Sequence Alignment using FastLSA

Kevin Charter, Jonathan Schaeffer, Duane Szafron
Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

Abstract For two strings of length m and n
(m < n), optimal sequence alignment (as a
function of the alignment scoring function)
takes time and space proportional to m xn to
compute. The time actually consists of two
parts: computing the score of the best align-
ment (calculating (m+1)x (n+1) values), and
then extracting the alignment (by reading the
computed values). The space requirement is
usually prohibitive. Hirschberg’s algorithm
reduces the space needs to roughly 2 x m, but
doubles the cost of computing and extract-
ing the alignment. This paper introduces the
FastLSA algorithm that is adaptive to the
amount of space available. At one extreme,
it uses linear space, while at the other it
uses quadratic space. Based on the memory
resources available, the algorithm saves the
mazximum amount of information to achieve
the lowest extraction cost. The algorithm is
shown to be analytically and experimentally
superior to Hirschberg’s algorithm.

Keywords: sequence alignment, DNA, protein,
Hirschberg’s algorithm, dynamic programming, lin-
ear space.

1 Introduction

Sequence alignment is one of the fundamen-
tal operations performed in computational bi-
ology research. It is at the heart of the Human
Genome Project, where sequences are com-
pared to gather evidence for a common func-
tion or biological origin. The goal is to produce

the best alignment for a pair of DNA or pro-
tein sequences (represented as strings of char-
acters). A good alignment has zero or more
gaps inserted into the sequences to maximize
the number of positions in the aligned strings
that match. For example, consider aligning the
sequences “ATTGGC” and “AGGAC”. By in-
serting gaps (“-”) in the appropriate place, the
number of positions where the two sequences
agree can be maximized:

ATTGG-C
A--GGAC

Here, the aligned sequences match in four po-
sitions. Algorithms for efficiently solving this
type of problem are well known and are based
on dynamic programming. Aligning the se-
quences “ATTGGC” and “AGGAC” reduces
to finding the maximum cost path through an
array of size m+ 1 and n+ 1 (m =5, n = 6,
adding an extra row and column to include
the gap). Given an array of size O(m x n),
it takes O(m x m) time to compute the array
cost entries, and then O(m + n) time to iden-
tify the maximum-cost path in the matrix. In
this paper, algorithms that are based on stor-
ing the complete matrix are called full matrix
algorithms.

Unfortunately, O(m x n) space can be pro-
hibitive, especially given that a DNA sequence
can be millions of characters long. Even align-
ing two (small) sequences of 10,000 requires a
prohibitive amount of storage (100,000,000 en-
tries). Hirschberg was first to report a way of
doing the computation using linear space [1].
Less storage means that some values must be

recomputed. It is a space-time tradeoff: the
computation costs double but the space over-
head drops to being linear in the length of the
strings.

In summary, there are two extremes for se-
quence alignment: full matrix, which mini-
mizes the computational complexity, and lin-
ear space, which minimizes the storage require-
ments. Neither of these algorithms accommo-
dates the real-world situation where you have
more memory than needed for a linear space
algorithm, but not enough to do a full matrix
computation.

This paper FastLSA
(Fast Linear-Space Alignment) algorithm.
Linear-space alignment algorithms (such
as Hirschberg’s) do not take advantage of
additional memory that might be available.
By recursively subdividing the problem into
k > 2 pieces using storage that is bounded by
2 X k x n, FastLSA uses the the additional
storage to reduce the execution time. In the
limit, where k¥ = m, the algorithm becomes
equivalent to a full matrix algorithm. FastLSA
can be viewed as being two generalizations of
Hirschberg’s algorithm:

introduces the

1. Recognizing that the best sequence align-
ment is likely a diagonal path through the
matrix. Thus, subdividing the problem
vertically and horizontally makes sense for
this class of applications.

2. Generalizing the recursion. Since all ma-
trix entries must be visited at least once,
recursively partitioning the data into k& >
2 pieces allows additional storage to be
used to reduce repeated computations.

This paper briefly describes the FastLSA
algorithm and assesses its execution perfor-
mance. Hirschberg’s algorithm ends up recom-
puting roughly (m + 1) x (n + 1) values, while
a full matrix algorithm has no recomputations.
FastLSA with k£ = 2 recomputes only half as
many values as Hirschberg’s algorithm. Higher
values of k give additional savings. In the
limit (k = m), FastLSA does no recomputa-
tions. The experimental results closely mirror

the analytical results, showing that FastLSA
out-performs Hirschberg’s algorithm on DNA
sequence alignment.

