Unifying Single-Agent and Two-Player Search

Jonathan Schaeffer! and Aske Plaat?

! Computing Science Dept.
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

jonathan@cs.ualberta.ca

2 Aske Plaat
Computer Science Dept.
Vrije Universiteit
Amsterdam
The Netherlands
aske@xs4all.nl

Abstract. The seminal works of Nilsson and Pearl in the 1970’s and
early 1980’s provide a formal basis for splitting the field of heuristic
search into two subfields: single- and two-agent search. The subfields are
studied in relative isolation from each other; each having its own dis-
tinct character. Despite the separation, a close inspection of the research
shows that the two areas have actually been converging. This paper ar-
gues that the single/two-agent distinction is not the essence of heuristic
search anymore. The state space is characterized by a number of key
properties that are defined by the application; single- versus two-agent
is just one of many. Both subfields have developed many search enhance-
ments; they are shown to be surprisingly similar and general. Given their
importance for creating high performance search applications, it is these
enhancements that form the essence of our field. Focusing on their gen-
erality emphasizes the opportunity for reuse of the enhancements, allows
the field of heuristic search to be redefined as a single unified field, and
points the way towards a modern theory of search based on the taxonomy
proposed here.

1 Introduction

Heuristic search is one of the oldest fields in artificial intelligence. Nilsson and
Pearl [20,21] wrote the classic introductions to the field. In these works (and
others) search algorithms are typically classified by the kind of problem space
they explore. Two classes of problem spaces are identified: state spaces and
problem reduction spaces. Many problems can be conveniently represented as a
state space; these are typically problems that seek a path from the root to the
goal state. Other problems are a more natural fit for problem reduction spaces,
typically problems whose solution is a strategy. Sometimes both representations

are viable options. Problem reduction spaces are AND/OR graphs; AO* is the
best-known framework for creating search algorithms for this class of problems
[2,20]. State spaces are OR graphs; the A* algorithm can optimally solve this
class of problems [10]. Note that a state space (OR graph) is technically just a
special case of a problem reduction space (AND/OR graph).

Since their inception, the notions of OR graphs and AND/OR graphs have
found widespread use in artificial intelligence and operations research. Both areas
have active research communities which continue to evolve and refine new search
algorithms and enhancements. Of the two representations, the state space rep-
resentation has proven to be the more popular. It appears that many real-world
problem solving tasks can be modeled naturally as OR graphs. Well-known ex-
amples include the shortest path problems, sliding-tile puzzles, and NP-complete
problems.

One application domain that fits the AND/OR graph model better is two-
agent (two-player) games such as chess. In these games, one player chooses moves
to maximize a payoff function (the chance to win) while the opponent chooses
moves to minimize it. Thus, the AND/OR graphs become MIN/MAX graphs,
and the algorithms to search these spaces are known as minimax algorithms.
Curiously, it appears that two-player games are the only applications for which
AND/OR algorithms have found widespread use. To contrast A*-like OR graph
algorithms with two-player minimax algorithms, they are often referred to as
single-agent (or one-player) search algorithms.

With the advent of Nilsson’s AND/OR framework, two-agent search has
been given a firm place within the larger field of heuristic search. Since AND/OR
graphs subsume OR graphs, there is a satisfying conceptual unification of the two
subfields. However, the impact of this unified view on the practice of research into
heuristic search methods has been minor. The two subfields have continued to
develop in parallel, with little interaction between them. One reason for the lack
of coherence between the two communities could be the difference in objectives:
a case can be made that winning chess tournaments requires a different mind
set than optimizing industrial problems to increase revenue.

This article has the following contributions: to our understanding of heuristic
search:

— Single-agent and two-agent search algorithms both traverse search graphs.
The difference between the two algorithms is not in the graph, but in the
semantics imposed by the application. Much of the research done in single-
and two-agent search does not depend on the search algorithm, but on the
search space properties.

— Nilsson’s [20] and Pearl’s [21] dichotomy—the OR versus AND/OR choice—
is misleading. Heuristic search consists of identifying properties of the search
space and implementing a number of search techniques that make effective
use of these properties. There are many such properties, and the choice of
backup rule (minimaxing in two-agent search; minimization in single-agent
search) is but one. The implication of Nilsson’s and Pearl’s model is that the
choice of backup rule is in some way fundamental; it is not. This paper argues

for viewing heuristic search as the process in which properties of a search
space are specified. Once that has been done, the relevant search techniques
(basic algorithm and enhancements) follow naturally.

