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t. The seminal works of Nilsson and Pearl in the 1970's andearly 1980's provide a formal basis for splitting the �eld of heuristi
sear
h into two sub�elds: single- and two-agent sear
h. The sub�elds arestudied in relative isolation from ea
h other; ea
h having its own dis-tin
t 
hara
ter. Despite the separation, a 
lose inspe
tion of the resear
hshows that the two areas have a
tually been 
onverging. This paper ar-gues that the single/two-agent distin
tion is not the essen
e of heuristi
sear
h anymore. The state spa
e is 
hara
terized by a number of keyproperties that are de�ned by the appli
ation; single- versus two-agentis just one of many. Both sub�elds have developed many sear
h enhan
e-ments; they are shown to be surprisingly similar and general. Given theirimportan
e for 
reating high performan
e sear
h appli
ations, it is theseenhan
ements that form the essen
e of our �eld. Fo
using on their gen-erality emphasizes the opportunity for reuse of the enhan
ements, allowsthe �eld of heuristi
 sear
h to be rede�ned as a single uni�ed �eld, andpoints the way towards a modern theory of sear
h based on the taxonomyproposed here.1 Introdu
tionHeuristi
 sear
h is one of the oldest �elds in arti�
ial intelligen
e. Nilsson andPearl [20, 21℄ wrote the 
lassi
 introdu
tions to the �eld. In these works (andothers) sear
h algorithms are typi
ally 
lassi�ed by the kind of problem spa
ethey explore. Two 
lasses of problem spa
es are identi�ed: state spa
es andproblem redu
tion spa
es. Many problems 
an be 
onveniently represented as astate spa
e; these are typi
ally problems that seek a path from the root to thegoal state. Other problems are a more natural �t for problem redu
tion spa
es,typi
ally problems whose solution is a strategy. Sometimes both representations



are viable options. Problem redu
tion spa
es are AND/OR graphs; AO* is thebest-known framework for 
reating sear
h algorithms for this 
lass of problems[2, 20℄. State spa
es are OR graphs; the A* algorithm 
an optimally solve this
lass of problems [10℄. Note that a state spa
e (OR graph) is te
hni
ally just aspe
ial 
ase of a problem redu
tion spa
e (AND/OR graph).Sin
e their in
eption, the notions of OR graphs and AND/OR graphs havefound widespread use in arti�
ial intelligen
e and operations resear
h. Both areashave a
tive resear
h 
ommunities whi
h 
ontinue to evolve and re�ne new sear
halgorithms and enhan
ements. Of the two representations, the state spa
e rep-resentation has proven to be the more popular. It appears that many real-worldproblem solving tasks 
an be modeled naturally as OR graphs. Well-known ex-amples in
lude the shortest path problems, sliding-tile puzzles, and NP-
ompleteproblems.One appli
ation domain that �ts the AND/OR graph model better is two-agent (two-player) games su
h as 
hess. In these games, one player 
hooses movesto maximize a payo� fun
tion (the 
han
e to win) while the opponent 
hoosesmoves to minimize it. Thus, the AND/OR graphs be
ome MIN/MAX graphs,and the algorithms to sear
h these spa
es are known as minimax algorithms.Curiously, it appears that two-player games are the only appli
ations for whi
hAND/OR algorithms have found widespread use. To 
ontrast A*-like OR graphalgorithms with two-player minimax algorithms, they are often referred to assingle-agent (or one-player) sear
h algorithms.With the advent of Nilsson's AND/OR framework, two-agent sear
h hasbeen given a �rm pla
e within the larger �eld of heuristi
 sear
h. Sin
e AND/ORgraphs subsume OR graphs, there is a satisfying 
on
eptual uni�
ation of the twosub�elds. However, the impa
t of this uni�ed view on the pra
ti
e of resear
h intoheuristi
 sear
h methods has been minor. The two sub�elds have 
ontinued todevelop in parallel, with little intera
tion between them. One reason for the la
kof 
oheren
e between the two 
ommunities 
ould be the di�eren
e in obje
tives:a 
ase 
an be made that winning 
hess tournaments requires a di�erent mindset than optimizing industrial problems to in
rease revenue.This arti
le has the following 
ontributions: to our understanding of heuristi
sear
h:{ Single-agent and two-agent sear
h algorithms both traverse sear
h graphs.The di�eren
e between the two algorithms is not in the graph, but in thesemanti
s imposed by the appli
ation. Mu
h of the resear
h done in single-and two-agent sear
h does not depend on the sear
h algorithm, but on thesear
h spa
e properties.{ Nilsson's [20℄ and Pearl's [21℄ di
hotomy|the OR versus AND/OR 
hoi
e|is misleading. Heuristi
 sear
h 
onsists of identifying properties of the sear
hspa
e and implementing a number of sear
h te
hniques that make e�e
tiveuse of these properties. There are many su
h properties, and the 
hoi
e ofba
kup rule (minimaxing in two-agent sear
h; minimization in single-agentsear
h) is but one. The impli
ation of Nilsson's and Pearl's model is that the
hoi
e of ba
kup rule is in some way fundamental; it is not. This paper argues



