
Searching with Uncertainty Cut-o�sYngvi Bjornsson, Tony Marsland,Jonathan Schae�er and Andreas JunghannsUniversity of AlbertaDepartment of Computing ScienceEdmonton, AlbertaCANADA T6G 2H1Email: fyngvi,tony,jonathan,andreasg@cs.ualberta.caAbstractA new domain-independent pruning method is described that guarantees return-ing a correct game value. Even though alpha-beta-based chess programs are alreadysearching close to the minimal tree, there is still scope for improvement. Our ideahinges on the recognition that the game tree has two types of node, those where cut-o�s occur and those that must be fully explored. In the latter case one of the movesis best and yields the subtree value, thus for the remaining alternatives one is simplyproving their inferiority. This o�ers an opportunity for pruning, while introducing somepotential for uncertainty in the search process. There are two cases of interest. Oneconsiders the immediate alternaitves to the Principal Variation itself, and here a safeuncertainty cut-o� is presented, the second is a proposal for an unsafe generalization,one which o�ers substatnial search reduction but with the potential for control of theerror probability. Experiments with the new pruning method show some potential forsavings in the search.1 IntroductionAlpha-beta is the fundamental algorithm used for searching game trees in chess and variousother two-person games. It is much more e�cient than a plain brute-force minimax searchbecause it allows a large portion of the search tree to be pruned o�, while still backing upthe correct minimax value. Forward pruning is a di�erent kind of pruning that does notguarantee that the correct game value is returned. Although forward pruning methods canachieve signi�cant search reduction, they involve some risk since it is always possible thatsome important move is overlooked and therefore a wrong move decision is made.In this paper, a new look at pruning is made. A common scenario in a search is thatexpectations change. Uncertainty in the search results in changes of the principal variation1

(PV). When this happens, some branches get explored that, with hindsight, didn't haveto. There is an opportunity here for savings. A new pruning technique, uncertainty cut-o�s, is applied at carefully selected places in the search tree and bookmarks are kept wherethe pruning is done, so that one can tell if a backed up value is a true game value or anuncertain value. Even if forward pruning is used in the search, it does not necessarily a�ectthe reliability of the game value at the root of the search tree. If the pruning is only done insub-trees that turn out to be of no relevance for proving the game value, a guaranteed valuecan be backed up to the root. The book-marks tell us whether the pruning applied in thetree is a�ecting the reliability of the game value, thus giving us the opportunity to correctit by re-searching the uncertain moves. Hopefully, the gains of applying the pruning willout-weigh the extra search overhead of occasional additional re-searches of uncertain values.In the next section we look at the minimal tree that must be searched to prove a value ofa game tree. This is followed by two sections that describe the uncertainty cut-o� pruningmethod, the idea and the implementation, respectively. Finally, some experimental resultsand our assessments are given.2 Searching the minimal treeTo �nd a value of a game tree, at least the so-called minimal tree must be searched [KM75].The nodes of the minimal tree can be categorized into three di�erent types based on theirproperties as shown in �gure 1. All moves have to be searched at PV- and ALL-nodes, butin perfectly ordered trees only one move need to be searched at CUT-nodes.
PV

PV

PV

PV

Cut Cut

Cut Cut All All

Cut Cut All All Cut Cut Cut Cut Cut CutFigure 1: Minimal (perfectly ordered) search tree.The performance of the alpha-beta algorithm is a�ected by the order in which nodesin the tree are searched. In the best case only the minimal tree is expanded. To achieveoptimal performance the best move must be expanded �rst at PV-nodes, but at CUT-nodesany move su�ciently good to cause a cut-o� can be searched �rst1. Because of the alpha-beta algorithm's sensitivity to the move ordering, it is important to expand good moves as1Because of a non-uniform branching factor, search extensions and various possible transpositions, thesub-trees generated by di�erent moves may vary considerably in size. In general, we would like to search �rst2

