
Sequen
e Alignment using FastLSAKevin Charter, Jonathan S
hae�er, Duane SzafronDepartment of Computing S
ien
eUniversity of AlbertaEdmonton, AlbertaCanada T6G 2H1Abstra
t For two strings of length m and n(m � n), optimal sequen
e alignment (as afun
tion of the alignment s
oring fun
tion)takes time and spa
e proportional to m�n to
ompute. The time a
tually 
onsists of twoparts: 
omputing the s
ore of the best align-ment (
al
ulating (m+1)�(n+1) values), andthen extra
ting the alignment (by reading the
omputed values). The spa
e requirement isusually prohibitive. Hirs
hberg's algorithmredu
es the spa
e needs to roughly 2�m, butdoubles the 
ost of 
omputing and extra
t-ing the alignment. This paper introdu
es theFastLSA algorithm that is adaptive to theamount of spa
e available. At one extreme,it uses linear spa
e, while at the other ituses quadrati
 spa
e. Based on the memoryresour
es available, the algorithm saves themaximum amount of information to a
hievethe lowest extra
tion 
ost. The algorithm isshown to be analyti
ally and experimentallysuperior to Hirs
hberg's algorithm.Keywords: sequen
e alignment, DNA, protein,Hirs
hberg's algorithm, dynami
 programming, lin-ear spa
e.1 Introdu
tionSequen
e alignment is one of the fundamen-tal operations performed in 
omputational bi-ology resear
h. It is at the heart of the HumanGenome Proje
t, where sequen
es are 
om-pared to gather eviden
e for a 
ommon fun
-tion or biologi
al origin. The goal is to produ
e

the best alignment for a pair of DNA or pro-tein sequen
es (represented as strings of 
har-a
ters). A good alignment has zero or moregaps inserted into the sequen
es to maximizethe number of positions in the aligned stringsthat mat
h. For example, 
onsider aligning thesequen
es \ATTGGC" and \AGGAC". By in-serting gaps (\-") in the appropriate pla
e, thenumber of positions where the two sequen
esagree 
an be maximized:ATTGG-CA--GGACHere, the aligned sequen
es mat
h in four po-sitions. Algorithms for eÆ
iently solving thistype of problem are well known and are basedon dynami
 programming. Aligning the se-quen
es \ATTGGC" and \AGGAC" redu
esto �nding the maximum 
ost path through anarray of size m + 1 and n + 1 (m = 5, n = 6,adding an extra row and 
olumn to in
ludethe gap). Given an array of size O(m � n),it takes O(m � n) time to 
ompute the array
ost entries, and then O(m + n) time to iden-tify the maximum-
ost path in the matrix. Inthis paper, algorithms that are based on stor-ing the 
omplete matrix are 
alled full matrixalgorithms.Unfortunately, O(m � n) spa
e 
an be pro-hibitive, espe
ially given that a DNA sequen
e
an be millions of 
hara
ters long. Even align-ing two (small) sequen
es of 10,000 requires aprohibitive amount of storage (100,000,000 en-tries). Hirs
hberg was �rst to report a way ofdoing the 
omputation using linear spa
e [1℄.Less storage means that some values must be



re
omputed. It is a spa
e-time tradeo�: the
omputation 
osts double but the spa
e over-head drops to being linear in the length of thestrings.In summary, there are two extremes for se-quen
e alignment: full matrix, whi
h mini-mizes the 
omputational 
omplexity, and lin-ear spa
e, whi
h minimizes the storage require-ments. Neither of these algorithms a

