e) ofea
h feature 
ontributing to the evaluation|has been atedious, manual task. There have been numerous at-tempts to automate this (for example, [van der Muelen,1989; Anantharaman, 1991℄), but none of these te
h-niques a
hieved the requisite high performan
e. Burohas a
hieved impressive results using linear regression inhis Othello program [Buro, 2001℄, but it is not 
lear thatsimilar te
hniques will work for a broader 
lass of games.Temporal di�eren
e (TD) learning has emerged asa powerful reinfor
ement learning te
hnique for in
re-mentally tuning parameters [Sutton and Barto, 1998℄.Tesauro applied TD learning to tune the weights ofa neural net, in the pro
ess building a world 
lassba
kgammon program (TD-Gammon) [Tesauro, 1995℄.For several years, this remained an isolated su

ess story

in the games literature, as the 
onditions in ba
kgam-mon that appeared to favor TD learning did not existin other high pro�le games, su
h as 
hess. In 1997, theTDLeaf algorithm was introdu
ed (TD learning appliedto minimax sear
h) [Beal, 1997℄ and it a
hieved somesu

ess with 
hess (KnightCap [Baxter et al., 1998a;1998b; 2000℄).In none of the above 
ases has it been possible to 
om-pare the performan
e of TD learning to that of the best-tuned human weights. TD-Gammon learned throughself-play; a human-tuned version of the program does notexist. KnightCap learned through playing speed 
hessagainst humans on the Internet. A human-tuned ver-sion of the program does exist, but both it and the TDversion of the program are far below grandmaster levelin strength. Also, tuning for speed 
hess is not ne
-essarily representative of what needs to be learned fortournament 
hess (where the sear
h depths are greater).In all the examples of TD learning applied to games,there has been a nagging question: Can TD-learnedweights be su

essful in strong (world-
hampionship-
alibre) game-playing programs? For 
hallenging games,su
h as 
hess, game developers have expressed doubtthat tuned weights would be suÆ
ient to a
hieve thehighest levels of performan
e.Chinook is the World Man-Ma
hine Che
kers Cham-pion [S
hae�er, 1997℄. Its evaluation fun
tion weightswere tuned manually over a period of 5 years. Theywere extensively tested both in self-play games and inhundreds of games against top human players (in
lud-ing playing 96 games for the World Che
kers Champi-onship). This paper investigates whether the tuning ofevaluation fun
tion weights in Chinook 
an be repla
edby TDLeaf learning. The experimental data indi
atesthat the answer is \yes", as well as giving new insightsinto TD learning in game-playing programs. This is the�rst known attempt to 
ondu
t a detailed study that
ompares hand-tuned and TD-trained weights in an es-tablished high-performan
e game program.2 Temporal Di�eren
e LearningTemporal di�eren
e learning is an unsupervised rein-for
ement learning algorithm [Sutton and Barto, 1998℄.It learns from experien
e without a model of the en-



vironment's dynami
s, and updates its estimates basedon other, as yet un
on�rmed, estimates. Thus, TD 
anlearn without waiting for a �nal out
ome on a given task;it evaluates the sub-steps between evaluations.The TD(�) algorithm 
an be su