early as possible. Various heuristics to achieve a good move ordering have been developedin the past, such as saving the previous best move for a position in the transposition tableand the history-heuristic [Sch89]. By using these heuristics, empirical evidence shows thatin over 90% of the cases where a cut-o� occurs the cut-o� is indeed caused by the �rstmove [PSPdB96]. Enhanced alpha-beta algorithms like NegaScout [Rei83] and PVS [Mar83]that employ null window search, take advantage of the fact the moves are ordered such thatgood moves are more likely to be searched �rst. The algorithms have been shown, boththeoretically [RM87] and empirically [Sch89] to be more e�cient than plain alpha-beta.3 Uncertain cut-o�s - IdeaCurrent tree search algorithms equipped with various search enhancements are searchingquite e�ciently. But there is still some scope for improvement. Search overhead fromimperfect move ordering can be introduced in two ways:� at a CUT-node, the �rst move does not cause a cut-o�, or� at a PV-node, the �rst move is not the best.Both these cases occur when there is uncertainty in the search - previous expectations arechanging. In the �rst case additional moves must be searched until a move (if any) causes acut-o�. The sub-trees of the sibling nodes searched prior to the node that caused the cut-o�have been searched unnecessarily. In �gure 2 this search overhead is shown as the grayedsub-tree T1. In the second case, assuming null window search is used, if a new best moveis found it must be re-searched with a normal window. The search overhead here consistsprimarily of the initial null window search that failed high2. In �gure 2 we assume thatthe third move searched at the root (i.e. c) failed high; the null window search that wasperformed (the grayed sub-tree of c in �gure 2) is the search overhead and the sub-tree T2represents the necessary re-search. However, information stored in the transposition tableduring the null window search e�ciently guides the re-search, saving some move generationsand node expansions.At CUT-nodes it is most important that the move which causes the cut-o� be searchedas soon as possible. To improve the prospect of choosing a move that will cause a cut-o�, we make use of available move information (e.g. the transposition table entry and thehistory heuristic). However, while searching the sub-tree of this move we might, based onother information, start to believe that this move will not cause a cut-o�. The question thatwe are then faced with is whether to continue searching this sub-branch, or stop searchingit and start searching another candidate cut-o� move nearer the root of the tree. Similarlyat PV-nodes, when searching a child with a null window, where we believe the search willnot only a move that returns a value that is su�cient to cause a cut-o�, but also one that has the smallestsub-tree.2The search e�ciency is also somewhat degraded because prior sibling nodes have been searched with aninappropriate window. 3

T2

c’

1T

a b cFigure 2: Search overhead.fail high, we might choose to stop the search and start the re-search of the suspected newPV right away. This is the basic idea behind the pruning method introduced here. Insteadof having only the two scenarios (either expanding all children of a node or having a childcause a cut-o�) a third scenario is now also possible, where only some of a node's childrenare searched before we stop. This type of pruning shows some resemblance to the pruningdone in null-window search. The arti�cial upper bound of the null-window enables earlycut-o�s at ALL-nodes, whereas the uncertain cut-o�s cause early termination of CUT-nodesthat start to behave like ALL-nodes.To illustrate this idea in practice, let us look at the chess position in �gure 3. Here it is0Z0Z0ZkZZrZ0s0o0pZ0Z0o0oZpZ0O0Z00Z0ZNO0ZZ0O0Z0Z0PZ0Z0JPOS0Z0Z0Z0Figure 3: Example chess position.White's turn to move. The pawn on e5 is being threatened but White has several possiblecontinuations. Assume that White has already found a tentative principal variation and isnow thinking of 1:e6 as an alternative move. Black's obvious reply 1::::R�e6 fails to 2:Nc5,putting a fork on both of Black's rooks. That was, however, outside the search horizon of theprevious search iteration, so the search expands the move 1::::R�e6 �rst and White responds4