ommo-dates the real-world situation where you havemore memory than needed for a linear spa
ealgorithm, but not enough to do a full matrix
omputation.This paper introdu
es the FastLSA(Fast Linear-Spa
e Alignment) algorithm.Linear-spa
e alignment algorithms (su
has Hirs
hberg's) do not take advantage ofadditional memory that might be available.By re
ursively subdividing the problem intok � 2 pie
es using storage that is bounded by2 � k � n, FastLSA uses the the additionalstorage to redu
e the exe
ution time. In thelimit, where k = m, the algorithm be
omesequivalent to a full matrix algorithm. FastLSA
an be viewed as being two generalizations ofHirs
hberg's algorithm:1. Re
ognizing that the best sequen
e align-ment is likely a diagonal path through thematrix. Thus, subdividing the problemverti
ally and horizontally makes sense forthis 
lass of appli
ations.2. Generalizing the re
ursion. Sin
e all ma-trix entries must be visited at least on
e,re
ursively partitioning the data into k �2 pie
es allows additional storage to beused to redu
e repeated 
omputations.This paper brie
y des
ribes the FastLSAalgorithm and assesses its exe
ution perfor-man
e. Hirs
hberg's algorithm ends up re
om-puting roughly (m+ 1)� (n+ 1) values, whilea full matrix algorithm has no re
omputations.FastLSA with k = 2 re
omputes only half asmany values as Hirs
hberg's algorithm. Highervalues of k give additional savings. In thelimit (k = m), FastLSA does no re
omputa-tions. The experimental results 
losely mirror

the analyti
al results, showing that FastLSAout-performs Hirs
hberg's algorithm on DNAsequen
e alignment.2 Sequen
e AlignmentA simple model of sequen
e alignment illus-trates the basi
 idea. The following s
or-ing metri
 is simplisti
; more 
omplex s
oringfun
tions are used in pra
ti
e. If two alignedsequen
es have identi
al values in the same 
ol-umn, then this will have a s
ore of +2. If thevalues in a 
olumn di�er then the s
ore is -1.If a 
olumn 
ontains a gap, then a penalty of-2 is imposed. The alignments are built assum-ing that both sequen
es do not have a gap inthe same 
olumn. The best alignment is theone that has the maximal s
ore. The align-ment path is usually not unique. Our examplealignment, ATTGG-CA--GGAChas a s
ore of (+2�4)+(�1�0)+(�2�3) =+2.The basi
 sequen
e alignment algorithm as-sumes that the entire dynami
 programmingmatrix is in memory. It 
onsists of two parts:FindS
ore to build the matrix of values andFindPath to traverse the matrix and identifythe path(s) that lead to the maximal s
ore.Sin
e O(m � n) storage is used, this is a fullmatrix algorithm. The storage makes it possi-ble to produ
e the alignment path (FindPath)by a linear traversal a
ross the matrix.Figure 1 shows the dynami
 programmingmatrix built for the alignment of \ATTGC"and \AGGAC". In the FindS
ore phase, thetable values are �lled in from right-to-left andbottom-to-top. Between the table entries, thevalues that get propagated horizontally to theleft, verti
ally up, and diagonally up-left areshown. Going left 
orresponds to inserting agap in the left-hand-side sequen
e. Going upinserts a gap in the sequen
e at the top. Go-ing diagonally up-left 
orresponds to "mat
h-ing" the 
orresponding letters (no gap is in-serted). Ea
h table entry is the maximum of



Figure 1: Alignment Matrix for \ATTGGC"and \AGGAC".the three in
oming values. The answer in thetop left-hand 
orner (+2) 
on�rms that thealignment given previously leads to the maxi-mum s
ore. The arrows show the optimal pathba
k through the matrix. Note that there arethree optimal alignments a

ording to our met-ri
, ea
h giving the s
ore of +2. In addition tothe alignment given above, the following arealso optimal:ATTGGC ATTGGCA-GGAC AG-GACThere are a variety of sequen
e align-ment algorithms based on Figure 1, of whi
hNeedleman-Wuns
h [2℄ and Smith-Waterman[3℄ are two of the most important. The timeand spa
e 
on
erns led to the invention offaster algorithms that were not as thoroughin their alignment s
oring. These algorithms,su
h as the well known Basi
 Lo
al AlignmentSear
h Tool (BLAST) [4℄, attempt to �nd high-s
oring substring mat
hes. The fast algorithmsare often used �rst to see if there is an inter-esting relationship between the sequen
es. Ifa mat
h is found then a more 
omputation-ally expensive algorithm (su
h as Needleman-Wuns
h or Smith-Waterman) is used to get abetter quality answer.