— Over the years researchers have uncovered an impressive array of search en-
hancements that can have a dramatic effect on search efficiency. The typical
scenario is that the idea is developed in one of the domains and possibly
later reinvented in the other. In this paper we list search space properties
under which many search enhancements are applicable, showing that the
distinction between single- and two-agent search is not essential. By merg-
ing the work done in these two areas, the commonalities and differences can
be identified. This can be used to construct a generic search framework for
designing high performance search algorithms.

The message of this article is that single- and two-agent search can and should be
considered as a single undivided field. It can, because the essence of search is en-
hancements, not, algorithms as is usually thought. It should, because researchers
can benefit by taking advantage of work done in a related field, without rein-
venting the technology, if they would only realize its applicability. Given all the
similarities between the two areas, one has to ask the question: why is it so
important to make a distinction based on the backup rule?

This article is organized as follows: Section 2 discusses the importance of
search enhancements. Section 3 gives a taxonomy of properties of the search
space, which are matched up with the applicable search techniques in Section 4.
Section 5 draws some conclusions. The article is restricted to classical search;
algorithms such as simulated annealing and hill climbing are outside our scope.

2 Algorithms vs Enhancements

Most introductory texts on artificial intelligence start off explaining heuristic
search by differentiating between different search strategies, such as depth-first,
breadth-first, and best-first. Single-agent search is introduced, perhaps illus-
trated with the 15-Puzzle. Another section is then devoted to two-player search
algorithms. The minimax principle is explained, often followed by alpha-beta
pruning. The focus in these texts is on explaining the basic search algorithms
and possibly their fundamental differences (the backup rule and the decision as
to which node to expand next). And that is where most AI books stop their
technical discussion.

In contrast, in real-world AI applications, it is the next step—the search
enhancements—that is the topic of interest, not so much the basic algorithm. The
algorithm decision is usually easily made. The choice of algorithm enhancements
can have a dramatic effect on the efficiency of the search. Although it goes too
far to say that the underlying algorithm is of no importance at all, it is fair
to say that most research and development effort for new search methods and
applications is spent with the enhancements.

Some of the enhancements are based on application-specific properties; oth-
ers work over a wide range of applications. Examples of application-dependent

enhancements include the Manhattan distance for the sliding-tile puzzle, and
first searching moves that capture a piece before considering non-capture moves
in chess. Examples of application-independent enhancements are iterative deep-
ening [24] and cycle detection [9, 26].

The performance gap between search algorithms with and without enhance-
ments can be large. For example, something as simple as removing repeated
states from the search can lead to large reductions in the search tree (e.g. [26]
using IDA* in sliding-tile puzzles; [23] using alpha-beta in chess). Combinations
of enhancements can lead to reductions of several orders of magnitude.

In the traditional view, new applications are carefully analyzed until an ap-
propriate algorithm and collection of algorithm enhancements is found that sat-
isfies the user’s expectations. In this view, each problem has its own unique
algorithmic solution; a rather segmented view. In reality, most search enhance-
ments are small variations of general ideas. Their applicability depends on the
properties of the search space, and the single/two-agent property is but a minor
distinction that effects very few enhancements. It is the search enhancements
that tie single/two-agent search together, achieving the unity that Nilsson’s and
Pearl’s models strived for, albeit of a different kind.

3 Modeling Search

Our thesis is that most search enhancements are independent of the single/two-
agent distinction. This section identifies key properties of a search application
that dictate the applicability of the search enhancements. The next section il-
lustrates this point with some representative enhancements.

Search program design consists of two parts. First, the problem solver must
specify the properties of the state space. Second, based on this information, an
appropriate implementation is chosen. Defining the properties of the state space
includes not only the domain-specific constraints (graph and solution definition),
but also constraints imposed by the problem solver (resources, search objectives,
and domain knowledge).

— Graph Definition: The problem definition allows one to construct a graph,
where nodes represent states, and edges are state transition operators. This
is typically just a translation of the transition rules to a more formal (graph)
language. It provides the syntax of the state space.

— Solution Definition: Goal nodes are defined and given their correct value. A
rule for combining the values of a node’s successors to determine the value
of the parent node is provided (such as minimization, or minimaxing). This
adds semantics to the state space graph.