2 Sequence Alignment

A simple model of sequence alignment illus-
trates the basic idea. The following scor-
ing metric is simplistic; more complex scoring
functions are used in practice. If two aligned
sequences have identical values in the same col-
umn, then this will have a score of +2. If the
values in a column differ then the score is -1.
If a column contains a gap, then a penalty of
-2 is imposed. The alignments are built assum-
ing that both sequences do not have a gap in
the same column. The best alignment is the
one that has the maximal score. The align-
ment path is usually not unique. Qur example
alignment,

ATTGG-C
A--GGAC

has a score of (+2x4)+(—1x0)+(—2x3) =
+2.

The basic sequence alignment algorithm as-
sumes that the entire dynamic programming
matrix is in memory. It consists of two parts:
FindScore to build the matrix of values and
FindPath to traverse the matrix and identify
the path(s) that lead to the maximal score.
Since O(m x n) storage is used, this is a full
matrix algorithm. The storage makes it possi-
ble to produce the alignment path (FindPath)
by a linear traversal across the matrix.

Figure 1 shows the dynamic programming
matrix built for the alignment of “ATTGC”
and “AGGAC”. In the FindScore phase, the
table values are filled in from right-to-left and
bottom-to-top. Between the table entries, the
values that get propagated horizontally to the
left, vertically up, and diagonally up-left are
shown. Going left corresponds to inserting a
gap in the left-hand-side sequence. Going up
inserts a gap in the sequence at the top. Go-
ing diagonally up-left corresponds to ”"match-
ing” the corresponding letters (no gap is in-
serted). Each table entry is the maximum of

'
i

oo
) }
= |1
+ =

4 b
\
H

Figure 1: Alignment Matrix for “ATTGGC”
and “AGGAC”.

the three incoming values. The answer in the
top left-hand corner (+2) confirms that the
alignment given previously leads to the maxi-
mum score. The arrows show the optimal path
back through the matrix. Note that there are
three optimal alignments according to our met-
ric, each giving the score of +2. In addition to
the alignment given above, the following are
also optimal:

ATTGGC
A-GGAC

ATTGGC
AG-GAC

There are a variety of sequence align-
ment algorithms based on Figure 1, of which
Needleman-Wunsch [2] and Smith-Waterman
[3] are two of the most important. The time
and space concerns led to the invention of
faster algorithms that were not as thorough
in their alignment scoring. These algorithms,
such as the well known Basic Local Alignment
Search Tool (BLAST) [4], attempt to find high-
scoring substring matches. The fast algorithms
are often used first to see if there is an inter-
esting relationship between the sequences. If
a match is found then a more computation-
ally expensive algorithm (such as Needleman-
Wunsch or Smith-Waterman) is used to get a
better quality answer.

Figure 2: Hirschberg’s Algorithm.

Hirschberg was the first to observe that the
same computation can be done using linear
space [1]. The FindScore component is eas-
ily modified to use linear space since it uses
only the current and previous row at any time.
Actually, it has been shown that only the
last row is needed [5]. The FindPath compo-
nent is harder, since it uses the results in the
reverse order to which they were computed.
Hirschberg’s algorithm reduces the space re-
quirements by using a recursive divide-and-
conquer procedure, as shown in Figure 2. Con-
sider string ¢ of length m and string s of length
n. The algorithm divides ¢ in half: ¢1 [1..m/2]
and ¢2 [m/2..m]. ¢l is aligned with s using a
linear-space FindScore algorithm, saving only
the last row of the computation. This align-
ment is the upper-left box in Figure 2. The
alignment has proceeded from the upper-left
corner to the middle dividing line. It then
aligns the reverse of ¢2 with the reverse of s
using a linear-space FindScore algorithm, sav-
ing only the last row of the computation. This
alignment is from the bottom right-hand cor-
ner to the middle dividing line. The first align-
ment computes the scores from the start of the
sequence to the midpoint; the second does it
from the end of the sequence to the midpoint.
From the two saved rows, the algorithm can
determine where the alignment path crosses ¢’s
midpoint (¢). This is point A in Figure 2. The
problem now is reduced to solving two sim-
pler problems: align g1 with s[1..c] and ¢2 with

slc+1..n]. The recursion ends when the length
of a sequence to be aligned is one.

The time complexity for Hirschberg’s algo-
rithm is O(n?). The space complexity is 2xn =
O(n). Chao, Hardison and Miller provide a
nice overview of linear-space sequence align-
ment algorithms [6]. A new reduced-spaced se-
quence alignment algorithm uses bidirectional
search [7]. This algorithm has the nice prop-
erty that it does not need to consider the entire
m X n matrix, eliminating portions of it that
probably cannot be part of the best alignment.
However the program runs two to three times
slower than Hirschberg’s algorithm [8].