for viewing heuristi
 sear
h as the pro
ess in whi
h properties of a sear
hspa
e are spe
i�ed. On
e that has been done, the relevant sear
h te
hniques(basi
 algorithm and enhan
ements) follow naturally.{ Over the years resear
hers have un
overed an impressive array of sear
h en-han
ements that 
an have a dramati
 e�e
t on sear
h eÆ
ien
y. The typi
als
enario is that the idea is developed in one of the domains and possiblylater reinvented in the other. In this paper we list sear
h spa
e propertiesunder whi
h many sear
h enhan
ements are appli
able, showing that thedistin
tion between single- and two-agent sear
h is not essential. By merg-ing the work done in these two areas, the 
ommonalities and di�eren
es 
anbe identi�ed. This 
an be used to 
onstru
t a generi
 sear
h framework fordesigning high performan
e sear
h algorithms.The message of this arti
le is that single- and two-agent sear
h 
an and should be
onsidered as a single undivided �eld. It 
an, be
ause the essen
e of sear
h is en-han
ements, not algorithms as is usually thought. It should, be
ause resear
hers
an bene�t by taking advantage of work done in a related �eld, without rein-venting the te
hnology, if they would only realize its appli
ability. Given all thesimilarities between the two areas, one has to ask the question: why is it soimportant to make a distin
tion based on the ba
kup rule?This arti
le is organized as follows: Se
tion 2 dis
usses the importan
e ofsear
h enhan
ements. Se
tion 3 gives a taxonomy of properties of the sear
hspa
e, whi
h are mat
hed up with the appli
able sear
h te
hniques in Se
tion 4.Se
tion 5 draws some 
on
lusions. The arti
le is restri
ted to 
lassi
al sear
h;algorithms su
h as simulated annealing and hill 
limbing are outside our s
ope.2 Algorithms vs Enhan
ementsMost introdu
tory texts on arti�
ial intelligen
e start o� explaining heuristi
sear
h by di�erentiating between di�erent sear
h strategies, su
h as depth-�rst,breadth-�rst, and best-�rst. Single-agent sear
h is introdu
ed, perhaps illus-trated with the 15-Puzzle. Another se
tion is then devoted to two-player sear
halgorithms. The minimax prin
iple is explained, often followed by alpha-betapruning. The fo
us in these texts is on explaining the basi
 sear
h algorithmsand possibly their fundamental di�eren
es (the ba
kup rule and the de
ision asto whi
h node to expand next). And that is where most AI books stop theirte
hni
al dis
ussion.In 
ontrast, in real-world AI appli
ations, it is the next step|the sear
henhan
ements|that is the topi
 of interest, not so mu
h the basi
 algorithm. Thealgorithm de
ision is usually easily made. The 
hoi
e of algorithm enhan
ements
an have a dramati
 e�e
t on the eÆ
ien
y of the sear
h. Although it goes toofar to say that the underlying algorithm is of no importan
e at all, it is fairto say that most resear
h and development e�ort for new sear
h methods andappli
ations is spent with the enhan
ements.Some of the enhan
ements are based on appli
ation-spe
i�
 properties; oth-ers work over a wide range of appli
ations. Examples of appli
ation-dependent