— Resource Constraints: Identify execution constraints that the search algo-
rithm must conform to.

— Search Objectives: The problem solver defines the goal of the search: an
optimal or satisficing answer. This is usually influenced by the resource con-
straints.

— Domain Knowledge: Non-goal nodes may be assigned a heuristic value (such
as a lower bound estimator or an evaluation score). The properties of the
evaluation function fundamentally influence the effectiveness of many search
enhancements, typically causing many iterations of the design-and-test cycle.

Once these properties are specified, the problem solver can design the application
program. This is a three step process.

1. Search Algorithm: The single/two-agent distinction is usually unambiguous,
and the algorithm selection is often trivial (although, for example, there
exists a large number of inventive, lesser-known alternatives, including [4, 6,
18]).

2. Search Enhancements: The literature contains a host of search enhancements
to exploit specific properties of the search space. The right combination can
dramatically improve the efficiency of the basic algorithm.

3. Implementation Choices: Given a search enhancement, the best implementa-
tion is likely to be dependent on the application and the choice of heuristics.
These considerations are outside the scope of this paper.

Typically the choice of basic algorithm (single/two-agent) is easily made based
on the problem definition. For most applications, the majority of the design
effort involves judiciously fine tuning the set of algorithm enhancements [11,12].

The applicability of search algorithm enhancements is determined by the five
categories of properties of the state space. Figure 1 summarizes the interaction
between the state space properties (z axis) and step 2 of the algorithm design
process the enhancements (the y axis). A sampling of enhancements are illus-
trated in the figure. The table shows how the search enhancements match up
with the properties. An “x” means that the state space property affects the
effectiveness of the search enhancement. A “v” means that the search enhance-
ment (favorably) affects a certain property of the search space. For example, the
“v”s on the row for time constraints indicate that most search enhancements
make the search go faster. Star “*” entries mean that a search enhancement was
specifically invented to attack a property.

The five categories of search properties have been subdivided into individual
properties. The following provides a brief description of these properties.

3.1 Graph Definition

The problem specification, the rules of the application, implicitly define a graph.
Following the terminology of [19] a problem space consists of states and transition
functions to go from one state to another. For example, in chess a state would be
a board description (piece locations, castling rights, etc.). The transition function
specifies the rules by which pieces move. In the traveling salesperson problem
(TSP), a state can be a tour along all cities, or perhaps an incomplete tour. The
transition function adds or replaces a city.

The graph is treated as merely a formal representation of the problem, as
yet devoid of meaning. It has not yet been decided what concepts like “payoff

Zz
0
g ¥
Sz EE %2
SlE52 a3k
all & ® £ o ®=
c|| += ’5 o] *‘g >
Sl o =
ol @ & L RS
o 2 o g =23
. > 8 g gL 3¢
state sp. properties SN} E a®
Graph Definition
out degree of a node >1
in degree of a node||> 1
presence of cycles|| x
graph size X
Solution Definition
solution density X X
solution depth b'e
solution backup rule X X
Resources

space| x x
timel| v. v v ¥/xv v

Search Objectives
optimization|| v. v v v v

satisficing|| v vV VvV VYV
Domain Knowledge
heur eval quality x x ¥*x
heur eval granularity X
heur parent/child value X X X

heur parent/child state
next move to expand

»

*

A A

Fig. 1. Search Properties vs Enhancements

function” and “backup rule” mean. The problem graph is purely a syntactical
description of the problem space. Semantics are added later.

The graph has a number of interesting properties that can be exploited to
improve the efficiency of the search. Of interest are the in degree and out
degree (branching factor) of nodes, the size of the graph, and whether the
graph contains cycles. These properties are self-explanatory.

3.2 Solution Definition

In this part of the problem solving process meaning is attached to some of the
states. If the graph definition provides us with a syntactic description of the
problem, then the solution definition associates semantics to the graph. The
meaning, or value, of certain states in the graph is defined by the application
rules. For example, in chess all checkmate states have a known value. In the TSP,
a tour that visits all cities and ends in the original one is a possible solution.
The objective of the search is to find these goal or solution states, and to report
back how they can be reached. Solutions are a subset of the search space, and

this space can be defined by the solution density, solution depth, and the backup
rule for solution states.

Solution Density. The distribution of solution states determines how hard
searching for them will be. When there are many solution states it will be easier
to find one, although determining whether it is a least cost solution (or some
other optimality constraint) may be harder.

