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Abstract

A new domain-independent pruning method is described that guarantees return-
ing a correct game value. Even though alpha-beta-based chess programs are already
searching close to the minimal tree, there is still scope for improvement. Our idea
hinges on the recognition that the game tree has two types of node, those where cut-
offs occur and those that must be fully explored. In the latter case one of the moves
is best and yields the subtree value, thus for the remaining alternatives one is simply
proving their inferiority. This offers an opportunity for pruning, while introducing some
potential for uncertainty in the search process. There are two cases of interest. One
considers the immediate alternaitves to the Principal Variation itself, and here a safe
uncertainty cut-off is presented, the second is a proposal for an unsafe generalization,
one which offers substatnial search reduction but with the potential for control of the
error probability. Experiments with the new pruning method show some potential for
savings in the search.

1 Introduction

Alpha-beta is the fundamental algorithm used for searching game trees in chess and various
other two-person games. It is much more efficient than a plain brute-force minimax search
because it allows a large portion of the search tree to be pruned off, while still backing up
the correct minimax value. Forward pruning is a different kind of pruning that does not
guarantee that the correct game value is returned. Although forward pruning methods can
achieve significant search reduction, they involve some risk since it is always possible that
some important move is overlooked and therefore a wrong move decision is made.

In this paper, a new look at pruning is made. A common scenario in a search is that
expectations change. Uncertainty in the search results in changes of the principal variation



(PV). When this happens, some branches get explored that, with hindsight, didn’t have
to. There is an opportunity here for savings. A new pruning technique, uncertainty cut-
offs, is applied at carefully selected places in the search tree and bookmarks are kept where
the pruning is done, so that one can tell if a backed up value is a true game value or an
uncertain value. Even if forward pruning is used in the search, it does not necessarily affect
the reliability of the game value at the root of the search tree. If the pruning is only done in
sub-trees that turn out to be of no relevance for proving the game value, a guaranteed value
can be backed up to the root. The book-marks tell us whether the pruning applied in the
tree is affecting the reliability of the game value, thus giving us the opportunity to correct
it by re-searching the uncertain moves. Hopefully, the gains of applying the pruning will
out-weigh the extra search overhead of occasional additional re-searches of uncertain values.

In the next section we look at the minimal tree that must be searched to prove a value of
a game tree. This is followed by two sections that describe the uncertainty cut-off pruning
method, the idea and the implementation, respectively. Finally, some experimental results
and our assessments are given.

2 Searching the minimal tree

To find a value of a game tree, at least the so-called minimal tree must be searched [KMT75].
The nodes of the minimal tree can be categorized into three different types based on their
properties as shown in figure 1. All moves have to be searched at PV- and ALL-nodes, but
in perfectly ordered trees only one move need to be searched at CUT-nodes.

Figure 1: Minimal (perfectly ordered) search tree.

The performance of the alpha-beta algorithm is affected by the order in which nodes
in the tree are searched. In the best case only the minimal tree is expanded. To achieve
optimal performance the best move must be expanded first at PV-nodes, but at CUT-nodes
any move sufficiently good to cause a cut-off can be searched first'. Because of the alpha-
beta algorithm’s sensitivity to the move ordering, it is important to expand good moves as

!Because of a non-uniform branching factor, search extensions and various possible transpositions, the
sub-trees generated by different moves may vary considerably in size. In general, we would like to search first



early as possible. Various heuristics to achieve a good move ordering have been developed
in the past, such as saving the previous best move for a position in the transposition table
and the history-heuristic [Sch89]. By using these heuristics, empirical evidence shows that
in over 90% of the cases where a cut-off occurs the cut-off is indeed caused by the first
move [PSPdBY6]. Enhanced alpha-beta algorithms like NegaScout [Rei83] and PVS [Mar83]
that employ null window search, take advantage of the fact the moves are ordered such that
good moves are more likely to be searched first. The algorithms have been shown, both
theoretically [RM87] and empirically [Sch89] to be more efficient than plain alpha-beta.