enhan
ements in
lude the Manhattan distan
e for the sliding-tile puzzle, and�rst sear
hing moves that 
apture a pie
e before 
onsidering non-
apture movesin 
hess. Examples of appli
ation-independent enhan
ements are iterative deep-ening [24℄ and 
y
le dete
tion [9, 26℄.The performan
e gap between sear
h algorithms with and without enhan
e-ments 
an be large. For example, something as simple as removing repeatedstates from the sear
h 
an lead to large redu
tions in the sear
h tree (e.g. [26℄using IDA* in sliding-tile puzzles; [23℄ using alpha-beta in 
hess). Combinationsof enhan
ements 
an lead to redu
tions of several orders of magnitude.In the traditional view, new appli
ations are 
arefully analyzed until an ap-propriate algorithm and 
olle
tion of algorithm enhan
ements is found that sat-is�es the user's expe
tations. In this view, ea
h problem has its own uniquealgorithmi
 solution; a rather segmented view. In reality, most sear
h enhan
e-ments are small variations of general ideas. Their appli
ability depends on theproperties of the sear
h spa
e, and the single/two-agent property is but a minordistin
tion that e�e
ts very few enhan
ements. It is the sear
h enhan
ementsthat tie single/two-agent sear
h together, a
hieving the unity that Nilsson's andPearl's models strived for, albeit of a di�erent kind.3 Modeling Sear
hOur thesis is that most sear
h enhan
ements are independent of the single/two-agent distin
tion. This se
tion identi�es key properties of a sear
h appli
ationthat di
tate the appli
ability of the sear
h enhan
ements. The next se
tion il-lustrates this point with some representative enhan
ements.Sear
h program design 
onsists of two parts. First, the problem solver mustspe
ify the properties of the state spa
e. Se
ond, based on this information, anappropriate implementation is 
hosen. De�ning the properties of the state spa
ein
ludes not only the domain-spe
i�
 
onstraints (graph and solution de�nition),but also 
onstraints imposed by the problem solver (resour
es, sear
h obje
tives,and domain knowledge).{ Graph De�nition: The problem de�nition allows one to 
onstru
t a graph,where nodes represent states, and edges are state transition operators. Thisis typi
ally just a translation of the transition rules to a more formal (graph)language. It provides the syntax of the state spa
e.{ Solution De�nition: Goal nodes are de�ned and given their 
orre
t value. Arule for 
ombining the values of a node's su

essors to determine the valueof the parent node is provided (su
h as minimization, or minimaxing). Thisadds semanti
s to the state spa
e graph.{ Resour
e Constraints: Identify exe
ution 
onstraints that the sear
h algo-rithm must 
onform to.{ Sear
h Obje
tives: The problem solver de�nes the goal of the sear
h: anoptimal or satis�
ing answer. This is usually in
uen
ed by the resour
e 
on-straints.