in
tly expressed asfollows [Sutton and Barto, 1998℄. Given a series of pre-di
tions, P0:::Pt+1 (sear
h results from a game in this
ontext), then the weights in the evaluation fun
tion 
anbe modi�ed as follows:�wt = �(Pt+1 � Pt) tXk=1 �t�krwPk (1)The 
hange in weights (�wt) depends upon the predi
-tions (Pk) and the gradient of the predi
ted value of thekth state with respe
t to the weights (rPk).The � term is a de
ay-rate parameter. It determinesthe extent to whi
h learning is a�e
ted by subsequentstates. A � of zero is equivalent to learning only fromthe next state. A � of 1 indi
ates learning only from the�nal reinfor
ement signal; in the 
ase of a game, the �nalwon/lost assessment. � is a step size parameter: the pro-portion of adjustment to allow on ea
h iteration. Thus,the � parameter determines whether the algorithm is ap-plying short or long range predi
tion, while � determineshow qui
kly this learning takes pla
e.TD(�) is a proven algorithm for reinfor
ement lean-ing. One of its important advantages is that it 
an be
omputed in
rementally. However, to apply it to prob-lems utilizing sear
h, some re�nements are required. TheTDLeaf algorithm is essentially TD learning applied tominimax sear
h. TDLeaf was originally implemented byBeal and Smith [Beal, 1997℄, though not under the nameTDLeaf (whi
h is attributed to [Baxter et al., 1998a;1998b℄). The 
rux of the algorithm is not to use the po-sition at the root of the sear
h tree to tune the sear
h.Instead, tuning takes pla
e using the position of the leafnode at the end of the prin
ipal variation of the sear
h.The prin
ipal variation is the line of best play; the po-sition at the end of this line of play has had its valueba
ked-up to the root of the sear
h.TDLeaf was implemented in the 
hess programKnightCap [Baxter et al., 1998a; 1998b℄. Baxter et. alreport that the program's 
hess rating rose from 1650to 2150 in three days (308 games). While this soundsimpressive, there are a few 
aveats that need to bementioned. First, the results were a
hieved at speed
hess; there is no indi
ation that these results will applyto (slower) over-the-board 
hess. Se
ond, the learningplateaued well before a
hieving a high level of play. Fi-nally, despite the early promise of TDLeaf, no one hasdemonstrated that it 
an out-perform the best set ofhuman-tuned weights. Many resear
hers a
tive in the
omputer games 
ommunity (in
luding the �rst author)have publi
ly doubted that TD learning is 
apable ofa
hieving the high level of performan
e required in agame-playing program.3 TrainingChinook's evaluation fun
tion is the linear 
ombination

of 23 knowledge-based features for ea
h of 4 game phases.Two features 
annot be modi�ed (the value of a 
he
kerand the value of a king) be
ause of some sear
h 
odedependen
ies. Hen
e, a total of 84 parameters need tobe tuned.1Chinook supports an integer evaluation fun
tion andinteger weights. TD learning is inherently a real-numbertask. Thus, Chinook was modi�ed to a

ept 
oatingpoint values. However, the �nal position evaluationwould be 
onverted to an integer, allowing these 
hangesto be restri
ted to the evaluation fun
tion.Chinook and the TD learning (TDL) were kept as sep-arate programs whi
h 
ommuni
ated with ea
h other us-ing text �les. The �le Chinook reads in in
ludes informa-tion about the opening sequen
e, sear
h depth, numberof turns to play, and the weights for both sides. Aftera game �nishes, Chinook outputs a �le 
ontaining theresult of the game and evaluations for ea
h weight 
om-ponent. TDL uses this �le to adjust the weights and thenstarts a new game with the revised weights. During thispro
ess TDL also saves information about the progressof the learning, su
h as the results of ea
h played gameand the value of the weights after ea
h game. Be
ausenot all weights are updated every turn, we also re
ordthe frequen
y at whi
h weights are modi�ed to dis
overif some game situations happen so seldomly that the 
or-responding weight does not get mu
h training.The TDLeaf algorithm in TDL operates on pairs ofmoves. The weights of move i are updated based in partupon the evaluation at move i+1. Not all pairs of moveswere 
andidates for TDLeaf updating. Capture movesare for
ed in 
he
kers, so if only one move is legal in aposition, no updating would o

ur. Also, o

asionallyChinook's sear
h algorithm was in
apable of re
overingthe prin
ipal variation as far as the leaf node. In this
ase, TDLeaf 
ould not be applied.The training routine was as follows:1. Chinook is used to play two weight �les against ea
hother.2. TDL modi�es one or both of the weight �les basedon the game played.3. This pro
edure is iterated until learning is seen toplateau (typi
ally before 10,000 iterations).To prevent the programs from playing the same movesin every game, an opening book was used whi
h in
ludedthe standard 144 
he
kers openings, ea
h 3 ply long. Thelearning rate � was 
hosen to be 0.01 and the TD pa-rameter � was set to 0.95. These values were 
hosenbased on the KnightCap experien
e, but �nding the bestsettings remains an open question.Several di�erent approa
hes were attempted for learn-ing. Ea
h experiment involved starting with all weightsset to zero, train using TD learning, and then evaluate1Note that the 21 tunable features are ea
h the result ofa fun
tion that itself may 
ontain many parameters. Theselower-level parameters are not addressed in this paper.