Solution Depth. An important element of how solution states are dis-
tributed in the search space is the depth at which they occur (the root of the
graph is at depth 0). Search enhancements may take advantage of a particular
distribution. For example, breadth-first search may be advantageous when there
is a high variability in the depth to solution.

Solution Backup Rule. The problem description defines how solution val-
ues should be propagated back to the root. Two-agent games use a minimax
rule; optimization problems use minimization or maximization.

3.3 Resource Constraints

Resource constraints (space and time) play a critical role in determining which
enhancements are feasible.

3.4 Search Objective

One of the most important decisions to be taken is the objective of the search.
This decision is influenced by the size of the problem graph, solution density
and depth, and resource constraints. It is closely related to the classical choice:
optimize or satisfice [19]. The choice of search objective defines a global stop
condition.

Optimization. Optimization involves finding the best (optimal) value for
the search problem. Given a problem graph, the properties that determine whether
optimization is feasible are solution density and depth.

Satisficing. Sometimes optimization is too expensive and one needs real-
time or anytime algorithms. In this case, a payoff, or evaluation function, is
applied to a set of states that lie closer to the root of the graph. The evaluation
function is a heuristic approximation of the true value of the state. The search
progresses, trying to find the best approximation to the true solution, subject
to the available resources.

3.5 Domain Knowledge

The heuristic evaluation function encodes application-dependent domain knowl-
edge about the search. Typically, it is the most important component of a search
application. Unfortunately, it has to be redeveloped anew for each problem do-
main. Since the heuristic function is application dependent, most of its internals
cannot be discussed in a general way. The external characteristics, however, can.
There are many different types of information that can be returned by a
heuristic evaluation. Some examples include: lower/upper bound estimates on

the distance to solution, point estimates on the quality of a state, ranges of
values, and probability distributions.

The most important aspect of the heuristic evaluation function is the differ-
ence between the heuristic value h and the true value for a state. In general, the
better the quality of h, the more efficient the search. Related to the quality of
the heuristics are parent/child correlation of state (how much the state
changes by a state transition), parent/child correlation of value (how simi-
lar the value is between a parent and child node), and the granularity [27] of
the heuristic function (the coarseness of the values; finer granularity generally
implies more search effort).

The search algorithm together with heuristic information is used to decide
on the next node to expand in the search. For some applications, the decision
may be mechanical, such as depth-first, breadth-first or best-first, but heuristic
information can be instrumental in ordering nodes from most- to least-likely to
succeed.

4 Search Enhancements

This section classifies various search enhancements used. The enhancements have
been grouped into classes, of which a few of the more interesting ones are dis-
cussed (the ones illustrated in Figure 1). For each class, a representative tech-
nique is given and its applicability to single- and two-agent search is discussed.
The material is intended to be an illustrative sample (because of space con-
straints), not exhaustive. Since in most cases the preconditions necessary for us-
ing an enhancement are not tied to any fundamental property of an application,
the search enhancements presented are applicable to a wide class of applications.

4.1 State Space Techniques

These techniques depend only on the application definition and are therefore
independent of the algorithm selected.

Path Transposition and Cycle Detection

Precondition: In-degree is > 1. Two search paths can lead to the same state. Idea:
Repeated states encountered in the search need only be searched once. Search
efficiency can (potentially) be improved dramatically by removing these redun-
dant states. Advantages: Reduces the search tree size. Disadvantages: Increases
the cost per node and/or storage required. Technigues: Two-agent: the typical
technique is to store positions in a hash table to allow for rapid determination
if a state has been previously seen [9]. Single-agent: in addition to hash tables
[17], finite state machines have been used to detect cycles [26].

4.2 State- and Solution-Space Interaction

These enhancements depend on the state space graph and on the definition of
the solution space.

State Space Enumeration

Precondition: Size of the state space graph and/or solution search tree be “small.”
Idea: If the state space is small enough, then the optimal answer can be com-
puted. For some applications, traversal of the entire state space may not be
necessary; one need only traverse the solution tree, ignoring parts of the state
space that can logically be proven irrelevant. Advantages: Optimal answer for
some/all nodes in the state space. Disadvantages: May require large amounts of
time and space to traverse the state space and save the results. Techniques: Sev-
eral games and puzzles with large state spaces have been solved by enumeration,
including Nine Men’s Morris [7], Qubic, Go Moku [1], and the 8-Puzzle [22] and
12-Puzzle.