{ Domain Knowledge: Non-goal nodes may be assigned a heuristi
 value (su
has a lower bound estimator or an evaluation s
ore). The properties of theevaluation fun
tion fundamentally in
uen
e the e�e
tiveness of many sear
henhan
ements, typi
ally 
ausing many iterations of the design-and-test 
y
le.On
e these properties are spe
i�ed, the problem solver 
an design the appli
ationprogram. This is a three step pro
ess.1. Sear
h Algorithm: The single/two-agent distin
tion is usually unambiguous,and the algorithm sele
tion is often trivial (although, for example, thereexists a large number of inventive, lesser-known alternatives, in
luding [4, 6,18℄).2. Sear
h Enhan
ements: The literature 
ontains a host of sear
h enhan
ementsto exploit spe
i�
 properties of the sear
h spa
e. The right 
ombination 
andramati
ally improve the eÆ
ien
y of the basi
 algorithm.3. Implementation Choi
es: Given a sear
h enhan
ement, the best implementa-tion is likely to be dependent on the appli
ation and the 
hoi
e of heuristi
s.These 
onsiderations are outside the s
ope of this paper.Typi
ally the 
hoi
e of basi
 algorithm (single/two-agent) is easily made basedon the problem de�nition. For most appli
ations, the majority of the designe�ort involves judi
iously �ne tuning the set of algorithm enhan
ements [11, 12℄.The appli
ability of sear
h algorithm enhan
ements is determined by the �ve
ategories of properties of the state spa
e. Figure 1 summarizes the intera
tionbetween the state spa
e properties (x axis) and step 2 of the algorithm designpro
ess|the enhan
ements (the y axis). A sampling of enhan
ements are illus-trated in the �gure. The table shows how the sear
h enhan
ements mat
h upwith the properties. An \x" means that the state spa
e property a�e
ts thee�e
tiveness of the sear
h enhan
ement. A \v" means that the sear
h enhan
e-ment (favorably) a�e
ts a 
ertain property of the sear
h spa
e. For example, the\v"s on the row for time 
onstraints indi
ate that most sear
h enhan
ementsmake the sear
h go faster. Star \*" entries mean that a sear
h enhan
ement wasspe
i�
ally invented to atta
k a property.The �ve 
ategories of sear
h properties have been subdivided into individualproperties. The following provides a brief des
ription of these properties.3.1 Graph De�nitionThe problem spe
i�
ation, the rules of the appli
ation, impli
itly de�ne a graph.Following the terminology of [19℄ a problem spa
e 
onsists of states and transitionfun
tions to go from one state to another. For example, in 
hess a state would bea board des
ription (pie
e lo
ations, 
astling rights, et
.). The transition fun
tionspe
i�es the rules by whi
h pie
es move. In the traveling salesperson problem(TSP), a state 
an be a tour along all 
ities, or perhaps an in
omplete tour. Thetransition fun
tion adds or repla
es a 
ity.The graph is treated as merely a formal representation of the problem, asyet devoid of meaning. It has not yet been de
ided what 
on
epts like \payo�



state sp. properties enhan
ements 
y
le/trans enumeration moveordering iter.deepening sol.database sele
tivityGraph De�nitionout degree of a node > 1in degree of a node > 1presen
e of 
y
les xgraph size xSolution De�nitionsolution density x xsolution depth xsolution ba
kup rule x xResour
esspa
e x x * xtime v v v */x v vSear
h Obje
tivesoptimization v v v v vsatis�
ing v v v v vDomain Knowledgeheur eval quality x x * xheur eval granularity xheur parent/
hild value x x xheur parent/
hild state xnext move to expand * v * v *Fig. 1. Sear
h Properties vs Enhan
ementsfun
tion" and \ba
kup rule" mean. The problem graph is purely a synta
ti
aldes
ription of the problem spa
e. Semanti
s are added later.The graph has a number of interesting properties that 
an be exploited toimprove the eÆ
ien
y of the sear
h. Of interest are the in degree and outdegree (bran
hing fa
tor) of nodes, the size of the graph, and whether thegraph 
ontains 
y
les. These properties are self-explanatory.3.2 Solution De�nitionIn this part of the problem solving pro
ess meaning is atta
hed to some of thestates. If the graph de�nition provides us with a synta
ti
 des
ription of theproblem, then the solution de�nition asso
iates semanti
s to the graph. Themeaning, or value, of 
ertain states in the graph is de�ned by the appli
ationrules. For example, in 
hess all 
he
kmate states have a known value. In the TSP,a tour that visits all 
ities and ends in the original one is a possible solution.The obje
tive of the sear
h is to �nd these goal or solution states, and to reportba
k how they 
an be rea
hed. Solutions are a subset of the sear
h spa
e, and



this spa
e 
an be de�ned by the solution density, solution depth, and the ba
kuprule for solution states.Solution Density. The distribution of solution states determines how hardsear
hing for them will be. When there are many solution states it will be easierto �nd one, although determining whether it is a least 
ost solution (or someother optimality 
onstraint) may be harder.Solution Depth. An important element of how solution states are dis-tributed in the sear
h spa
e is the depth at whi
h they o