Figure 2: Hirs
hberg's Algorithm.Hirs
hberg was the �rst to observe that thesame 
omputation 
an be done using linearspa
e [1℄. The FindS
ore 
omponent is eas-ily modi�ed to use linear spa
e sin
e it usesonly the 
urrent and previous row at any time.A
tually, it has been shown that only thelast row is needed [5℄. The FindPath 
ompo-nent is harder, sin
e it uses the results in thereverse order to whi
h they were 
omputed.Hirs
hberg's algorithm redu
es the spa
e re-quirements by using a re
ursive divide-and-
onquer pro
edure, as shown in Figure 2. Con-sider string q of length m and string s of lengthn. The algorithm divides q in half: q1 [1::m=2℄and q2 [m=2::m℄. q1 is aligned with s using alinear-spa
e FindS
ore algorithm, saving onlythe last row of the 
omputation. This align-ment is the upper-left box in Figure 2. Thealignment has pro
eeded from the upper-left
orner to the middle dividing line. It thenaligns the reverse of q2 with the reverse of susing a linear-spa
e FindS
ore algorithm, sav-ing only the last row of the 
omputation. Thisalignment is from the bottom right-hand 
or-ner to the middle dividing line. The �rst align-ment 
omputes the s
ores from the start of thesequen
e to the midpoint; the se
ond does itfrom the end of the sequen
e to the midpoint.From the two saved rows, the algorithm 
andetermine where the alignment path 
rosses q'smidpoint (
). This is point A in Figure 2. Theproblem now is redu
ed to solving two sim-pler problems: align q1 with s[1::
℄ and q2 with



s[
+1::n℄. The re
ursion ends when the lengthof a sequen
e to be aligned is one.The time 
omplexity for Hirs
hberg's algo-rithm isO(n2). The spa
e 
omplexity is 2�n =O(n). Chao, Hardison and Miller provide ani
e overview of linear-spa
e sequen
e align-ment algorithms [6℄. A new redu
ed-spa
ed se-quen
e alignment algorithm uses bidire
tionalsear
h [7℄. This algorithm has the ni
e prop-erty that it does not need to 
onsider the entirem � n matrix, eliminating portions of it thatprobably 
annot be part of the best alignment.However the program runs two to three timesslower than Hirs
hberg's algorithm [8℄.3 FastLSA AlgorithmGiven two strings of length m and n (m � n),and R units of memory, what is the most 
ost-e�e
tive way to do a sequen
e alignment? IfR � m � n, then the full matrix algorithm
an be used sin
e everything will be residentin memory (note that you may not want to dothis anyway be
ause 
a
he e�e
ts may resultin poor performan
e). If this is not the 
ase,then a redu
ed memory variant must be used.Hirs
hberg's algorithm works and only uses 2�m memory. It does not address the issue ofwhat to do if you have more memory available.Hirs
hberg's algorithm re
ursively dividesthe problem in half, by saving row informa-tion. However, if the problem is bise
ted bothrow-wise and 
olumn-wise, and both the rowand 
olumn boundaries are saved, then thealignment 
an be 
omputed while re
al
ulat-ing fewer values.Consider the 
olumn and row bise
tion inFigure 3a. Computing 3/4 of the matrix (quad-rants B, C, and D) allows the bise
tion bound-ary information (the thi
k horizontal and ver-ti
al lines in the matrix) to be saved. Nowthe last quarter of the problem (quadrant A)
an be re
ursively solved. When it is 
om-pleted, the optimal path will either go fromquadrant A to quadrant B, C or D (C in the�gure). However, the saved 
olumn informa-tion allows the algorithm to qui
kly 
omputethe information needed to extend the path to