3 Uncertain cut-offs - Idea

Current tree search algorithms equipped with various search enhancements are searching
quite efficiently. But there is still some scope for improvement. Search overhead from
imperfect move ordering can be introduced in two ways:

o at a CUT-node, the first move does not cause a cut-off, or
o at a PV-node, the first move is not the best.

Both these cases occur when there is uncertainty in the search - previous expectations are
changing. In the first case additional moves must be searched until a move (if any) causes a
cut-off. The sub-trees of the sibling nodes searched prior to the node that caused the cut-off
have been searched unnecessarily. In figure 2 this search overhead is shown as the grayed
sub-tree T}. In the second case, assuming null window search is used, if a new best move
is found it must be re-searched with a normal window. The search overhead here consists
primarily of the initial null window search that failed high?. In figure 2 we assume that
the third move searched at the root (i.e. ¢) failed high; the null window search that was
performed (the grayed sub-tree of ¢ in figure 2) is the search overhead and the sub-tree T,
represents the necessary re-search. However, information stored in the transposition table
during the null window search efficiently guides the re-search, saving some move generations
and node expansions.

At CUT-nodes it is most important that the move which causes the cut-off be searched
as soon as possible. To improve the prospect of choosing a move that will cause a cut-
off, we make use of available move information (e.g. the transposition table entry and the
history heuristic). However, while searching the sub-tree of this move we might, based on
other information, start to believe that this move will not cause a cut-off. The question that
we are then faced with is whether to continue searching this sub-branch, or stop searching
it and start searching another candidate cut-off move nearer the root of the tree. Similarly
at PV-nodes, when searching a child with a null window, where we believe the search will

not only a move that returns a value that is sufficient to cause a cut-off, but also one that has the smallest
sub-tree.

?The search efficiency is also somewhat degraded because prior sibling nodes have been searched with an
inappropriate window.



Figure 2: Search overhead.

fail high, we might choose to stop the search and start the re-search of the suspected new
PV right away. This is the basic idea behind the pruning method introduced here. Instead
of having only the two scenarios (either expanding all children of a node or having a child
cause a cut-off) a third scenario is now also possible, where only some of a node’s children
are searched before we stop. This type of pruning shows some resemblance to the pruning
done in null-window search. The artificial upper bound of the null-window enables early
cut-offs at ALL-nodes, whereas the uncertain cut-offs cause early termination of CUT-nodes
that start to behave like ALL-nodes.

To illustrate this idea in practice, let us look at the chess position in figure 3. Here it is

o

Figure 3: Example chess position.

White’s turn to move. The pawn on €5 is being threatened but White has several possible
continuations. Assume that White has already found a tentative principal variation and is
now thinking of 1.e6 as an alternative move. Black’s obvious reply 1.... Rxe6 fails to 2. N5,
putting a fork on both of Black’s rooks. That was, however, outside the search horizon of the
previous search iteration, so the search expands the move 1.... Rxe6 first and White responds



with 2. N¢5 (not necessarily the first move considered). In the resulting position Black is faced
with the problem of saving the exchange. Black has over 25 legal moves but all of them fail to
prevent White from winning the exchange. Instead of exhaustively searching all the possible
legal moves, we can abandon the others after only a few have been examined, and start to
look at alternative to 1....Rxe6. A better move is easily found (e.g. 1....f5) and, assuming
the new move leads to a cut-off, then we save considerable search effort, but still return the
same game value. The savings arise because the sequence €6, Rxe6; Nc5,”anything” looks
like a new PV. Rather than exploring all the alternatives for "anything” we assume that a
new PV is indeed emerging and so retreat up the tree, using the current "uncertain value”
as a bound, in the search of alternatives to Rxe6, where we quickly refute the candidate PV

with f5.

4 Uncertainty cut-offs - Algorithm

Two fundamental questions must be addressed when implementing the above pruning method;
how to guarantee that a correct game value is returned, and how to make decisions about
when to apply the pruning method. These questions will now be addressed.