4.3 Successor Ordering Techniques

The order in which the successors of an interior node are visited may effect the
efficiency of the search. For example, in the alpha-beta algorithm, searching the
best move first achieves the maximal number of cutoffs. In single-agent search,
searching the best move first allows one to find the solution sooner. These en-
hancements depend on one property of the application: whether the order of
considering branches influences when a cutoff occurs.

There are many techniques for doing this in the literature including previous
best move ordering [25] and the history heuristic [23]. Both ideas have been
tried in single- and two-agent applications (although the benefits in optimization
seem to be necessarily small [17]).

4.4 Repeatedly Visiting States

One of the major search results to come out of the work on computer chess was
that repeatedly visiting a state, although seemingly wasteful, may actually prove
to be beneficial. The effectiveness of this enhancement depends ultimately on the
heuristic evaluation function, although it works for a large class of applications.
Iterative Deepening

Precondition: Information from a shallow search satisfying condition d must pro-
vide some useful information for a deeper search satisfying d + A. Idea: Search
down a path until a condition d is met. After the entire tree has been searched
with condition d, and no solution has been found, repeat a deeper search to
satisfy condition d + A. Advantages: For two-agent search, the main advantages
are move ordering and time management for real-time search. For single-agent
the benefit is reduced space overhead. Disadvantages: Repeated visitations cost
time. The value of the information gathered must outweigh the cost of collect-
ing it. Techniques: In many two-agent applications, the search iterates on the
search depth. Move ordering is critical to the efficiency of alpha-beta search.
By storing the best moves of each searched node, in each iteration the move
ordering of another level of the search tree is improved [24,25]. In single-agent
search, iterative deepening is used to refine the upper (lower) bound on the value

being minimized (maximized). It is primarily used because it reduces the space
requirements of the application [14].

4.5 Off-line Computations

It is becoming increasingly possible to precompute and store large amounts of
interesting data about the search space that can be used dynamically at runtime.
Solution Databases

Precondition: One must be able to identify goal nodes in the search (trivial).
Idea: The databases define a perimeter around the goal nodes. In effect, the
database increases the set of goal nodes. Advantages: The search can stop when
it reaches the database perimeter. Disadvantages: The databases may be costly
to compute. Furthermore, the memory hierarchy makes random access to tables
increasingly costly as their size grows. Techniques: In two-agent search, solution
(or endgame) databases have been built for a number of games, in some cases
resulting in dramatic improvements in the search efficiency and in the quality
of search result. In single-agent applications solution databases have been tried
in the 15-Puzzle. An on-line version of this idea exists, dynamically building the
databases at runtime (bi-directional [13] or perimeter search [16]).

4.6 Search Effort Distribution

The simplest search approach is to allocate equal effort (search depth) to all chil-
dren of the root. Often there is application-dependent knowledge that allows the
search to make a more-informed distribution of effort. Promising states can be
allocated more effort, while less promising states would receive less. (Essentially,
this enhancement can be regarded as a generalization of successor ordering.) In
satisficing single-agent search this idea is used to concentrate the search effort
on promising branches. For optimizing single-agent search, it is of limited value
since even if an extended search, for example, finds a solution, all possible non-
extended nodes must still be checked for a better solution. It is also beneficial for
real-time single-agent search such as RTA* [15] and other anytime algorithms.
In two-agent search it is used in forward pruning or selective search. Popular
ideas used in two-agent search include singular extensions [3], the null move

heuristic [8], and ProbCut [5].

5 Conclusion

For decades researchers in the fields of single- and two-agent heuristic search
have developed enhancements to the basic graph traversal algorithms. Histori-
cally the fields have developed these enhancements separately. Nilsson and Pearl
popularized the AND/OR framework, which provided a unified formal basis, but
also stressed the difference between OR and AND/OR algorithms. The fields
continued their relatively separate development.

This paper advances the view that the essence of heuristic search is not
searching either single- or two-agent graphs, but which search enhancements
one uses. First, the single/two-agent property is but one of the many properties
of the search space that play a role in the design process of a high performance
heuristic search application. Second, the single/two-agent distinction is not the
dominant factor in the design and implementation of a high-performance search
application search enhancements are. Third, most search enhancements are
quite general; they can be used for many different applications, regardless of
whether they are single- or two-agent.