the learned weights by using them in a mat
h againstthe tournament version of Chinook.The �rst approa
h involved training the weights byplaying against tournament Chinook (tea
her learning).The goal was to determine how e�e
tive the learning wasgiven the bene�t of a high-performan
e tea
her. These
ond set of tests involved self-play (self-play learning).Here the goal was to see if the learning 
ould boot-strapitself to a
hieve high performan
e. In both 
ases, sepa-rate experiments were performed using 5, 9, and 13-plysear
hes, generating separate weights for the bla
k andwhite sides.Examining the output of a training session shows thatthe performan
e of the learned weights against tourna-ment Chinook rapidly improves at the beginning of thesession due to the poor starting values. After this initialperiod, the rate of improvement slows until at roughly4,000 games a stable state is rea
hed.2 In the experi-ments, only 84 weights had to be learned. In 
ontrast,KnightCap had to learn 1,500 parameters in its �rst setof experiments. This was later expanded to 6,000 pa-rameters [Baxter et al., 1998a℄. The small number ofparameters used in Chinook a

ounts for the relativelyfast learning phase.4 ResultsTrained weight sets were tested against the tournamentversion of Chinook. Evaluation 
onsisted of a 288-gamemat
h (ea
h program playing both sides of the 144 open-ings). All versions of the program used Chinook's 6-pie
eendgame databases. Tournament Chinook has no knowl-edge of how to play simpli�ed endgame positions be
auseit assumes that the database will always be used. Usingthe databases had the bene�t of speeding up the exper-iments sin
e, on
e a position with 6 or fewer pie
es wasrea
hed, the databases would give the �nal result of thegame, thereby ending the game.4.1 BaselineHow important are the evaluation fun
tion weights? Theobvious way to answer this question is to set all theweights to zero and see how the program performs. Ine�e
t, this \zero knowledge" program uses only mate-rial for its evaluation. The result of the mat
h is notsurprising: a 34{254 game loss to tournament Chinookwith 15-ply sear
hes (the endgame database knowledgesalvaged many draws). Sin
e both programs used thesame sear
h depth, the quality of the knowledge is solelyresponsible for the mat
h s
ore. As an additional datapoint, all the weights were set to one. Now the pro-gram \knows" how to evaluate a position, but it doesnot understand the relative importan
e of ea
h feature.Having some knowledge is obviously bene�
ial, as thisprogram loses by a smaller margin (an average s
ore of94.5{193.5).2KnightCap required fewer training games, but its per-forman
e levels o� at a playing strength that is 
onsiderablybelow world-
hampionship 
aliber.