Let us assume that the pruning method described above is applied in the sub-tree T} in
figure 2, such that the value backed up to the root of T} is not guaranteed to be the correct
game value, i.e. the value is uncertain. The specially interesting case occurs when the value
returned by T} does not cause a cut-off, but another child of b does. In that case the sub-tree
T} is not a part of the minimal tree and any pruning made in there will not affect the game
score in any way. The value returned by b will be the value returned by the move that caused
the cut-off. Given that this value was not uncertain, then neither will the value returned by
b. However, in cases where b fails low the value returned by 6 will be uncertain if any of its
children’s values are uncertain. If an uncertain value is backed up all the way to a PV-node,
that node is re-searched. By keeping track of how uncertain values back up the tree, we know
if the returned value is guaranteed to be the correct game value or not. Figure 4 shows the
NegaScout algorithm with the uncertainty cut-offs code highlighted in bold-faced. Note also
that we must be careful to mark uncertain nodes when inserting them into the transposition
table, so that their re-use is restricted to suggesting the best move, and not to adjusting the
search bounds or the search value.

The other fundamental question is where and when to apply the pruning heuristic. We
cannot blindly apply the pruning everywhere in the tree, because this would result in frequent
re-searching of uncertain nodes, resulting in the search overhead of the re-searches exceeding
the gains of the pruning. Basically, we would like to prune only in sub-trees that are not
likely to become a part of the minimal tree. What is needed is a good criteria for identifying
these sub-trees. Typically what happens is that when we are searching on a path that is off
the minimal tree, the characteristics of the search tree shape are different. Nodes that we
expect to be CUT-nodes start to behave like ALL-nodes and vice verse. This can be seen
in figure 2. For move ¢ to fail high (and therefore is no longer a part of the minimal tree
because of the re-search) it must be true that all children of ¢ are searched and fail low.

5



int NS( int depth, int alpha, int beta )
{
uncertain[depth] = FALSE;
if ( depth == max_depth )
return ( Evaluate() );

if ( GetTT(&tt) ) {
if ( tt.height+depth >= max_depth && !tt.uncertain ) {
// Return score or update alpha/beta bounds
¥

best_move = tt.best_move;
else NextMove(&best_move);

MakeMove( best_move );

best = -NS( depth+1, -beta, -alpha );
UnmakeMove();

uncertain[depth] = uncertain[depth+1];

while ( (best < beta) && NextMove(&move) ) {
if ( UncertaintyCutoff( depth, best ) ) {
uncertain[depth] = TRUE;
break;

3
MakeMove( move );

alpha = MAX( alpha, best );
score = -NS( depth+1, -(alpha+1), -alpha );
if ( (score > alpha) && (score < beta) )
score = -NS( depth+1, -beta, -alpha );
if ( score > best ) {
best = score;
best_move = move;

}
UnmakeMove();

if ( best < beta )

uncertain[depth] = uncertain[depth] || uncertain[depth+1];
else

uncertain[depth] = uncertain[depth+1];

}

PutTT( best_move, best, max_depth-depth, uncertain[depth] );
return ( best );

¥
Figure 4: Uncertainty cut-off pruning.

Because of the move ordering, the moves that are most likely to cause a cut-off are searched
first, but if none of the promising cut-off candidate moves causes a cut-off we have a good
reason to believe that the rest of the moves will also fail to do so. Therefore, after searching
only some of the possible moves at ¢ we may decide not to search the rest, i.e. we make an
uncertainty cut-off, and return right away. This will cause node ¢ to be re-searched. The
criteria used here to decide when to apply the pruning is as follows: if during a null-window
search, a node that is expected to be a CUT-node does not cause a cut-off after searching
n-moves, then the rest of the moves are ignored. The number of moves to look at in each
position, n, can be determinated in various ways, for example a fixed percent of legal moves
could be searched. But some more dynamic measure might be better.



int Uncertainty Cutoff( int depth, int best )