ur (the root of thegraph is at depth 0). Sear
h enhan
ements may take advantage of a parti
ulardistribution. For example, breadth-�rst sear
h may be advantageous when thereis a high variability in the depth to solution.Solution Ba
kup Rule. The problem des
ription de�nes how solution val-ues should be propagated ba
k to the root. Two-agent games use a minimaxrule; optimization problems use minimization or maximization.3.3 Resour
e ConstraintsResour
e 
onstraints (spa
e and time) play a 
riti
al role in determining whi
henhan
ements are feasible.3.4 Sear
h Obje
tiveOne of the most important de
isions to be taken is the obje
tive of the sear
h.This de
ision is in
uen
ed by the size of the problem graph, solution densityand depth, and resour
e 
onstraints. It is 
losely related to the 
lassi
al 
hoi
e:optimize or satis�
e [19℄. The 
hoi
e of sear
h obje
tive de�nes a global stop
ondition.Optimization. Optimization involves �nding the best (optimal) value forthe sear
h problem. Given a problem graph, the properties that determine whetheroptimization is feasible are solution density and depth.Satis�
ing. Sometimes optimization is too expensive and one needs real-time or anytime algorithms. In this 
ase, a payo�, or evaluation fun
tion, isapplied to a set of states that lie 
loser to the root of the graph. The evaluationfun
tion is a heuristi
 approximation of the true value of the state. The sear
hprogresses, trying to �nd the best approximation to the true solution, subje
tto the available resour
es.3.5 Domain KnowledgeThe heuristi
 evaluation fun
tion en
odes appli
ation-dependent domain knowl-edge about the sear
h. Typi
ally, it is the most important 
omponent of a sear
happli
ation. Unfortunately, it has to be redeveloped anew for ea
h problem do-main. Sin
e the heuristi
 fun
tion is appli
ation dependent, most of its internals
annot be dis
ussed in a general way. The external 
hara
teristi
s, however, 
an.There are many di�erent types of information that 
an be returned by aheuristi
 evaluation. Some examples in
lude: lower/upper bound estimates on



the distan
e to solution, point estimates on the quality of a state, ranges ofvalues, and probability distributions.The most important aspe
t of the heuristi
 evaluation fun
tion is the di�er-en
e between the heuristi
 value h and the true value for a state. In general, thebetter the quality of h, the more eÆ
ient the sear
h. Related to the quality ofthe heuristi
s are parent/
hild 
orrelation of state (how mu
h the state
hanges by a state transition), parent/
hild 
orrelation of value (how simi-lar the value is between a parent and 
hild node), and the granularity [27℄ ofthe heuristi
 fun
tion (the 
oarseness of the values; �ner granularity generallyimplies more sear
h e�ort).The sear
h algorithm together with heuristi
 information is used to de
ideon the next node to expand in the sear
h. For some appli
ations, the de
isionmay be me
hani
al, su
h as depth-�rst, breadth-�rst or best-�rst, but heuristi
information 
an be instrumental in ordering nodes from most- to least-likely tosu

eed.4 Sear
h Enhan
ementsThis se
tion 
lassi�es various sear
h enhan
ements used. The enhan
ements havebeen grouped into 
lasses, of whi
h a few of the more interesting ones are dis-
ussed (the ones illustrated in Figure 1). For ea
h 
lass, a representative te
h-nique is given and its appli
ability to single- and two-agent sear
h is dis
ussed.The material is intended to be an illustrative sample (be
ause of spa
e 
on-straints), not exhaustive. Sin
e in most 
ases the pre
onditions ne
essary for us-ing an enhan
ement are not tied to any fundamental property of an appli
ation,the sear
h enhan
ements presented are appli
able to a wide 
lass of appli
ations.4.1 State Spa
e Te
hniquesThese te
hniques depend only on the appli
ation de�nition and are thereforeindependent of the algorithm sele
ted.Path Transposition and Cy
le Dete
tionPre
ondition: In-degree is > 1. Two sear
h paths 
an lead to the same state. Idea:Repeated states en
ountered in the sear
h need only be sear
hed on
e. Sear
heÆ
ien
y 
an (potentially) be improved dramati
ally by removing these redun-dant states. Advantages: Redu
es the sear
h tree size. Disadvantages: In
reasesthe 
ost per node and/or storage required. Te
hniques: Two-agent: the typi
alte
hnique is to store positions in a hash table to allow for rapid determinationif a state has been previously seen [9℄. Single-agent: in addition to hash tables[17℄, �nite state ma
hines have been used to dete
t 
y
les [26℄.4.2 State- and Solution-Spa
e Intera
tionThese enhan
ements depend on the state spa
e graph and on the de�nition ofthe solution spa
e.