a) k = 2
b) k = 5Figure 3: Subdividing the Sequen
e AlignmentMatrix.quadrant D. To �nd the path through quad-rant C requires 
onsideration of only the dottedportion of that region. Hirs
hberg's algorithm,in 
ontrast, would require the entire row fromthe right-hand side of the matrix to the pathto be re
omputed. Here, a little information
an save a lot of re
al
ulation. Hirs
hberg's al-gorithm requires 
al
ulating, on average, ea
hvalue in the matrix twi
e. Figure 3a illus-trates that FastLSA o�ers signi�
ant savings;only the dotted regions are re
omputed. Ea
hof these regions 
an, in turn, be solved re
ur-sively.The algorithm is not restri
ted to bise
-tion. The FastLSA algorithm re
ursively di-vides ea
h dimension of the matrix into k � 2subproblems. Figure 3b illustrates this ideafor k = 5. Initially the entire matrix is 
om-puted, saving 4 rows and 4 
olumns during the
omputation (as seen on the left-hand side ofFigure 3b). On
e the top-left region is (re
ur-sively) 
omputed, the optimal path will extendinto one of three (m=k) � (n=k) boxes (to theimmediate right, immediately below, or diago-nally down). Ea
h box has the ne
essary rowand 
olumn information to lo
alize the amountof re
al
ulation that needs to be done. The



dotted regions are the re
ursive subproblemswhere re
omputations need to be performed.Hen
e, in Figure 3b, the number of areas (sub-problems) that need to be solved is k in thebest 
ase (the k boxes on the diagonal) and2k�1 in the worst 
ase. In this example, 8 sub-problems are needed. Ea
h of these subprob-lems 
an, in turn, be solved re
ursively usingthe same pro
edure. For example, the right-hand side of Figure 3b shows an enlargementof the bottom-right 
orner of the matrix givenon the left-hand side of the �gure. The part ofthe region that is still relevant to the solutionis divided into 5, both horizontally and verti-
ally. The top shaded portion of the region isignored sin
e it has been proven that the op-timal path being followed 
annot go throughit.An analysis of FastLSA's performan
e givesthe following results for aligning two sequen
esof length n:� Spa
e: S(n; n) � 2kn (assuming n >> k).� Expe
ted number of values re
omputed:E(m;n) � m� n=k.For k = 2, FastLSA 
an be expe
ted to re-
ompute roughly E(m;n) = 0:5 �m � n val-ues, about half of the re
omputation 
ost ofHirs
hberg's algorithm. This 
omes at the 
ostof using double the storage of Hirs
hberg's al-gorithm. Depending on the length of the se-quen
es being aligned, this extra storage is usu-ally not an issue. In
reasing k redu
es the time
omplexity by in
reasing the spa
e usage. Inthe limit, k = m, FastLSA be
omes equivalentto the full matrix algorithm with no re
ompu-tations.4 Experimental ResultsFastLSA has been integrated into the 
ommer-
ial sequen
e alignment 
ode for the BioToolsprodu
t GeneTool (www.biotools.
om). Ex-periments were 
ondu
ted using a databaseof 3,171 sequen
es (a publi
ly available sub-set of GenBank sequen
es). For ea
h value of