{

// This function assumes the existence of a global structure
// SearchInfo[MAX DEPTH] that stores various information about
// the current search path.

int movelimit = SearchInfo[depth].nomoves * CUT_RATIO;

if ( (depth > 0)
&& ( SearchInfo[depth].movemno > movelimit )

&¢& ( SearchInfo[depth].type == CUT_NODE )
&& ( SearchInfo[depth-1].type == PV_NODE )
&& ( -best > SearchInfo[depth-1].alpha )
&& ( -best < SearchInfo[depth-1].beta ) )

{
// also check if a non-capture move
return ( TRUE );

}

return ( FALSE );

}

Figure 5: Pruning decision.

5 Experimental Results

The new pruning method was implemented in The Turk®, an experimental chess program.
The program’s search engine uses the NegaScout algorithm and also includes most search
enhancements found in contemporary chess programs, such as search extensions, quiescence-
search and a transpositions table. The move ordering scheme generates capture moves first
(most valuable piece captures generated first), and the history heuristic is used to sort the
remaining moves. The best move previously found in a position is stored in the transposition
table and searched first where applicable.

The chess program, both with and without the new pruning technique, was tried on the
Bratko-Kopec test. A normal 5-ply search is done, but with search extensions. Uncertainty
cut-offs are only done at expected CUT-nodes. At such nodes a fixed percent of the legal
moves are searched with the proviso that all capture moves are always searched. In the
current experiment the pruning was further limited to CUT-nodes that are children of PV-
nodes, and pruning is done if and only if the value returned would result in the node being
re-searched*. The coding of the pruning constraints is shown in figure 5. The function
assumes the existence of a global structure Searchinfo that stores information about the
path being explored. The possible savings here correspond to minimizing the second type of
search overhead described earlier, i.e. stopping a null-window search when we expect it to

3The Turk was developed at the University of Alberta by Yngvi Bjornsson and Andreas Junghanns.

4Note that because of how restricted these particular cut-off constraints are there is indeed no need to
back up uncertainty information. This is because the pruning is only applied if it is guaranteed that the
sub-branch will be re-searched. The value, even though being uncertain, will therefore always be corrected in
the re-search before propagating further up the tree. This is however a special case, in general the uncertain
information must be kept.



fail-high anyway.

10% [ 30% | 50% 10% [ 30% | 50%

1| 89| o1 87 13 ] 103 104 102

2| 106 | 100 | 101 4] 92| 94| 94

3] 108 | 99| 98 15| 101 | 111 | 100

4 97| 98| 98 16| 93| 96| 96

5| 103 | 101| 99 17 | 100 | 100 | 100

6| 100 | 90| 88 18| 105 | 104 | 97

7| 101 | 100 | 100 19 | 102 | 100 | 100

8| 102 | 100 | 100 20| 113| 99| 99

9| 105 | 100 | 100 21| 100| 99| 99

10 | 104 | 100 | 100 22 | 117 | 104 | o4
11| 96| 89| 88 23| 108 | 100 | 86
12 | 101 | 100 | 100 24| 101 | 99| 99
Total % | 104 | 100 | 97

Ave. % | 102 ] 99| 97

Table 1: Percentages of nodes searched.

Table 1 shows the result of the experiment by displaying the percentage of nodes searched
with the program using the new pruning method compared to the same program without
the pruning. The total savings are shown both as a percentage of nodes searched in total,
as well as the average percent saving over all the positions. The average number might be
more representative because the search effort differs widely from one position to another.
As can been seen from the table, when we apply the pruning aggressively—cutting-off after
searching only 10% of legal moves—the total number of nodes searched is bigger than nodes
seen without the pruning. This is because we are making too many wrong pruning decisions.
However, by searching a larger percentage of the nodes we get some savings. When searching
50% of the moves at CUT-nodes the total saving in number of nodes searched is about 3%,
and for some of the positions the savings are considerable (between 10-15%). It is interesting
to note that only in a few cases does the pruning cause more nodes to be searched, and then
only marginally. The savings did not improve further when searching over 50% of the legal
moves and tapers to zero as a larger move percentile is searched. Even though the data
here are presented as savings in nodes searched, the run time overhead with the method is
negligible so the search time results are in the same ratio.