State Spa
e EnumerationPre
ondition: Size of the state spa
e graph and/or solution sear
h tree be \small."Idea: If the state spa
e is small enough, then the optimal answer 
an be 
om-puted. For some appli
ations, traversal of the entire state spa
e may not bene
essary; one need only traverse the solution tree, ignoring parts of the statespa
e that 
an logi
ally be proven irrelevant. Advantages: Optimal answer forsome/all nodes in the state spa
e. Disadvantages: May require large amounts oftime and spa
e to traverse the state spa
e and save the results. Te
hniques: Sev-eral games and puzzles with large state spa
es have been solved by enumeration,in
luding Nine Men's Morris [7℄, Qubi
, Go Moku [1℄, and the 8-Puzzle [22℄ and12-Puzzle.4.3 Su

essor Ordering Te
hniquesThe order in whi
h the su

essors of an interior node are visited may e�e
t theeÆ
ien
y of the sear
h. For example, in the alpha-beta algorithm, sear
hing thebest move �rst a
hieves the maximal number of 
uto�s. In single-agent sear
h,sear
hing the best move �rst allows one to �nd the solution sooner. These en-han
ements depend on one property of the appli
ation: whether the order of
onsidering bran
hes in
uen
es when a 
uto� o

urs.There are many te
hniques for doing this in the literature in
luding previousbest move ordering [25℄ and the history heuristi
 [23℄. Both ideas have beentried in single- and two-agent appli
ations (although the bene�ts in optimizationseem to be ne
essarily small [17℄).4.4 Repeatedly Visiting StatesOne of the major sear
h results to 
ome out of the work on 
omputer 
hess wasthat repeatedly visiting a state, although seemingly wasteful, may a
tually proveto be bene�
ial. The e�e
tiveness of this enhan
ement depends ultimately on theheuristi
 evaluation fun
tion, although it works for a large 
lass of appli
ations.Iterative DeepeningPre
ondition: Information from a shallow sear
h satisfying 
ondition d must pro-vide some useful information for a deeper sear
h satisfying d+�. Idea: Sear
hdown a path until a 
ondition d is met. After the entire tree has been sear
hedwith 
ondition d, and no solution has been found, repeat a deeper sear
h tosatisfy 
ondition d+�. Advantages: For two-agent sear
h, the main advantagesare move ordering and time management for real-time sear
h. For single-agentthe bene�t is redu
ed spa
e overhead. Disadvantages: Repeated visitations 
osttime. The value of the information gathered must outweigh the 
ost of 
olle
t-ing it. Te
hniques: In many two-agent appli
ations, the sear
h iterates on thesear
h depth. Move ordering is 
riti
al to the eÆ
ien
y of alpha-beta sear
h.By storing the best moves of ea
h sear
hed node, in ea
h iteration the moveordering of another level of the sear
h tree is improved [24, 25℄. In single-agentsear
h, iterative deepening is used to re�ne the upper (lower) bound on the value



being minimized (maximized). It is primarily used be
ause it redu
es the spa
erequirements of the appli
ation [14℄.4.5 O�-line ComputationsIt is be
oming in
reasingly possible to pre
ompute and store large amounts ofinteresting data about the sear
h spa
e that 
an be used dynami
ally at runtime.Solution DatabasesPre
ondition: One must be able to identify goal nodes in the sear
h (trivial).Idea: The databases de�ne a perimeter around the goal nodes. In e�e
t, thedatabase in
reases the set of goal nodes. Advantages: The sear
h 
an stop whenit rea
hes the database perimeter. Disadvantages: The databases may be 
ostlyto 
ompute. Furthermore, the memory hierar
hy makes random a