with 2:Nc5 (not necessarily the �rst move considered). In the resulting position Black is facedwith the problem of saving the exchange. Black has over 25 legal moves but all of them fail toprevent White from winning the exchange. Instead of exhaustively searching all the possiblelegal moves, we can abandon the others after only a few have been examined, and start tolook at alternative to 1::::R�e6. A better move is easily found (e.g. 1::::f5) and, assumingthe new move leads to a cut-o�, then we save considerable search e�ort, but still return thesame game value. The savings arise because the sequence e6; R�e6;Nc5; "anything" lookslike a new PV. Rather than exploring all the alternatives for "anything" we assume that anew PV is indeed emerging and so retreat up the tree, using the current "uncertain value"as a bound, in the search of alternatives to R�e6, where we quickly refute the candidate PVwith f5.4 Uncertainty cut-o�s - AlgorithmTwo fundamental questions must be addressed when implementing the above pruning method;how to guarantee that a correct game value is returned, and how to make decisions aboutwhen to apply the pruning method. These questions will now be addressed.Let us assume that the pruning method described above is applied in the sub-tree T1 in�gure 2, such that the value backed up to the root of T1 is not guaranteed to be the correctgame value, i.e. the value is uncertain. The specially interesting case occurs when the valuereturned by T1 does not cause a cut-o�, but another child of b does. In that case the sub-treeT1 is not a part of the minimal tree and any pruning made in there will not a�ect the gamescore in any way. The value returned by b will be the value returned by the move that causedthe cut-o�. Given that this value was not uncertain, then neither will the value returned byb. However, in cases where b fails low the value returned by b will be uncertain if any of itschildren's values are uncertain. If an uncertain value is backed up all the way to a PV-node,that node is re-searched. By keeping track of how uncertain values back up the tree, we knowif the returned value is guaranteed to be the correct game value or not. Figure 4 shows theNegaScout algorithm with the uncertainty cut-o�s code highlighted in bold-faced. Note alsothat we must be careful to mark uncertain nodes when inserting them into the transpositiontable, so that their re-use is restricted to suggesting the best move, and not to adjusting thesearch bounds or the search value.The other fundamental question is where and when to apply the pruning heuristic. Wecannot blindly apply the pruning everywhere in the tree, because this would result in frequentre-searching of uncertain nodes, resulting in the search overhead of the re-searches exceedingthe gains of the pruning. Basically, we would like to prune only in sub-trees that are notlikely to become a part of the minimal tree. What is needed is a good criteria for identifyingthese sub-trees. Typically what happens is that when we are searching on a path that is o�the minimal tree, the characteristics of the search tree shape are di�erent. Nodes that weexpect to be CUT-nodes start to behave like ALL-nodes and vice verse. This can be seenin �gure 2. For move c to fail high (and therefore is no longer a part of the minimal treebecause of the re-search) it must be true that all children of c are searched and fail low.5

int NS(int depth, int alpha, int beta)f uncertain[depth] = FALSE;if (depth == max depth)return (Evaluate());if (GetTT(&tt)) fif (tt.height+depth >= max depth&& !tt.uncertain) f// Return score or update alpha/beta boundsgbest move = tt.best move;gelse NextMove(&best move);MakeMove(best move);best = -NS(depth+1, -beta, -alpha);UnmakeMove();uncertain[depth] = uncertain[depth+1];while ((best < beta) && NextMove(&move)) fif (UncertaintyCuto�(depth, best)) funcertain[depth] = TRUE;break;gMakeMove(move);alpha = MAX(alpha, best);score = -NS(depth+1, -(alpha+1), -alpha);if ((score > alpha) && (score < beta))score = -NS(depth+1, -beta, -alpha);if (score > best) fbest = score;best move = move;gUnmakeMove();if (best < beta)uncertain[depth] = uncertain[depth] k uncertain[depth+1];elseuncertain[depth] = uncertain[depth+1];gPutTT(best move, best, max depth-depth, uncertain[depth]);return (best);g Figure 4: Uncertainty cut-o� pruning.Because of the move ordering, the moves that are most likely to cause a cut-o� are searched�rst, but if none of the promising cut-o� candidate moves causes a cut-o� we have a goodreason to believe that the rest of the moves will also fail to do so. Therefore, after searchingonly some of the possible moves at c we may decide not to search the rest, i.e. we make anuncertainty cut-o�, and return right away. This will cause node c to be re-searched. Thecriteria used here to decide when to apply the pruning is as follows: if during a null-windowsearch, a node that is expected to be a CUT-node does not cause a cut-o� after searchingn-moves, then the rest of the moves are ignored. The number of moves to look at in eachposition, n, can be determinated in various ways, for example a �xed percent of legal movescould be searched. But some more dynamic measure might be better.6