The above experiment only applies to a limited case of the more general pruning mecha-
nism described. Some preliminary experiments have been run where we allow pruning at all
CUT-nodes. Even though there is more potential for savings, the pruning decisions are also
more prone to error. The experiments indicate that a more sophisticated scheme is needed.
The history heuristic does a good job in getting the few good moves at the head of the



move-list, but for the most part it does not give very good ordering for the remaining moves.
A criteria, possibly based on additional domain knowledge, is needed to classify /order these
moves better, such that moves with little or no potential are considered last.

In “stable” positions where PV-changes only occur infrequently there is little benefit in
using the uncertainty cut-off. However, in highly dynamic positions where the search is more
uncertain, big savings are possible. These positions are often the most critical ones in the
game, so savings there are especially beneficial.

6 Extending the Pruning

Another interesting application of this method, only briefly addressed here, is to accept
uncertain values at the root and make move decision based on them. Given some certainty
measurement of the returned game value, e.g. bound on the error or some probability of the
value being correct, one might decide to make a move at the root even though it has not
been proven to be absolutely the best one. The time saved by doing the pruning can be used
to search deeper and therefore, hopefully, increasing the overall accuracy of the search.

In the above experiments the pruning was only applied in very restricted cases, i.e. in
sub-branches that we truly expected not to be a part of the minimal tree. Obviously this
limits the possible benefits of the pruning because existing algorithms are already searching
quite close to the minimal tree. Another possibility is to apply the pruning more widely
in the search tree, even though it means that an uncertain value may be backup up to the
root. For example, at ALL-nodes we might decide to exclude from the search moves that
we believe are of no relevance whatsoever. The move ordering makes it more likely that
the best move is searched early on, so we could partially base the decision on how many
moves have been searched in the position. In figure 6 we see a distribution of where in the
move-list the best move is on average at ALL-nodes. The data is based on 5-ply searches
on the Bratko-Kopec test using The Turk’. As can been seen, there is a high probability
that the best move is early in the move-list. However, because of the risk involved, a more
complex domain-dependent pruning mechanism is likely necessary to decide where and when
to prune. Instead of maintaining a Boolean variable indicating if a game value is uncertain
or not, a probability-based value could be maintained that is associated with the certainty
of the returned value.

7 Conclusions

Preliminary experiments indicate that this pruning technique can improve search efficiency.
Even though the savings are small, the experiments still show some potential for the method.
Because move ordering in chess programs is already very good, this technique does not make
much difference in most cases, but it can significantly decrease the search effort when our

®ALL-nodes with less than 10 legal possible moves were not included in the data.



50

45 | -

40 | -

35 —

30 I —

25 —

20 —

frequency of best move(%)

15 | —

10 | —
5 -
o : T

o 5 10 15 20 25 30 35 40 45 50 5! 60 65 70 75 80 85 90 95 100
location of the best move in the movelist (%)

Figure 6: Distribution of the best move location at ALL-nodes.

move ordering heuristic fails. Also program run-time overhead of embedding this pruning
method is negligible, so the savings come almost at no cost. In the experiments a very
simplistic cut-off criteria was used. There is still room for improvement:

o Instead of cutting after searching fixed % of legal moves, this parameter could vary from
place to place in the tree, based on both various positional features and information
about the search tree.

e Use an improved move ordering scheme that sorts moves with little potential to the
end of the list.

e Extend this pruning method to prune also at ALL-nodes, allowing for uncertain values
to back up all the way up to the root. This allows for much greater node savings at
the cost of risking the game value.

Further experiments are needed to reach a final verdict. The experiments here are only the
first step in exploiting the potential of this pruning method. The improvements mentioned
above will be tried, and the idea tested in other two-person games.
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