ess to tablesin
reasingly 
ostly as their size grows. Te
hniques: In two-agent sear
h, solution(or endgame) databases have been built for a number of games, in some 
asesresulting in dramati
 improvements in the sear
h eÆ
ien
y and in the qualityof sear
h result. In single-agent appli
ations solution databases have been triedin the 15-Puzzle. An on-line version of this idea exists, dynami
ally building thedatabases at runtime (bi-dire
tional [13℄ or perimeter sear
h [16℄).4.6 Sear
h E�ort DistributionThe simplest sear
h approa
h is to allo
ate equal e�ort (sear
h depth) to all 
hil-dren of the root. Often there is appli
ation-dependent knowledge that allows thesear
h to make a more-informed distribution of e�ort. Promising states 
an beallo
ated more e�ort, while less promising states would re
eive less. (Essentially,this enhan
ement 
an be regarded as a generalization of su

essor ordering.) Insatis�
ing single-agent sear
h this idea is used to 
on
entrate the sear
h e�orton promising bran
hes. For optimizing single-agent sear
h, it is of limited valuesin
e even if an extended sear
h, for example, �nds a solution, all possible non-extended nodes must still be 
he
ked for a better solution. It is also bene�
ial forreal-time single-agent sear
h su
h as RTA* [15℄ and other anytime algorithms.In two-agent sear
h it is used in forward pruning or sele
tive sear
h. Popularideas used in two-agent sear
h in
lude singular extensions [3℄, the null moveheuristi
 [8℄, and ProbCut [5℄.5 Con
lusionFor de
ades resear
hers in the �elds of single- and two-agent heuristi
 sear
hhave developed enhan
ements to the basi
 graph traversal algorithms. Histori-
ally the �elds have developed these enhan
ements separately. Nilsson and Pearlpopularized the AND/OR framework, whi
h provided a uni�ed formal basis, butalso stressed the di�eren
e between OR and AND/OR algorithms. The �elds
ontinued their relatively separate development.



This paper advan
es the view that the essen
e of heuristi
 sear
h is notsear
hing either single- or two-agent graphs, but whi
h sear
h enhan
ementsone uses. First, the single/two-agent property is but one of the many propertiesof the sear
h spa
e that play a role in the design pro
ess of a high performan
eheuristi
 sear
h appli
ation. Se
ond, the single/two-agent distin
tion is not thedominant fa
tor in the design and implementation of a high-performan
e sear
happli
ation|sear
h enhan
ements are. Third, most sear
h enhan
ements arequite general; they 
an be used for many di�erent appli
ations, regardless ofwhether they are single- or two-agent.The bene�t of re
ognizing the 
ru
ial role played by sear
h te
hniques isimmediate: appli
ation developers will have a larger suite of sear
h enhan
ementsat their disposal; ideas �rst 
on
eived of in two-agent sear
h will not have to beredis
overed later independently for single-agent sear
h, and vi
e versa. In animplementation the best 
ombination of te
hniques depends on the expe
tedsear
h bene�ts versus the programming e�orts, not on the single- or two-agentalgorithm.For twenty years, most of the resear
h 
ommunity has (expli
itly and impli
-itly) treated single- and two-agent sear
h as two di�erent topi
s. Now it is time totake sto
k and re
ognize the pivotal role that sear
h enhan
ements have 
ome toplay: the algorithm distin
tion is minor, and most resear
h and implementatione�orts are dire
ted towards the enhan
ements. All the properties of the sear
hspa
e|not just the single/two-agent distin
tion|play their role in determiningthe e�e
tiveness of that what heuristi
 sear
h is all about: enhan
ing the basi
sear
h algorithms to a
hieve high performan
e.6 A
knowledgmentsThis resear
h was funded by the Natural S
ien
es and Engineering Resear
hCoun
il of Canada.Referen
es1. V. Allis. Sear
hing for Solutions in Games and Arti�
ial Intelligen
e. PhD thesis,University of Limburg, 1994.2. S. Amarel. An approa
h to heuristi
 problem-solving and theorem proving in thepropositional 
al
ulus. In J. Hart and S. Takasu, editors, Systems and ComputerS
ien
e, 1967.3. T. Anantharaman, M. Campbell, and F. Hsu. Singular extensions: Adding sele
-tivity to brute-for
e sear
hing. Arti�
ial Intelligen
e, 43(1):99{109, 1990.4. H. Berliner. The B* tree sear
h algorithm: A best-�rst proof pro
edure. Arti�
ialIntelligen
e, 12:23{40, 1979.5. M. Buro. ProbCut: A powerful sele
tive extension of the �� algorithm. Journalof the International Computer Chess Asso
iation, 18(2):71{81, 1995.6. P. Chakrabarti. Algorithms for sear
hing expli
it AND/OR graphs and their appli-
ations to problem redu
tion sear
h. Arti�
ial Intelligen
e, 65(2):329{345, January1994.