The benefit of recognizing the crucial role played by search techniques is
immediate: application developers will have a larger suite of search enhancements
at their disposal; ideas first conceived of in two-agent search will not have to be
rediscovered later independently for single-agent search, and vice versa. In an
implementation the best combination of techniques depends on the expected
search benefits versus the programming efforts, not on the single- or two-agent
algorithm.

For twenty years, most of the research community has (explicitly and implic-
itly) treated single- and two-agent search as two different topics. Now it is time to
take stock and recognize the pivotal role that search enhancements have come to
play: the algorithm distinction is minor, and most research and implementation
efforts are directed towards the enhancements. All the properties of the search
space not just the single/two-agent distinction play their role in determining
the effectiveness of that what heuristic search is all about: enhancing the basic
search algorithms to achieve high performance.

6 Acknowledgments

This research was funded by the Natural Sciences and Engineering Research
Council of Canada.

References

1. V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
University of Limburg, 1994.

2. S. Amarel. An approach to heuristic problem-solving and theorem proving in the
propositional calculus. In J. Hart and S. Takasu, editors, Systems and Computer
Science, 1967.

3. T. Anantharaman, M. Campbell, and F. Hsu. Singular extensions: Adding selec-
tivity to brute-force searching. Artificial Intelligence, 43(1):99 109, 1990.

4. H. Berliner. The B* tree search algorithm: A best-first proof procedure. Artificial
Intelligence, 12:23 40, 1979.

5. M. Buro. ProbCut: A powerful selective extension of the af algorithm. Journal
of the International Computer Chess Association, 18(2):71-81, 1995.

6. P. Chakrabarti. Algorithms for searching explicit AND/OR graphs and their appli-
cations to problem reduction search. Artificial Intelligence, 65(2):329-345, January
1994.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. R. Gasser. Efficiently harnessing computational resources for erhaustive search.

PhD thesis, ETH Ziirich, 1995.

G. Goetsch and M. Campbell. Experiments with the null move heuristic. In AAAT
Spring Symposium, pages 14 18, 1988.

R. Greenblatt, D. Eastlake, and S. Crocker. The Greenblatt chess program. In
Fall Joint Computer Conference, volume 31, pages 801-810, 1967.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems, Science and Cybernetics,
SSC-4(2):100-107, July 1968.

A. Junghanns. New Developments in Single-Agent Search. PhD thesis, University
of Alberta, 1999.

A. Junghanns and J. Schaeffer. Domain-dependent single-agent search enhance-
ments. In IJCAI-99, pages 570 575, 1999.

H. Kaindl, G. Kainz, A. Leeb, and H. Smetana. How to use limited memory in
heuristic search. In IJCAI-95, pages 236-242, Montreal, 1995.

R. Korf. Iterative deepening: An optimal admissible tree search. Artificial Intelli-
gence, 27:97 109, 1985.

R. Korf. Real-time heuristic search. Artificial Intelligence, 42:189-211, 1990.

G. Manzini. BIDA*: An improved perimeter search algorithm. Artificial Intelli-
gence, 75:347-360, 1995.

T. Marsland and A. Reinefeld. Enhanced iterative-deepening search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16(7):701 710, July 1994.
D. McAllester. Conspiracy numbers for min-max searching. Artificial Intelligence,
35:287-310, 1988.

A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, 1972.

N. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, 1971.
J. Pearl. Heuristics. Addison-Wesley, 1984.

A. Reinefeld. Complete solution of the eight-puzzle and the benefit of node ordering
in IDA*. In IJCAI-93, pages 248-253, Chambery, France, 1993.

J. Schaeffer. The history heuristic and alpha-beta search enhancements in prac-
tice. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1):1203
1212, 1989.

J. Scott. A chess-playing program. In Machine Intelligence 4, pages 255—265, 1969.
D. Slate and L. Atkin. Chess 4.5 the Northwestern University chess program.
In P.W. Frey, editor, Chess Skill in Man and Machine, pages 82-118, New York,
1977. Springer-Verlag.

L. Taylor and R. Korf. Pruning duplicate nodes in depth-first search. In AAAI-93,
pages 756761, 1993.

W. Zhang and R. Korf. Performance of linear-space search algorithms. Artificial
Intelligence, 79(2):241 292, 1996.