4.2 Tea
her LearningFigures 1a, 1b, and 1
 shows the performan
e of whiteand bla
k weights that were trained using 5, 9, and 13-ply sear
hes, respe
tively. The x-axis shows the sear
hdepth used for the evaluation, and the y-axis shows thenumber of wins minus losses from the learning program'spoint of view.The 5-ply-trained weight set does well against Chi-nook when playing games with a sear
h depth of 5 ply,but performan
e qui
kly tapers o� as the programs playgames using larger sear
h depths (Figure 1a). A simi-lar pattern is seen with the 9-ply-trained weights (Fig-ure 1b). The experiment shows the learned weights de-feating Chinook in mat
hes up to 9-ply, but taperingo� with deeper sear
hes. Whereas with 5-ply sear
hes,the results of training using the white positions domi-nates those for the bla
k positions, with 9-ply sear
hesthe di�eren
e between the two sets of weights essentiallydisappears.For the 13-ply results (Figure 1
), the data is not as
lear. As before performan
e seems strong around thetraining sear
h depth (13-ply) and there is the suggestionthat it is beginning to taper o� for deeper sear
hes (itwould take several weeks to get the 17-ply data). Unlikethe previous graphs, the performan
e of the weights us-ing sear
h depths shallower than the training depth arepoorer. However, the di�eren
e between the 7-ply and13-ply results in Figure 1
 represents only a 7% improve-ment, well within the statisti
al variability expe
ted.The graphs reveal an important insight for anyone us-ing TD learning in game-playing programs: the weightsmust be trained using the depths of sear
h expe
ted tobe seen in pra
ti
e. Deeper sear
hes provide a more a
-
urate approximation of the root position's true valuefor the TD algorithm to learn. This suggests that theKnightCap weights that were obtained using speed 
hesswill not perform well in slower tournament 
hess (simi-larly, [Anantharaman, 1991℄ needs deeper sear
hes to bee�e
tive). In e�e
t, there is no free lun
h; you 
an't useshallow sear
h results to approximate deep results.We experimented with 
reating separate weight setsfor playing white and bla
k. The purpose was to see ifthe spe
ialization of the weight sets 
ould lead to betterplay, given that white generally has an opening advan-tage. Surprisingly, using the bla
k weights only whenplaying bla
k, and the white weights only when playingwhite, does not seem to be statisti
ally signi�
antly bet-ter in our experiments. After the opening phase of thegame, the resulting types of positions seen are similarfor white and bla
k, resulting in a similar learning ex-perien
e. This is more pronoun
ed with deeper sear
hes(sin
e the sear
h 
an see \beyond" the opening) than it iswith shallower sear
hes. This would a

ount for the largedi�eren
e between the white and bla
k performan
e inFigure 1a.The previous experiments have not been entirely fair.Both the training and evaluation was done using thesame 144 starting positions. The good results for thelearned weights might be a 
onsequen
e of the program
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Figure 1: Tea
her learning: a) 5-ply, b) 9-ply and 
) 13-ply.
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Figure 2: 786 game mat
hes using 13-ply learning.being trained to play the same opening positions thatare used in the evaluation. To get another indi
ator ofthe performan
e of the trained data, a se
ond experimentwas performed. From a 
olle
tion of games played by for-mer world 
hampion Marion Tinsley, all positions 8-plyinto the games were extra
ted (393 positions). These po-sitions were used as the openings for a 786-game mat
hbetween the learned weights and tournament Chinook.Figure 2 shows the results for both the 13-ply whiteand bla
k trained weight sets, expressed as the per
ent-age of total points s
ored (over 786 games). At deepersear
h depths, the tuned weights perform slightly betterthan the hand-tuned weights, although the di�eren
e isnot statisti
ally signi�
ant. Given the mat
h length, itis safe to say that the performan
e of the TD weights is
omparable to that of the best hand-tuned e�ort.4.3 Self-Play LearningIn this set of experiments, the program learned throughself-play without the bene�t of having a strong oppo-nent to train against. All the self-play results analyzedto date are 
onsistent with that seen in the previous se
-tion, with the ex
eption that the training takes longerto plateau. The 13-ply-trained bla
k weight sets s
ored50.2% of the points in a 786-game mat
h (using 15-ply sear
hes) with tournament Chinook, while the whiteweights s
ored 48.3%.The self-play data strongly indi
ates that a goodtea
her is not needed for the program to learn a setof evaluation fun
tion weights that a
hieves world-
hampionship-
alibre performan
e. This is wonderful
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Figure 3: Chinook test set data.news for game-program developers, as it suggests thatmanual weight tuning may be a thing of the past.The KnightCap self-play results are not as good asthose reported here. This is likely a 
onsequen
e of thenumber of parameters being tuned; fewer parameters areeasier to �t.4.4 Additional DataThere is a test set of 19 positions (taken from Chinookgames) that have proven to be parti
ularly diÆ
ult forthe program to solve. In these positions, the oppo-nents (mostly humans players) demonstrated profoundinsights into the game that Chinook, at the time thegame was played, 
ould not mat
h. None of the po-sitions is easily resolved by sear
h; the quality of theknowledge is the 
riti
al fa
tor. Most of these positionswere the motivation for adding additional features tothe evaluation fun
tion and/or making major 
hangesto the feature weights. During the development of theprogram, these positions were often used to ben
hmarkthe program.Chinook has been tested on these positions using threeweight sets: original, white tea
her training at 13-ply,and bla
k tea
her training at 13-ply. The results areshown in Figure 3. For ea
h of the positions, the pro-gram versions sear
hed 5-ply to 25-ply deep (in in
re-ments of 2 ply). The �gure re
ords whi
h sear
h depthsprodu
ed the 
orre
t solution to the positions. Note thegeneral trend that in
reased sear
h depth results in morefrequent 
orre
t solutions. However, in most of the po-sitions, the programs get the 
orre
t answer at the end