k = 2; 3; :::11, �ve runs were performed align-ing a sequen
e against ea
h member of thedatabase using di�erent alignment s
oring pa-rameters. The average exe
ution times andnumber of re
omputed values over these runsare reported. Timings were done on a 200 MHzPC with 128 MB of RAM running Linux.Figure 4 
ompares algorithms based on thenumber of values re
omputed. Full matrixis at a 
onstant of 0 re
omputations, andHirs
hberg's algorithm required 0:93�m�n re-
omputations in our experiments (better thanthe theoreti
al value of 1.0). FastLSA is illus-trated for k = 2 through 11. Both the theoret-i
al (expe
ted 
ase E(m;n)) and experimentalresults are shown. The analyti
al result is agood predi
tor of performan
e, even though itis an upper bound based on unrealisti
 assump-tions (that both matri
es are the same size).The standard deviation is small, ranging from0.041 for k = 2 to 0.015 for k = 11.Figure 5 
ompares the re
omputation ex-e
ution time for FastLSA and Hirs
hberg.The FastLSA(1) time is an extrapolation ofFastLSA(2)'s time. FastLSA's a
tual exe
u-tion times redu
e by a faster rate than pre-di
ted by E(m;n). The exe
ution overheadof FastLSA (saving values; re
ursing; de
idingwhen re
omputations are needed) appears tobe more than o�set by positive 
a
he e�e
tsdue to using less memory. Performan
e lev-els o� at k = 11, where the overhead of usinglinear storage is within a few per
ent of fullmatrix performan
e.Full matrix results are not shown in Fig-ure 5, sin
e the ex
essive spa
e requirementsdegrade performan
e due to swapping and
a
he e�e
ts (alignments of two sequen
es withsizes greater than 5,000 do not �t 
omfortablyin RAM). Even small alignments, su
h as se-quen
es of length 500, have poor 
a
he perfor-man
e. Ex
ept for small sequen
es, full matrixalgorithms run slower than linear spa
e algo-rithms, even though they 
ompute fewer val-ues!The anomaly in Figure 5 is the poor perfor-man
e of Hirs
hberg's algorithm. Our imple-mentation produ
es the 
orre
t results, but the



Figure 4: Number of Re
omputations.

Figure 5: Exe
ution Time.times are surprisingly bad. A major reason forthis is the 
a
he. FastLSA uses memory like asta
k, 
ontinually pushing, popping, and read-ing from the top of the memory area allo
atedto the algorithm. This gives very good 
a
helo
ality. It also has a smaller 
a
he workingset then does Hirs
hberg's algorithm be
ausethe intervals it works with are at least a fa
-tor of k smaller. In 
ontrast, Hirs
hberg's al-gorithm 
ontinually overwrites its entire allo-
ated memory. When it solves a subproblem,the algorithm 
ontinually overwrites a singlerow in memory. Ea
h overwrite goes sequen-tially from the �rst to the last element in therow. If the spa
e requirements for the row are

too big to �t into the 
a
he, then ea
h row a
-
ess is likely no longer in the 
a
he.
5 A
knowledgmentsWe would like to thank BioTools In
. forkindly making their sour
e 
ode available tous. Ian Parsons integrated FastLSA into theBioTools produ
ts.Finan
ial support was provided by the Natu-ral S
ien
es and Engineering Resear
h Coun
ilof Canada (NSERC).



Referen
es[1℄ D. Hirs
hberg. A linear spa
e algorithmfor 
omputing maximal 
ommon subex-pressions. Communi
ations of the ACM,18(6):341{343, 1975.[2℄ S. Needleman and C. Wuns
h. A generalmethod appli
able to the sear
h for simi-larities in the amino a
id sequen
es of twoproteins. Journal of Mole
ular Biology,48:443{453, 1970.[3℄ T. Smith and M. Waterman. Identi�
ationof 
ommon mole
ular sequen
es. Journalof Mole
ular Biology, 197:723{728, 1981.[4℄ S. Alts
hul, W. Gish, W. Miller, E. My-ers, and D. Lipman. Basi
 lo
al alignmentsear
h tool. Journal of Mole
ular Biology,215:403{410, 1990.[5℄ E. Myers and W. Miller. Optimal align-ments in linear spa
e. Computer Appli
a-tions in the Bios
ien
es, 4(1):11{17, 1988.[6℄ K. Chao, R. Hardison, and W. Miller. Re-
ent developments in linear-spa
e align-ment methods: A survey. Journal of Com-putational Biology, 1(4):271{291, 1994.[7℄ R. Korf. Divide-and-
onquer bidire
tionalsear
h. In International Joint Conferen
eon Arti�
ial Intelligen
e, pages 1184{1189,1999.[8℄ R. Korf, 1999. Private 
ommuni
ation,September.