int UncertaintyCuto�(int depth, int best)f // This function assumes the existence of a global structure// SearchInfo[MAX DEPTH] that stores various information about// the current search path.int move limit = SearchInfo[depth].no moves * CUT RATIO;if ((depth > 0)&& (SearchInfo[depth].move no > move limit)&& (SearchInfo[depth].type == CUT NODE)&& (SearchInfo[depth-1].type == PV NODE)&& (-best > SearchInfo[depth-1].alpha)&& (-best < SearchInfo[depth-1].beta))f // also check if a non-capture movereturn (TRUE);greturn (FALSE);g Figure 5: Pruning decision.5 Experimental ResultsThe new pruning method was implemented in The Turk3, an experimental chess program.The program's search engine uses the NegaScout algorithm and also includes most searchenhancements found in contemporary chess programs, such as search extensions, quiescence-search and a transpositions table. The move ordering scheme generates capture moves �rst(most valuable piece captures generated �rst), and the history heuristic is used to sort theremaining moves. The best move previously found in a position is stored in the transpositiontable and searched �rst where applicable.The chess program, both with and without the new pruning technique, was tried on theBratko-Kopec test. A normal 5-ply search is done, but with search extensions. Uncertaintycut-o�s are only done at expected CUT-nodes. At such nodes a �xed percent of the legalmoves are searched with the proviso that all capture moves are always searched. In thecurrent experiment the pruning was further limited to CUT-nodes that are children of PV-nodes, and pruning is done if and only if the value returned would result in the node beingre-searched4. The coding of the pruning constraints is shown in �gure 5. The functionassumes the existence of a global structure SearchInfo that stores information about thepath being explored. The possible savings here correspond to minimizing the second type ofsearch overhead described earlier, i.e. stopping a null-window search when we expect it to3The Turk was developed at the University of Alberta by Yngvi Bjornsson and Andreas Junghanns.4Note that because of how restricted these particular cut-o� constraints are there is indeed no need toback up uncertainty information. This is because the pruning is only applied if it is guaranteed that thesub-branch will be re-searched. The value, even though being uncertain, will therefore always be corrected inthe re-search before propagating further up the tree. This is however a special case, in general the uncertaininformation must be kept. 7

fail-high anyway. 10% 30% 50% 10% 30% 50%1 89 91 87 13 103 104 1022 106 100 101 14 92 94 943 108 99 98 15 101 111 1004 97 98 98 16 98 96 965 103 101 99 17 100 100 1006 100 90 88 18 105 104 977 101 100 100 19 102 100 1008 102 100 100 20 113 99 999 105 100 100 21 100 99 9910 104 100 100 22 117 104 9411 96 89 88 23 108 100 8612 101 100 100 24 101 99 99Total % 104 100 97Avg. % 102 99 97Table 1: Percentages of nodes searched.Table 1 shows the result of the experiment by displaying the percentage of nodes searchedwith the program using the new pruning method compared to the same program withoutthe pruning. The total savings are shown both as a percentage of nodes searched in total,as well as the average percent saving over all the positions. The average number might bemore representative because the search e�ort di�ers widely from one position to another.As can been seen from the table, when we apply the pruning aggressively{cutting-o� aftersearching only 10% of legal moves{the total number of nodes searched is bigger than nodesseen without the pruning. This is because we are making too many wrong pruning decisions.However, by searching a larger percentage of the nodes we get some savings. When searching50% of the moves at CUT-nodes the total saving in number of nodes searched is about 3%,and for some of the positions the savings are considerable (between 10-15%). It is interestingto note that only in a few cases does the pruning cause more nodes to be searched, and thenonly marginally. The savings did not improve further when searching over 50% of the legalmoves and tapers to zero as a larger move percentile is searched. Even though the datahere are presented as savings in nodes searched, the run time overhead with the method isnegligible so the search time results are in the same ratio.The above experiment only applies to a limited case of the more general pruning mecha-nism described. Some preliminary experiments have been run where we allow pruning at allCUT-nodes. Even though there is more potential for savings, the pruning decisions are alsomore prone to error. The experiments indicate that a more sophisticated scheme is needed.The history heuristic does a good job in getting the few good moves at the head of the8