of an iteration, only to swit
h to a di�erent move onthe next iteration. All versions tested were inde
isive intheir move 
hoi
e for most of the positions (a further in-di
ation that the positions are indeed still very hard forChinook). Both TD weight sets perform 
omparably tothe original weight set in Chinook. There is nothing tosuggest that one weight set is signi�
antly better thanthe others.4.5 CommentsOne must 
aution that most of the experimental re-sults have been obtained from ma
hine-versus-ma
hinegames.3 The results may be di�erent in ma
hine-versus-human play. Unfortunately, with Chinook retired andthe program signi�
antly stronger than all human play-ers, there are no opportunities to evaluate just how goodthe weights are in play against humans.Although TD learning promises to redu
e the e�ortto build a high-performan
e game-playing program, de-
iding on the evaluation fun
tion features still remainslargely a manual 
hore. Some of the features in Chi-nook's evaluation fun
tion 
ame as the result of exten-sive human analysis of the program's play to identifyde�
ien
ies in the program's knowledge. On
e a newfeature was added to the program, then the manual tun-ing would begin again. TD learning makes this a lesspainful pro
ess. The human identi�es and adds the newknowledge; the program learns the new weight set.5 Examining the WeightsTable 1 shows Chinook's original weights and thoselearned from the white positions with 13-ply sear
hes.Not unexpe
tedly, there are some major di�eren
es:1. Several of the features o

ur rarely in 
ertain phasesof the game and, hen
e, the 
omputer-generatedweights may be o� (or irrelevant) be
ause of insuÆ-
ient training. For example, \free king", \king 
en-ter" and \loose 
he
ker" are mainly endgame fea-tures. Over 8,533 games (a total of 238,0403 learn-ing updates), in phase 1 these features o

urred only177, 16, and 184 times, respe
tively.2. \Value of move" is a small bonus given to the sidewhose turn it is to move. In most positions, froma human's point of view, having the right to moveis a small advantage. From the 
omputer's pointof view, value of move is just a 
onstant addedto the evaluation fun
tion. The negative value forthis weight suggests that, in general, the evaluations
ores obtained using trained weights are a bit high,and this feature is being used to make a small linearadjustment to the value to get a better �t.3. The mobility terms are the most important part ofChinook's evaluation fun
tion, after material bal-an
e. The 
omputer-generated weights are 
ompa-rable to the human weights in that they generallyhave the same sign and similar magnitudes.3[Berliner et al., 1990℄ mentions the pitfalls that 
an arisefrom basing 
on
lusions solely on self-play games.

4. The terms \frozen", \dog hole", \loose men",\d2e7", and \free king" were late additions to theevaluation fun
tion. These terms were added to ad-dress problems that arose in play against humanplayers. Both human and ma
hine weights are af-fe
ted by the infrequen
y with whi
h these featureso

ur. It is also likely that these features are notas 
ommon in ma
hine-versus-ma
hine play as theyare in human-versus-ma
hine play.5. The biggest surprise is the di�eren
e in value for\trapped kings" (kings that are immobile in 
ornersand 
annot be freed). This is a symptom of theabove problem. Against 
omputers, some humansplay for a trapped king sin
e, histori
ally, that was amajor weakness in 
omputer play (and, indeed, wasa problem with early versions of Chinook). The eval-uation fun
tion dete
ts this situation and penalizesit heavily. However, sin
e the training is from self-play, Chinook never plays to \dupe" Chinook intotrapping its king. Consequently, the TD-learninginfrequently sees this feature arising and, when itdoes, it is usually not a position where this is thede
isive fa
tor.The lesson here is that play against human players isne
essary to 
omplete the training. Humans have theirown set of biases, predile
tions, and notion of \good" and\bad". The additional training will be most pronoun
edin the weights of the features that infrequently o