7. R. Gasser. EÆ
iently harnessing 
omputational resour
es for exhaustive sear
h.PhD thesis, ETH Z�uri
h, 1995.8. G. Goets
h and M. Campbell. Experiments with the null move heuristi
. In AAAISpring Symposium, pages 14{18, 1988.9. R. Greenblatt, D. Eastlake, and S. Cro
ker. The Greenblatt 
hess program. InFall Joint Computer Conferen
e, volume 31, pages 801{810, 1967.10. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristi
 determinationof minimum 
ost paths. IEEE Transa
tions on Systems, S
ien
e and Cyberneti
s,SSC-4(2):100{107, July 1968.11. A. Junghanns. New Developments in Single-Agent Sear
h. PhD thesis, Universityof Alberta, 1999.12. A. Junghanns and J. S
hae�er. Domain-dependent single-agent sear
h enhan
e-ments. In IJCAI-99, pages 570{575, 1999.13. H. Kaindl, G. Kainz, A. Leeb, and H. Smetana. How to use limited memory inheuristi
 sear
h. In IJCAI-95, pages 236{242, Montreal, 1995.14. R. Korf. Iterative deepening: An optimal admissible tree sear
h. Arti�
ial Intelli-gen
e, 27:97{109, 1985.15. R. Korf. Real-time heuristi
 sear
h. Arti�
ial Intelligen
e, 42:189{211, 1990.16. G. Manzini. BIDA*: An improved perimeter sear
h algorithm. Arti�
ial Intelli-gen
e, 75:347{360, 1995.17. T. Marsland and A. Reinefeld. Enhan
ed iterative-deepening sear
h. IEEE Trans-a
tions on Pattern Analysis and Ma
hine Intelligen
e, 16(7):701{710, July 1994.18. D. M
Allester. Conspira
y numbers for min-max sear
hing. Arti�
ial Intelligen
e,35:287{310, 1988.19. A. Newell and H. Simon. Human Problem Solving. Prenti
e-Hall, 1972.20. N. Nilsson. Problem-Solving Methods in Arti�
ial Intelligen
e. M
Graw-Hill, 1971.21. J. Pearl. Heuristi
s. Addison-Wesley, 1984.22. A. Reinefeld. Complete solution of the eight-puzzle and the bene�t of node orderingin IDA*. In IJCAI-93, pages 248{253, Chambery, Fran
e, 1993.23. J. S
hae�er. The history heuristi
 and alpha-beta sear
h enhan
ements in pra
-ti
e. IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
e, 11(1):1203{1212, 1989.24. J. S
ott. A 
hess-playing program. InMa
hine Intelligen
e 4, pages 255{265, 1969.25. D. Slate and L. Atkin. Chess 4.5 | the Northwestern University 
hess program.In P.W. Frey, editor, Chess Skill in Man and Ma
hine, pages 82{118, New York,1977. Springer-Verlag.26. L. Taylor and R. Korf. Pruning dupli
ate nodes in depth-�rst sear
h. In AAAI-93,pages 756{761, 1993.27. W. Zhang and R. Korf. Performan
e of linear-spa
e sear
h algorithms. Arti�
ialIntelligen
e, 79(2):241{292, 1996.