3 FastLSA Algorithm

Given two strings of length m and n (m < n),
and R units of memory, what is the most cost-
effective way to do a sequence alignment? If
R > m x n, then the full matrix algorithm
can be used since everything will be resident
in memory (note that you may not want to do
this anyway because cache effects may result
in poor performance). If this is not the case,
then a reduced memory variant must be used.
Hirschberg’s algorithm works and only uses 2 x
m memory. It does not address the issue of
what to do if you have more memory available.

Hirschberg’s algorithm recursively divides
the problem in half, by saving row informa-
tion. However, if the problem is bisected both
row-wise and column-wise, and both the row
and column boundaries are saved, then the
alignment can be computed while recalculat-
ing fewer values.

Consider the column and row bisection in
Figure 3a. Computing 3/4 of the matrix (quad-
rants B, C, and D) allows the bisection bound-
ary information (the thick horizontal and ver-
tical lines in the matrix) to be saved. Now
the last quarter of the problem (quadrant A)
can be recursively solved. When it is com-
pleted, the optimal path will either go from
quadrant A to quadrant B, C or D (C in the
figure). However, the saved column informa-
tion allows the algorithm to quickly compute
the information needed to extend the path to

-
gt

Figure 3: Subdividing the Sequence Alignment
Matrix.

quadrant D. To find the path through quad-
rant C requires consideration of only the dotted
portion of that region. Hirschberg’s algorithm,
in contrast, would require the entire row from
the right-hand side of the matrix to the path
to be recomputed. Here, a little information
can save a lot of recalculation. Hirschberg’s al-
gorithm requires calculating, on average, each
value in the matrix twice. Figure 3a illus-
trates that FastLLSA offers significant savings;
only the dotted regions are recomputed. Each
of these regions can, in turn, be solved recur-
sively.

The algorithm is not restricted to bisec-
tion. The FastLSA algorithm recursively di-
vides each dimension of the matrix into & > 2
subproblems. Figure 3b illustrates this idea
for £ = 5. Initially the entire matrix is com-
puted, saving 4 rows and 4 columns during the
computation (as seen on the left-hand side of
Figure 3b). Once the top-left region is (recur-
sively) computed, the optimal path will extend
into one of three (m/k) x (n/k) boxes (to the
immediate right, immediately below, or diago-
nally down). Each box has the necessary row
and column information to localize the amount
of recalculation that needs to be done. The

dotted regions are the recursive subproblems
where recomputations need to be performed.
Hence, in Figure 3b, the number of areas (sub-
problems) that need to be solved is k in the
best case (the k boxes on the diagonal) and
2k—1 in the worst case. In this example, 8 sub-
problems are needed. Each of these subprob-
lems can, in turn, be solved recursively using
the same procedure. For example, the right-
hand side of Figure 3b shows an enlargement
of the bottom-right corner of the matrix given
on the left-hand side of the figure. The part of
the region that is still relevant to the solution
is divided into 5, both horizontally and verti-
cally. The top shaded portion of the region is
ignored since it has been proven that the op-
timal path being followed cannot go through
it.

An analysis of FastLSA’s performance gives
the following results for aligning two sequences
of length n:

e Space: S(n,n) =~ 2kn (assuming n >> k).

e Expected number of values recomputed:
E(m,n) =~ m x n/k.

For k = 2, FastLSA can be expected to re-
compute roughly E(m,n) = 0.5 x m x n val-
ues, about half of the recomputation cost of
Hirschberg’s algorithm. This comes at the cost
of using double the storage of Hirschberg’s al-
gorithm. Depending on the length of the se-
quences being aligned, this extra storage is usu-
ally not an issue. Increasing k reduces the time
complexity by increasing the space usage. In
the limit, &k = m, FastLSA becomes equivalent
to the full matrix algorithm with no recompu-
tations.

4 Experimental Results

FastLSA has been integrated into the commer-
cial sequence alignment code for the BioTools
product GeneTool (www.biotools.com). Ex-
periments were conducted using a database
of 3,171 sequences (a publicly available sub-
set of GenBank sequences). For each value of

k = 2,3,...11, five runs were performed align-
ing a sequence against each member of the
database using different alignment scoring pa-
rameters. The average execution times and
number of recomputed values over these runs
are reported. Timings were done on a 200 MHz
PC with 128 MB of RAM running Linux.