ur inma
hine-versus-ma
hine play.Despite the radi
al di�eren
es between the TD-learnedand the human-tuned set of weights, one 
annot disputethe su

ess of ea
h version. On the one hand, it is re-markable that TD learning is as su

essful as it is giventhat the learning is based solely on game-play feedba
kwith no human intervention. On the other hand, it isa triumph of human 
ognitive abilities that the humansolution to a 
ompli
ated optimization problem 
an in-deed be 
ompetitive with a 
omputer solution. The �nalresult, that the human-tuned solution and the TD-tunedsolution are roughly equivalent in performan
e, re
e
tswell on both man and ma
hine.6 Con
lusionsThere are two parts to an evaluation fun
tion: the fun
-tion terms and the weighting of these terms. This paperstrengthens the 
ase that TD learning provides an ef-fe
tive solution to the latter problem. Learned weights
an 
ompete with (and perhaps ex
eed) the performan
eof the best hand-tuned weights in a high-performan
egame-playing program.TD learning opens up new opportunities for improvinga program's abilities. For example, the program 
ouldhave a di�erent set of weights for ea
h opening, or fordi�erent 
lasses of positions. Di�erent weights 
ould beused based on the expe
ted depth of sear
h. In addi-tion, the program developer 
an experiment with newfeatures, and let the learning algorithm de
ide what isrelevant. None of this would be pra
ti
al if these weightshad to be tuned manually.



Original Weights Learned WeightsName 1 2 3 4 1 2 3 4Value of move 4 3 3 2 -2.30 -6.94 -2.48 0.46Free mobility 1 2 3 4 3.40 6.50 2.77 6.47Some mobility -4 -6 -8 -10 0.89 -4.62 -8.97 -6.08Re
apture mobility 3 3 3 3 -1.72 2.33 5.77 3.25No-move mobility -1 -1 -2 -4 -2.13 -4.45 -4.17 -1.30Ex
eption mobility 0 0 0 0 -0.47 0.89 5.56 2.47Double-
ap mobility -6 -6 -6 -6 -0.15 -1.45 -2.34 -1.08Balan
e 5 4 3 2 1.14 4.53 1.35 -0.86Advan
ement -1 0 0 0 3.59 -3.54 -0.39 -0.68Centrality 2 2 1 0 -1.91 8.44 1.25 -1.86Angle 1 1 0 0 0.79 3.26 3.24 3.23Ba
k row 4 3 3 2 1.93 8.75 11.77 6.28Shadow 3 2 1 0 0.74 4.05 1.23 -0.19Trapped king 32 32 32 32 -0.01 -0.02 0.90 0.73Loose 
he
ker 5 5 5 5 0.03 1.38 4.76 3.72King 
enter 3 3 3 3 -0.01 0.89 5.65 5.94D2E7 3 2 1 0 0.09 -0.06 0.22 0.57Free king 20 20 20 20 0.38 1.66 5.37 3.69Dog-hole 5 5 5 5 -0.08 0.16 1.66 0.89Loose men 15 15 15 15 0.25 1.88 5.33 5.56Frozen 10 10 10 10 0.00 0.05 -0.09 -0.12Table 1: Comparing weights.The dream of 
reating a games engine that 
an a
hievehigh performan
e for any board game is one step 
loserto reality. High-performan
e bla
k box sear
h enginesnow exist (e.g. [Brungger et al., 1999; Romein, 2000℄),as well as generi
 (medio
re performan
e) games engines(see www.zillionsofgames.
om). The last pie
e of thepuzzle, automati
ally dis
overing the features needed forthe evaluation fun
tion, remains elusive.7 A
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