move-list, but for the most part it does not give very good ordering for the remaining moves.A criteria, possibly based on additional domain knowledge, is needed to classify/order thesemoves better, such that moves with little or no potential are considered last.In \stable" positions where PV-changes only occur infrequently there is little bene�t inusing the uncertainty cut-o�. However, in highly dynamic positions where the search is moreuncertain, big savings are possible. These positions are often the most critical ones in thegame, so savings there are especially bene�cial.6 Extending the PruningAnother interesting application of this method, only brie
y addressed here, is to acceptuncertain values at the root and make move decision based on them. Given some certaintymeasurement of the returned game value, e.g. bound on the error or some probability of thevalue being correct, one might decide to make a move at the root even though it has notbeen proven to be absolutely the best one. The time saved by doing the pruning can be usedto search deeper and therefore, hopefully, increasing the overall accuracy of the search.In the above experiments the pruning was only applied in very restricted cases, i.e. insub-branches that we truly expected not to be a part of the minimal tree. Obviously thislimits the possible bene�ts of the pruning because existing algorithms are already searchingquite close to the minimal tree. Another possibility is to apply the pruning more widelyin the search tree, even though it means that an uncertain value may be backup up to theroot. For example, at ALL-nodes we might decide to exclude from the search moves thatwe believe are of no relevance whatsoever. The move ordering makes it more likely thatthe best move is searched early on, so we could partially base the decision on how manymoves have been searched in the position. In �gure 6 we see a distribution of where in themove-list the best move is on average at ALL-nodes. The data is based on 5-ply searcheson the Bratko-Kopec test using The Turk5. As can been seen, there is a high probabilitythat the best move is early in the move-list. However, because of the risk involved, a morecomplex domain-dependent pruning mechanism is likely necessary to decide where and whento prune. Instead of maintaining a Boolean variable indicating if a game value is uncertainor not, a probability-based value could be maintained that is associated with the certaintyof the returned value.7 ConclusionsPreliminary experiments indicate that this pruning technique can improve search e�ciency.Even though the savings are small, the experiments still show some potential for the method.Because move ordering in chess programs is already very good, this technique does not makemuch di�erence in most cases, but it can signi�cantly decrease the search e�ort when our5ALL-nodes with less than 10 legal possible moves were not included in the data.9

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

fre
qu

en
cy

 o
f b

es
t m

ov
e(

%
)

location of the best move in the movelist (%)Figure 6: Distribution of the best move location at ALL-nodes.move ordering heuristic fails. Also program run-time overhead of embedding this pruningmethod is negligible, so the savings come almost at no cost. In the experiments a verysimplistic cut-o� criteria was used. There is still room for improvement:� Instead of cutting after searching �xed % of legal moves, this parameter could vary fromplace to place in the tree, based on both various positional features and informationabout the search tree.� Use an improved move ordering scheme that sorts moves with little potential to theend of the list.� Extend this pruning method to prune also at ALL-nodes, allowing for uncertain valuesto back up all the way up to the root. This allows for much greater node savings atthe cost of risking the game value.Further experiments are needed to reach a �nal verdict. The experiments here are only the�rst step in exploiting the potential of this pruning method. The improvements mentionedabove will be tried, and the idea tested in other two-person games.References[KM75] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Arti�cialIntelligence, 6(4):293{326, 1975.[Mar83] T. A. Marsland. Relative e�ciency of alpha-beta implementations. In Proceedings ofthe International Joint Conference on Arti�cial Intelligence (IJCAI-83), pages 763{766, Karlsruhe, Germany, August 1983.[PSPdB96] Aske Plaat, Jonathan Schae�er, Wim Pijls, and Arie de Bruin. Exploiting graphproperties of a state space. In AAAI, 1996. To appear.10

[Rei83] A. Reinefeld. An improvement of the Scout tree search algorithm. ICCA Journal,6(4):4{14, 1983.[RM87] Alexander Reinefeld and T.A. Marsland. A quantitative analysis of minimal windowsearch. In Proceedings of the International Joint Conference on Arti�cial Intelligence(IJCAI-87), pages 951{953, 1987.[Sch89] Jonathan Schae�er. The history heuristic and alpha-beta search enhancements in prac-tice. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1):1203{1212, 1989.

11