Figure 4 compares algorithms based on the
number of values recomputed. Full matrix
is at a constant of 0 recomputations, and
Hirschberg’s algorithm required 0.93 X m xn re-
computations in our experiments (better than
the theoretical value of 1.0). FastLSA is illus-
trated for k = 2 through 11. Both the theoret-
ical (expected case F/(m,n)) and experimental
results are shown. The analytical result is a
good predictor of performance, even though it
is an upper bound based on unrealistic assump-
tions (that both matrices are the same size).
The standard deviation is small, ranging from
0.041 for k = 2 to 0.015 for k£ = 11.

Figure 5 compares the recomputation ex-
ecution time for FastLSA and Hirschberg.
The FastLSA(1) time is an extrapolation of
FastLSA(2)’s time. FastLSA’s actual execu-
tion times reduce by a faster rate than pre-
dicted by FE(m,n). The execution overhead
of FastLLSA (saving values; recursing; deciding
when recomputations are needed) appears to
be more than offset by positive cache effects
due to using less memory. Performance lev-
els off at £ = 11, where the overhead of using
linear storage is within a few percent of full
matrix performance.

Full matrix results are not shown in Fig-
ure 5, since the excessive space requirements
degrade performance due to swapping and
cache effects (alignments of two sequences with
sizes greater than 5,000 do not fit comfortably
in RAM). Even small alignments, such as se-
quences of length 500, have poor cache perfor-
mance. Except for small sequences, full matrix
algorithms run slower than linear space algo-
rithms, even though they compute fewer val-
ues!

The anomaly in Figure 5 is the poor perfor-
mance of Hirschberg’s algorithm. Our imple-
mentation produces the correct results, but the

0.3 4
0.3 4
0.7 4
0.6
0.5 4
0.4 4
0.z 4
0.z 4
0.1 A

Comparisons

FastLS5A k-ralue

—8—FaztL54 empirical
—#—FastLS A theoretical
—m—Full Matrix
—k—Hirschberg empirical

Figure 4: Number of Recomputations.

2500
e e
2000
Cand
% 1500
W
L
&
E 1om0
-
500
g+ —————F/" 7T —7I
1 z = 4 5 g a 10 1
FastLS5A k-value

—8—FaztL54 empirical
—#—FaztLS# theoretical
——Full Matrix
—a&—Hirschberg ermpirical

Figure 5: Execution Time.

times are surprisingly bad. A major reason for
this is the cache. FastLSA uses memory like a
stack, continually pushing, popping, and read-
ing from the top of the memory area allocated
to the algorithm. This gives very good cache
locality. It also has a smaller cache working
set then does Hirschberg’s algorithm because
the intervals it works with are at least a fac-
tor of k£ smaller. In contrast, Hirschberg’s al-
gorithm continually overwrites its entire allo-
cated memory. When it solves a subproblem,
the algorithm continually overwrites a single
row in memory. Each overwrite goes sequen-
tially from the first to the last element in the
row. If the space requirements for the row are

too big to fit into the cache, then each row ac-
cess is likely no longer in the cache.

5 Acknowledgments

We would like to thank BioTools Inc. for
kindly making their source code available to
us. lan Parsons integrated FastLLSA into the
BioTools products.

Financial support was provided by the Natu-
ral Sciences and Engineering Research Council

of Canada (NSERC).

References

[1]

D. Hirschberg. A linear space algorithm
for computing maximal common subex-

pressions. Communications of the ACM,
18(6):341-343, 1975.

S. Needleman and C. Wunsch. A general
method applicable to the search for simi-
larities in the amino acid sequences of two
proteins. Journal of Molecular Biology,
48:443-453, 1970.

T. Smith and M. Waterman. Identification
of common molecular sequences. Journal
of Molecular Biology, 197:723 728, 1981.

S. Altschul, W. Gish, W. Miller, E. My-
ers, and D. Lipman. Basic local alignment
search tool. Journal of Molecular Biology,
215:403-410, 1990.

E. Myers and W. Miller. Optimal align-
ments in linear space. Computer Applica-
tions in the Biosciences, 4(1):11 17, 1988.

K. Chao, R. Hardison, and W. Miller. Re-
cent developments in linear-space align-
ment methods: A survey. Journal of Com-
putational Biology, 1(4):271 291, 1994.

R. Korf. Divide-and-conquer bidirectional
search. In International Joint Conference
on Artificial Intelligence, pages 1184 1189,
1999.

R. Korf, 1999. Private communication,
September.

